94 research outputs found

    Remote sensing and simulation modelling as tools for improving nitrogen efficiency for winter oilseed rape (Brassica napus L.)

    Get PDF
    Winter oilseed rape (OSR) became more and more important during the last decades due to its profitability, the potential to grow OSR as a renewable resource for biofuel production and its beneficial value as preceding crop. Its high fertilizer requirements and its low nitrogen efficiency enhance the risk of N losses from soil-crop system to the environment by leaching during winter rainfall. Site specific fertilization is one approach to improve N efficiency for OSR. Therefore, high resoluted spatial and time concerning information about current crop parameters like biomass and N uptake as well as information about yield potential is necessary. Two approaches were developed to realize these requirements. First, site specific differences of crop development should become measurable in realtime and for a large scale. Second, time courses of biomass production and N uptake should be comprehended by model simulation. Subsequently, appropriate fertilizer algorithms should be implemented for the derivation of fertilizer recommendations. Furthermore, the applicability of these approaches on field scale must be investigated in the course of additional studies. The first objective of this thesis was the establishment of a non-destructive, remote sensing based method to achieve information on site specific variability of above ground biomass and crop uptake of OSR during the growth period by measuring canopy reflectance in order to save intensive destructive measurements in the fields. A systematic analysis of hyperspectral reflectance measurements by testing all possible waveband combinations enabled to derive new vegetation indices. These indices were successfully used to estimate crop canopy parameters like the green area index (GAI), shoot dry matter (DMshoot) and nitrogen in the shoot (Nshoot) during the vegetation period and their prediction power exceeded commonly used indices in terms of r2 and RMSE. Particularly, combinations of near-infrared wavebands 740 nm and 780 nm served best to estimate GAI and DMshoot and Nshoot. Regarding calibration and validation, the indices showed stable results. Using these indices enables to identify small differences between crop canopy parameters in realtime and for large areas. These information can be used to initialize and parameterize a crop growth model for OSR. A further objective of this thesis was the development of a growth model to predict plant parameters like biomass and canopy N in the time course, to derive the amount of fertilizer demand. The presented crop growth model follows a dynamic, empirical approach for predicting dry matter production based on the concept of light use efficiency (LUE) for vegetative growth from emergence to flowering. Data gave evidence that LUE before winter was not constant but depended on radiation intensity. Therefore, it was calculated according to a linear regression function for this specific period. Furthermore, the model calculates dry matter partitioning into leaf and stem fraction according to an allometric approach. For the calculation of nitrogen uptake, nitrogen concentration had to be determined. For leaves, it was set to be constant, whereas stem nitrogen concentration depended on stem dry matter according to an exponential dilution curve. Nitrogen uptake for the shoot was obtained by adding leaf and stem nitrogen uptake. Additionally, the model calculated dry matter losses during winter, which were calculated according to temperatures below 0 °C. Taking these losses into account, enabled for a continuously prediction of dry matter from emergence to flowering without interruption. The variable LUE approach before winter improved dry matter predictions compared to calculations with an optimized, constant LUE. The model could reproduce the dynamic of dry matter losses during winter. Only few data sets were available for calibration and validation, so that parameterization was not robust regarding standard errors for optimized parameters. Prediction for validation data set revealed high differences concerning quality, indicating that additional data set are needed for improving parameterization and prediction of the crop growth model. Because crop growth differs for different developmental stages, another object of this study was the development of a phenological model. Knowledge about time and duration of growth stages can also be used for a growth specific crop management like N fertilization. The presented phenological model based on BRASNAP-PH, which was developed for north-west Europe. Because BRASNAP-PH predicts only four main developmental stages, modifications were conducted, to predict highly resoluted developmental stages according to BBCH. Vernalization and photoperiod were the most important factors besides temperature to estimate leaf development, whereas temperature was determinant during all phases of development. The modified model was calibrated and validated on a large data set throughout Germany. Optimized parameter values and corresponding standard errors for calibration and cross calibration gave advice for a robust parameterization. Validation and cross validation let to a root mean square error (RMSE) of 3.11 and 3.25 BBCH stages, respectively, for the whole developmental phase. The presented results of this thesis can contribute to improve N efficiency for OSR in terms of a site specific fertilization implementing fertilizer algorithms to the growth model. Therefore, an accurate, adjusted, site specific N fertilization recommendation should be derived from information of current crop status and of yield potential. Since the site specific fertilization deals only with one aspect for improving N efficiency for OSR, other approaches must be developed and investigated. Especially approaches concerning production management and crop rotations reveal promising for improvement

    A survey of image-based computational learning techniques for frost detection in plants

    Get PDF
    Frost damage is one of the major concerns for crop growers as it can impact the growth of the plants and hence, yields. Early detection of frost can help farmers mitigating its impact. In the past, frost detection was a manual or visual process. Image-based techniques are increasingly being used to understand frost development in plants and automatic assessment of damage resulting from frost. This research presents a comprehensive survey of the state-of the-art methods applied to detect and analyse frost stress in plants. We identify three broad computational learning approaches i.e., statistical, traditional machine learning and deep learning, applied to images to detect and analyse frost in plants. We propose a novel taxonomy to classify the existing studies based on several attributes. This taxonomy has been developed to classify the major characteristics of a significant body of published research. In this survey, we profile 80 relevant papers based on the proposed taxonomy. We thoroughly analyse and discuss the techniques used in the various approaches, i.e., data acquisition, data preparation, feature extraction, computational learning, and evaluation. We summarise the current challenges and discuss the opportunities for future research and development in this area including in-field advanced artificial intelligence systems for real-time frost monitoring

    Site-Specific Nutrient Management

    Get PDF
    The concept of nitrogen gap (NG), i.e., its recognition and amelioration, forms the core of this book entitled Site-Specific Nutrient Management (SSNM). Determination of the presence of an NG between fields on a farm and/or within a particular field, together with its size, requires a set of highly reliable diagnostic tools. The necessary set of diagnostic tools, based classically on pedological and agrochemical methods, should be currently supported by remote-sensing methods. A combination of these two groups of methods is the only way to recognize the factors responsible for yield gap (YG) appearance and to offer a choice of measures for its effective amelioration. The NG concept is discussed in the two first papers (Grzebisz and Łukowiak, Agronomy 2021, 11, 419; Łukowiak et al., Agronomy 2020, 10, 1959). Crop productivity depends on a synchronization of plant demand for nitrogen and its supply from soil resources during the growing season. The action of nitrate nitrogen (N–NO3), resulting in direct plant crop response, can be treated by farmers as a crucial growth factor. The expected outcome also depends on the status of soil fertility factors, including pools of available nutrients and the activity of microorganisms. Three papers are devoted to these basic aspects of soil fertility management (Sulewska et al., Agronomy 2020, 10, 1958; Grzebisz et al., Agronomy 2020, 10, 1701; Hlisnikovsky et al., Agronomy 2021, 11, 1333). The resistance of a currently cultivated crop to seasonal weather variability depends to a great extent on the soil fertility level. This aspect is thoroughly discussed for three distinct soil types and climates with respect to their impact on yield (Hlisnikovsky et al., Agronomy 2020, 10, 1160—Czech Republic; Wang et al., Agronomy 2020, 10, 1237—China; Łukowiak and Grzebisz et al., Agronomy 2020, 10, 1364—Poland). In the fourth section of this book, the division a particular field into homogenous production zones is discussed as a basis for effective nitrogen management within the field. This topic is presented for different regions and crops (China, Poland, and the USA) (Cammarano et al., Agronomy 2020, 10, 1767; Panek et al., Agronomy 2020, 10, 1842; Larson et al., Agronomy 2020, 10, 1858)

    Remote Estimation of Rice Yield With Unmanned Aerial Vehicle (UAV) Data and Spectral Mixture Analysis

    Get PDF
    The accurate assessment of rice yield is crucially important for China’s food security and sustainable development. Remote sensing (RS), as an emerging technology, is expected to be useful for rice yield estimation especially at regional scales. With the development of unmanned aerial vehicles (UAVs), a novel approach for RS has been provided, and it is possible to acquire high spatio-temporal resolution imagery on a regional scale. Previous reports have shown that the predictive ability of vegetation index (VI) decreased under the influence of panicle emergence during the later stages of rice growth. In this study, a new approach which integrated UAV-based VI and abundance information obtained from spectral mixture analysis (SMA) was established to improve the estimation accuracy of rice yield at heading stage. The six-band image of all studied rice plots was collected by a camera system mounted on an UAV at booting stage and heading stage respectively. And the corresponding ground measured data was also acquired at the same time. The relationship of several widely-used VIs and Rice Yield was tested at these two stages and a relatively weaker correlation between VI and yield was found at heading stage. In order to improve the estimation accuracy of rice yield at heading stage, the plot-level abundance of panicle, leaf and soil, indicating the fraction of different components within the plot, was derived from SMA on the six-band image and in situ endmember spectra collected for different components. The results showed that VI incorporated with abundance information exhibited a better predictive ability for yield than VI alone. And the product of VI and the difference of leaf abundance and panicle abundance was the most accurate index to reliably estimate yield for rice under different nitrogen treatments at heading stage with the coefficient of determination reaching 0.6 and estimation error below 10%

    Combining remote sensing and crop modeling techniques to derive a nitrogen fertilizer application strategy

    Get PDF
    The crucial question in this thesis was how can remote sensing data and crop models be used to derive a N fertilizer strategy that is capable to lower the environmental side effects of N fertilizer application. This raised the following detailed objectives: The first objective (i) how N content determination via spectral reflectance is influenced by different leaves and positions on the leaf was investigated in Publication I. Different wheat plants were cultivated under different N levels and under drought stress in two hydroponic greenhouse trials. Spectral reflectance measurements were taken from three leaves and at three positions on the leaf for each plant. In total, 16 vegetation indices broadly used in the literature were calculated based on the spectral reflectance for each combination of leaf and position. The plant N content was determined by lab analyses. Neither the position on the leaf nor leaf number had an impact on the accuracy of plant N determination via spectral reflectance measurements. Therefore measurements taken at the canopy level seem to be a valid approach. However, if other stress symptoms like drought or disease infection occur, a differentiation between leaves and positions on the leaf might play a more crucial role. Publication II dealt with the second objective on (ii), how to incorporate leaf disease into the DSSAT wheat model to enable the simulation of the impact of leaf disease on yield. An integration of sensor information in crop growth models requires the update of model state variables. A model extension was developed by adding a pest damage module to the existing wheat model. The approach was tested on a two-year dataset from Argentina with different wheat cultivars and on a one-year dataset from Germany with different inoculum levels of septoria tritici blotch (STB). After the integration of disease infection, the accuracy of the simulated yield and leaf area index (LAI) was improved. The Root mean squared error (RMSE) values for yield (1144 kg ha−1) and LAI (1.19 m2 m−2) were reduced by half (499 kg ha−1) for yield and LAI (0.69 m2 m−2). A sensitivity analysis also showed a strong responsiveness of the model by the integration of different STB disease infection scenarios. Increasing the modeling accuracy even further a MM approach seems to be suitable. Assembling more models increases the complexity of the simulation and the involved calibration procedure especially if the user is not familiar with all models. To avoid these conflicts, Publication III evaluated the third objective (iii) if an automatic calibration procedure in a MM approach for winter wheat can eliminate the subjectivity factor in model calibration. The model calibration was performed on a 4-yr N wheat fertilizer trial in southwest Germany. The evaluation mean showed satisfying results for the calibration (d-Index 0.93) and evaluation dataset (d-Index 0.81). This lead to the fourth (iv) objective to use a MM approach to improve the overall modeling accuracy. The evaluation of a fertilizer trial showed an improved modeling accuracy in most cases, especially in the drought season 2018. Based on the combination of a MM approach and the incorporation of sensor data, a Nitrogen Application Prescription System (NAPS) was developed. The initial NAPS setup requires long term recorded data (yield, weather, and soil) to ensure proper MM calibration. After calibration, the current growing season conditions are required (weather, management information) until the N application date. Afterward, the NAPS incorporates remote sensing information and generated weather for running future N application scenarios. The selection of the proper amount of N is determined by economic and ecological criteria. Furthermore, in order to account for differences in in-field variabilities and to deliver a N prescription site-specifically, the NAPS concept has to be applied on a geospatial scale by adjusting soil parameters spatially. The NAPS concept has the potential to adjust the N application more economically and ecologically by using current sensor data, historical yield records, and future weather prediction to derive a more precise N application strategy. Finally, this concept exhibits the potential for reconciliation of the issue of an economic, agricultural production without harming the environment.In dieser Arbeit wurde eruiert, ob mit Hilfe von Sensordaten und Pflanzenwachstumsmodellen eine N-Düngemittelstrategie abgeleitet werden kann, die in der Lage ist die ökologischen Belastung zu verringern. Dies umfasste die Evaluation folgender Fragestellungen: (I) Wird die spektrale Reflexion und somit die Bestimmung der N-Konzentration durch die Messung an verschiedenen Blattetagen und -Positionen beeinflusst (Publikation I)? Für die Klärung dieser ersten Frage wurden in zwei hydroponischen Gewächshausversuchen Weizenpflanzen bei unterschiedlicher N-Exposition und Trockenstress kultiviert. Für jede Pflanze wurden spektrale Reflexionsmessungen an drei Blattetagen und an drei Positionen auf dem Blatt durchgeführt. Insgesamt wurden die 16 üblichsten auf spektraler Reflexion basierenden Vegetationsindizes für jede Kombination von Blattetage und -Position berechnet. Die N-Konzentration der Pflanze wurde durch Laboranalysen bestimmt. Weder die Position auf dem Blatt noch die Blattetage hatten einen Einfluss auf die Genauigkeit der Bestimmung der N-Konzentration der Pflanze durch spektrale Reflexionsmessungen. Daher sind Messungen auf Bestandsebene ausreichend. Falls jedoch weitere Stressfaktoren wie Trockenheit oder Krankheitsbefall auftreten, kann eine Differenzierung zwischen verschiedenen Blattetagen notwendig oder von Vorteil sein. In der nächsten Fragestellung (Publikation II) wurde untersucht, wie Blattkrankheiten in ein DSSAT-Weizenmodell integriert werden können, um so die Auswirkungen von Blattkrankheiten auf den Ertrag zu simulieren. Eine Modellerweiterung wurde entwickelt, durch die Integration eines Blattkrankheitsmoduls in das bestehende DSSAT Weizenmodell. Das Modul simuliert die Auswirkungen des täglichen Schadens durch die Krankheit auf die Photosynthese und den Blattflächenindex. Der Ansatz wurde an einem zweijährigen Datensatz aus Argentinien mit verschiedenen Weizensorten und an einem einjährigen Datensatz aus Deutschland mit verschiedenen Inokulumniveaus von Septoria tritici-Blotch (STB) getestet. Die Sensitivitätsanalyse zeigte die Möglichkeit des Modells, den Ertrag in einer exponentiellen Beziehung mit zunehmendem Infektionsgrad (0-70%) zu reduzieren. Das erweiterte Modell stellt somit eine Möglichkeit dar, STB-Infektionen standortspezifisch in Verbindung mit verfügbaren Sensordaten zu simulieren. Um die Modellierungsgenauigkeit noch weiter zu erhöhen, wurde der Einsatz eines MM-Ansatz geprüft. Die Kombination von verschiedenen Modellen erhöht die Komplexität der Simulation und des damit verbundenen Kalibrierungsverfahrens, insbesondere wenn der Benutzer nicht mit allen Modellen vertraut ist. Die dritte Fragestellung (iii) untersuchte daher, ob objektive Kalibrierungsergebnisse gewährleitet werden könnten, wenn die cultivar coefficients im Modell auf Basis tatsächlich gemessener Daten mittels eines neu entwickelten automatischen Calibrator-Programms optimiert wurden. Die Modellkalibrierung wurde an einem 4-jährigen-Weizendüngungsversuch in Südwestdeutschland durchgeführt. Die statistische Auswertung des Kalibrierverfahrens zeigte zufriedenstellende Ergebnisse und führte zur vierten Fragestellung. Die vierte Fragestellung befasste sich mit dem Thema, ob ein MM-Ansatz die Gesamtmodelliergenauigkeit verbessern kann. Die Auswertung des Düngemittelversuchs zeigte in den meisten Fällen eine verbesserte Modellierungsgenauigkeit, insbesondere in einem durch Wasserstress geprägten Versuchsjahr wie 2018. Unter Verwendung eines MM-Ansatzes, durch Anpassung der Modellvariablen und durch die Integration von Sensordaten wurde ein Nitrogen Application Prescription System (NAPS) entwickelt. Eine Voraussetzung für das NAPS-Konzepts ist das Vorhandensein von Langzeit-Daten (Ertrag, Klima- und Bodenbedingungen), um eine korrekte MM-Kalibrierung zu gewährleisten. Nach der Kalibrierung werden die Bedingungen der aktuellen Wachstumssaison (Wetter, Managementinformationen) bis zum Düngetermin benötigt. Anschließend berechnet das NAPS basierend auf Sensorinformationen und simulierten Wetterbedingungen verschiedene Düngeszenarien. Ökonomische und ökologische Kriterien bestimmen die optimierte Düngemenge. Darüber hinaus muss das NAPS-Konzept auf räumlicher Ebene arbeiten, indem es die Bodenparameter berücksichtigt. So kann unter Beachtung der Feldvariabilität eine standortspezifische N-Ausbringung gewährleistet werden. In Summe zeigte sich, dass NAPS die Düngung an ökonomische und ökologische Faktoren anpasst, indem es aktuelle Sensordaten, historische Ertragsaufzeichnungen und zukünftige Wettervorhersagen zur Ermittlung einer präziseren N-Ausbringung nutzt. Das Konzept hat so das Potenzial, die nachteiligen Auswirkungen einer Überdüngung zu begrenzen, so dass eine umweltfreundlichere Agrarproduktion gewährleistet wird

    Combining remote sensing and crop modeling techniques to derive a nitrogen fertilizer application strategy

    Get PDF
    The crucial question in this thesis was how can remote sensing data and crop models be used to derive a N fertilizer strategy that is capable to lower the environmental side effects of N fertilizer application. This raised the following detailed objectives: The first objective (i) how N content determination via spectral reflectance is influenced by different leaves and positions on the leaf was investigated in Publication I. Different wheat plants were cultivated under different N levels and under drought stress in two hydroponic greenhouse trials. Spectral reflectance measurements were taken from three leaves and at three positions on the leaf for each plant. In total, 16 vegetation indices broadly used in the literature were calculated based on the spectral reflectance for each combination of leaf and position. The plant N content was determined by lab analyses. Neither the position on the leaf nor leaf number had an impact on the accuracy of plant N determination via spectral reflectance measurements. Therefore measurements taken at the canopy level seem to be a valid approach. However, if other stress symptoms like drought or disease infection occur, a differentiation between leaves and positions on the leaf might play a more crucial role. Publication II dealt with the second objective on (ii), how to incorporate leaf disease into the DSSAT wheat model to enable the simulation of the impact of leaf disease on yield. An integration of sensor information in crop growth models requires the update of model state variables. A model extension was developed by adding a pest damage module to the existing wheat model. The approach was tested on a two-year dataset from Argentina with different wheat cultivars and on a one-year dataset from Germany with different inoculum levels of septoria tritici blotch (STB). After the integration of disease infection, the accuracy of the simulated yield and leaf area index (LAI) was improved. The Root mean squared error (RMSE) values for yield (1144 kg ha−1) and LAI (1.19 m2 m−2) were reduced by half (499 kg ha−1) for yield and LAI (0.69 m2 m−2). A sensitivity analysis also showed a strong responsiveness of the model by the integration of different STB disease infection scenarios. Increasing the modeling accuracy even further a MM approach seems to be suitable. Assembling more models increases the complexity of the simulation and the involved calibration procedure especially if the user is not familiar with all models. To avoid these conflicts, Publication III evaluated the third objective (iii) if an automatic calibration procedure in a MM approach for winter wheat can eliminate the subjectivity factor in model calibration. The model calibration was performed on a 4-yr N wheat fertilizer trial in southwest Germany. The evaluation mean showed satisfying results for the calibration (d-Index 0.93) and evaluation dataset (d-Index 0.81). This lead to the fourth (iv) objective to use a MM approach to improve the overall modeling accuracy. The evaluation of a fertilizer trial showed an improved modeling accuracy in most cases, especially in the drought season 2018. Based on the combination of a MM approach and the incorporation of sensor data, a Nitrogen Application Prescription System (NAPS) was developed. The initial NAPS setup requires long term recorded data (yield, weather, and soil) to ensure proper MM calibration. After calibration, the current growing season conditions are required (weather, management information) until the N application date. Afterward, the NAPS incorporates remote sensing information and generated weather for running future N application scenarios. The selection of the proper amount of N is determined by economic and ecological criteria. Furthermore, in order to account for differences in in-field variabilities and to deliver a N prescription site-specifically, the NAPS concept has to be applied on a geospatial scale by adjusting soil parameters spatially. The NAPS concept has the potential to adjust the N application more economically and ecologically by using current sensor data, historical yield records, and future weather prediction to derive a more precise N application strategy. Finally, this concept exhibits the potential for reconciliation of the issue of an economic, agricultural production without harming the environment.In dieser Arbeit wurde eruiert, ob mit Hilfe von Sensordaten und Pflanzenwachstumsmodellen eine N-Düngemittelstrategie abgeleitet werden kann, die in der Lage ist die ökologischen Belastung zu verringern. Dies umfasste die Evaluation folgender Fragestellungen: (I) Wird die spektrale Reflexion und somit die Bestimmung der N-Konzentration durch die Messung an verschiedenen Blattetagen und -Positionen beeinflusst (Publikation I)? Für die Klärung dieser ersten Frage wurden in zwei hydroponischen Gewächshausversuchen Weizenpflanzen bei unterschiedlicher N-Exposition und Trockenstress kultiviert. Für jede Pflanze wurden spektrale Reflexionsmessungen an drei Blattetagen und an drei Positionen auf dem Blatt durchgeführt. Insgesamt wurden die 16 üblichsten auf spektraler Reflexion basierenden Vegetationsindizes für jede Kombination von Blattetage und -Position berechnet. Die N-Konzentration der Pflanze wurde durch Laboranalysen bestimmt. Weder die Position auf dem Blatt noch die Blattetage hatten einen Einfluss auf die Genauigkeit der Bestimmung der N-Konzentration der Pflanze durch spektrale Reflexionsmessungen. Daher sind Messungen auf Bestandsebene ausreichend. Falls jedoch weitere Stressfaktoren wie Trockenheit oder Krankheitsbefall auftreten, kann eine Differenzierung zwischen verschiedenen Blattetagen notwendig oder von Vorteil sein. In der nächsten Fragestellung (Publikation II) wurde untersucht, wie Blattkrankheiten in ein DSSAT-Weizenmodell integriert werden können, um so die Auswirkungen von Blattkrankheiten auf den Ertrag zu simulieren. Eine Modellerweiterung wurde entwickelt, durch die Integration eines Blattkrankheitsmoduls in das bestehende DSSAT Weizenmodell. Das Modul simuliert die Auswirkungen des täglichen Schadens durch die Krankheit auf die Photosynthese und den Blattflächenindex. Der Ansatz wurde an einem zweijährigen Datensatz aus Argentinien mit verschiedenen Weizensorten und an einem einjährigen Datensatz aus Deutschland mit verschiedenen Inokulumniveaus von Septoria tritici-Blotch (STB) getestet. Die Sensitivitätsanalyse zeigte die Möglichkeit des Modells, den Ertrag in einer exponentiellen Beziehung mit zunehmendem Infektionsgrad (0-70%) zu reduzieren. Das erweiterte Modell stellt somit eine Möglichkeit dar, STB-Infektionen standortspezifisch in Verbindung mit verfügbaren Sensordaten zu simulieren. Um die Modellierungsgenauigkeit noch weiter zu erhöhen, wurde der Einsatz eines MM-Ansatz geprüft. Die Kombination von verschiedenen Modellen erhöht die Komplexität der Simulation und des damit verbundenen Kalibrierungsverfahrens, insbesondere wenn der Benutzer nicht mit allen Modellen vertraut ist. Die dritte Fragestellung (iii) untersuchte daher, ob objektive Kalibrierungsergebnisse gewährleitet werden könnten, wenn die cultivar coefficients im Modell auf Basis tatsächlich gemessener Daten mittels eines neu entwickelten automatischen Calibrator-Programms optimiert wurden. Die Modellkalibrierung wurde an einem 4-jährigen-Weizendüngungsversuch in Südwestdeutschland durchgeführt. Die statistische Auswertung des Kalibrierverfahrens zeigte zufriedenstellende Ergebnisse und führte zur vierten Fragestellung. Die vierte Fragestellung befasste sich mit dem Thema, ob ein MM-Ansatz die Gesamtmodelliergenauigkeit verbessern kann. Die Auswertung des Düngemittelversuchs zeigte in den meisten Fällen eine verbesserte Modellierungsgenauigkeit, insbesondere in einem durch Wasserstress geprägten Versuchsjahr wie 2018. Unter Verwendung eines MM-Ansatzes, durch Anpassung der Modellvariablen und durch die Integration von Sensordaten wurde ein Nitrogen Application Prescription System (NAPS) entwickelt. Eine Voraussetzung für das NAPS-Konzepts ist das Vorhandensein von Langzeit-Daten (Ertrag, Klima- und Bodenbedingungen), um eine korrekte MM-Kalibrierung zu gewährleisten. Nach der Kalibrierung werden die Bedingungen der aktuellen Wachstumssaison (Wetter, Managementinformationen) bis zum Düngetermin benötigt. Anschließend berechnet das NAPS basierend auf Sensorinformationen und simulierten Wetterbedingungen verschiedene Düngeszenarien. Ökonomische und ökologische Kriterien bestimmen die optimierte Düngemenge. Darüber hinaus muss das NAPS-Konzept auf räumlicher Ebene arbeiten, indem es die Bodenparameter berücksichtigt. So kann unter Beachtung der Feldvariabilität eine standortspezifische N-Ausbringung gewährleistet werden. In Summe zeigte sich, dass NAPS die Düngung an ökonomische und ökologische Faktoren anpasst, indem es aktuelle Sensordaten, historische Ertragsaufzeichnungen und zukünftige Wettervorhersagen zur Ermittlung einer präziseren N-Ausbringung nutzt. Das Konzept hat so das Potenzial, die nachteiligen Auswirkungen einer Überdüngung zu begrenzen, so dass eine umweltfreundlichere Agrarproduktion gewährleistet wird

    Remote Sensing for Precision Nitrogen Management

    Get PDF
    This book focuses on the fundamental and applied research of the non-destructive estimation and diagnosis of crop leaf and plant nitrogen status and in-season nitrogen management strategies based on leaf sensors, proximal canopy sensors, unmanned aerial vehicle remote sensing, manned aerial remote sensing and satellite remote sensing technologies. Statistical and machine learning methods are used to predict plant-nitrogen-related parameters with sensor data or sensor data together with soil, landscape, weather and/or management information. Different sensing technologies or different modelling approaches are compared and evaluated. Strategies are developed to use crop sensing data for in-season nitrogen recommendations to improve nitrogen use efficiency and protect the environment

    Unlocking the benefits of spaceborne imaging spectroscopy for sustainable agriculture

    Get PDF
    With the Environmental Mapping and Analysis Program (EnMAP) mission, launched on April 1st 2022, new opportunities unfold for precision farming and agricultural monitoring. The recurring acquisition of spectrometric imagery from space, contiguously resolving the electromagnetic spectrum in the optical domain (400—2500 nm) within close narrow bands, provides unprecedented data about the interaction of radiation with biophysical and biochemical crop constituents. These interactions manifest in spectral reflectance, carrying important information about crop status and health. This information may be incorporated in agricultural management systems to support necessary efforts to maximize yields against the backdrop of an increased food demand by a growing world population. At the same time, it enables the effective optimization of fertilization and pest control to minimize environmental impacts of agriculture. Deriving biophysical and biochemical crop traits from hyperspectral reflectance thereby always relies on a model. These models are categorized into (1) parametric, (2) nonparametric, (3) physically-based, and (4) hybrid retrieval schemes. Parametric methods define an explicit parameterized expression, relating a number of spectral bands or derivates thereof with a crop trait of interest. Nonparametric methods comprise linear techniques, such as principal component analysis (PCA) which addresses collinearity issues between adjacent bands and enables compression of full spectral information into dimensionality reduced, maximal informative principal components (PCs). Nonparametric nonlinear methods, i.e., machine learning (ML) algorithms apply nonlinear transformations to imaging spectroscopy data and are therefore capable of capturing nonlinear relationships within the contained spectral features. Physically-based methods represent an umbrella term for radiative transfer models (RTMs) and related retrieval schemes, such as look-up-table (LUT) inversion. A simple, easily invertible and specific RTM is the Beer-Lambert law which may be used to directly infer plant water content. The most widely used general and invertible RTM is the one-dimensional canopy RTM PROSAIL, which is coupling the Leaf Optical Properties Spectra model PROSPECT and the canopy reflectance model 4SAIL: Scattering by Arbitrarily Inclined Leaves. Hybrid methods make use of synthetic data sets created by RTMs to calibrate parametric methods or to train nonparametric ML algorithms. Due to the ill-posed nature of RTM inversion, potentially unrealistic and redundant samples in a LUT need to be removed by either implementing physiological constraints or by applying active learning (AL) heuristics. This cumulative thesis presents three different hybrid approaches, demonstrated within three scientific research papers, to derive agricultural relevant crop traits from spectrometric imagery. In paper I the Beer-Lambert law is applied to directly infer the thickness of the optically active water layer (i.e., EWT) from the liquid water absorption feature at 970 nm. The model is calibrated with 50,000 PROSPECT spectra and validated over in situ data. Due to separate water content measurements of leaves, stalks, and fruits during the Munich-North-Isar (MNI) campaigns, findings indicate that depending on the crop type and its structure, different parts of the canopy are observed with optical sensors. For winter wheat, correlation between measured and modelled water content was most promising for ears and leaves, reaching coefficients of determination (R2) up to 0.72 and relative RMSE (rRMSE) of 26%, and in the case of corn for the leaf fraction only (R2 = 0.86, rRMSE = 23%). These results led to the general recommendation to collect destructive area-based plant organ specific EWT measurements instead of the common practice to upscale leaf-based EWT measurements to canopy water content (CWC) by multiplication of the leaf area index (LAI). The developed and calibrated plant water retrieval (PWR) model proved to be transferable in space and time and is ready to be applied to upcoming EnMAP data and any other hyperspectral imagery. In paper II the parametric concept of spectral integral ratios (SIR) is introduced to retrieve leaf chlorophyll a and b content (Cab), leaf carotenoid content (Ccx) and leaf water content (Cw) simultaneously from imaging spectroscopy data in the wavelength range 460—1100 nm. The SIR concept is based on automatic separation of respective absorption features through local peak and intercept analysis between log-transformed reflectance and convex hulls. The approach was validated over a physiologically constrained PROSAIL simulated database, considering natural Ccx-Cab relations and green peak locations. Validation on airborne spectrometric HyMAP data achieved satisfactory results for Cab (R2 = 0.84; RMSE = 9.06 µg cm-2) and CWC (R2 = 0.70; RMSE = 0.05 cm). Retrieved Ccx values were reasonable according to Cab-Ccx-dependence plausibility analysis. Mapping of the SIR results as multiband images (3-segment SIR) allows for an intuitive visualization of dominant absorptions with respect to the three considered biochemical variables. Hence, the presented SIR algorithm allows for computationally efficient and RTM supported robust retrievals of the two most important vegetation pigments as well as of water content and is applicable on satellite imaging spectroscopy data. In paper III a hybrid workflow is presented, combining RTM with ML for inferring crop carbon content (Carea) and aboveground dry and fresh biomass (AGBdry, AGBfresh). The concept involves the establishment of a PROSAIL training database, dimensionality reduction using PCA, optimization in the sampling domain using AL against the 4-year MNI campaign dataset, and training of Gaussian process regression (GPR) ML algorithms. Internal validation of the GPR-Carea and GPR-AGB models achieved R2 of 0.80 for Carea, and R2 of 0.80 and 0.71 for AGBdry and AGBfresh, respectively. Validation with an independent dataset, comprising airborne AVIRIS NG imagery (spectrally resampled to EnMAP) and in situ measurements, successfully demonstrated mapping capabilities for both bare and green fields and generated reliable estimates over winter wheat fields at low associated model uncertainties (< 40%). Overall, the proposed carbon and biomass models demonstrate a promising path toward the inference of these crucial variables over cultivated areas from upcoming spaceborne hyperspectral acquisitions, such as from EnMAP. As conclusions, the following important findings arise regarding parametric and nonparametric hybrid methods as well as in view of the importance of in situ data collection. (1) Uncertainties within the RTM PROSAIL should always be considered. A possible reduction of these uncertainties is thereby opposed to the invertibility of the model and its intended simplicity. (2) Both physiological constraints and AL heuristics should be applied to reduce unrealistic parameter combinations in a PROSAIL calibration or training database. (3) State-of-the-art hybrid ML approaches with the ability to provide uncertainty intervals are anticipated as most promising approach for solving inference problems from hyperspectral Earth observation data due to their synergistic use of RTMs and the high flexibility, accuracy and consistency of nonlinear nonparametric methods. (4) Parametric hybrid approaches, due to their algorithmic transparency, enable deeper insights into fundamental physical limitations of optical remote sensing as compared to ML approaches. (5) Integration-based indices that make full use of available hyperspectral information may serve as physics-aware dimensionality reduced input for ML algorithms to either improve estimations or to serve as endmember for crop type discrimination when additional time series information is available. (6) The validation of quantitative model-based estimations is crucial to evaluate and improve their performance in terms of the underlying assumptions, model parameterizations, and input data. (7) In the face of soon-to-be-available EnMAP data, collection of in situ data for validation of retrieval methods should aim at high variability of measured crop types, high temporal variability over the whole growing season, as well as include area- and biomass-based destructive measurements instead of LAI-upscaled leaf measurements. Provided the perfect functionality of the payload instruments, the success of the EnMAP mission and the here presented methods depend critically on a low-noise, accurate atmospherically corrected reflectance product. High-level outputs of the retrieval methods presented in this thesis may be incorporated into agricultural decision support systems for fertilization and irrigation planning, yield estimation, or estimation of the soil carbon sequestration potential to enable a sustainable intensive agriculture in the future.Mit der am 1. April 2022 gestarteten Satellitenmission Environmental Mapping and Analysis Program (EnMAP) eröffnen sich neue Möglichkeiten für die Präzisionslandwirtschaft und das landwirtschaftliche Monitoring. Die wiederkehrende Erfassung spektrometrischer Bilder aus dem Weltraum, welche das elektromagnetische Spektrum im optischen Bereich (400—2500 nm) innerhalb von engen, schmalen Bändern zusammenhängend auflösen, liefert nie dagewesene Daten über die Interaktionen von Strahlung und biophysikalischen und biochemischen Pflanzenbestandteilen. Diese Wechselwirkungen manifestieren sich in der spektralen Reflektanz, die wichtige Informationen über den Zustand und die Gesundheit der Pflanzen enthält. Vor dem Hintergrund einer steigenden Nachfrage nach Nahrungsmitteln durch eine wachsende Weltbevölkerung können diese Informationen in landwirtschaftliche Managementsysteme einfließen, um eine notwendige Ertragsmaximierung zu unterstützen. Gleichzeitig können sie eine effiziente Optimierung der Düngung und Schädlingsbekämpfung ermöglichen, um die Umweltauswirkungen der Landwirtschaft zu minimieren. Die Ableitung biophysikalischer und biochemischer Pflanzeneigenschaften aus hyperspektralen Reflektanzdaten ist dabei immer von einem Modell abhängig. Diese Modelle werden in (1) parametrische, (2) nichtparametrische, (3) physikalisch basierte und (4) hybride Ableitungsmethoden kategorisiert. Parametrische Methoden definieren einen expliziten parametrisierten Ausdruck, der eine Reihe von Spektralkanälen oder deren Ableitungen mit einem Pflanzenmerkmal von Interesse in Beziehung setzt. Nichtparametrische Methoden umfassen lineare Techniken wie die Hauptkomponentenanalyse (PCA). Diese adressieren Kollinearitätsprobleme zwischen benachbarten Kanälen und komprimieren die gesamte Spektralinformation in dimensionsreduzierte, maximal informative Hauptkomponenten (PCs). Nichtparametrische nichtlineare Methoden, d. h. Algorithmen des maschinellen Lernens (ML), wenden nichtlineare Transformationen auf bildgebende Spektroskopiedaten an und sind daher in der Lage, nichtlineare Beziehungen innerhalb der enthaltenen spektralen Merkmale zu erfassen. Physikalisch basierte Methoden sind ein Oberbegriff für Strahlungstransfermodelle (RTM) und damit verbundene Ableitungsschemata, d. h. Invertierungsverfahren wie z. B. die Invertierung mittels Look-up-Table (LUT). Ein einfaches, leicht invertierbares und spezifisches RTM stellt das Lambert-Beer'sche Gesetz dar, das zur direkten Ableitung des Wassergehalts von Pflanzen verwendet werden kann. Das am weitesten verbreitete, allgemeine und invertierbare RTM ist das eindimensionale Bestandsmodell PROSAIL, eine Kopplung des Blattmodells Leaf Optical Properties Spectra (PROSPECT) mit dem Bestandsreflexionsmodell 4SAIL (Scattering by Arbitrarily Inclined Leaves). Bei hybriden Methoden werden von RTMs generierte, synthetische Datenbanken entweder zur Kalibrierung parametrischer Methoden oder zum Training nichtparametrischer ML-Algorithmen verwendet. Aufgrund der Äquifinalitätsproblematik bei der RTM-Invertierung, müssen potenziell unrealistische und redundante Simulationen in einer solchen Datenbank durch die Implementierung natürlicher physiologischer Beschränkungen oder durch die Anwendung von Active Learning (AL) Heuristiken entfernt werden. In dieser kumulativen Dissertation werden drei verschiedene hybride Ansätze zur Ableitung landwirtschaftlich relevanter Pflanzenmerkmale aus spektrometrischen Bilddaten vorgestellt, die anhand von drei wissenschaftlichen Publikationen demonstriert werden. In Paper I wird das Lambert-Beer'sche Gesetz angewandt, um die Dicke der optisch aktiven Wasserschicht (bzw. EWT) direkt aus dem Absorptionsmerkmal von flüssigem Wasser bei 970 nm abzuleiten. Das Modell wird mit 50.000 PROSPECT-Spektren kalibriert und anhand von In-situ-Daten validiert. Aufgrund separater Messungen des Wassergehalts von Blättern, Stängeln und Früchten während der München-Nord-Isar (MNI)-Kampagnen, zeigen die Ergebnisse, dass je nach Kulturart und -struktur, unterschiedliche Teile des Bestandes mit optischen Sensoren beobachtet werden können. Bei Winterweizen wurde die höchste Korrelation zwischen gemessenem und modelliertem Wassergehalt für Ähren und Blätter erzielt und sie erreichte Bestimmtheitsmaße (R2) von bis zu 0,72 bei einem relativen RMSE (rRMSE) von 26%, bei Mais entsprechend nur für die Blattfraktion (R2 = 0,86, rRMSE = 23%). Diese Ergebnisse führten zu der allgemeinen Empfehlung, Kompartiment-spezifische EWT-Bestandsmessungen zu erheben, anstatt der üblichen Praxis, blattbasierte EWT-Messungen durch Multiplikation mit dem Blattflächenindex (LAI) auf den Bestandswassergehalt (CWC) hochzurechnen. Das entwickelte und kalibrierte Modell zur Ableitung des Pflanzenwassergehalts (PWR) erwies sich als räumlich und zeitlich übertragbar und kann auf bald verfügbare EnMAP-Daten und andere hyperspektrale Bilddaten angewendet werden. In Paper II wird das parametrische Konzept der spektralen Integralratios (SIR) eingeführt, um den Chlorophyll a- und b-Gehalt (Cab), den Karotinoidgehalt (Ccx) und den Wassergehalt (Cw) simultan aus bildgebenden Spektroskopiedaten im Wellenlängenbereich 460-1100 nm zu ermitteln. Das SIR-Konzept basiert auf der automatischen Separierung der jeweiligen Absorptionsmerkmale durch lokale Maxima- und Schnittpunkt-Analyse zwischen log-transformierter Reflektanz und konvexen Hüllen. Der Ansatz wurde anhand einer physiologisch eingeschränkten PROSAIL-Datenbank unter Berücksichtigung natürlicher Ccx-Cab-Beziehungen und Positionen der Maxima im grünen Wellenlängenbereich validiert. Die Validierung mit flugzeuggestützten spektrometrischen HyMAP-Daten ergab zufriedenstellende Ergebnisse für Cab (R2 = 0,84; RMSE = 9,06 µg cm-2) und CWC (R2 = 0,70; RMSE = 0,05 cm). Die ermittelten Ccx-Werte wurden anhand einer Plausibilitätsanalyse entsprechend der Cab-Ccx-Abhängigkeit als sinnvoll bewertet. Die Darstellung der SIR-Ergebnisse als mehrkanalige Bilder (3 segment SIR) ermöglicht zudem eine auf die drei betrachteten biochemischen Variablen bezogene, intuitive Visualisierung der dominanten Absorptionen. Der vorgestellte SIR-Algorithmus ermöglicht somit wenig rechenintensive und RTM-gestützte robuste Ableitungen der beiden wichtigsten Pigmente sowie des Wassergehalts und kann in auf jegliche zukünftig verfügbare Hyperspektraldaten angewendet werden. In Paper III wird ein hybrider Ansatz vorgestellt, der RTM mit ML kombiniert, um den Kohlenstoffgehalt (Carea) sowie die oberirdische trockene und frische Biomasse (AGBdry, AGBfresh) abzuschätzen. Das Konzept umfasst die Erstellung einer PROSAIL-Trainingsdatenbank, die Dimensionsreduzierung mittels PCA, die Reduzierung der Stichprobenanzahl mittels AL anhand des vier Jahre umspannenden MNI-Kampagnendatensatzes und das Training von Gaussian Process Regression (GPR) ML-Algorithmen. Die interne Validierung der GPR-Carea und GPR-AGB-Modelle ergab einen R2 von 0,80 für Carea und einen R2 von 0,80 bzw. 0,71 für AGBdry und AGBfresh. Die Validierung auf einem unabhängigen Datensatz, der flugzeuggestützte AVIRIS-NG-Bilder (spektral auf EnMAP umgerechnet) und In-situ-Messungen umfasste, zeigte erfolgreich die Kartierungsfähigkeiten sowohl für offene Böden als auch für grüne Felder und führte zu zuverlässigen Schätzungen auf Winterweizenfeldern bei geringen Modellunsicherheiten (< 40%). Insgesamt zeigen die vorgeschlagenen Kohlenstoff- und Biomassemodelle einen vielversprechenden Ansatz auf, der zur Ableitung dieser wichtigen Variablen über Anbauflächen aus künftigen weltraumgestützten Hyperspektralaufnahmen wie jenen von EnMAP genutzt werden kann. Als Schlussfolgerungen ergeben sich die folgenden wichtigen Erkenntnisse in Bezug auf parametrische und nichtparametrische Hybridmethoden sowie bezogen auf die Bedeutung der In-situ-Datenerfassung. (1) Unsicherheiten innerhalb des RTM PROSAIL sollten immer berücksichtigt werden. Eine mögliche Verringerung dieser Unsicherheiten steht dabei der Invertierbarkeit des Modells und dessen beabsichtigter Einfachheit entgegen. (2) Sowohl physiologische Einschränkungen als auch AL-Heuristiken sollten angewendet werden, um unrealistische Parameterkombinationen in einer PROSAIL-Kalibrierungs- oder Trainingsdatenbank zu reduzieren. (3) Modernste ML-Ansätze mit der Fähigkeit, Unsicherheitsintervalle bereitzustellen, werden als vielversprechendster Ansatz für die Lösung von Inferenzproblemen aus hyperspektralen Erdbeobachtungsdaten aufgrund ihrer synergetischen Nutzung von RTMs und der hohen Flexibilität, Genauigkeit und Konsistenz nichtlinearer nichtparametrischer Methoden angesehen. (4) Parametrische hybride Ansätze ermöglichen aufgrund ihrer algorithmischen Transparenz im Vergleich zu ML-Ansätzen tiefere Einblicke in die grundlegenden physikalischen Grenzen der optischen Fernerkundung. (5) Integralbasierte Indizes, die die verfügbare hyperspektrale Information voll ausschöpfen, können als physikalisch-basierte dimensionsreduzierte Inputs für ML-Algorithmen dienen, um entweder Schätzungen zu verbessern oder um als Eingangsdaten die verbesserte Unterscheidung von Kulturpflanzen zu ermöglichen, sobald zusätzliche Zeitreiheninformationen verfügbar sind. (6) Die Validierung quantitativer modellbasierter Schätzungen ist von entscheidender Bedeutung für die Bewertung und Verbesserung ihrer Leistungsfähigkeit in Bezug auf die zugrunde liegenden Annahmen, Modellparametrisierungen und Eingabedaten. (7) Angesichts der bald verfügbaren EnMAP-Daten sollte die Erhebung von In-situ-Daten zur Validierung von Ableitungsmethoden auf eine hohe Variabilität der gemessenen Pflanzentypen und eine hohe zeitliche Variabilität über die gesamte Vegetationsperiode abzielen sowie flächen- und biomassebasierte destruktive Messungen anstelle von LAI-skalierten Blattmessungen umfassen. Unter der Voraussetzung, dass die Messinstrumente perfekt funktionieren, hängt der Erfolg der EnMAP-Mission und der hier vorgestellten Methoden entscheidend von einem rauscharmen, präzise atmosphärisch korrigierten Reflektanzprodukt ab. Die Ergebnisse der in dieser Arbeit vorgestellten Methoden können in landwirtschaftliche Entscheidungsunterstützungssysteme für die Dünge- oder Bewässerungsplanung, die Ertragsabschätzung oder die Schätzung des Potenzials der Kohlenstoffbindung im Boden integriert werden, um eine nachhaltige Intensivlandwirtschaft in der Zukunft zu ermöglichen

    Plant classification combining colour and spectral cameras for weed control purposes

    Get PDF
    This study was conducted to design and evaluate a novel dual camera sensor for use in an accurate single leaf level plant detection and classification system for weed control purposes. The system was to utilise and combine the benefits of colour and spectral imaging technologies together with novel data processing techniques. Such combination of colour and spectral imaging devices has not been previously used in precision agriculture. Environmental consciousness and requirements for production volumes of organic produce are constantly increasing. Reductions or total elimination of chemical spraying is needed, and a technological solution of automating the weed control has been seen as one solution to solve the limitations in current crop production methods. Recent studies have shown automatic plant detection and classification to be the only economically viable solution for the problem of automatic weed control. Previous detection systems have shown adequate capabilities to detect and classify weeds and crop plants with certain limitations. Depending on the system, these limitations have been in spatial accuracy, operation in certain lighting conditions or selection of plants to be classified. A flexible system capable of robust plant classification under any circumstances and plant combinations has not yet been realised. It would be desirable to introduce a system capable of detecting any plant species and plants separately, thus allowing targeted and optimal weed control methods for each plant species. The proposed system addressed the problem of automatic plant detection and classification by providing sub-centimetre level information on plant part locations separately for each plant species. This information could then be directly used to guide mechanical weeding tools or precision sprayers. The detection system was based on a novel combination of a sub-millimetre level colour camera and an accurate hyperspectral line scanning camera (spectrometer) in the spectral range of 400 – 1000 nm. The spatial accuracy of the spectrometer was approximately five times lower than that of the colour camera. The system operated under controlled lighting conditions. The colour camera allowed precise segmentation of plant borders, while the spectral camera produced detailed reflectance information to discriminate between plant types. The system was able to collect data for classification from an area on a plant of approximately 6.5 mm by 6.5 mm, although typically areas as small as 3.5 mm by 3.5 mm were detected. These were also the spatial resolution boundaries of the system with the used test settings. The system was first designed and evaluated in laboratory conditions using controlled lighting and a selection of leaves from 6 plants. Data collection and analysis methods were designed for a scanning system with simultaneous image acquisition from both cameras. Shape, colour and spectral reflectance information were used to correctly classify these individual leaves with a probability of up to 98% using linear stepwise discriminant analysis. A method of classifying separate leaves is not robust in a real field environment where plant leaves are often overlapping. This makes the use of shape calculations difficult. A novel method of extracting data from the small windows was proposed. Colour and spectral data within these windows was classified separately and the windows formed a grid like structure with approximately 3.5 mm spacing between them. This allowed spatial filtering of the classification data and noise reduction for the results by utilising information in a 3 by 3 window neighbourhood around each data window. During laboratory tests the windows for 6 plant leaves were correctly classified at 97.8% when the leaves were separated, and at 85.2% with overlapping leaves. The system operation was also evaluated in real field conditions. Four crop plants and 16 weed plant types were imaged on a field over a period of 11 to 25 days after sowing. Total average classification performance in field conditions with linear discriminant analysis was up to 85.1%, while classification results investigated as a two-class case of crop vs. weed plants was up to 99.5% and 83.8%, respectively. The spatial filtering method was shown to improve results on average by 7.5%. Plant reflectance measurements on different days allowed a novel analysis of short term temporal changes in the plant spectra due to growing conditions and growth stages. Analysis on short term spectral changes and their effects on classification accuracies have not been found in the literature. The temporal analysis showed that the average spectra of any plant type changes considerably over a period of just few days, and has a trend like behaviour when investigated at individual wavelengths. Classification models with training set data from previous days did not perform well. This indicates the need to have an up to date training set available at all times explaining the subtleties in local conditions. The proposed detection and classification system with intelligent data processing methods has been shown to perform at a comparable level with previous systems. The novel system does not suffer from the typical limitations of previous systems, and is flexible to be used with any plant types in their early growth stages. There is also potential to include plant height, shape or any other relevant feature to the classification for increased robustness. The presented data processing method allows considerable processing and data reductions within the camera hardware. Only small fractions of the processed image data would need to be transferred via the camera interface. This would compensate for the increased data flow created by using two cameras. Therefore, the real-time implementation of the system is thought possible with the right hardware choices and optimised data processing algorithms.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore