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P L ANT  C L A S S I F I C AT ION  
COMB IN ING  CO LOUR  AND  
S P E C T R A L  C AMERA S  FO R  

WEED  CONTROL  P U R PO S E S  

ABSTRACT 

This study was conducted to design and evaluate a novel dual camera sensor for use in 

an accurate single leaf level plant detection and classification system for weed control 

purposes.  The system was to utilise and combine the benefits of colour and spectral 

imaging technologies together with novel data processing techniques.  Such combination of 

colour and spectral imaging devices has not been previously used in precision agriculture. 

Environmental consciousness and requirements for production volumes of organic 

produce are constantly increasing.  Reductions or total elimination of chemical spraying is 

needed, and a technological solution of automating the weed control has been seen as one 

solution to solve the limitations in current crop production methods.  Recent studies have 

shown automatic plant detection and classification to be the only economically viable 

solution for the problem of automatic weed control. 

Previous detection systems have shown adequate capabilities to detect and classify 

weeds and crop plants with certain limitations.  Depending on the system, these limitations 

have been in spatial accuracy, operation in certain lighting conditions or selection of plants 

to be classified.  A flexible system capable of robust plant classification under any 

circumstances and plant combinations has not yet been realised.  It would be desirable to 

introduce a system capable of detecting any plant species and plants separately, thus 

allowing targeted and optimal weed control methods for each plant species. 

The proposed system addressed the problem of automatic plant detection and 

classification by providing sub-centimetre level information on plant part locations 

separately for each plant species.  This information could then be directly used to guide 

mechanical weeding tools or precision sprayers.  The detection system was based on a 

novel combination of a sub-millimetre level colour camera and an accurate hyperspectral 

line scanning camera (spectrometer) in the spectral range of 400 – 1000 nm.  The spatial 

accuracy of the spectrometer was approximately five times lower than that of the colour 

camera.  The system operated under controlled lighting conditions. 

The colour camera allowed precise segmentation of plant borders, while the spectral 

camera produced detailed reflectance information to discriminate between plant types.  The 



 

2 

 

system was able to collect data for classification from an area on a plant of approximately 

6.5 mm by 6.5 mm, although typically areas as small as 3.5 mm by 3.5 mm were detected.  

These were also the spatial resolution boundaries of the system with the used test settings. 

The system was first designed and evaluated in laboratory conditions using controlled 

lighting and a selection of leaves from 6 plants.  Data collection and analysis methods were 

designed for a scanning system with simultaneous image acquisition from both cameras.  

Shape, colour and spectral reflectance information were used to correctly classify these 

individual leaves with a probability of up to 98% using linear stepwise discriminant analysis. 

A method of classifying separate leaves is not robust in a real field environment where 

plant leaves are often overlapping.  This makes the use of shape calculations difficult.  A 

novel method of extracting data from the small windows was proposed.  Colour and 

spectral data within these windows was classified separately and the windows formed a grid 

like structure with approximately 3.5 mm spacing between them.  This allowed spatial 

filtering of the classification data and noise reduction for the results by utilising information 

in a 3 by 3 window neighbourhood around each data window.  During laboratory tests the 

windows for 6 plant leaves were correctly classified at 97.8% when the leaves were 

separated, and at 85.2% with overlapping leaves. 

The system operation was also evaluated in real field conditions.  Four crop plants and 

16 weed plant types were imaged on a field over a period of 11 to 25 days after sowing.  

Total average classification performance in field conditions with linear discriminant analysis 

was up to 85.1%, while classification results investigated as a two-class case of crop vs. 

weed plants was up to 99.5% and 83.8%, respectively.  The spatial filtering method was 

shown to improve results on average by 7.5%. 

Plant reflectance measurements on different days allowed a novel analysis of short term 

temporal changes in the plant spectra due to growing conditions and growth stages.  

Analysis on short term spectral changes and their effects on classification accuracies have 

not been found in the literature.  The temporal analysis showed that the average spectra of 

any plant type changes considerably over a period of just few days, and has a trend like 

behaviour when investigated at individual wavelengths.  Classification models with training 

set data from previous days did not perform well.  This indicates the need to have an up to 

date training set available at all times explaining the subtleties in local conditions. 

The proposed detection and classification system with intelligent data processing 

methods has been shown to perform at a comparable level with previous systems.  The 

novel system does not suffer from the typical limitations of previous systems, and is 
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flexible to be used with any plant types in their early growth stages.  There is also potential 

to include plant height, shape or any other relevant feature to the classification for 

increased robustness.   

The presented data processing method allows considerable processing and data 

reductions within the camera hardware.  Only small fractions of the processed image data 

would need to be transferred via the camera interface.  This would compensate for the 

increased data flow created by using two cameras.  Therefore, the real-time implementation 

of the system is thought possible with the right hardware choices and optimised data 

processing algorithms. 
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1.0  INTRODUCTION  

Modern agriculture is becoming more reliant on computer-based systems. Various 

technical advances have opened new possibilities to gather information and utilise it in 

agriculture as well as in other disciplines.  Agriculture may not have traditionally been the 

first to implement the latest discoveries in technology, however, precision agriculture with 

localisation such as Global Positioning System (GPS) and other information technologies 

are becoming every day tools for farmers.  Automated machines are starting to take over 

tedious tasks formerly performed only by humans. 

Economic and ecological benefits are the driving forces to implement new methods 

into agriculture.  Balancing efficient farming and preservation of nature has traditionally 

been difficult.  Technologies for agricultural tasks help the farmers to log their actions, 

make better decisions and automate activities for faster and more economical execution, 

while saving energy and reducing the amount of chemicals used. 

Agriculture has yet to see fully autonomous vehicles in wider commercial use, but time 

consuming and straining tasks have been the first to be allocated plenty of research 

resources.  These tasks include cultivation, planting, weed control and harvesting.  

Environmentally conscious farming is rightfully in high demand and this is exactly where 

new technologies can offer solutions. 

The current and ever-growing market for organic produce in the UK in 2004 was some 

£1.2 billion or 1.05% of the grocery market.  The same figure in the whole world was 

£15.5 billion (SoilAssociation 2005).  Organic food production can be promoted on the 

basis of several benefits; healthier food, improved farming environment and contribution 

to the rural economy.  Organic farms have even out-performed the non-organic farms in 

mean sales values per hectare in one particular study (Lobley, Reed et al. 2005).  New weed 

control methods and agricultural technologies are required to fulfill the demands of 

continuously increasing organic production volumes. 

Precision agriculture is a term used for agricultural systems that exploit some of the 

new technological advancements in agricultural site-specific management.  Applications of 

precision agriculture include variable-rate spraying, automated row following for harvesters, 

mapping of weed patches and crop yield management (Baerdemaeker, Munack et al. 2001).  

Minimising and making the use of chemicals as effective and non-disturbing as possible is 

the objective with many new technologies used in agriculture.  Ultimately the goal could be 

to stop the use of chemicals completely. 

According to Moran, Inoue et al. (1997) there are three basic types of information 
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required in precision agriculture.  These are information on seasonally stable conditions 

(e.g. annual yield and soil based properties), information on seasonally variable conditions 

(e.g. weed infestations and weather) and information required to diagnose, find cause and 

develop strategies for crop management.  An imaging system has potential to provide 

information for all three categories.  The different variables that can be measured include 

water conditions in soil (Levitt, Simpson et al. 1990), crop yields (Leon, Shaw et al. 2003) 

and weed populations (Thorp and Tian 2004).  This information can then be used to target 

soil and weeds locally, determine the additional nutrient needs and vary the seed rate 

depending on the soil conditions (Godwin and Miller 2003). 

After an extensive literature survey, an agricultural task of autonomous weed control 

has been divided into three main problems.  They are localisation and navigation of the 

machine or implement, detection and classification of plants and weed control methods, as 

shown in Figure 1.  The figure also shows some examples of sub-tasks under the main 

three problems.  The sub-tasks with the bold outline are the ones that this research 

concentrates on.  Although the problem of building a working autonomous weed 

controlling device is not limited to the three problems presented, one must still solve at 

least one sub-task from each of the three problems for success. 

Localisation 

And Navigation

Detection and 

Classification 

of Plants 

Control 

Methods 

GPS

Odometry
Stucture from 

Motion

Crop-row 

Following

Pre-known Plant 

Positions

Colour Information

Spectral Imaging

Shape Modelling

Spraying

Mechanical 

Removal

Steaming

Burning

Freezing

Autonomous Weed Control

 

Figure 1  Examples of tasks involved in autonomous weed control 

There are two different approaches to automatic weed control; mapping (off-line) and 

real-time (on-line) control.  In the mapping approach the weed locations (or plant 

locations) are first mapped and then the spatial distribution information is used with an 

appropriate control method.  This approach is illustrated in Figure 2 (a).  Mapping of 

weeds is done prior to actual control actions and weed maps are used later on to apply 

appropriate control methods to specific locations.  GPS position measurements can be 

used in mapping applications. 
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The real-time approach illustrated in Figure 2 (b) is more demanding in terms of 

computer processing power.  Control methods need to be applied almost instantly after 

detection and there is limited time for measurement analysis.  Operating speeds of many 

current systems are still below the economical threshold level due to the strict time limits in 

analysis.  The most obvious benefits of the real-time approach over the mapping approach 

are in the potential to save time and energy as both detection and control are done 

simultaneously and the field is required to be covered only once.  Control methods in both 

approaches can vary from uniform herbicide spraying to precise mechanical removal of 

weeds. 

 
(a) Mapping approach in weed control 

 
(b) Real-time approach in weed control. Reproduced from (Vrindts 2000) 

Figure 2  Mapping and Real-time approaches in weed control 

Weed detection methods almost always involve some kind of an optical system.  

Monochrome, colour and spectral cameras have been used to gather information for plant 

classification.  Research projects until now have used a variety of spatial and spectral 

resolutions utilising only one imaging technology at a time.   The common camera sensor 

technologies of Charged Coupled Device (CCD) and Complementary Metal–Oxide–

Semiconductor (CMOS) are in use in almost all fields of imaging research.  This also 

applies to agriculture, although applications may have their unique way of using a particular 

sensor.  Passive and non-intrusive nature of imaging makes it suitable for numerous tasks.  
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Imaging is especially suitable for detecting weeds, and numerous methods are being used in 

image processing to analyse colour, shape and spectral information. 

As seen in Figure 1, an automatic weed control system cannot operate without a 

solution to all three problems (navigation, weed detection and control).  Mobile robots 

have great potential to offer a platform for such solutions.  There is a vision that 

autonomous mobile robots will gradually take over tasks typically performed by humans 

and it has been suggested that mobile robots could be an economical solution for the 

particular application of autonomous weed control (Pedersen, Fountas et al. 2006). 

There are numerous obstacles in creating autonomous robotic systems for agriculture.  

Harsh, ever changing outdoor weather conditions and uneven surfaces are just some 

examples of problems such systems will face. 

Despite these obstacles, automation in agriculture is inevitable and desirable.  Sensible 

automation can create immediate ecological and economical improvements in agriculture 

and crossing the conventional boundaries of scientific research areas is needed to achieve 

these improvements.  The effects of successful research on agricultural automation have 

local and global effects, such as reduced chemical levels in food produce and increases in 

production volumes without sacrificing environmental values.  These effects are well worth 

pursuing. 

This project addresses the problem of automatic plant species detection and 

classification by presenting a novel dual camera system.  The individual benefits of colour 

and spectral cameras were combined to allow sub-centimetre classification of small areas 

on plants.  The proposed system was first designed for and tested in laboratory conditions 

by classifying individual plant leaves.  High spatial resolution of the system allowed a 

unique method of processing the spectral and colour reflectance data in a grid formation 

and filtering the classification results without losing accuracy.  The system operation in field 

conditions with several crop and weed plants was also tested successfully.  During the fields 

tests the temporal changes in the reflectance properties were investigated.  An analysis of 

local short term changes in plant reflectance properties and its effects to classification had 

not been conducted before. 

In this thesis, Chapter 2 gives an introduction and an extensive literature review on the 

agricultural problem of weed control.  The chapter addresses the weed control methods 

and the current research directions for automating weed detection.  Emphasis is given to 

technologies and methods involved in optical recognition and classification.  Examples of 

some relevant applications outside the area of agricultural engineering are also provided at 
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the end of the chapter. 

Chapter 3 explains the proposed system and the adopted data processing methods.  

Image data collection, image processing and feature extraction using the dual camera 

system are presented.  Two data processing methods are described; a full leaf method of 

extracting reflectance and shape data from a full leaf and the novel method of extracting 

classification features from small windows on leaves with the spatial post classification 

filtering of these windows for low noise results. 

Chapter 4 shows the selection process of the system imaging and lighting hardware.  

The test rig design for laboratory measurements is also illustrated in this chapter. 

Chapter 5 presents the leaf classification tests in laboratory conditions.  Calibration of 

the test equipment is explained, the two data processing methods presented in Chapter 3 

are applied to the measurements and the results shown and analysed. 

Chapter 6 explains the final tests in real field conditions.  The data collection and the 

modified processing methods are explained.  The results are then presented with an 

extensive analysis, and comparisons of some classification methods are given. 

Chapter 7 presents the conclusions of the project, and explains additional thoughts on 

the improvements for the presented detection and classification system together with 

further research opportunities and requirements for making the system work in real-time 

under minimal user input. 
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2.0  WEED CONTROL METHODS AND AUTOMATIC WEED 
DETECTION RESEARCH 

A survey by the Food and Agriculture Organization (FAO) of the United Nations in 

the 1970s showed that more than one third of the potential world food harvest was 

destroyed by pests such as insects, diseases and weed.  More recent studies have shown that 

the percentage is actually increasing. (Zimdahl 1993) 

A weed plant can be described as a plant that is unwanted at a specific location at a 

given time.  Farmers have fought against the weed populations for as long as land has been 

used for food production.  In conventional agriculture this weed control contributes a 

considerable amount to the overall cost of the produce. 

This chapter outlines the weed control methods and gives special attention in 

describing the current research in automating the weed detection and control.  Automatic 

weed detection is the only viable solution for efficient reductions or exclusion of chemicals 

in crop production. 

2.1 WEED CONTROL METHODS 

Even a well maintained field may have around 20,000 weed seeds/m2 in ploughing 

depth.  Depending on the conditions the seeds may be able to germinate even 5-10 years 

later. (Agronet 2005)  These figures alone can give an idea of the magnitude of the weed 

control problem. 

Unfortunately, a complete solution to the weed control problems does not exist.  

Remarks on weed control methods made by Lötjönen, Jalli et al. (2002) in their literature 

review on perennial weeds in spring cereal production can be generalized for any crop 

production and weed control method.  They note that timing of the control methods and 

knowledge of the life cycle of weeds is particularly important for successful results.  For 

example mechanical weeding or application of herbicides at the wrong time may have no 

effect at all.  In the worst case, the timing or wrong methods will do further damage to the 

produce.  Then again, well timed mechanical, chemical or other control methods have great 

effects.  It has been shown that good weed control within the first four to six weeks after 

sowing are critical to avoid yield reductions from weeds (Loux, Stachler et al. 2007).  Figure 

3 shows an example how this relates to the growing stages of wheat.  The figure also shows 

the usual timing of chemical control where most post-emergence herbicides are 

recommended to be used and are at their most effective. 
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Figure 3  Approximate wheat growth stages and optimal timing of chemical control. 

Reproduced from Gregoire, Endres et al.(1997) 

Three weeding zones have been identified in typical row sown crops.  They are 

between crop rows (inter-row/between-row), along the crop rows between plants (intra-

row/within-row) and close-to-crop (Blackmore 2004).  A boundary of a few centimetres 

around the crop plant is typically considered to belong to the close-to-crop area.  There are 

plenty of relatively simple solutions for between-row weeding in large fields.  Currently the 

most common way is to pull a mechanical device in the back of a tractor that has gaps for 

crop rows.  The results are then proportional to the driving accuracy of the operator.  

Automatic guidance of these between-row weeders can be done with good results as 

explained later in this section. 

Between-row weeding is a significantly more complicated task.  Any mechanical 

methods must avoid damaging the crop and crop detection methods need to be used.  This 

is where most research on automating the weeding process is at the moment.  Most current 

mechanical methods applied close to the crop will damage the crop and result in yield 

losses.  None of the current weed control methods, apart from chemical and biological 

treatment, can deal with the weeds in the close-to-crop region. 

Recently farmers and scientists have realized that attempts in removing all the weeds 

and exposing the bare land results in important disadvantages such as erosion, water run-

off and nitrogen losses.  Up to now, farmers have been most concerned on economical 

issues with chemical applications and have created resource allocation threshold levels for 

their use.  The concerns on economical threshold could well be surpassed by ecological 
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concerns in the future (Hurle 1997).  The right combination of economical and ecological 

thinking in weed control would be beneficial for long term economic sustainability without 

hurting the shorter term profit. 

The best results in weed control are often achieved with the right combination of 

methods for the particular purpose.  The following section will give an overview of 

common ways to control weed populations. 

2.1.1 MECHANICAL WEED CONTROL 

Weed treatment manually and with devices such as the hoe is considered mechanical 

weed control.  Mechanical methods still dominate the weed control for many crops.  

Pulling weeds by hands, the most labour intensive method, works well for annual weeds, 

but perennial weeds typically reproduce and separate from roots before hand pulling is 

done.  Hand hoeing is a more efficient and powerful way for weed control but it is time 

consuming (Zimdahl 1993).  

Tilling is the common mechanical weed control method.  During tilling, weeds are 

mostly buried by moving soil (Duval 1997).  Other effects are separation of shoots from 

roots, stimulating the germination of seeds to be controlled by another tillage and 

exhaustion of carbohydrate reserves (Zimdahl 1993).  Weed control is not the only reason 

for tillage since at the same time the compacted soil is broken up, aerated and cultivated. 

Tilling has some obvious trade-offs.  The main disadvantage of tillage is that although it 

breaks up the top layer, it generally compacts the soil and leaves it more vulnerable to 

erosion.  It is also expensive to operate heavy machinery for long periods of time.  It has 

been shown that reduced tillage can even have positive effects on weed control and yields 

in certain crops due to reduced disturbance to the crop (Blaise 2006). 

The most common mechanical weed control devices are the rotary hoe and finger 

weeder illustrated in Figure 4.  These machines can be operated at velocities between 6-20 

km/h depending on the crop growth stage and the machine used.  
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(a) 

 
(b) 

Figure 4  (a) Rotary hoe (Singh 2006) and (b) finger weeder (Martens and Martens 

2005) are the most common mechanical weeding devices 

Most crops are grown in rows and uniform tillage is not recommended after about 30 

days after sowing (DAS).  However, between-row cultivation can still be done.  The weeder 

needs to have gaps to match the crop rows and the operator needs to follow the rows 

precisely.  Skilled operators can till within three centimetres of the row centres, but keeping 

high attention levels constant is a strenuous task.  Automatic systems to follow crop rows 

have been created and are explained in §2.4.2. 

2.1.2 NON-MECHANICAL WEED CONTROL 

Non-mechanical weed control methods include thermal treatments, sound (Ultrahigh 

frequencies) and mulching (covering the soil) and exclude chemical treatments.  Basically all 

the non-mechanical methods rely on thermal effects.  These methods can be used in 

organic production instead of the chemical treatments.  The thermal treatments can include 

burning and steaming of soil and plants.  These methods are non-selective towards plant 

types and treat all in the same fashion.  Intense heat stops the photosynthesis, cells can be 

dehydrated or plants are simply burnt away. (Zimdahl 1993)  

Steaming can be costly and produce high the pollution levels.  However, Danish 

researchers have developed an between-row band steamer that is commercially, 

economically and technically viable (Kristensen, Jørgensen et al. 2005; Sørensen and 

Jørgensen 2005).  Their steamer treats all plants and seeds between the crop rows while 

keeping the temperatures near the crop rows low enough for the crop to survive.  

Compared to manual weeding, the cost reductions with band steaming were estimated at 

72% and at 80% with robotic automatic steaming.  Profitability of the robotic system is 

affected by potentially insufficient weed removal and high initial price of the equipment. 

2.1.3 CHEMICAL WEED CONTROL 

The spraying of herbicides is the most common and powerful weed control method at 
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the moment.  Comparing a case without weed control to a case with chemical control, the 

total profit from yield including labour, machinery and herbicide costs can increase by 

about 70% when herbicides are used. 

The economical benefits are clear, but some argue that the ecological effects overweigh 

the economical ones.  All herbicides have some measurable toxicity levels to mammals and 

the life-cycle of most herbicides exceeds the plant life cycle resulting in herbicide levels 

carried forward from one crop season to the next (Zimdahl 1993). 

Extensive use of chemicals in agricultural production has also led to problems with 

herbicide-resistant weed populations.  For example, a study conducted in Western 

Australian fields showed that approximately 50% of the weeds were resistant to at least one 

type of the commonly used herbicides (Llewellyn and Powles 2001). 

Many of the recent research projects in herbicide use have concentrated on reducing 

the amount of applied herbicides and targeting the spraying specifically to the weeds only.  

Compared to the conventional method of spraying everything (broadcast spraying or 

blanket spraying), cost and herbicide reductions of up to 80% are reported with systems 

detecting green vegetation (Antuniassi, Nery et al. 2003) or 11-90% with systems using pre 

made maps of weed coverage (Gerhards and Christensen 2003). 

A four year study on weed populations in four different crops under precision spraying 

was conducted in Germany during 1996-2000 (Gerhards, Sökefeld et al. 2002).  Maps of 

weed patches were created prior to spraying and DGPS (Differential Global Position 

System) signals were used to open spraying valves at locations where weeds had been 

located.  Although the behaviour of the weed populations are not well known, the results 

clearly showed that great reductions can be made by precision spraying.  A variable 

spraying system PatchSpray developed by Silsoe Research Institute in UK and 

commercialized by Micron uses premade weed maps to control the amount of chemicals 

being sprayed in a grid of approximately 2 x 2 m (Micron 2008). 

Søgaard and Lund (2006) have researched the accuracy of spraying micro-doses of 

chemicals on only the plants.  This technology could potentially further reduce the 

chemical amounts significantly as it was shown that spraying was possible to targets at sub-

centimetre level. 

In cases where weeds grow close to the crop, mechanical and non-mechanical control 

methods are often ineffective or more harmful than beneficial.  Chemical or biological 

control methods may then be the only economically feasible ones. 
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2.1.4 BIOLOGICAL WEED CONTROL 

Since weed populations resistant to herbicides have emerged, methods other than 

spraying are needed to fight these populations.  In organic production, spraying is not an 

option.  When mechanical methods are not suitable, biological ones may be considered.  

Biological weed control uses plants’ natural enemies and plant pathogens (agent organisms) 

to target the specific plants.  Organisms can be other plants, insects or fungi that typically 

target a narrow spectrum of weeds.  They are best used in situations where typical chemical 

herbicides do not work well.  Close to crop and chemically resistant weeds are examples of 

such cases. (Boyetchko 1997) 

Biological control methods are still very much in the developing stages.  The objectives 

are to maximize the impact on weeds and minimize the effect on crops, as with chemical 

treatment.  Only a small number of bioherbicides have been registered so far (Hurle 1997).  

Three main approaches for biological control have been identified: the inoculative or 

classical approach; the inundative or microbial herbicide approach; and the system 

management or augmentative approach.  In the classical approach, exotic control 

organisms are introduced as many times as necessary.  Microbial method is suitable for 

intensive (high volume) agriculture.  The third approach, augmentative, aims at cautious 

manipulation of a weed-pathogen or weed-insect system (Müller-Schärer, Scheepens et al. 

2000; Scheepens, Müller-Schärer et al. 2001). 

Biological control methods do not typically produce immediate results like mechanical 

control.  However, the results over time can be more advantageous.  Biological weed 

control is not recommended to be used alone, but together with other methods it can 

prove to be very effective. 

2.1.5 DISCUSSION 

Certain weed control methods are clearly more suitable for the application of 

autonomous weed control than others.  Chemical herbicide application is still the single 

most powerful control method, although many ethical and ecological arguments are against 

it.  Precision spraying in patches or even on the single plant level is shown to reduce 

herbicide loads and the overall cost of spraying, and could be implemented in autonomous 

off-line or online applications. 

Herbicides cannot be used in organic production and mechanical, non-mechanical or 

biological methods have to be used instead.  In conventional crops grown in rows, there 

are no more problems in efficiently treating the weeds between the rows.  For example, 

autonomous steaming and mechanical cultivation between rows has been shown to work 
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well in principle and practice.  

The difficult locations for weeding are between the plants within crop rows.  This is 

why an autonomous weeder could be equipped with a precise mechanical tool to disturb 

individual weed plants or with a precision sprayer.  Even a combination of the two might 

prove effective. 

In row sown crops the weed control methods in within-row areas could be applied with 

precision and some threshold for weed growth in between-row areas could be allowed for 

crops sown with large row spacing.  Leaving some between-row weeds untouched may 

help reduce erosion and increase biodiversity.  Finding the correct threshold such that crop 

plants would not have too much competition for nutrients etc. would be the key to this 

approach.  

To apply the suggested control methods autonomously, a system capable of detecting 

specific weed locations has to be created.  The next sections explain the requirements for 

such systems and present several methods in optical detection.  The potential of these 

optical systems for the autonomous weeding task will be indicated. 

2.2 AUTOMATIC PLANT DETECTION AND CLASSIFICATION 

Automatic and efficient weed control in a real environment requires robust detection of 

crop and weed.  There are several ways of gathering this information from manual human 

input to automatic recognition systems.  For an economically viable system, automatic 

recognition and classification is the only solution. 

The two automatic weed control approaches, as explained in Figure 2, are mapping and 

on-line methods.  In mapping method the locations of weeds can be mapped for example 

with the help of a GPS signal and treated afterwards.  In on-line method the detection and 

control happens seamlessly at the same time. 

Weed detection and prevention can already begin before planting.  Weed seeds could 

be recognized and removed, minimising the growth of unwanted plants (Granitto, Verdes 

et al. 2005).  However, the remaining weed detection methods explained in this chapter are 

meant solely for the post-emergence stage. 

Research on automatic detection systems started in the 1990’s and was influenced by 

the need to create systems that would allow significant reductions in herbicide volumes.  

More or less all of the methods researched involved some form of digital optical system 

and analysis of the acquired data.  Applying the knowledge of the detected weed locations 

has been extensively researched for use with precision chemical sprayers and mechanical 

methods.  
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Using optical imaging equipment in weed detection takes the research into the field of 

pattern or image recognition and classification.  Four separate problems or steps can be 

isolated in this context.  These problems are imaging, segmentation, feature extraction and 

classification.  Each of the problems can and have been studied extensively and they are all 

needed for successful classification results.  The solutions to these individual problems are 

generally application specific.  This means that for example a classification system built for 

face detection does not work for plant classification and vice versa.  Some important issues 

and previous research results regarding the specific application of plant detection and 

classification are listed in this chapter. 

2.2.1 IMAGING 

The first problem or set of problems to be solved for an automatic weed detection 

system is imaging.  Aspects such as imaging platform setup, spatial resolution, spectral 

resolution and lighting conditions need to all be considered.  The final design choice is 

highly dependent on the application and system requirements.  The sub problem set for 

imaging is shown in Figure 5.  The text in bold indicates the choices made in this project. 

 

Figure 5 Issues involved with the imaging step of plant detection and classification 

The first subset of imaging problems is related to the physical imaging platform and 

equipment.  Remote sensing, aerial imaging and close to ground imaging are listed in this 

subset.  All these imaging methods have been used in agricultural imaging tasks providing 

information at different spatial resolutions.  This resolution is mainly dependent on the 

distance to the objects being imaged.  The second subset of problems in imaging is a 

choice of spectral bands.  This is closely related to the imaging platform and equipment 

selection.   

Remote sensing is a term used for observations made at a considerable distance from 
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the target.  Typically the term is used with satellite imaging, but aerial imaging can also be 

considered as a part of remote sensing.  Information from satellites is commonly used for 

crop yield, weed population and insect infestation estimation at relatively low spatial 

resolution. 

Nearly all satellite imaging applications include spectral imaging.  The history of 

multispectral satellite sensing started with the launch of Landsat-1 in 1972.  Until 1978 it 

gathered information from the earth under wavelength ranges from 500 to 1260 nm and 

from 500 to 750 nm with spatial accuracies of 75 m and 40 m, respectively.  In one 

example the gathered multispectral data was used to identify 25 separate crops in an area of 

458,000 acres in 45 hours.  This and many more measurements have proven that remote 

sensing is a useful tool in agriculture (NASA 2005). 

The spatial resolution of the early remote sensing satellites only allowed average plant 

canopy characteristics to be measured.  Much higher spatial resolutions are needed for 

single plant level or even more accurate measurements.  The latest satellites are capable of 

producing multispectral images with resolutions of up to just few meters (Moran, Inoue et 

al. 1997), while the price of remote sensing equipment has reduced dramatically.  Smaller 

and more economical components for spectral imaging have become available mainly due 

to advances in digital imaging equipment (Gilchrist and Hyvärinen 2006). 

Remote mapping of weed populations with aerial or land driven vehicles has been also 

shown to work well.  The results are good enough for reducing the amount of herbicides 

used compared to broadcast spraying.  Problems most often arise from mixed 

measurements where a gathered spectral data point can include information on different 

plants, soil residues or other objects.  This is due to low spatial resolution of the data 

(Thorp and Tian 2004).  An example on how high resolution colour images together with 

hyperspectral satellite remote sensing data can be utilised is given in §2.4.3. 

Spatial resolution of an imaging system can be increased by increasing the imaging 

sensor resolution and the quality of the optics.  Reducing the distance between the imaging 

device and the object is another obvious way of improving the spatial accuracy.  To obtain 

single plant recognition levels the spatial resolution of a detection system needs to be at a 

sub-centimetre level. 

With only a few exceptions, the remote sensing or aerial imaging devices image the 

ground from directly above (parallel to the ground).  This is due to practical reasons in 

image registration and errors created in rectification of images taken at an angle.  However, 

this arrangement may not always provide the best results when imaging close to the 
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ground.  Selection of imaging angle can be important for certain applications.  The 

difference the direction of the camera optical axis can make is illustrated in Figure 6 where 

the first image (a) is taken parallel to the ground and (b) at an angle.  In (a) the position of 

the leaves on the ground can be easily detected, but single shoots or the crop rows of 

grassleaved plants are hard to detect.  In (b) the crop rows can easily be detected while the 

exact location of the leaves on the ground is harder to measure. 

 
(a) (b) 

Figure 6  Illustration of problems with plant detection. (a) Image taken parallel to the 

ground and (b) with a tilted camera showing the row structure (Andersen 2002). 

Outdoor field conditions, where most weed detection and control takes place, further 

complicate the placement and use of the sensors.  Dirt, changes in weather conditions and 

mechanical stress due to the vibration of ground vehicles introduce additional problems 

apart from complicated detection algorithms and technologies. 

In plant detection the typical imaging devices are the RGB colour sensor and the 

spectral sensor.  A monochrome detector simply does not provide enough information for 

plant discrimination and classification.  Theoretically, the RGB sensor can be considered as 

a wide band spectral sensor with three bands, although usually only devices with several 

bands are considered spectral cameras.  Spectral data adds a new dimension to the 

conventional evaluation of spatial brightness data from monochrome cameras by analysing 

the light intensity as a function of the wavelength.  The terms multispectral and 

hyperspectral are indications of the spectral resolution of the system and are loosely used 

for systems with tens or hundreds of channels, respectively.  The spectral resolution does 

not necessarily correlate with the spatial resolution. 

Conventional CMOS and CCD imaging sensors are sensitive to the light in a spectral 

band of approximately 400 – 1000 nm.  This band starts from the visible spectrum and 

ends at the near infra-red (NIR) range in the electromagnetic spectrum shown in Figure 7.   
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Figure 7  The electromagnetic spectrum 

A typical spectral reflectance curve for a green leaf is shown in Figure 8.  Perhaps the 

most important aspect of this reflectance curve is labelled in the figure as the ‘red edge’.  

The term refers to an area in the spectrum where there is a rapid change in the reflectance 

of a living plant.  This is a result of the absorption and reflectance properties of the 

chlorophyll in a leaf.  Most of the light is absorbed below and reflected beyond 700 nm.  

The figure also indicates water absorption bands at higher wavelengths.  These bands 

correspond to the natural frequencies of water molecules and the incoming radiation at 

these wavebands is absorbed in the watery leaf. 

 

Figure 8  Typical spectral reflectance of a green leaf in ultra-violet (UV), visible (VIS) 

and near-infrared (NIR) wavebands (Vrindts 2000) 

2.2.1.1 Lighting Conditions in Imaging 

Most agricultural activities take place outdoors under uncontrolled lighting conditions.  

The sun may be the only source of light and the changes in the atmosphere, weather 

conditions and height of the sun affect the intensity and the angle of the light.  Intensity 

variations are also caused by shadows.  These changing lighting conditions can seriously 

affect the imaging parameters.  One solution to minimise the changes in lighting conditions 



 

21 

 

is to block the sunlight and use artificial lighting i.e. to control the lighting.  Controlled 

lighting eliminates the need to account for changing lighting conditions when image data is 

processed. 

The effects of varying lighting conditions have been studied widely.  One such study by 

Steward and Tian (1998) showed that simple soil and plant classification with RGB colour 

images was not greatly affected by changing lighting conditions.  Another study by Steven 

(2004) concentrated on the effect of field of view in spectral measurements in varied 

lighting conditions.  These results also showed that the soil and plant segmentation was not 

greatly affected by the lighting conditions and also that a mathematical relationship could 

be established between sunlit and shaded images. 

Onyango and Marchant (2001) used a physics based model to adapt to changing 

lighting conditions with an RGB camera.  A dichromatic reflection model and CIE daylight 

standard were used to investigate the performance of soil and plant segmentation under 

changing lighting conditions.  Results were close to perfect but a limitation in their method 

is that the spectral irradiance in the light source needs to follow the CIE daylight standard. 

A PhD thesis by Andersen (2002) concentrated on using computer vision in changing 

illumination conditions.  His method of adaptation to the illumination changes was based 

on CIE daylight standard and dichromatic reflection models.  The difference to the 

research by Onyango and Marchant (2001) is that Andersen investigated both an RGB 

camera and a three band camera with red, green and NIR channels.  Andersen also 

compared results from controlled laboratory conditions to measurements from field 

conditions.  He found that daylight could be modelled into two components; direct sun- 

and skylight.  Using this model an adaptable daylight invariant soil and plant segmentation 

algorithm was developed. 

Automatic gain control (AGC) is one way of trying to keep image properties somewhat 

constant in varying lighting conditions.  This approach has been investigated with cameras 

with green, red and near-IR channels (Wright, Matthews et al. 2002; Xiang and Tian 2005).  

Especially the study by Xiang and Tian (2005) showed the potential of automating the gain 

control to create balanced images in varying lighting conditions.  The approach was to use 

artificial neural networks and fuzzy logic to determine the desired gain values.  AGC not 

only creates balanced images but also utilises the full dynamic range of the pixel depth in 

cameras. 

Adaptation to changing lighting conditions has not been as widely studied with 

multispectral or hyperspectral systems.  High resolution spectral data could potentially be 
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used directly to adapt to illumination changes.  If a measurement of the current lighting 

conditions could be included in every measurement the adaptation should be trivial.  In 

practice this would mean imaging a reference signal in every image frame or measuring the 

lighting conditions with an external device at all times. 

Yao, Tian et al. (2002) have used an upwards pointing colorimeter in their outdoor field 

experiments to measure the illuminance and chromaticity data and used it as a reference 

signal to compensate for the illumination changes over time.  In their experiment the main 

problem was the spectral mixing due to low spatial resolution spectral measurements. 

Therefore the results on adaptation to changing lighting conditions could not be isolated 

from the limitation due to spatial resolution. 

Extra equipment, such as colorimeters or spectral measurement systems, adds to the 

critical total cost of the system.  Therefore, a low-cost method could be considered and 

implemented.  Placing a reflection reference plate permanently in the field of view of the 

spectral camera could be used to measure the current lighting conditions.  Spectralon 

diffuse reflectance plate SRS-99-020 from LabSphere Inc., with a near uniform 90% 

reflectance over the spectral band of 400 – 1000 nm, is a possible reference plate option.  

The challenge of this method is the placement of such reference plate.  Measuring the 

lighting conditions or a reference signal in one image location does not necessarily mean 

the lighting is uniform throughout the field of view.  Changes may be introduced for 

example by shadows. 

Lighting is an additional system and it is desirable to aim for agricultural systems with 

no controlled lighting.  Even so, thinking of all the possible lighting conditions from 

complete darkness in the night time to bright sunshine during the day, controlled lighting is 

still the most desirable option in many cases.  When planning to use controlled lighting it is 

important to choose the correct illumination conditions for the particular application.  At 

best, suitable illumination can significantly reduce the required image processing.  At worst, 

all of the desired characteristics cannot be detected due to the wrong wavelengths or 

direction of light. 

Light source selection is especially important with spectral reflectance imaging.  

Different light sources radiate a different spectrum, and reflectance can only be measured 

at a particular waveband if some illumination on that band is available.  Halogen lights 

provide a fairly smooth spectral curve for a broad wavelength range from visible to near 

infrared.  Fluorescent lights have a few distinct spectral peaks in visible light and are 

generally suitable for RGB or monochrome imaging only.  Generally speaking, bright 
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illumination enables shorter exposure times and the movement of the target is less likely to 

have an effect in the image. 

2.2.1.2 Spectral Imaging Equipment 

This section briefly describes the available spectral imaging technologies. The benefits 

and limitations of each technology are given. 

Spectral imaging devices consist of two main components.  First, a device is needed to 

separate the wavelength components in the spectrum; second, these components need to 

be sensed.  The sensing is typically done using an imaging array.  Wavelength separation is 

common with dispersive techniques using either a prism of diffraction grating.  Common 

imaging arrays are CCD sensors for visible and near-infrared spectra (400 – 1000 nm) and 

inidium, gallium, arsenide (InGaAs) sensors for a range of 400 – 1700 nm (Kerekes 2006). 

An imaging spectrometer gathers a three-dimensional data set, called a spectral cube.  

Two of the dimensions are spatial (x and y) and the third is the spectral wavelength.  

Various spectrograph technologies gather this spectral cube data in different modes.  

Figure 9 visualises how these modes are located in the spectral cube.  A spectrometer with 

a grating and a linear one-dimensional array gathers data in a column (a), while a spectrally 

filtered two-dimensional array outputs a spatial plate with a thickness ∆λ specified by the 

filter properties (b).  Finally, a spectrometer with a slit in the front and a grating and a two-

dimensional imaging array gathers data about the plate (c).  

 

Figure 9  Spectrometer data gathering modes within a spectral data cube (Descour and 

Dereniak 1995) 

When a device images only a portion of the spectral cube at once, a scan along the 

spectral or spatial axes is needed to gather the complete data in the spectral cube.  This may 

require moving the spectrograph spatially, using a moving mirror, prism or grating setup or 
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changing spectral filter properties to scan all of the spectral components.  Spectrographs 

with moving parts are not recommended to be used in harsh environments. 

A spectrograph capable of imaging the whole spectral cube at once without moving 

parts has been presented by Descour and Dereniak (1995).  This device uses three rotated 

gratings at 60º angles to create a set of dispersed images containing the spectral and spatial 

components.  Estimation of the spectra requires heavy computations and in practice the 

system is limited in spectral and spatial accuracies such that its use for agricultural plant 

classification in large scale is impossible. 

Another spectral imaging technique without moving parts uses a liquid crystal tunable 

filter (LCTF) to change the spectral properties of the system.  The LCTF element can be 

placed in front of the objective lens or between the objective and the imaging sensor.  The 

LCTF properties can be typically changed within 50 – 150 ms and the possible spectral 

resolutions range from 0.25 – 20 nm (CRI 2008).  An image set taken with a set of filter 

properties constructs the complete data in the spectral cube.  Examples of using an LCTF 

system in object recognition and classification are presented by Tominaga and Okajima 

(2000) and in wheat classification with images taken with a stationary camera by Alchanatis, 

Ridel et al. (2005).  Systems with an LCTF can have excellent spatial and spectral 

resolutions, but switching time between the wavelength bands and the need to spatially 

register the different images limits their use in applications involving moving cameras or 

objects. 

Spectrographs requiring spatial scanning can have high spectral and spatial resolutions.  

These systems are often used a in a pushbroom setup, where the equipment is scanning 

above the target, or with a mirror scanning the required field of view.  Most aerial spectral 

imaging systems use the pushbroom setup.  An example of this spectrograph type without 

moving parts is shown in Figure 10.  In this figure, the spatial field of view is a narrow line 

specified by the objective lens and the entrance slit size.  The spectral components within 

this line are dispersed to the imaging sensor through a prism-grating-prism system.  The 

imaging sensor then creates an image with spatial and spectral axes.  The presented 

Imspector spectrograph can be used to create a relatively low-cost and spectrally and 

spatially accurate imaging system capable of reliably imaging objects while moving at high 

speeds. 
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Figure 10  Imspector spectrograph functional diagram. Adapted from (Specim 2006) 

2.2.2 SEGMENTATION 

Segmentation process is the second step in the machine vision application of weed 

detection and classification.  The purpose of this step is to segment or extract the plant and 

non-plant information from the images.  Typically this means plant and soil segmentation.  

The most common methods of segmentation are listed in Figure 11. 

Segmentation Colour

Vegetation indicesSpectrum

Normalized RGB

HSI

IV1V2

i1i2i3

etc.  

Figure 11  Methods of plant segmentation 

Plant segmentation using RGB colour data is the most common method.  The original 

RGB data is in three broad spectral bands of red, green and blue.  Different RGB colour 

space transformations have been researched to find the one most suitable one for plant 

segmentation.  A study by Phillipp and Rath (2002) compared discriminant analysis, 

canonical transformation, i1i2i3, Hue, Saturation and Intensity (HSI) and Lab conversions.  

A method based on discriminant analysis was found to perform best, but this method 

would require a lot of computing power and is not suitable for real-time processes.  A 

slightly modified i1i2i3 colour space transformation i1i2i3new was suggested to be used 

instead. 

Other segmentation methods include physics based dichromatic reflection models to 

segment RGB images to soil and vegetation (Onyango and Marchant 2001) and an IV1V2 
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transformation developed specifically for vegetation segmentation by Steward and Tian 

(1998).  More traditional method of thresholding in HSI space was used by Hemming and 

Rath (2001).  Their results showed that reasonably good segmentation was possible with 

this transformation. 

Commercial products WeedSeeker and GreenSeeker from a Californian company 

(NTect Industries 2003) rely solely on detecting the infra-red reflectance of a plant canopy.  

These systems are not strictly speaking spectral measurement systems, although they work 

outside of the visible spectral range.  The detection of plant material is based on relatively 

high near infrared reflectance of plants only.  The separation to plants and non-plants is 

done by evaluating the reflectance value in infra-red.  Once a set threshold in reflectance is 

reached within the field of view the image is considered to be of plant material. 

When more than the three colour data channels are available the system can be 

considered spectral.  Imaging systems with red, green and NIR channels and some similar 

combinations have also been developed to improve the segmentation as compared to the 

conventional RGB segmentation.  The use of spectral data or the addition of a NIR band is 

based on using the physical reflectance properties of the chlorophyll content in the plants 

for segmentation.  The most helpful property in the spectrum for segmentation purposes, 

the red edge, is illustrated in Figure 8.  

A plethora of methods have been developed to utilize the red edge information in plant 

segmentation.  The most common application is in satellite remote sensing and estimation 

of vegetation density.  These methods are commonly called as vegetation indices.  The 

vegetation indices basically estimate the amount of chlorophyll in the data.  Some of these 

methods are listed in Huete, HuiQing et al. (1997), Thorp, Tian et al. (2002) and Thorp and 

Tian (2004).  The most common vegetation index is the normalised difference vegetation 

index (NVDI), which is calculated as in the following equation, where NIR represents the 

near infrared and VIS the visible spectrum. 

VISNIR

VISNIRNVDI
λλ

λλ

+

−
=  (2.1) 

There is great potential for using spectral data in segmentation but often due to the 

lower spatial resolution it suffers from mixed signals.  A mixed signal contains combined 

spectra from two or more objects when the field of view of a spectral data point covers an 

area with multiple reflectance properties.  Colour data typically has a higher spatial 

resolution and does not suffer from similar mixing problems. 
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2.2.3 PLANT RECOGNITION 

The next step after plant segmentation in the application of weed recognition and 

classification is plant recognition.  During the recognition process, the segmented areas are 

separated into individual plants.  These recognised areas are then used as inputs to the next 

step in the process, the feature extraction.  The recognition step and some of the methods 

involved in it are listed in Figure 12.  Sometimes the methods used in recognition cannot 

be separated from the ones used in feature extraction or even classification.  One method 

may give a result to all these three steps at once. 

Recognition

Whole plants

Leaves / plant parts Wateshed

Erosion / dilation

Deformable templates

Cutting and merging

etc.

Active shape models

Whole blob detection

etc.

 

Figure 12  Recognition step in weed detection and classification 

Recognition generally deals directly with segmented binary images.  Individual regions 

in the segmented image, also known as blobs, may consist of overlapping plant parts and 

are rarely single and well defined leaves in the real field environment.  The problem of 

recognising individual plants from the binary images can be easily understood by 

investigating a sample image of the cabbage plants and weeds shown in Figure 13.  Many of 

the plant leaves between individual plants are connected to each other and would appear in 

the same blob after simple segmentation. One of the biggest problems in plant recognition 

in real environment is the unknown nature of shape and location of living plants.  The 

overlapping plant parts are difficult for machine vision systems to deal with. 

 

 

Figure 13  Example image of cabbage plants and various weeds 

(Hemming and Rath 2001) 

Recognition can divided into two main approaches; full plant/full blob approach and 
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an approach where an attempt is made to identify individual and potentially different plant 

parts. Recognising only full blobs is trivial and requires no additional intelligence but may 

not work well with real world field data that contains connected plant parts. 

Active shape models have been used to recognize full plants from segmented images.  

Active shape models are statistical models of the shapes of objects which can be iteratively 

deformed to fit an object in the image.  This shape modelling method has been widely used 

in plant classification (Sclaroff and Liu 2001; Søgaard and Heisel 2002; Johansson, Søgaard 

et al. 2004).  The use of active shape models requires relatively high computing power.  The 

results for weed plant recognition have so far been promising at a level of 80%.  

Additionally, the results of using the active shape models is highly dependent on the initial 

orientation of the model and the way the statistical restriction rules of shape deformation 

are defined for each iteration.  Good results may take a lot of processing time to achieve.  

Apart from whole plant detection, the deformable templates or shape models have also 

been used in single leaf recognition (Manh, Rabatel et al. 2001).  Unfortunately, single leaf 

recognition with shape models suffers from the same problems that whole plant shape 

model recognition does.  Therefore, at the moment, the use of active shape models is 

restricted to off-line systems only. 

A different approach to shape matching has been taken by Mokhtarian and Mackworth 

(1992) and Mokhtarian (2005).  In these papers a method to represent planar curves is 

presented.  The method of representing shapes is scale and rotation invariant but requires a 

full shape contour to be accessible.  The representation is fairly simple to calculate and can 

be used to create the classification of shapes.  A classification demo using their method 

called SQUID is freely available online (Mokhtarian 2005).  This method has also been 

used in the application of leaf shape matching when leaves have self-intersecting parts 

(Mokhtarian and Abbasi 2004).  Without modifications this method is not suitable for 

shape matching of partial shapes or shape segments, when a full shape contour is not 

available. 

Petrakis, Diplaros et al. (2002) have developed a shape matching algorithm based on 

dynamic programming for partial shapes.  Their matching performance is shown to be 

better than SQUID or other existing methods.  The novelty of this method is in its ability 

to match partial shapes.  The method is still limited such that partial shapes can only be 

from one shape.  Therefore, the point where different objects are connected has to be 

known in advance.  Another shape matching method using dynamic programming is 

presented by Gandhi (2002).  This method is claimed to work with partial shapes and 
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overlaps.  The performance of correctly recognising the shapes with these methods is at 

best around 80%. 

Processing segmented binary images to recognize overlapping plant parts has been 

attempted by eroding and dilating segmented plants (Pérez, López et al. 2000).  In this 

method the segmented blobs are eroded until only the smallest possible components, called 

seeds, are left and then dilated until the original size has been reached.  The dilated seeds 

are not allowed to rejoin.  The use of this method is illustrated in Figure 14. 

 

Figure 14  Example of eroding and dilating segmented blobs to find individual plant 

parts and leaves. (1) typical weed, (2) erosion until object division and only seeds left, 

(3) dilation avoiding rejoining of segments (Pérez, López et al. 2000) 

Johansson and Baerveldt (2005) have conducted a comparative study on methods to 

overcome the problem of overlapping plant parts.  A comparison of the erosion and 

dilation method, watershed and a new cutting method were done.  Two merging 

approaches were also tested with the recognition or segmentation methods, and a total of 

six combinations of methods were evaluated. 

The watershed method is based on the idea how water poured into neighbouring 

valleys rises and finally meets.  The valleys are created by taking the distance from the edge 

of the blob as a topographical feature.  The blob is split into segments where the water 

from different valleys meets.  This often results in over segmented blobs. 

The new method proposed by Johansson and Baerveldt (2005) is the cutting method.  

This process is shown in Figure 15.  First all the blobs are labelled, and if a big enough blob 

is found it is taken as a candidate for cutting.  A convex area is created around this blob (c), 

like a rubber band would fit around the blob, and the original blob is subtracted from the 

convex area.  Then new areas and straight lines around the blob indicated as bases in 

Figure 15 (d) are created and locations in the areas furthest away from the base line are 

noted as in yellow circles in Figure 15 (d).  Next lines are drawn normal to the base lines 

through the found locations.  These lines segment the blob and finally the segments are 

merged together. 
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Figure 15  Cutting method to find different plant parts. (a) A labelled (in different 

colours) segmented image, (b) original object to be cut, (c) convex area around the 

original object, (d) area between leaves, (e) cut lines, (f) segments before merging, (g) 

segments after merging. (Johansson and Baerveldt 2005) 

The cutting and merging has been found to work relatively well for segmenting 

overlapping parts and creating single leaves from blobs with more than one leaf in them.  

The watershed method has been found to produce the second best results.  The cutting 

and merging methods were recorded to correctly mark up to 80% of the area for connected 

crop and weed plants. 

Neto, Meyer et al. (2006)  also introduced a method of finding individual leaves from 

overlapping leaf images.  Fuzzy clustering of leaf information was used with genetic 

algorithms.  The performance figure of extracting individual leaves was only 46%. 

Overall, there is no single perfect solution to deal with overlapping plants.  The 



 

31 

 

selection of the method to be used may depend on the imaging spatial resolution, plant 

shape and size or other such variables.  It is also evident that there is a need for novel and 

improved methods to deal with the problem. 

2.2.4 FEATURE EXTRACTION 

The feature extraction step generally builds on the results from the recognition step.  In 

some cases it is hard or even impossible to tell where recognition starts and feature 

extraction stops.  In the feature extraction step some descriptors are calculated for the 

found segments.  The descriptors can be derived from segment properties such as shape, 

colour or spectral information.  Depending on the recognition method used, the features 

are calculated for whole plants (blobs) or individual plant parts.  Examples of possible 

features are given in Figure 16. 
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Figure 16  A list of commonly used descriptors 

Varying definitions or calculation methods for similar descriptors have been used in 

previous research projects, as can be seen in the difference in definitions by Hemming and 

Rath (2001) and Åstrand and Baerveldt (2002).  They both list and use a number of colour 

and shape descriptors.  Examples of similar feature extraction processes can be also found 

from Lee, Slaughter et al. (1999) and Slaughter, Giles et al. (2000) in the application of 

tomato plant weeds.  Fourier analysis can also be used to quantify leaf shapes.  Elliptic 

Fourier analysis has been used for leaf boundary modelling from chain code by Neto, 

Meyer et al. (2006).   

The location or pattern of the plants can give a good insight on the probability of the 

plant being a weed or crop.  Most crop plants are grown in parallel rows with essentially 

equal spacing between the plants.  Location and pattern information is used as a feature by 

Onyango and Marchant (2005), Åstrand and Baerveldt (2004) and Have, Nielsen et al. 

(2005).   

Texture descriptors for objects represent their surface patterns.  Methods such as 
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windowed Fourier filtering (Azencott, Wang et al. 1997) and Ridgelet transformation 

(S.Arivazhagan, L.Ganesan et al. 2005) are used to quantify the texture content.  A 

comparative study of various texture classifiers was conducted by Ojala, Pietikäinen et al. 

(1996).  A method using local binary patterns was considered to perform well and be highly 

efficient to calculate.  Additional research with this method was done to modify the 

method suitable for rotation invariant texture quantification (Ojala, Pietikäinen et al. 2002). 

There are no examples in literature of texture being used as a feature in single plant or 

leaf classification.  The reason could be that leaves do not necessarily have a distinct 

pattern and the methods are limited to objects of a larger scale or more uniform texture.  

Texture classification has been only applied to plant canopy classification.  For example 

broadleaved and grassleaved plants have been successfully classified using Gabor filters by 

Tang, Tian et al. (2003). 

All the descriptors in shape and colour are one dimensional.  Texture descriptors are 

also mostly one dimensional.  The dimensions of spectral data descriptors depend on the 

used spectral resolution and spectral data range.  Technically each spectral data point is its 

own descriptor. 

Calculation times for different features vary greatly.  In certain applications real-time 

calculations are needed and computing times need to stay within strict limits.  Good 

features have a high descriptive value and they are fast to calculate.  Determining a high 

descriptive power for a feature is explained in the next section. 

2.2.5 CLASSIFICATION 

In the final step of detection and classification, the features extracted or shapes 

recognized are used to estimate the plant species.  Again, there are a great number of 

classification methods and different ways of applying them.  A selection of the most 

commonly used methods is shown in Figure 17.  The methods chosen for this project are 

shown in bold.  

Classification

Artificial neural networks

Discriminant analysis

Fuzzy clustering

Linear

Non-linear

etc.  

Figure 17  Classification step in weed detection and classification 

The common scenario in plant classification is that prior to classification each of the 

plant classes are known to have certain properties or combination of feature values.  When 
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several features are used, it is likely that some separation can be made between classes with 

certain combinations of these features. 

Prior knowledge of plant properties can be used to create a library of plant data.  One 

method of storing the data can be statistical, where mean and standard deviations of each 

feature are saved.  Plant data can also consist of all known measurements of plants.  The 

library contents, called the training set, is then used to give the classification system prior 

knowledge of the plants. 

In the training set each plant is stored in its own class.  Plant classes are discrete and 

non-metric since a plant can only belong to one such class.  As long as the class divisions 

are correctly constructed, one measurement can belong to one class only. 

Multiple discriminant analysis is a statistical classification method where one non-

metric dependent variable is estimated from a set of independent variables.  In plant 

classification the dependent variable is the plant class and independent variables are the 

features used in the classification. 

The number of features used in the classification determines the dimensionality of the 

system.  A feature set for one class typically forms a cluster of data in a multidimensional 

space.  Classification methods then estimate the class boundaries with the given training 

sample and later measurements are classified according to these created boundaries.  

The training set size may have a great effect on the performance of the classifier.  As a 

rule of thumb it is suggested by Hair, Black et al. (2005) that the total number of samples in 

a training set should be at least 20 times the original number of independent variables.  

Also, the minimum number of observations per group should be 20.  Groups with a larger 

number of observations have a higher chance of classification, and it may be desirable to 

randomly sample from the larger groups to compensate for the true variation in the data. 

The classification example shown in Figure 18 is two dimensional, i.e. it has two 

features describing the training set objects.  Class 1 and class 2 are fairly clearly clustered 

and have only some overlapping measurements.  In case of a linear classifier a linear 

boundary between classes is created.  In this case one object from each class would be 

misclassified from the training set.  A better fit is achieved by a non-linear boundary.  In 

the non-linear example case all the training set objects are correctly classified.  

The clusters in the given example are fairly well separated, however this is not always 

the case with real data.  More features may be needed for better separation.  Also, with 

larger number of classes the separation often becomes more difficult. 
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Figure 18  A two-dimensional classification example with linear and non-linear class 

boundaries 

It is common that the decision boundary becomes highly complex when a creation of 

optimal boundaries between classes is attempted.  A complex boundary is rarely a good 

generalization to the problem and only works well for the training set objects.  This 

problem is called overfitting.  In the end a simplified boundary often produces most robust 

classification (Duda, Hart et al. 2000).   

In discriminant analysis the selection of variables can be made manually by observing 

the distribution and discrimination power of each variable between the classes.  A 

beneficial variable in discriminant analysis has to separate at least one group from the 

others.  A common method of variable selection is the stepwise selection method.  

Measures such as Mahalanobis distance, F-value and Wilks’ Lambda can be used to 

estimate the discriminant power of a variable.  Discriminant analysis with stepwise selection 

of variables can be done using software packages like SAS (SAS 2007) and SPSS (SPSS 

2007).  Also, a Matlab toolbox for stepwise discriminant analysis has been created by 

Vandev (2003). 

Multicollinearity of variables should be avoided especially in variable selection of the 

stepwise discriminant process.  Multicollinear variables are highly correlated and can be 

explained by each other.  The addition of multicollinear variables to the discriminant 

functions has negative effects on the predictive ability of the functions and in the selection 

of further variables.  The results may become biased with multicollinear variables. 

Multiple discriminant analysis is probably the most common method used in 

applications of plant classification.  Koger, Bruce et al. (2003) used discriminant analysis 

with low spatial resolution spectral data of approximately 0.25 m x 0.25 m per 

measurement.  Their spectral data consisted of a mix of soil and plant spectra.  Using 

wavelet analysis to unmix or separate the spectra and linear discriminant analysis to classify 
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them, a minimum classification probability of 87% was obtained. 

Borregaard, Nielsen et al. (2000) used a line imaging spectrograph in visual and near 

infrared range with a spatial resolution of 1.6 mm x 6 mm.  Spectral information was 

classified with linear or quadratic discriminant functions and crops and weeds were 

correctly classified with a performance of up to 90%.  A similar setup with a slightly lower 

spatial resolution was used by Vrindts, Baerdemaeker et al. (2002) in outdoor testing under 

sunlight conditions.  Sugar beet classification probability was recorded at 95% but maize at 

only 15%.  A line imaging spectrograph was also used by Feyaerts and van Gool (2001) 

with 77-87% classification probabilities.  They compared various different classification 

methods from nearest-neighbour classifiers to neural networks. 

Neural networks are also commonly used in plant classification.  Artificial neural 

networks are loosely modelled after the structure of the brain and consist of connected 

nodes or neurons working together to create an output.  The networks have an input and 

an output layer and there may be a number of layers, called hidden layers, between them.  

The layers can have any number of connected neurons. 

As with discriminant analysis the neural network requires training, but the methods of 

training are different.  There are three major training paradigms: supervised learning, 

unsupervised learning and reinforcement learning.  In supervised learning, a training set 

includes information about input and output pairs and can easily be used with plant 

training data where plant class can be known for each measurement.  In unsupervised 

learning the output pairs for inputs are missing but the user has some knowledge on the 

cost functions including any combination of inputs.  A model is then built to fit the 

observations or inputs.  In plant classification, the unsupervised learning could cluster plant 

data measurements into different classes.  In the last of the three learning methods, 

reinforcement learning, both the inputs and outputs are missing and are generated by 

interactions with the environment.  An observation is created after each action and the 

network then changes its values according to predefined cost functions.  Reinforcement 

learning is typically used with applications like robot control and may not be suitable for 

plant classification.  There are several algorithms for the training of neural networks.  

Statistical methods and genetic algorithms are perhaps the most common.  During the 

training process the weights of the connections between the neurons are optimized. 

Three different neural network models were investigated by Burks, Shearer et al. 

(2005).  Features for plant classification were derived from HSI colour space 

transformation and variables selected by stepwise discriminant process.  Squares of 
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approximately 38 mm2 were classified.  Classification accuracies for six plant classes and 

soil exceeded 90% with most neural network models.  The best performance of 96.7% was 

recorded with back propagation network topology. 

Shape features were used with a back propagation artificial neural network by Cho, Lee 

et al. (2002).  The neural network model was modified to overcome overfitting problems.  

A comparison of discriminant analysis and neural network approaches was conducted.  

Discriminant analysis correctly classified 92% of radish plants and 98% of weed plants and 

the equivalent neural network performance was 93.3% and 93.8%, respectively.  With the 

method described, the overlaps between plants could not be dealt with. 

A different approach to using neural networks in plant classification was taken by 

Aitkenhead, Dalgetty et al. (2003).  They evaluated the use of self organizing neural 

networks for plant classification purposes without predefined features or descriptors.  The 

performance of their system was 75%, which is somewhat lower than the desired level.  

However, the purpose of their research was to show the potential of a neural network 

approach without prior knowledge of plant descriptors. 

Fuzzy classification is the third most common method used in plant classification. 

Hemming and Rath (2001) used weighted fuzzy classification with shape features of 

extracted blobs.  The method correctly classified 51-95% of the plants but had problems 

with overlapping plants. 

Meyer, Neto et al. (2004) used unsupervised fuzzy clustering to eliminate the need to 

manually identify the regions of interest to the system.  Manual intervention is typically the 

most costly and time consuming issue in classification.  The target was to identify plants 

from soil and corn and wheat residues.  Four fuzzy methods were compared to manual 

classification.  These were fuzzy excess red (FxR), fuzzy excess green (FxG), c-means 

clustering (CM) and Gustafson-Kessel (GK) clustering.  The best results were obtained by 

using GK algorithms, where 16-99% of plants, soil and residue were correctly classified. 

2.2.5.1 Principal Component Analysis 

If there is a large number of independent variables and only a small number of samples 

the discriminant analysis will fail.  The reason is that the estimated variance-covariance 

matrix cannot be inverted.  In this case the data can be converted to principal components 

(PC). 

Principal Component Analysis (PCA) is most often used to reduce the dimensionality 

of a multivariate problem (Feyaerts, Pollet et al. 1999; Moshou, Ramon et al. 2002) or more 

specifically to find the true dimensionality of the problem.  Large numbers of input 
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variables are not necessarily practical for classification purposes.  PCA transforms a data set 

to uncorrelated variables, its principal components.  The eigenvalues of these components 

represent how much of the total variance in the data set these uncorrelated variables 

explain.  Often the first few principal components explain nearly all of the variance in the 

data set.  The eigenvalue order is not necessarily related to the discriminatory power of a 

variable and a stepwise discriminant analysis is commonly used after the PCA. (Johnson 

1998) 

Principal components can be calculated using Matlab or most statistical calculation 

tools.  The corresponding eigenvalues for each principal component can be calculated from 

a data matrix X (variables in rows, samples in columns) by using singular value 

decomposition shown in the equation 

TUSVX = ,  (2.2) 

where the diagonal values in the matrix S are the eigenvalues of the principal components.  

The magnitude of the eigenvalues determine the proportion of the total variance each 

principal component represents.  When reductions in the numbers of variables are needed, 

it is typical to select only the principal components that represent 95% or 99% of the total 

variance. 

2.2.5.2 Use of  Spectral Libraries for Local Plant Classification 

Spectral reflectance libraries have been created for differentiation of different objects 

within spectral satellite data.  ASTER spectral library consists of nearly 2000 spectral 

samples of natural and man made objects.  The library is a combination of spectra from 

John Hopkins Spectral Library and NASA’s Jet Propulsion Laboratory measurements. 

(NASA 2000) The spectra in this library is collected without interest in subtle changes in 

vegetation spectra.  These changes are not always meaningful in satellite remote sensing 

applications and only general spectra for grass and trees are stored.  Slightly more detailed 

approach in spectral vegetation measurements has been taken in gathering spectral data to 

the USGS spectral library (Clark, Swayze et al. 2007).  In this collection of spectra, a 

number of plant species have their own library record but the spectra is collected always 

from only one sample in laboratory. 

If a meaningful library would be constructed, the spectral variability due to different 

growing conditions (irrigation levels, available nutrition, soil etc.) and growth stages needs 

to be included.  Plant spectra between different species are really similar and even the 

smallest changes in growing conditions can produce significant changes for classification 
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purposes. (Lewis 2001; Fyfe 2004) 

Due to several variables affecting the plant spectra, it is nearly impossible to create a 

reliable library for all possible plant species and their spectral variations.  It is perhaps 

possible to create spectral libraries for local conditions and a limited set of plants.  This 

approach would include measuring the spectra of plants at a certain time at a certain 

location.  Reliable use of this created library would then happen locally within a limited 

timeframe. 

2.2.6 DISCUSSION ON CURRENT PLANT CLASSIFICATION RESEARCH 

Previous research projects have shown that no single detection or classification method 

is superior to another.  However, certain features in the systems can be thought more 

beneficial than others.  The ability to detect the red edge created by the chlorophyll 

reflectance change in the near infrared region is a simple indicator of plant material and its 

detection can be achieved with simple filters.  Narrowband spectral data can further assist 

in distinguishing between different plant classes, as they all have unique spectra depending 

on the growth stage and conditions. 

Addition of the knowledge of shape to a classifier is shown to be valuable, but it is 

difficult to measure in real growing conditions where plants often overlap with each other.  

These overlaps create problems for systems attempting to fit complete shapes around 

segmented blobs.  If a system would be reliable in separating the overlapping parts, a partial 

shape classification could be utilised.  No tool to make the separation is currently available, 

and therefore the implementation of this proposal would require further research. 

The accuracy classification with current systems is good enough for reductions in 

chemical use compared to broadband spraying.  Then again, systems capable of robust 

classification at leaf level under varying conditions are not available.  Systems may work 

well with certain plant combinations, in previously known plant patterns or lighting 

conditions.  Problems often arise with overlapping plants and in changing light.  Also, most 

current systems are optimised and built for a particular crop-weeds combination and are 

not necessarily flexible enough to work with any plant combination.  Flexible detection and 

classification system would be able to correctly classify all plants separately, although in 

many cases the 2-class classification to weeds and crop is sufficient.  Separation of different 

weed types would allow specific targeting of weeds in the methods most harmful for them.  

The current method of spraying is to mix suitable chemicals together and spray all weeds 

with this mixture.  Savings could be achieved by matching the right chemicals with the right 

weeds. 
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2.3 REQUIREMENTS FOR AUTONOMOUS WEED DETECTION AT 
THE SINGLE LEAF LEVEL 

A number of automatic weed detection systems have been developed, but only the 

most simple systems such as WeedSeeker and GreenSeeker from the Californian company 

NTech Industries (NTech Industries 2003) or Detectspray originally from Australia have 

been commercially released.  These systems rely on the low resolution reflectance of 

infrared or a combination of infrared and visible light and are only capable of detecting 

green vegetation.  Individual plant classification is not possible with these devices.  

However, savings in herbicide costs up to 80% have been recorded with these products 

compared to uniform spraying.  When tested in varying conditions, WeedSeeker performed 

the best with high density broadleaved weeds (Antuniassi, Nery et al. 2003). 

For greater flexibility, accuracy and further reduction in chemicals or the ability to 

precisely locate weed plants, more advanced systems are needed.  A good classification 

detection system needs to be able to separate weed and crop plants at the single plant or 

leaf level.  This leads to a specification that the system needs to recognize any combination 

of plants with reasonable accuracy. 

Autonomous weed detection is the only viable solution for automated weed control.  

Manual weed detection is not feasible and even then 65-85% of the weeds can be left 

unnoticed (Slaughter, Giles et al. 2000).  Lee, Slaughter et al. (1996) showed that the cost of 

spraying and hand weeding was $50 and $80/acre (0.4 ha), respectively.  Economic analysis 

and a prototype machine showed that the purchase of a $110,000 machine would be 

justified if this robotic system could travel at 0.80 km/h (0.5 mi/h).   This calculation 

assumes a three-row machine with row spacing of 1.52 m (60 inches) and an operating 

period of 45 days per season, 60% of overhead and operating costs, no interest, and a five 

year machine life. 

Onyango, Marchant et al. (2005) conducted simulations using crop and weed 

competition models indicating the optimal levels of correct classification for crop and 

weeds to allow certain crop yields.  Their results show surprisingly that minimising the crop 

damage (misclassified crop) or maximising the weed removal (correctly classified weeds) 

does not automatically result in the best yield.  It is suggested that an optimal trade-off 

between the classification probabilities can be found.  In their case the optimal weed 

detection probability for maximum yield was 80% and approximately 93% for crop 

detection. 

Based on the information gained from previous research projects, the following points 

can be thought of as minimal specifications for an autonomous weed detection system: 
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1. Accurate 
− Spatially accurate at sub-centimetre level 
− Accurate detection and classification of plants types at >80% 

2. Flexible 
− Adaptable to any plant types 

3. Low-cost 
− Purchase and operating costs cannot exceed current price of weed control 

4. Quick 
− Real-time operation desirable with immediate control action after detection 

 
Single leaf level classification will require an increase in spectral imaging spatial 

resolution compared to the previously built systems.  Also, the operating speeds need to be 

increased in order to achieve economical feasibility.  The presented points should be 

considered when new techniques for plant detection and classification are investigated. 

2.4 RELATED SYSTEMS AND APPLICATIONS 

This section gives examples of systems related to the application of weed classification.  

A complete listing of such examples would be endless and only the examples thought most 

relevant for an overall picture are given.  When an autonomous device for weed 

classification is considered, satellite based positioning and crop row following can be 

considered as supporting systems.  Their contribution is separate from the actual 

classification and control, but is often vital for the navigation tasks.  Sensor fusion in 

remote sensing and material sorting examples are given as they represent a classification 

system with similarities to a weed classification system. 

2.4.1 SATELLITE BASED POSITIONING 

Satellite based positioning, generally based on the GPS system, is commonly used in 

localisation of robots, vehicles, airplanes, etc.  The system is reliable in any outdoor 

conditions and has a predictable base accuracy of 5 m to 10 m (Ashkenazi, Park et al. 

2000).  There are also plans for the launch of a similar European controlled system called 

Galileo in 2013.  Its accuracy will be under 1 m.  Accuracies of both systems can be 

improved by using a ground beacon at a precisely known location.  These are called DPGS 

or RTK-GPS (Real-Time Kinematics) systems.  With a ground beacon, accuracies of just 

few centimetres can be achieved. 

Gerhards, Sökefeld et al. (2002) used the accurate DGPS system to spray weeds with 

the aid of premade weed maps.  Griepentrog, Nørremark et al. (2005) have mapped sugar 

beet seed locations with an accuracy of 16-43 mm.  The seed locations were later used as an 

input to an optical plant recognition system improving the recognition probabilities.  Have, 
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Nielsen et al. (2005) have also used a GPS based system to map Christmas tree locations 

and guide an autonomous vehicle mowing around the tree trunks.  These examples in 

agricultural applications show the variety and potential available in satellite based 

positioning. 

2.4.2 CROP ROW FOLLOWING 

Plenty of research effort has been put into the automation of following crop rows.  The 

subject is important for drivers of farming equipment and for the quality of work.  It 

requires high levels of concentration to steer a tractor or a harvester in a straight line 

following the crop rows.  In weed classification and control the crop row following could 

be used in steering an autonomous vehicle equipped with the detection system along the 

crop rows. 

Billingsley and Schoenfisch (1995) proved a simple prototype system based on one 

monochrome camera could achieve 20 mm row tracking performance.  The same accuracy 

was obtained by Marchant , Hague et al. (1997) using a single monochrome camera in NIR  

to find crop rows.  This performance was determined to be satisfactory accuracy for 

autonomous guidance.  Åstrand and Baerveldt (2005) have developed a similar crop row 

recognition system based on Hough transform to find crop rows and a steering wheel to 

guide the cultivator.  They recorded slightly better accuracies of between 0.6 cm and 1.2 cm 

and verified the method with both a tractor and an autonomous vehicle.  Accuracies within 

similar ranges are recorded with other systems with varying image processing techniques 

(Tillett, Hague et al. 2002; Søgaard and Olsen 2003; Han, Zhang et al. 2004).  The 

completed projects show that the accuracies in row detection and following are at a 

desirable level and that they can be achieved in several different ways. 

Stereo cameras have also been investigated in crop-row detection (Kise, Zhang et al. 

2005).  The benefit of such systems is the added range dimension.  If single camera 

solutions fail for example in the case of heavy weed densities between the rows, the 

performance of a stereo system may not be affected. 

Current row following accuracies generally exceed the satellite positioning accuracies.  

A combination of a global position from the satellite systems and a precise relative position 

and guidance from a row following system increases redundancy and reliability. 

2.4.3 HYPERSPECTRAL AND HIGH RESOLUTION COLOUR FUSION IN 
REMOTE SENSING 

A simulation of fusing hyperspectral and relatively spatially more accurate colour data is 

presented by Hsu and Burke (2003).  They give examples of current methods in registration 
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and spectral sharpening using the data from both sensors.   

The conclusion of their paper is that a combination of hyperspectral data and higher 

resolution colour data can be used to improve classification compared to using only lower 

spatial resolution hyperspectral data.  The accurate registration of data, i.e. knowledge of 

how to locate the same area or pixel in both spectral and colour data, is the key for 

improved results.  Colour data provides accurate border segmentation of the objects while 

hyperspectral data provides discriminating information for robust classification of different 

materials. 

This combination of spectral and colour imaging could be adapted for use in plant 

classification.  A colour camera could provide accurate information on plant borders and 

their locations and spectral data further enable classification to different plant types.  

Although the combination of colour and spectral imaging in remote sensing is common, 

the direct application of the analysis methods in the macro imaging (spatial resolution of a 

metre or some metres) to images with resolutions of few millimetres may not be straight 

forward.  The reflectance properties of a region in a single leaf compared to canopy of 

plants is considered fundamentally different. 

2.4.4 MATERIAL SORTING 

The Austrian research institute CTR has developed a commercial product for material 

sorting based on spectral imaging (Kulcke and Kerschhaggl 2006; CTR 2007).  The system 

is capable of recognising different plastic materials on a conveyor belt travelling at speeds 

of up to 2 m/s and sorting the materials in different bins with the help of an array of 

pneumatic valves.  The recognition is based on spectral reflectance measurements.  The 

online detection rate at high speeds is based on high frame rates of up to 200 fps and real 

time calculations using field programmable gate array (FPGA) hardware. 

Although the classification of different plastic materials is easier than classifying plant 

spectra, the example of material sorting could be adapted to classification of plants.  

Conveyor belt solution is obviously not possible on fields and cameras would need to be 

moved instead. 

2.5 SUMMARY OF WEED CONTROL RESEARCH 

An overview of the current weed control methods and technologies involved in 

automatic weed detection has been given in this chapter.  Special attention has been drawn 

to the imaging systems and data processing methods to extract weed locations in fields.  

The limitations in previously built optical detection systems have been outlined and a set of 
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requirement suggestions for future systems were given.  

Automatic mechanical weed control methods are limited to treating between-row 

weeds without accurate within-row crop and weed plant detection systems.  In chemical 

control the lack of within-row plant detector results in unnecessarily high volumes of 

herbicides being sprayed in fields.  Economical and environmental savings could be 

achieved if a reliable system locating the weed plants would be built. 
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3.0  PROPOSED PLANT DETECTION AND CLASSIFICATION 
METHOD 

Several studies have shown that the automatic plant detection and classification with 

cameras is feasible, although as explained in §2.2.6 there are still unsolved problems.  Most 

researchers have used either colour or spectral systems for plant detection.   

Slaughter, Lanini et al. (2004) have conducted an evaluation of colour and spectral 

classification of tomato plants and weeds.  Discriminant analysis was used in classification, 

and five spectral bands in the range of 400 – 2320 nm were used.  Spectral imaging in the 

range of 400 – 1000 nm was done with a silicon sensor.  Sensors for wavelengths above 

that are specialized and more expensive.  The results from the study suggest that spectral 

imaging at most wavelength ranges outperforms the conventional RGB imaging.  This 

conclusion is in line with many other research projects as well. 

Another and perhaps more relevant issue investigated in Slaughter, Lanini et al. (2004) 

was the effect of image bit depth to the classification accuracy.  Data with 16, 14, 12, 10 

and 8 bits were compared in the study.  Obviously the results were better with a higher bit 

depth, and the difference between 8- and 16-bit data was significant but only for spectral 

data.  There was also a big difference between 10- and 8-bit data.  Cameras with over 10-bit 

depth are relatively expensive and judging by the results of the study, the 10-bit cameras 

may be the solution to optimize accuracy and price.  Cameras with 10-bit analogue to 

digital conversion and 8-bit image data were chosen to be used in the presented project 

without compromising the data accuracy for cost. 

The proposed plant detection system consists of two separate imaging devices with 

simultaneous image acquisition.  RGB colour camera and a monochrome camera with the 

chosen spectrograph both image at a high spatial resolution having the same objects visible 

to both cameras at all times.  This novel combination of a spatially accurate spectrometer 

and a conventional colour camera has the potential to perform robust and accurate plant 

detection and classification.  Brown, Jackson et al. (2000) have used a comparable setup in 

an application of printing quality analysis.  Although the idea of combining these two 

imaging technologies is not novel, the similar camera setup with a high spatial accuracy has 

not been previously used in agricultural applications. 

The spatial accuracy of the colour camera in the proposed setup is still approximately 

five times more accurate than the spectrometer spatial accuracy.  Fusing the information 

from these two imaging devices using their individual benefits is shown to improve the 

overall results compared to using either imaging device individually (Hsu and Burke 2003). 
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The chosen spectrograph was a Specim Imspector V10 with a nominal spectral range 

of 400 – 1000 nm.  This spectrograph was a line scan type spectrograph imaging a narrow 

line and dispersing the spectral components in that line to the vertical axis of the image.  

This technology is comparatively low cost, compact and produces accurate information in 

both spectral and spatial domains.  This spectrograph type has also been chosen by other 

researchers in plant detection (Borregaard, Nielsen et al. 2000; Vrindts, Baerdemaeker et al. 

2002). 

Colour and spectral imaging technologies have already been individually proven to be 

capable of providing satisfactory plant detection and classification results under certain 

conditions. Therefore, it is likely that the results will be improved with the two 

technologies combined.  This allows the best possible feature combinations to be chosen 

for classification purposes and the system becomes flexible such that one system can be 

used with any combination of plants with minimal changes. 

It can be argued that the same information can be gathered using tunable filters but at 

the moment the filter technology is much more expensive than using two cameras and a 

line imaging spectrometer.  Tunable filters have also other disadvantages for use in 

applications involving movement.  Since the combined data from colour and spectral 

cameras has not been utilized before, this creates opportunities to create new and powerful 

algorithms for plant detection. 

Two imaging devices in the detection system obviously produce more data than a single 

one would.  Acquiring two high resolution images simultaneously heavily occupies the data 

transfer medium and increases the processing times.  Without proper care this flood of 

data may make real-time processing an impossible task.  However, it should be noted that 

acquiring two 8-bit images produces as much data as a single 16-bit image would. 

The basic concept of the proposed novel dual camera detection and classification 

system is to acquire simultaneous pairs of images from the colour and spectral cameras.  

The selected line imaging spectrograph needs to be moved spatially to gather the full 

spectral cube of information.  The cameras are fixed in position relative to each other and 

moved gradually along in the direction of the vertical colour image axis (colour image y-axis 

in Figure 37).  Image pairs are acquired at a set interval from a predetermined and 

unchanging distance to the ground and colour images are used to estimate the movement 

by spatial registration of consecutive image segments. 

A flow chart of the main image processing tasks involved with the proposed two 

camera solution is shown in Figure 19.  The individual processes involved in data 
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collection, storage and processing will be explained thoroughly in this chapter and the 

figure is referred to where applicable.  Gray areas at the top of the flow chart indicate the 

separate cameras and the possibilities to process the data separately.  This could ultimately 

allow part of the processing to be done inside the cameras so that only the necessary 

information will be transferred via the interface link to the central processing unit.  This is 

one example of avoiding the problem of having too much data to process. 

 

Figure 19  Image and data processing flow chart  
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Two different data processing approaches for creating the classification data are also 

discussed.  These are full leaf method and window method.  In the full leaf method the 

classification is based on colour, shape and spectrum characteristics of found full leaves.  

The novel window method does not consider shape properties but attempts the 

classification of small image areas (windows) with colour and spectral data only.  The 

window method is also an attempt to overcome problems with connected or overlapped 

plant parts. 

Process 6. in Figure 19 is perhaps the most important of all the processes.  This is 

where the pre-processed collected data is fed into the classification algorithm.  The 

proposed classification method is discussed later in this chapter.   

3.1 COLOUR DATA PROCESSING 

3.1.1 LIGHTING NORMALISATION IN COLOUR IMAGES 

The lighting intensity is rarely uniform throughout the whole image area.  In 

applications where accurate colour measurements or sensitive thresholding procedures are 

done it is vital to calibrate the system to these intensity changes.  Knowledge of the 

intensity changes can be gathered in calibration images.  These calibration images are taken 

of a uniform material with constant reflectance properties.  Normalisation of the acquired 

images can be done by dividing the pixel intensities with the corresponding calibration 

image pixel intensities.  The process of creating these calibration images and using them is 

further explained in §5.1.6. 

3.1.2 COLOUR IMAGE REGISTRATION 

The test setup was designed such that no data of the actual global location of the 

camera system is recorded, although the stepper motor always moved the cameras by a 

same distance per step along a linear guide.  Image acquisition happened after certain 

number of steps and most of the colour image was always overlapping with the previously 

captured image.  The movement of the cameras relative to the ground can therefore be 

estimated from the images.  Since the camera system behaves like a scanning device 

moving along the vertical colour image or y-axis, a continuous image could be created from 

a set of overlapping images. 

The process of colour image offset registration (2b in Figure 19) estimated the offset of 

the latest and previously acquired images within a pixel by means of cross correlation.  A 

single line from the new image was compared to the lines in the previous image and a 

maximum correlation of a line pair indicated the offset required for registration.  The offset 
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was always in the y-direction only, as this was the only direction the platform was moving.  

Similar cross correlation method could be modified to give x-, y- and rotational offset 

values.  The new image was overlaid on the previous image using the estimated y-axis 

offset to create a continuous image (4. in Figure 19).  Only small vertical segments of the 

red channels in the latest and previous images were used in the cross correlation process.  

This was done to speed up the process compared to the three-channel cross correlation. 

3.1.3 PLANT SEGMENTATION 

After colour image registration, the plant material from the newest portion of the image 

needs to be found.  This process is indicated as 3b in Figure 19.   

A test of six different segmentation methods was done to find out the best colour 

space transformation or combination of transformations for plant segmentation for the 

equipment used.  These methods included RGB, HSI, IV1V2, i1i2i3new, RGB+HSI and 

RGB+i1i2i3new transformations.  The first four methods used three image channels each 

and the last two used six image channels for segmentation.  HSI transformation was 

calculated with a Matlab function rgb2hsv.m and IV1V2 and i1i2i3new with the following 

equations: 
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A test image of different plant leaves and other objects was taken under controlled and 

unchanging lighting conditions.  A binary reference image was created from the test image 

by manually marking the leaf material as one and everything else as zero.  The original test 

image and the reference image are shown in Figure 20. 
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(a)     (b) 

Figure 20  (a) A test image and (b) a reference image for colour transformation 

evaluation in plant segmentation  

For each channel, the boundary values or threshold limits were manually set observing 

pixel values at leaf locations.  A low and a high threshold values were set for each 

individual channel such that after excluding pixels below and above the low and high 

threshold limits, respectively, none or minimal plant material was excluded in each channel.  

Logical AND-operation was then used to combine the channels.  The process of 

thresholding individual channels and combining their results with an AND-operation is 

illustrated in Figure 21.  In the given example, the hue channel separates the plant material 

and intensity channel the bright non-plant material best. 

The presented thresholding method was adopted to minimise the loss of valuable plant 

pixels during the segmentation process and the manually set limits allowed false positives.  

If a non-plant pixel was not present in one or more of the individual channels after 

thresholding, the logical AND-operation excluded this pixel from the combined result. 
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a) Hue b) Saturation c) Intensity

g) Combined

d) Thresholded Hue e) Thresholded 
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Figure 21  A segmentation example showing separate channels of HSI transformation 

and the resulting image after combining thresholded channels with an AND-operation 

Combined thresholding results, as in Figure 21 g), using the presented six 

transformation channel combinations are shown in Figure 22.  RGB results in a) seem 

considerably worse than with other transformation combinations.  When threshold limits 

were set for RGB channels, the soil could not be reliably excluded in any of the channels.  

The green channel contributes most to the overall result, but red and blue channels fail to 

improve the result.  It seems that the colour vectors in the RGB cube are not pointing in 

the right direction in terms of segmenting the plant pixels with the presented method. 

More sophisticated ways to define plant data boundaries could be beneficial for use with 

RGB-space.  However, it seems that other transformation combinations illustrated in 

Figure 22 b)-f) give relatively good results. 



 

51 

 

  
(a) RGB     (b) HSI 

  
(c) IV1V2    (d) i1i2i3new 

  
(e) RGB+HSI    (f) RGB+i1i2i3new 

Figure 22  Segmentation results of six different methods 

The results after segmentation were noisy and some post processing was needed to 

extract only the green plants from images.  The post-processing of segmented images is 

illustrated in Figure 23 using the test image from Figure 20 as a source.  First, the binary 

images were filtered with a median filter that effectively reduced the salt and pepper type of 

noise in the segmented images.  After median filtering each output pixel contains the 

median of a selected pixel neighbourhood.  After careful exploration of various filter sizes, 

a 4 by 4 neighbourhood was found to work best for the images.  The resulting filtered 

image contained values of 0.5 and was converted back to a binary image, discarding all but 

the pixels with a value of one. 
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Figure 23  Post-processing example of segmented images 

Some noise was still present in the images after median filtering.  First a morphological 

open (erode followed by dilate) and then close (dilate followed by erode) operations with 2 

by 2 pixel elements were performed to further improve the match with the reference 

image.  An open operation removed excess pixels especially in the leaf borders and opened 

up small gaps naturally present in some leaves.  Performing a close operation after the open 

operation with the same size element attempted to restore the original pixels before 

opening.  After open and close operations, all the remaining small holes in the image were 

filled and elements or blobs smaller than 100 pixels were removed.  An area indicated by a 

red circles in Figure 23 shows how the natural gap in the leaf is restored using open and 

close operations. 

The method of finding the suitable processing algorithm or selection of image 

processing tools was done by exploring various filtering and morphological imaging 

options, while visually or computationally observing their performance compared to the 

ground truth data shown in Figure 20 b).  Although the process produced good results, 

they are not necessarily the optimum in operational accuracy or computational load. 

A performance figure for each segmentation method was calculated by comparing the 

resulting segmentation to the reference image pixel by pixel.  The calculation compared the 

number of correctly segmented pixels in the whole image to the total number of pixels.  

Performance values for methods with and without post processing are shown in Table 1. 
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Table 1  Performance values for six segmentation methods 

Method 
Performance before 
post processing (%) 

Performance after 
post processing (%) 

RGB 44.9 26.1 
HSI 87.2 99.1 
IV1V2 79.1 94.3 
i1i2i3new 89.8 99.3 
RGB + HSI 89.1 99.3 
RGB + i1i2i3new 89.8 99.3 

 
Apart from RGB and IV1V2, the methods performed almost perfectly.  No significant 

difference can be seen with the remaining four methods.  Using RGB with i1i2i3new did not 

improve the segmentation results for that method.   

The method of using RGB and HSI channels was selected.  Since images were acquired 

in RGB format, no additional calculations were needed to use these channels.  Also, Matlab 

has a fast function for RGB to HSI conversion.  Segmentation with i1i2i3new channels could 

be used in a situation where this method would be faster to calculate.  An example of 

segmentation results with the RGB+HSI method after post processing is shown in Figure 

24.  The red areas in the figure represent misclassified pixels and are mainly concentrated 

around the edges of the leaves.  Misclassification around the edges is partially due to 

subjective manual selection of reference areas.  No pixels were misclassified outside of the 

leaves. 

 

Figure 24  A segmentation example with RGB+HSI after post processing. Misclassified 

pixels in red 

None of the segmentation methods using colour images only can detect the difference 

between living green plants and other green objects.  However, spectral data can later on be 

used to differentiate between living plants and other green material potentially segmented 

as plants.   
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3.1.4 COLOUR IMAGE FEATURES FOR CLASSIFICATION 

A number of features or descriptors were designed to give numerical representation to 

colour and shape properties of segmented leaves or plant parts.  Shape descriptors were 

calculated from segmented binary images and colour descriptors from colour images in the 

segmented regions only.  The descriptors were calculated for classification purposes.  

Several different descriptors were created and tested so that the best ones could be selected 

into the final classification algorithm. 

Descriptors were calculated for each separate area, called a blob, in the segmented 

image.  Blobs were detected only when they were fully visible.  Colour descriptors included 

six values calculated from the red, green and blue channels.  The channels were first 

normalized dividing the channel value with the sum of all three channel values at each pixel 

location.  Mean value and standard deviation descriptors for all three channels were 

calculated using these normalized pixel values. 

The shape descriptors used include area, perimeter, thickness, elongation and 

compactness as in Åstrand and Baerveldt (2002).   In addition, eccentricity was also 

calculated.  The area value is a simple count of pixels in a blob and perimeter is the number 

of pixels on the boundary of the blob. Thickness is defined by the number of shrinking 

steps it takes to reduce the blob until no pixels remain.  Eccentricity, a measure of ratio of 

minor axis to major axis of a bounding ellipse, has a value from zero to one and it 

represents how round or eccentric the blob is.  An ellipse with the resulting eccentricity 

value has the same geometric second moment as the blob and was calculated with a Matlab 

function regionprops.  An eccentricity value of zero means that the blob is a perfect 

circle and a value of one represents a line segment.  Elongation represents a similar 

measure but is defined as the area divided by thickness squared.  Compactness is defined 

by area divided by perimeter squared.   

The calculation of shape descriptors does not take into account or detect any 

overlapping or connected plant parts.  Prior to the calculation of shape descriptors it is 

assumed that all the blobs represent a full leaf. 

3.2 SPECTRAL DATA PROCESSING 

Spectral images are monochrome 8-bit images with 1360x1024 pixel resolution.  The 

horizontal axis in the image holds the spatial data and the vertical axis the spectral data.  In 

theory the spectral range of 400 – 1000 nm is distributed evenly along the vertical image 

axis resulting in spectral resolution of 0.59 nm/pixel at the image sensor.  A 4 nm spectral 

resolution was given in the spectrograph specifications. 
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The spectral image spatial axis was cropped and resized to match the colour image 

columns.  This is labelled as 1a in Figure 19.  The amount of cropping and resizing was 

constant and was determined by a calibration process where a colour image and a spectral 

image were registered together.  This calibration procedure is explained later in §5.1.4. 

Spectral images were also resized in the spectral axis to match the colour image height 

of 493 pixels, resulting in a theoretical spectral resolution of 1.22 nm/pixel.  This resizing 

was done mainly to reduce the amount of data without sacrificing the spectral resolution 

accuracy.  The spectral data in the resized image was still over three times more accurate 

than the spectrograph manufacturer’s spectral accuracy specifications. 

Spectral image columns represented the spectral measurement at a particular location.  

Before processing the cropped and resized image further, the image was adjusted according 

to the current lighting conditions.  During normalization the data in the spectral image 

columns was divided by values obtained from lighting intensity measurements.  This 

process of lighting calibration is explained thoroughly in §5.1.6. 

After the lighting adjustment the spectral image columns are individually normalised by 

subtracting the mean of the column from each data point and dividing the values by the 

standard deviation of the column.  This method of normalisation results in relative 

measurements.  These relative measurements are robust towards expected intensity changes 

resulting from plant leaves being imaged and illuminated at different angles. 

Finally, the number of spectral points was reduced by calculating average values over n 

pixels.  Changing the value of n effectively changes the spectral measurement band width.  

Several different values of n were used to find the best one for classification purposes.  

Data averaging is indicated by 2a in Figure 19. 

3.3 OVERALL DATA COLLECTION AND MERGING 

The process of gathering data happens an image pair at a time.  The colour and spectral 

images were acquired simultaneously and transferred to the computer.  There was a 

constant spatial offset between the image pairs and this offset was determined during the 

colour image registration process. 

The new portion of the colour image was added to the top of the old colour images, 

creating a continuous “tall” image.  The new colour image portion was also segmented and 

added to the top of the “tall” segmented image.  Spectral data location in the colour image 

was registered for each image pair and previous locations updated accordingly.  These 

spectral data line locations are indicated in Figure 19 by dotted white lines. 

Overall, the previous colour image, the continuous colour image, the continuous 
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segmented image and the spectral data gathered were stored in the memory.  The data in 

the continuous images and spectral measurements were used to find segmented blobs for 

classification.  These blobs were recorded only when they were fully visible, i.e. they were 

no more connected to the top line of the continuous image.  The amount of memory used 

to store the images was controlled by setting a maximum height for the continuous images.  

The height limit effectively determined how many image pairs were kept in the memory. 

3.3.1 WHOLE LEAF METHOD 

The first of the two detection and data processing methods examined was called the 

whole leaf method.  In this method it was assumed that one blob represents one leaf and 

no overlapping leaves were present.  The method was expected to work well in laboratory 

conditions where leaves could be placed separately under the cameras.  In this method 

colour, shape and spectral data was calculated and stored for each detected blob. 

Spectral data for blobs was stored only from locations where the data is non-mixed.  

This non-mixed restriction means that the spatial area covered by a spectral data point had 

to be completely inside the blob in order to be registered.  Each spectral data point was 

rectangular in shape and its size was governed by the spectrograph spatial resolution. 

Non-mixed data was ensured by eroding the blob in the horizontal and vertical 

directions by the known spectral data point dimensions and storing only the spectral data 

points whose centre point falls inside this eroded blob.  In the whole leaf method the 

spectral data was averaged over the whole leaf. 

An example colour image set created from 20 images is shown in Figure 25.a.  Data 

from the first image is at the bottom of the image.  Figure 25.b shows the segmentation 

results from this colour image such that only blobs that are fully visible are segmented.  

Horizontal black lines in the segmented image show the spectral line locations and the 

number on the segmented leaves indicates the order in which the leaves have been 

detected.  Colour and shape descriptors and spectral data have been calculated for each of 

the blobs shown in the segmented image. 
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(a)      (b) 

Figure 25  a) A colour image example from 20 image pairs and b) its segmented 

equivalent.  Spectral data line locations shown as horizontal black lines. 

3.3.2 WINDOW METHOD 

Since detection of separate leaves cannot be guaranteed in all cases in real field 

environments with living plants, a method to manage overlapping leaf parts was created.  

The window method was a novel approach and an attempt to try and avoid problems that 

occur when leaves are overlapped or only partially visible.  The spatially accurate optical 

system allows data processing in sub-centimetre level. 

The basic idea of the window method is to divide the images into small windows for 

which spectral data and colour descriptors are calculated individually.  Shape descriptors 

are not used with this method.  The size of the windows is determined primarily according 

to the expected distance between acquired images and the spectrograph spatial resolution.  

The windows are defined as squares.  In essence, the method down samples the colour 

image spatial resolution and spectral image spatial axis data to achieve a nearly square grid 

of data in each image pair. 

The method of extracting windowed data itself is not novel within plant detection.  For 

example Burks, Shearer et al. (2005) have classified colour data windows of 38 mm2 as 

explained in §2.2.5.  The novelty of the approach is the accurate spatial resolution of the 

windows and the inclusion of both spectral and colour information.  The window size with 

the equipment used in this study was much smaller than in previous published studies and 

allows several windows to be placed on a single leaf of a broadleaved plant.  Even narrow 

grassleaved plants could be detected. 

The window centres fall on the spectral data line centre location in the images.  This 

line is divided into a number of windows depending on the window size used.  The 

window centres on different spectral data lines are always at the same horizontal locations.  

This creates a uniform grid of windows in the horizontal direction.  Uniformity in the 

vertical direction is dependent on the movement of the cameras between image pair 
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acquisition.  An example illustration in Figure 26 shows how the square windows are 

placed on spectral data lines.  Distance between the spectral data lines was not perfectly 

uniform due to inaccuracies in the mechanical gearing system of the camera head and a 

mismatch between pixel height and camera movement steps.  Maximum fluctuations of 

approximately 2 pixels in colour images were recorded between spectral lines with the test 

rig setup explained later in chapter 4.0.  Red window frames indicate the locations where 

colour descriptors and spectral data are from plant material only. 

 

Figure 26  Illustration of window placement principles on spectral data lines 

3.3.3 DETECTION OF SEPARATE SMALL PLANT PARTS 

The segmentation process rejects objects smaller than 100 pixels in area.  This 

corresponds approximately to an area of 43 mm2.  Also, very thin plant parts may be 

filtered out in the process of closing and opening the image.  By adjusting the smallest 

object size in the segmentation process some smaller plant parts can be detected but at the 

same time the noise in the segmentation process has a greater effect. 

The limit for the smallest object to be detected in the segmentation is set partially 

according to the spectrograph spatial resolution.  As explained earlier in this chapter, only 

non-mixed spectral data is recorded.  The theoretical spatial resolution of the spectrograph 

in the used setup was determined to be approximately 0.2 x 1.8 mm.  The image pair 

acquisition interval was based on this spectrograph spatial resolution limit and no image 

pairs are closer than 2 mm apart.  These restrictions basically mean that in order to record 

non-mixed spectral data the object should be more than twice the size of the spatial 

resolution limit.  This limit is only theoretical and in practice non-mixed spectral data can 

be recorded rarely for objects smaller than the set area of 100 pixels.  An exact measure of 

an object where one window can be guaranteed to fall on can be calculated from the 

following equation.  All units are in pixels: 
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Due to different spatial resolutions of the imaging devices, the colour camera can 

potentially detect smaller plants than the set limit of 100 pixels in area.  However, 

calculation of descriptors may not be meaningful for such small objects. 

3.4 PLANT CLASSIFICATION 

Previous sections in this chapter have described methods for plant material detection 

and the calculation and measurement of values to describe the properties of these found 

objects.  This data can then be used to tell the difference between different plant species, 

i.e. to classify plants. 

Previous knowledge of objects beings classified is necessary with almost all methods of 

classification.  This knowledge can be stored in a separate library of data.  Some manual 

intervention is generally needed to create a data library or sample set.  This sample set is 

then used to map certain combinations of feature values to a particular plant and thus 

creating plant classes.  In principle any measurement can then be classified by finding the 

best match of each measurement to a known plant class. 

Multiple discriminant analysis was chosen as the classification method in this project.  

No single classification method has been shown to be superior, and discriminant analysis 

has been the choice in many research projects previously.  Benefits of the method include 

low computational load once the classification functions are created and an inherent 

selection of the best descriptors using the stepwise classification model building method.  

In addition, plant classification with one non-metric dependent variable (plant class) and 

multiple independent variables (descriptors) is ideal for the use of multiple discriminant 

analysis. 

The actual implementation of the classification is done in Matlab using functions from 

a discriminant analysis toolbox created by Vandev (2003).  The toolbox offers stepwise 

linear and quadratic discriminant classification functions and classification performance 

evaluation tools.  Only linear methods were used in this study.  Calibration or verification 

of the mathematical methods in the toolbox is shown in Appendix A. 

Use of classification begins by inputting a training set and creating the discriminant 

functions.  The training set includes all the calculated descriptors and a vector describing 

the class the measurement belongs to.  In the training set each plant type was given its own 

plant class.  A stepwise selection process was used to find the most relevant descriptors.  



 

60 

 

The descriptor with the largest significance was selected as the first variable. 

The toolbox functions were altered such that the process of selection was automatic 

and continued until no variables were added or removed from the model.  Originally the 

selection method in the toolbox was manual and the significance of each variable and the 

whole model were shown after each step.  A significance level of 0.05 was used for 

inclusion and removal of a variable. 

Another addition to the toolbox functions was the checking of multicollinearity of the 

variables.  It is common that plant class spectra are highly similar, especially when narrow 

band spectral data points are used.  This usually means that the data is also collinear.  

Multicollinearity was checked by calculating a correlation value of a variable against other 

variables.  A variable was accepted to the model only if the correlation value was under 0.9.  

Highly correlated data can create unwanted bias and degradation of classification results in 

the model (Hair, Black et al. 2005). 

After training or discriminant model building the classification was done using only the 

set of descriptors selected for the model.  A measurement was evaluated with the 

discriminant functions and the probabilities of a match with the known classes were given.  

The class with the highest probability was chosen as the class for each measurement. 

3.4.1 POSTPROCESSING WITH THE WINDOW METHOD 

Classification in the full leaf method was straight forward and no post processing of the 

classification results was needed.  With the window method the classification results were 

processed using the knowledge of classification results in the neighbourhood of the 

classified window.  This is done because there is often quite substantial variation in the 

properties of the windows on a single leaf.  The leaf area gives a non-uniform reflectance 

response when investigated at a higher spatial resolution.  The filtering method presented 

here has been iterated through a process of trial and error and thorough visual investigation 

during the initial testing and has proven to create robust and accurate results. 

The post processing of windowed classification results is accomplished by spatial 

filtering in two layers.  The whole filtering scheme is based on a few assumptions:  

1.  Window classification results have some noise and spatial low pass filtering is a 

solution 

2.  A classified window is likely to be surrounded by windows of the same class 

The first layer of the filter checks the probabilities of the classes for windows around a 

3x3 window neighbourhood of each window and acts as a low pass spatial filter.  

Probabilities within each class from this 3x3 window area are summed together counting 



 

61 

 

the centre window probabilities twice.  The class with the largest probability sum is selected 

as a candidate class for the particular window. 

The second layer checks the frequency of occurrence of window classes for each class 

also within a 3x3 neighbourhood of the window and acts as an additional low pass spatial 

filter using the classification results from the first filtering step.  The class with most 

occurrences in the 3x3 neighbourhood is selected as the final class.  In case an equal 

number of windows are detected for two or more classes, the original window from the 

first filtering step is the final classification results.  This final filtering effectively reduces the 

number of lonely incorrectly classified windows when surrounded by correctly classified 

ones. 

3.4.2 LEAF BORDER ESTIMATION 

Due to the millimetre level spatial resolution of the presented detection system, good 

estimates of the plant borders in overlapping cases can be given.  Classified windows are 

considered as low-resolution pixels in a higher resolution image so that the leaf border 

estimation gives a sub-pixel accuracy image of the plants.  

The estimation process is illustrated in Figure 27.  A binary image of leaves in (a) and 

classified windows (b) with window locations in the binary image are first needed.  For 

each class, a map is created (c and d), where 2-dimensional bell-shaped normal curves are 

placed on the window centres and all such shapes are added together within class.  The 

lighter the colour in these class maps, the closer a window centre is.  Each pixel in the 

resulting estimated border image (e) is then given the class number that has that the highest 

sum in any single class image.  The horizontal lines in the class images are due to non-

uniform window spacing in horizontal and vertical directions. 

 

Figure 27  Method of estimating leaf borders from a simulated binary image using 

classified windows 
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3.5 DISCUSSION 

A novel method for the detection and classification of plants has been presented in this 

chapter.  The method combines the benefits of two imaging technologies, fusing them into 

a high accuracy sensor for weed detection and classification. 

Two data processing schemes for use with the sensor have also been introduced; the 

full leaf method and the window method.  The full leaf method is meant for separate leaf 

classification using colour, spectral and shape descriptors, while the novel window method 

is based on classifying small windows in a grid formation.  The window method uses 

colour and spectral data only.   

The window method can inherently deal with overlapping plant parts and estimate the 

location of plants with sub-centimetre accuracy.  The method can work well with both 

broadleaved and grassleaved plants and is not limited to specific plant types.  These 

attributes can be seen as a significant improvement compared to the previously built 

systems.  

Methods of dealing with the increased data flow from two cameras have also been 

briefly explained.  The scope of this project is not to create a system operating in real-time, 

but to verify the suitability of a new sensor for the application of weed detection and 

classification.  However, no major limitations for a real-time implementation can be seen 

should correct hardware choices be made. 

The presented high resolution estimation of leaf borders is not necessary for the 

application of chemical or mechanical weed control.  However, this method is presented as 

an innovative way to add value to the raw data from the novel sensor combination.  The 

high resolution capabilities of the system allow new analysis methods to be applied.  Leaf 

border estimation can be advantageous for cases of shape modelling.  The output of the 

estimation could be used with classifiers that have the capability of utilising shape segment 

information.  Such classifiers have been introduced by Petrakis, Diplaros et al. (2002) and 

Gandhi (2002) and are explained more thoroughly in §2.2.3. 
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4.0  TEST RIG DESIGN 

A test rig was designed for plant identification under laboratory conditions.  The basic 

requirements for the rig were to have a system capable of moving an imaging platform 

above the plants.  This platform will hold colour and spectral imaging devices and a 

lighting system.  The light system is required to block all the external light and provide 

stable and spectrally known uniform illumination.  A description of the test rig design 

process and an explanation of the choices made is given in this chapter. 

4.1 DESIGN EXAMPLES 

A number of imaging platforms for weed detection and control purposes have been 

developed.  These research platforms are always customized for a particular purpose and 

method.  Five examples of such platforms can be seen in Vrindts (2000), Hemming and 

Rath (2001), Åstrand and Baerveldt (2002), Cho, Lee et al. (2002) and Bak and Jakobsen 

(2004). 

When only the imaging systems are considered, the main differences in these platforms 

are in the selection and setup of imaging and lighting equipment.  Common for all the 

listed platforms is that the imaging device optical axes are perpendicular to the ground, i.e. 

they are pointing straight down.  This is true regardless of the imaging method.  In these 

projects the common method of imaging is conventional RGB colour apart from spectral 

imaging used by Vrindts (2000).  Cameras with different resolutions, lens focal lengths and 

distances from ground are used, resulting in varying fields of views and spatial imaging 

accuracies. 

Out of the five presented projects only Hemming and Rath (2001) and Åstrand and 

Baerveldt  (2002) use controlled lighting while blocking all the outside light from the 

imaging area.  Halogen lighting is used in both cases.  In other projects it is assumed that 

relatively constant and bright natural light is available. 

Cameras are set relatively close to the ground in the platforms while maintaining a 

width of view reasonable for each particular purpose.  The minimum width is in many 

cases set by the width of the crop row of interest. 

4.2 CAMERA STUDY 

Camera selection can be of great importance in an application where small reflectance 

changes are being measured.  It is also important to make sure the selected cameras are 

compatible with all the other hardware.  Issues like sensor size, resolution and interfacing 



 

64 

 

need to be examined. 

The imaging platform of the proposed system consists of a colour and a spectral 

camera.  These cameras need to be working together simultaneously with relatively high 

frame rates.  The colour camera specifications are defined mainly by the spatial resolution 

required.  A pixel should reach sub-millimetre resolution.  The monochrome camera 

specifications are defined mainly by the selected spectrograph Imspector V10.  This 

narrows the search of a suitable camera to models offering 2/3 in. (6.6 x 8.8 mm) sensor 

sizes.  Since the cameras need to work seamlessly together, it might be beneficial to have 

them be from the same manufacturer and with the same interface. 

An estimated required field of view width for the cameras is 300 mm.  The cameras are 

designed to be facing straight down at a height of 300-500 mm.  The required width of 

view can be calculated from the following equation. 

f

AB
S =  (4.1) 

In the equation S is the object size, A the distance to object, B the sensor size (height 

or width) and f the focal length of the lens.   

A 2/3 in. sensor is 6.6 mm high and 8.8 mm wide.  Solving equation 5.1 for focal 

length with S=300 mm, A=400 mm and B=8.8 mm gives f=11.7 mm.  This is closest to 

the common lens focal length of 12 mm.  This focal length should be used with the 

spectrograph to achieve the desired field of view.   

Affordable colour cameras typically come with a 1/3 in. sensor size with dimensions of 

3.6 x 4.8 mm.  Estimating the required focal length with the same setup results in f = 6.4 

mm.  A high resolution lens with a focal length of 8 mm was already available and this 

requires the height to be 500 mm for a 300 mm width of view.  This adjustment still fits in 

the intended height range so an 8 mm lens will be used with the colour camera. 

The next step was to define the required resolution for the colour camera.  Given the 

1/3” sensor size and an 8 mm lens the field of view at 500 mm is 300 x 225 mm.  If only 

sub-millimetre level is required the sensor resolution should be better than 300 x 225 

pixels.  Most cameras come with at least a resolution of 640 x 480 pixels, so fulfilling this 

requirement was not a problem. 

In recent years new interface options have become available for machine vision 

cameras.  In many cases a dedicated frame grabber is no longer needed and cameras can be 

simply plugged in via USB or Firewire ports.  Table 2 lists some common camera interface 
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options with respective data transfer rates. 

Table 2  Comparison of camera interface options 

Interface Data transfer rate 
Camera Link * 2380 Mbit/s 
Gigabit Ethernet * 1000 Mbit/s 
Firewire IEEE 1394b * 800 Mbit/s 
USB2.0 Hi-Speed 480 Mbit/s 
Firewire IEEE 1394 400 Mbit/s 
USB1.2 12 Mbit/s 
* typically requires a dedicated interface card 
 

The three fastest interfaces in the table above typically require a specific interface card 

to be used.  This is especially true with the Camera Link interface.  The Camera Link 

interface also requires special expensive cables to be used.  Gigabit Ethernet (GbE) 

interface offers high data transfer with simple cabling and there are many camera options 

to choose with this interface.  GbE still requires a special interface card but this may 

change in the near future if this interface standard will be included in the motherboards of 

common computers.  Firewire IEEE 1394b is also a fast interface, but currently there are 

few cameras utilizing this communication standard.   

Most cameras at the moment come with the option of Hi-Speed UBS2.0 or 400 Mbit/s 

Firewire interfaces.  Many Firewire cameras support the DCAM (1394-based Digital 

Camera Specification) camera interface for easier programming and access to camera 

settings.  Wider selection of camera models and DCAM compatibility were the key reasons 

to choose IEEE 1394 interface over USB 2.0.  

Prosilica (Prosilica 2006) was found to provide Firewire CCD cameras with the 

required specifications.  Models EC650C (colour) and EC1380 (monochrome) were chosen 

for the test rig with sensor resolutions of 659x493 and 1360x1024 pixels, respectively.  The 

EC1830 has a Sony ICX285 sensor with quantum efficiency shown in Figure 28.  The 

colour camera had a typical spectral sensitivity of an RGB sensor.  Since spectral 

measurements were not taken with the colour camera, its spectral sensitivity was not 

relevant. 
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Figure 28  Sony ICX285 CCD sensor Quantum Efficiency (VayTek 2007) 

4.3 LIGHT SOURCE STUDY 

Selection and design of lighting is always an important issue with imaging devices.  

Lighting conditions are especially important in spectral reflectance imaging since the 

cameras measure only the light reflected from the objects.  This means that the light source 

should have relatively uniform spectral irradiance characteristics throughout the wanted 

spectral range.  In this case the spectral range is 400 – 1000 nm. 

Heat production and cost of light sources are also issues that need to be considered.  

Obviously the light sources that produce more light in the infra-red range also produce 

more heat that may need to be conducted away from the source. 

Figure 29 shows spectral irradiance curves of different light sources.  Halogen lights 

give relatively uniform response throughout the VIS – NIR range.  Other light sources 

have distinct peaks in their spectra and provide far less light at the red end of the visible 

spectrum and NIR ranges.  These peaks may become problematic with high spectral 

resolution spectroscopy applications. 

 

Figure 29  Spectral irradiance of light sources in UV/VIS/NIR range (LOT 2006) 
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Other light sources worth mentioning are white LED (Light Emitting Diode) lights and 

fluorescent lights.  The spectral irradiance curve of a white LED is concentrated on the 

visible spectrum and they typically have no irradiance in NIR.  All common fluorescent 

light spectra have some distinct peaks in visible spectrum and hardly any irradiance in NIR.  

The main three fluorescent peaks are produced by the fluorescent process in three different 

chemical materials in the tubes. 

4.3.1 LIGHT SOURCE MEASUREMENTS 

Comparative measurements of some light source options were conducted to determine 

their suitability for imaging in spectral range of 400 – 1000 nm.  Spectral response and light 

intensity were measured and compared.  

Figure 30 shows the intensities of some light sources as a function of wavelength.  The 

measurements have been normalized with the CCD sensor spectral efficiency from Figure 

28.  A perfectly white light source with a uniform intensity throughout the spectral range 

would be ideal for spectral measurements.  Fluorescent light and white LED lights produce 

near white light observed by human eyes.  However, the fluorescent light source shows 

relatively non-uniform spectra with several peaks in the visible range and no significant 

intensities at NIR.  White LED radiates mostly in the lower part of the visible spectrum but 

not in the NIR.  In fact, human perception of whiteness can be loosely compared to RGB 

sensor perception of whiteness. 
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Figure 30  Spectral intensities of different light sources.  Values normalized according 

to the CCD sensor spectral efficiency function. 

Halogen lights give the most uniform irradiance in this spectral range.  Their irradiance 

function is strong in the NIR range but not so significant at the lower end of the VIS 

range.   This result is comparable with the spectral irradiance curves presented in Figure 29.   

Apart from spectral characteristics, the illuminance of a light source is of importance.  



 

68 

 

When frame rates are high or objects are moving in the field of view the exposure time 

needs to be set low.  This requires brighter lighting. 

Illuminance values of different light sources were also tested with a light meter.  The 

light meter was optimized for the spectral range of a human eye.  This means that the light 

meter measures illuminance values for visible light in the range of approximately 400 – 700 

nm only.  Measurements were taken directly in front of the light source at a distance of 30 

cm.   

Accuracy of the light meter measurement tool was 1 Lux but other factors such as 

positioning of the sensor element created fluctuations of approximately 10% in the final 

values. The measured light sources were a white LED, a regular long fluorescent light bulb 

(Polylux XL F58W/835), 50 W halogen spot light and a 500 W halogen flood light.  The 50 

W halogen directs the light into to a 36º cone and the 500 W flood light was a in metal 

casing with a back reflector.  The measured illuminance values for different light sources 

are shown in Figure 31.  The value in parentheses after the measured value represents how 

many of the particular lights would be needed to achieve the illuminance power of one 500 

W halogen light. 
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Figure 31  Illuminance [Lux] measurements of light sources at 30 cm distance.  The 

number in parentheses shows the number of lights needed to achieve 500 W halogen 

illuminance. 

4.3.2 CONCLUSIONS 

Fluorescent and white LED lights will work well with normal colour imaging, but may 

not irradiate in the desired wavelengths in narrow band spectral imaging applications.  

Halogen light sources benefit from low cost and good availability compared to other light 

sources such as Xenon (Xe) or Mercury (Hg) lamps. Therefore Halogen light sources could 

be considered the best option for an application of weed detection  when spectral imaging 

is used in the spectral range of 400 – 1000 nm.  Halogen lights are also relatively powerful 

and only a few of them are needed for sufficient illuminance levels.   

A combination of white LEDs and Halogen lights could be used to achieve more 

uniform intensities throughout the whole range of 400 – 1000 nm.  The problem of using 
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LEDs is their relatively poor illuminance.  Up to several hundreds would be needed to 

match the illuminance power of halogen lights.  50W halogen spot lights are chosen as the 

only light source for the test rig.  They are cheap, small and the best compromise between 

spectral irradiance and heat production compared to 500W halogen flood light. 

4.4 ACTUAL RIG DESIGN 

All the initial mechanical design of the test rig was done in SolidEdge.  Accurate 3D 

models of all components were made to ensure mechanical compatibility and ease of 

assembly. 

4.4.1 LINEAR MOVEMENT 

A linear guide with an 80 cm long movement was modelled in 3D.  This guide was to 

enable the cameras to move over plants.  The guide has a flat plate moving along with the 

motor.  The motor in the guide assembly is a unipolar stepper motor attached with rack 

and pinion drive.  An image of the linear guide design is shown in Figure 32. 

 

 

Figure 32  3D model of a linear guide with a stepper motor 

To control the motor movement a stepper motor controller and driver were required.  

In the test rig a microcontroller sends signals to the driver.  The stepper motor was driven 

with full steps of 1.8º, thus the microcontroller was programmed to output four different 

4-bit signals in correct order to control the motor movement together with a motor drive 

board.  In the initial design of the test rig the motor control was working individually and 

did not receive signals from anywhere else. 

4.4.2 CAMERAS AND LIGHTING 

The cameras and the lighting system need to move together.  This means that they 

both need to be fixed to the linear guide.  Additionally the lighting system needs a method 

to block the outside light and let only the controlled halogen light into the imaging area. 

A simple way to block the light is to put a flexible curtain around the imaging area.  
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Flexibility is needed since the curtain needs to reach the ground but should not disturb it.  

A round acrylic plate was designed and laser cut in shape to hold the halogen spot lights 

and give a frame to the curtain to be attached to.  The outer edge of the 4 mm thick black 

acrylic plate was heated and bent down to make the plate more stiff.  Halogens lights were 

fixed to a simple pan and tilt unit for ease of adjustment.  This light and curtain 

combination was then attached to the linear guide.  The designed 3D model without the 

curtain is shown in Figure 33.  Two small fans were also installed to the plate to improve 

ventilation in the area heated with halogen lights. 

 

(a)      (b) 

Figure 33  Test rig light assembly (a) from above and (b) from below without a curtain 

blocking the outside light 

An opening was cut to the middle of the plate for the cameras.  The cameras were 

attached next to each other pointing straight down.  Due to the slight differences in the 

camera fields of views the cameras also need to be at different heights.  In theory the 

colour camera should be at a height of 500 mm if the spectrograph is at 400 mm.  Due to 

the spectrograph length a compromise was made to place the spectrograph at a height of 

approximately 440 mm and the colour camera to 470 mm.  This arrangement gives the 

spectrograph approximately 40 mm wider field of view compared to the colour camera.  A 

3D model of cameras fixed in place is shown in Figure 34.  This assembly was then fixed to 

the linear guide. 
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Figure 34  Test rig camera assembly 

Since both cameras are required to acquire images simultaneously a hardware trigger 

signal was generated in the microcontroller.  This signal was embedded in the same 

program with the stepper motor control.  The cameras were triggered after a 

predetermined number of steps.  Movement of the rig was stopped while images were 

acquired and transferred to the computer. 

4.4.3 OVERALL STRUCTURE  

The actual test rig structure was designed around the linear guide with the cameras and 

light system attached to it.  Aluminium extrusions were selected as the frame structure 

material.  Aluminium extrusions are commonly used in designs for laboratory, the process 

industry and automation equipment.  The frame for the rig was designed in 3D before 

ordering the extrusions that were cut to length.  One of the design criteria was to allow 

height adjustment of the cameras and lights.  The designed frame structure is shown in 

Figure 35. 
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Figure 35  Test rig frame with linear guide, cameras and lights 

Since the cameras and lights were on a movable platform the power and data cabling 

were put in a flexible chain link trunking.  The microcontroller and the stepper motor 

driver were placed with the moving platform and only required power through the 

trunking.  A block diagram of the test rig components and power and data lines is shown in 

Figure 36. 

 

Figure 36  Block diagram of the test rig systems 

Another conceptual image of the test rig and the camera system is shown in Figure 37.  

The sketch shows how the colour and spectral camera fields of view are overlapped and 

how the coordinate system is placed.  Approximate dimensions of the colour camera field 

of view are also shown.  The sketch also shows how the spectral camera disperses a line in 

the colour image into spectral components.  Vertical image axis of the spectral image 
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shows the spectral content, while the horizontal image axis maintains the spatial 

information.  The linear guide moves the camera system along the y-axis only. 

 

Figure 37  Sketch of the test rig camera setup and coordinate system 

4.4.4 DESIGN ASPECTS FOR A MOBILE ROBOTICS APPROACH 

The ultimate goal with the plant classification system was to work autonomously on a 

mobile platform.  The current test rig is limited to data collection in a small area in 

laboratory conditions, and great changes would need to be implemented for the system to 

operate autonomously in field conditions. 

The current test rig allows only linear movement of the imaging devices.  A major 

change with the mobile platform would be to attach all of the equipment to the main 

structure or frame.  This frame would then navigate in the field with a help of additional 

sensors such as cameras, GPS, inertial units or odometric devices. 

Extensive research on various mobile platforms for weeding purposes has been done 

(Åstrand and Baerveldt 2002; Søgaard and Lund 2006).  There are still several obstacles to 

overcome before commercial emergence of these platforms.  This project concentrates on 

the recognition and classification of plants.  The test rig system is therefore designed for 

laboratory and limited outdoor use only. 
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5.0  LEAF CLASSIFICATION IN LABORATORY CONDITIONS 

Laboratory tests were conducted to check the performance of the developed system 

and algorithms in a controlled environment.  Laboratory conditions can be adjusted to 

exclude external influences such as unknown plants and their positions, foreign objects in 

field of view and wind.  In a real outdoor field environment this may not be possible.  The 

following sections explain the calibration of the equipment, actual test procedures and 

results from the laboratory testing. 

5.1 CALIBRATION 

Calibration of the colour camera, the spectrometer, the halogen lights and the linear 

movement was needed in order to obtain useful data from the system.  The calibration of 

the cameras and lights is unique for each setup and should be done every time any 

hardware adjustments are made.  The following sections explain the procedures of 

calibration for each component. 

5.1.1 LINEAR MOVEMENT CALIBRATION 

The linear movement system consists of a unipolar stepper motor on a rack and pinion 

drive.  The stepper motor driver is a combination of a microcontroller board and a custom 

built driver commanding the stepper motor with full step increments.  A full step with the 

motor is 1.8º.  The rack has four teeth/10 mm and the gear head 12 teeth/360º.  From 

these values, a movement of 0.15 mm/step can be calculated. 

5.1.2 SPECTRAL CALIBRATION OF THE SPECTROGRAPH  

The spectrograph needs to be spectrally calibrated so that measurements with it can be 

related to actual wavelengths.  The spectrometer Imspector V10 has a nominal spectral 

range of 400 – 1000 nm.  Calibration finds the relationship between the wavelengths and 

their spectral positions in the image (horizontal axis or image rows).  Before calibration 

could begin the spectrograph was aligned with the imaging sensor axis so that all spectral 

lines were parallel to the image rows of the camera sensor. 

Spectral calibration was done using common fluorescent lights as a light source.  All 

fluorescent light spectra have several easily resolvable peaks that can be used for spectral 

calibration.  A Spectralon reference tile was illuminated by the light source and the reflected 

light was imaged with the spectrograph. 

The imager used with the spectrograph was a Prosilica EC1380.  The resolution of the 

sensor was 1360x1024 pixels, giving 1024 data points along the spectral axis.  The 
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theoretical spectral resolution is then (1000-400 nm)/1024 pixel = 0.59 nm/pixels, which is 

almost 7 times better than the nominal spectral resolution of four nanometres given by 

manufacturer’s specifications.  This does not however mean that the equipment can reliably 

be used to separate wavelength differences smaller than the nominal spectral resolution. 

Figure 38 shows the spectral reflectance from the Spectralon tile with only fluorescent 

light as an illumination source.  Calibration data points are overlaid in the figure at their 

respective spectral peaks.  The relationship between the wavelengths and the data point 

locations (y-axis values in the spectral images) is estimated by fitting a line through the 

points.  A linear relationship is expected.  Such a fitted line is shown in Figure 39, with the 

function used to calculate the wavelength for each data point. 

 

Figure 38  Reflectance measurement of fluorescent light with overlaid calibration data 

points. 

 

Figure 39  Spectrograph calibration curve with overlaid fluorescent light spectral peaks 

and the calibration function 

According to the estimated function, the spectral range of the spectrograph is 397 – 

1006nm.  This is very close to the range given in the manufacturer’s specifications.  Table 3 

shows the spectral calibration points and their error with respect to the estimated 

relationship function.  All the calibration points are within a specified spectral resolution of 

4 nm. 
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Table 3  Spectral calibration points and error to the estimated relationship function 

Fluorescent peak 
[nm] 

Respective data 
point 

Error to linear 
estimation [nm] 

436.6 59 -1.8 
487.7 147 0.6 
546.5 243 0.2 
611.6 356 3.8 
707.0 502 -2.8 

 
The spectral calibration did not take absolute reflectance intensities into consideration.  

The final application has controlled lighting conditions and only relative differences in 

reflectance values are of interest.  Also, “smile” and “keystone” effects were not corrected 

during calibration.  Smile means curvature distortion of the spectral image, while keystone 

effect distorts a rectangular focal plane into a trapezoid.  A more thorough and accurate 

spectral calibration process is described by Lawrence, Park et al. (2003), including 

calibration for spatial dimensions, spectral wavelengths and percent reflectance values.   

5.1.3 SPECTRAL DATA SPATIAL RESOLUTION 

The Imspector spectrograph, just like any other spectrograph or imaging device, has a 

limited spatial resolution.  A spectral measurement at a specific location with the Imspector 

gives average spectral properties of that spatial area.  When this area is spectrally 

homogeneous the measurement is considered unmixed.  If the area consists of objects with 

different spectral properties the signal from it is a mix between these properties.  Area 

proportions of different spectral regions govern how much of each property is present in 

the overall signal if a linear spectral mixing model is assumed.  Unmixing such signals often 

requires complex algorithms (Keshava 2003). 

The spatial resolution of Imspectror is determined by four factors – the objective lens 

focal length, distance to an object, the input slit width and length and the imaging sensor 

resolution, as labelled in Figure 10.  The spectrograph spatial resolution in horizontal x-axis 

direction is mainly governed by the imaging sensor resolution and the vertical y-axis spatial 

resolution by the input slit width.  Spectral resolution should not be mixed with spatial 

resolution as it is a separate issue determined by different factors. 

The Imspector optics have a magnification of 1, and the theoretical length (Li) and 

width (Wi) of the spectral line (physical field of view of the Imspector) can be calculated 

with the following equations 

fDLL si =   (5.1) 

fDWW si =  (5.2) 
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where Ls is the input slit length, Ws the input slit width, D the distance to the target and f 

the lens focal length (Specim 1997).  Theoretically the spectrograph therefore has a spectral 

line 322.7 mm long and 1.8 mm wide in the given setup; Ls = 8.8 mm, Ws = 50 µm, D = 

440 mm and f = 12 mm. 

To determine the true spatial resolution of the spectrograph, a pattern shown in Figure 

40 was used.  The spectrograph field of view was scanned across the pattern in the vertical 

y-axis direction with 0.15 mm increments to find the vertical spatial resolution.  A spectral 

line at approximately 650 nm was recorded from each measurement and these lines were 

put together to form the test data image shown in Figure 41.  In this image the data from 

separate images are shown in the vertical measurement axis and the horizontal axis has the 

spatial data.  This test image shows a portion of the test pattern in Figure 40 imaged with 

the spectrograph.  The axes in Figure 41 are not to the same scale as the test pattern in 

Figure 40. 

 

Figure 40  A pattern for spectrograph spatial resolution or sampling accuracy testing.  

Millimetre values represent the line and gap width.  The figure is not in scale. 

The vertical spatial resolution or spatial sampling width can be determined from Figure 

41 by judging when the line separation is large enough for the spectrograph to measure 

only white background paper in the gaps of lines.  This happens when line separation is 2.5 

mm and is indicated in Figure 41 by showing how white background emerges between the 

pattern lines in the measurements.  When both black lines and white paper background are 

in the field of view, the output is a mixture of these signals proportionate to the area 

coverage of white and black.  This mixing can be seen as shades of grey in Figure 41.  The 

resulting resolution of 2.5 mm is somewhat lower than the theoretical minimum of 1.8 mm. 
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Figure 41  Series of images measured with a spectrograph along part of the spatial 

resolution test pattern 

The horizontal spatial sampling accuracy depends highly on the imaging sensor 

resolution and fore lens focus.  The same test pattern in Figure 40 was used to determine 

the smallest horizontal line gap size visible in spectral images.  This time only one image 

per line size was needed and the smallest visible gap between lines was 0.3 mm.  These 

results give us dimensions of the smallest possible homogeneous area that the spectrograph 

can image without spectral mixing with the given setup.  The dimensions are 0.3 x 2.5 mm.   

During the laboratory testing, the internal focus of the spectrograph was adjusted such 

that the resolution Wi was 6 mm.  The cameras were also moved by 6 mm along the linear 

guide between each image pair.  The lower resolution was selected to reduce the amount of 

data when relatively large leaves were imaged. 

5.1.4 COLOUR AND SPECTRAL DATA REGISTRATION 

The detection system uses data from two separate cameras. In order to be able to 

combine the information from these cameras the data needs to be registered or fused 

together.  Registration is a process where data from different sources is transformed into 

one coordinate system.  As shown in Figure 37, the colour camera and spectral camera 

fields of view overlap.  The precise location of the spectral FOV in the colour image 

needed to be defined for accurate data fusion. 

The first step to find the spectral FOV location in the colour image was to make sure 

that the cameras were aligned properly.  A test pattern in Figure 42 was used to verify that 

the spectral line was parallel to the colour camera x-axis.  The pattern was placed under the 

colour camera horizontally and the spectral camera was rotated and fixed in a position 
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where the spectral imaging line was precisely along the central line of the pattern.  This 

happens when there are uniform thin vertical black lines in the spectral image.  If the 

spectrograph is rotated relative to the pattern the black lines in the spectral image do not 

have a uniform thickness.  Also, when the spectral imaging line is not in the centre of the 

pattern the black lines grow thicker.  When the spectrograph is rotated perfectly relative to 

the colour camera x-axis and the test pattern, the location of the centre line of the pattern 

can be recorded in the colour image.    

 

Figure 42  Alignment pattern and examples of rotated and aligned spectrograph FOV 

output. 

The spectrograph imaging line FOV width in the setup is greater than the colour 

camera FOV.  The left and right sides of the spectral image can then be cropped to match 

the colour camera image horizontal FOV.  Since in this case the colour camera sensor 

resolution is smaller than the spectrograph imaging sensor resolution the cropping should 

be done in spectral images or some overall spatial resolution of the system will be lost. 

The final step in registration after camera alignment, recording the spectral imaging line 

location in the colour image and cropping the spectral image was to interpolate the 

cropped spectral image x-axis to match the x-axis locations of the colour image using an 

imresize-function from Matlab Image Processing Toolbox.  This ensures that each data 

column in the processed spectral image corresponds to the same column number in the 

colour image. 

5.1.5 EFFECT OF A SPECTRALLY OPTIMIZED LENS 

Each optical element between the object and the camera sensor can only make the ideal 

image worse.  Therefore, when working at the sensitivity limits of a camera, the best optical 

equipment should be used when possible.  Regular lenses work rather well for applications 
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in the visual spectrum, but start to dramatically lose their transmittance at the near infrared 

region.  The near infrared region has been considered especially important when plants are 

being imaged. 

Spectrally optimized lenses for the sensitivity band of silicon sensors (400-1000 nm) 

have close to uniform transmittance curve throughout the whole band compared to a 

regular lens as shown in Figure 43.  These optimized lenses will let significantly more light 

into the sensor at the near infrared end of the spectrum compared to normal lenses.  The 

measured differences in the lenses are illustrated in Figure 44, and the results match well 

with the specification data.  The improvement gained with an optimized lens proves 

valuable in spectral imaging especially in the near-infrared region. 

 
(a)                (b) 

Figure 43  Comparison of normal and 400 - 1000 nm optimized lens transmittance from 

specification data. a) reproduced from (EdmundOptics 2005) 

 
(a) (b) 

Figure 44  Comparison of measured lens transmittance between normal and 400 - 1000 

nm optimized lens. a) Measured intensities as a function of wavelength and b) the lens 

transmittance figures normalised by the optimised lens values 

5.1.6 LIGHTING CALIBRATION 

Four halogen spot lights provided the lighting for the imaging area at a height of 
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approximately 400 mm from the ground.  The lights were positioned around a circle of 310 

mm radius, 90º apart from each other.  Each light was pointing roughly to the centre of the 

imaging area.  The lighting setup did not produce a perfectly uniform light intensity 

throughout the whole imaging area.  This could be accounted for by using a simple 

calibration technique based on full frame intensity images. 

To calibrate the system for these unchanging intensity variations a set of three images 

of white paper were taken with the colour camera.  The white paper filled the entire FOV.  

The average value for each pixel from the three images was calculated and each RGB 

channel was separated with their intensity values normalised to have values of 0 to 1.  The 

red channel calibration image is shown in Figure 45.  A colour image with uniform lighting 

was then achieved by dividing the acquired image with the calibration image values.  This 

operation was done for each RGB channel individually. 
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Figure 45  Lighting calibration image for red channel showing relative intensity 

A slightly different approach was used when calibrating the lighting intensity in spectral 

images.  The spectrum of the Spectralon reflectance plate was first measured at each 

horizontal location and a wavelength that produced the highest intensity values (a row in 

the spectral image) was chosen as calibration values.  These calibration values were 

normalized from 0 to 1.  Each acquired spectral image row was then divided by these 

calibration values to calibrate for uniform lighting conditions. 

5.2 DATA COLLECTION 

A selection of outdoor plant leaves were gathered and imaged from around the 

laboratory building.  Six plant classes were used in the laboratory tests.  These were 

Hawthorn (Crataegus monogyna), Rugosa Rose (Rosa rugosa), Ash (Fraxinus excelsior), Silver 

Birch (Betula pendula), Berberis (specific type unknown) and Blackthorn (Prunus spinosa).  

These plants were 1-6 respectively.  This group of plants was selected for the study simply 
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because the leaves were readily available in the vicinity of the laboratory and could be 

imaged immediately after being picked. 

The selected plants are either trees or shrubs.  No actual crop or weed plants were used 

at this stage of the study.  The system needed to be able to correctly classify any selection 

of plant leaves and therefore it was not necessary to be limited to actual crop or weed 

plants. 

The collected leaves were placed flat on the bare soil platform in random order and 

orientation such that no leaves were overlapping.  Leaves were not forced flat and the 

natural curvature of the leaves remained intact.  The number of leaves collected for each 

class is shown in Table 4. 

Table 4  Number of leaf samples and distribution of training and sample sets in 

laboratory testing for each plant class 

Whole leaf method1  Window method2  Class 
Leaves 
in total Training Sample Training Sample 

1  Hawthorn 114 30 84 399 963 
2  Rugosa Rose 106 30 76 607 1602 
3  Ash 72 30 42 1180 1401 
4  Silver Birch 60 30 30 1778 1578 
5  Berberis 81 30 51 408 474 
6  Blackthorn 108 30 78 184 581 
1 Includes colour, shape and spectral descriptors 
2 Includes colour and spectral descriptors 

 
The classification training set was chosen from the first 30 leaves imaged for each class.  

With the window method the same 30 leaves were used to extract small windows and the 

number of training set measurements was dependent on the leaf size as more windows can 

fit on bigger leaves. 

The imaging and calculation of descriptors was done as described in chapter 3.0 using a 

6 mm camera movement between image pairs.  Six imaging runs were needed with the test 

rig to gather the data listed in Table 4.  All of the imaging conditions were identical during 

the six test runs.  An additional test run was taken to further evaluate the window method 

with overlapping leaves.  During this test leaves from classes 1-4 were placed on the soil 

platform partially on top of each other in random orientations.  One blob consisted always 

of two or three leaves and it was ensured that all possible combinations of leaf pairs were 

available at least twice.  This included overlaps within a single plant class.  Combined 

colour images for each of the seven test runs are shown in Figure 46.  Each colour image 

shown consists of 130 separate images registered together. 
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Class 1, Hawthorn 

 
Class 2, Rugosa Rose 

 
Class 3, Ash 

 
Class 4, Silver Birch 

 
Class 5, Berberis 

 
Class 6, Blackthorn 

 
Overlapping leaves from classes 1-4 

Figure 46  Combined colour images from seven laboratory test runs 

The average normalized spectral reflectance curves for each class are shown in Figure 

47.  This data was taken from the full leaf method.  The between-class differences in these 

reflectance values are really small and can give an idea on how difficult the task of 

classification with this data can be.  Some distinct differences between classes can be seen 

especially in class six, but if several individual measurements from each class were plotted 

on this figure they would be hard to separate. 
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Figure 47  Average normalized spectral reflectance for 6 plant classes 
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Figure 48 shows an example of how plant classes are separated with certain descriptors.  

The descriptors used in the figure are taken from the full leaf method and with a spectral 

resolution of 11.3 nm.  Using only four descriptors of eccentricity, 257 nm, 314 nm and 

219 nm, the classification was 89.0% accurate.  From these two plots it can be seen that 

class 6 is easily separated from other classes in both plots. Classes 2 and 4 are well 

separated by descriptors 219 nm and 314 nm but slightly overlapping if eccentricity and 

314 nm descriptors are used. 
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Figure 48  Example of differences between classes with three descriptors. Data taken 

with 11.3nm spectral resolution from full leaves 

5.3 RESULTS 

The results from the laboratory tests are shown and analysed in this section.  Results 

from two different tests are first introduced.  These tests classified data collected either 

from full leaves or windows on leaves.  In the first analysis with full and separated leaves, 

use of descriptors from shape, colour and spectrum are compared.  In the window 

classification analysis use of shape was not done and results are shown with separated and 

overlapping leaves. 

Leaf border estimation analysis with window method is done to provide results for 

comparison with previous studies.  Ideal descriptors in both full leaf and window method 

are also investigated.  The analysis method of descriptor occurrence frequency was chosen 

for quantifying the importance of the descriptors to allow comparison with results from 

previous studies. 

5.3.1 WHOLE LEAF METHOD 

A number of different classification approaches were evaluated for the whole leaf 

method.  The set of training descriptors available for the classification algorithm and the 

spectral data point resolution were varied.  The same descriptor sets were used in training 

and in actual performance evaluation with a sample set.  Five different descriptor sets were 
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constructed from three sets of shape, colour and spectral descriptors.  Spectral data point 

resolution was changed from 13.1 nm to 72.6 nm in nine steps.  This was done artificially 

by averaging together different numbers of data points along the spectral axis for different 

spectral resolutions. 

Various sets of descriptors were used since the stepwise selection process in 

multivariate discriminant analysis is greatly affected by the available descriptors.  Also, it is 

important to find if the combination of information from colour and spectral cameras is 

beneficial for classification purposes.  The spectral point resolution was changed to find 

what effect this would have and if lower spectral resolution could be used without 

compromising the classification accuracy.  Lower spectral resolution requirements could 

potentially allow the use of even lower cost cameras. 

The classification performance with five sets of descriptors and varying spectral 

resolutions with the whole leaf method is shown in Table 5.  The percentages shown are 

average values over all six classes and the best case for each descriptor set is in bold.  

Spectral resolution is not applicable for the first descriptor set of colour and shape and only 

one performance value can be calculated. 

Table 5  Average classification results with various combinations of descriptors and 

spectral resolutions with the full leaf method 

 Descriptor set 

Spectral 
resolution 

Colour 
and 
shape 

Spectrum 
Colour 
and 

spectrum 

Shape, 
colour 
and 

spectrum 

Shape 
and 

spectrum 

13.1 nm 90.2% 92.1% 96.4% 96.8% 
15.5 nm 91.3% 91.2% 97.2% 97.2% 
17.9 nm 91.4% 91.4% 94.3% 94.3% 
20.2 nm 89.5% 89.5% 97.1% 97.1% 
22.6 nm 91.9% 92.5% 97.6% 98.0% 

36.9 nm 89.5% 87.4% 97.5% 97.5% 
48.8 nm 90.2% 89.7% 96.9% 96.2% 
60.7 nm 92.4% 89.0% 97.2% 97.1% 
72.6 nm 

79.7% 

90.5% 84.8% 96.8% 96.8% 

 
Figure 49 shows more detailed information for the best cases of each descriptor set.  

The classification results for each plant class and different descriptor sets are visualized 

together.  It can be seen that performance is best in all classes when shape and spectrum 

were used.  The performance is only slightly lower when all descriptors including colour 

were used.  This minor difference was caused by the stepwise descriptor selection process 

and shows that using all variables may not always produce the best results. 
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Figure 49  Performances of full leaf classification in each class with RGB and shape, 

  spectrum only, RGB and spectrum,  RGB, shape and spectrum and      shape 

and spectrum descriptors 

With the three best performing descriptor set selections, classes 4-6 are consistently 

classified perfectly within the given sample measurements.  Class 3 seems to be the most 

difficult to classify correctly and class 1 classification performance is nearly independent of 

the descriptor set selected. 

Table 6 shows more detailed information from the best performing cases for each 

descriptor set in the form of classification error matrices.  The diagonal elements in the 

matrices show the correctly classified cases.  Each column adds up to 100% (with the 

exception of errors from rounding the decimals).  Non-diagonal elements on each column 

represent the percentage and distribution of misclassified cases for a particular class.  The 

Total-column at the end of each row sums up the percentages on each row, and represents 

how prone the classifier is to misclassifying measurements to a particular class.  A value 

above 100% in this column indicates that samples are often misclassified to the particular 

class (false positives). 



 

87 

 

Table 6  Classification error matrices for the best performing cases within each 

descriptor sets 

  Colour and shape  Spectrum only (λres=60.7nm) 

Class 1 2 3 4 5 6 Total  1 2 3 4 5 6 Total 

1 90.5 2.6 0 0 0 3.9 97  91.7 7.9 0 3.3 0 0 102.9 

2 0 56.6 0 0 0 0 56.6  6 88.2 16.7 0 0 0 110.9 

3 0 0 85.7 3.3 2 0 91  1.2 3.9 81 3.3 0 0 89.4 

4 0 1.3 0 70 0 0 71.3  1.2 0 0 93.3 0 0 94.5 

5 3.6 11.8 14.3 16.7 96.1 16.9 159.4  0 0 2.4 0 100 0 102.4 

C
la
ss
if
ie
d 
as
 (
%
) 

6 6 27.6 0 10 2 79.2 124.8  0 0 0 0 0 100 100 

 
Colour and spectrum  Colour, shape and spectrum 

  (λres=22.6 nm)  (λres=22.6 nm) 

Class 1 2 3 4 5 6 Total  1 2 3 4 5 6 Total 

1 91.7 7.9 11.9 0 0 0 111.5  92.9 0 0 0 0 0 92.9 

2 6 92.1 14.3 0 0 0 112.4  7.1 100 4.8 0 0 0 111.9 

3 0 0 71.4 0 0 0 71.4  0 0 92.9 0 0 0 92.9 

4 2.4 0 2.4 100 0 0 104.8  0 0 0 100 0 0 100 

5 0 0 0 0 100 0 100  0 0 2.4 0 100 0 102.4 C
la
ss
if
ie
d 
as
 (
%
) 

6 0 0 0 0 0 100 100  0 0 0 0 0 100 100 

 
    Shape and spectrum (λres=22.6 nm) 

Class 1 2 3 4 5 6 Total 

1 92.9 0 0 0 0 0 92.9 

2 7.1 100 4.8 0 0 0 111.9 

3 0 0 95.2 0 0 0 95.2 

4 0 0 0 100 0 0 100 

5 0 0 0 0 100 0 100 C
la
ss
if
ie
d 
as
 (
%
) 

6 0 0 0 0 0 100 100 

 

5.3.2 WINDOW METHOD 

Classification with the window method was done using colour and spectral descriptors.  

The performance of seven different spectral resolutions was tested, ranging from 6.0 nm to 

20.2 nm.  This resolution range begins near the spectrograph limits and extends to a range 

where classification performance was noted to degrade.  The different spectral resolutions 

were calculated by sub-sampling the spectral images in the spectral axis by adding together 

different numbers of data points along this axis. 

The number of cases in classification training and sample sets were shown earlier in 

Table 4.  Since the number of windows per leaf is dependent on the size and shape of the 

leaf, the number of windows per plant class changes significantly.  These differences may 

bias the classification results, increasing the number of measurements classified to classes 

with higher number of training cases used.  To find out the effect of uneven number of 

training cases per class the classification was done using windows from 30 leafs (non-
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sampled training data) and also using randomly sampled windows (sampled training data) 

totalling to 184 training windows per class, as this was the smallest number of windows for 

30 leaves in any plant class used in this study. 

The performance figures of the average classification with varying spectral resolution 

are shown in Table 7.  The best average performance was recorded at 10.7 nm, and 

classification accuracies for each class with this spectral resolution are shown in Figure 50.  

With sampled results the number of training cases was made equal for all classes by 

randomly sampling within the full training set data.  The figure also shows the performance 

of classified windows after spatial post-processing.  The post processing method is 

explained in §3.4.1. 

Table 7  Average classification accuracy using the window method with changing 

spectral resolution 

 Spectral resolution 

 6.0 nm 8.3 nm 10.7 nm 13.1 nm 15.5 nm 17.9 nm 20.2 nm 
Non-sampled 
training data 

93.19% 93.40% 93.58% 93.25% 92.80% 92.48% 91.45% 

Sampled 
training data 

- 89.83% 90.43% 89.00% 89.70% 89.51% 88.17% 
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Figure 50  Classification accuracy in window method in different plant classes with 

10.7 nm spectral resolution 

Random sampling of data to create an equal number of training cases resulted in lower 

or equal classification performance in all classes but class 6.  Class 6 had the fewest training 

cases in the non-sampled situation and it could be expected that its border-line 

measurements are easily classified to classes with a higher number of training cases.  

Overall, the results do not seem to justify using random sampling when more samples are 

available. 

Spatial post-processing increases the classification probabilities in all classes.  The 
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improvement was greater when original classification result was relatively low.  The average 

classification performance after post-processing was 98.0%.  The classification error matrix 

for the window method after post processing is shown in Table 8.  The bottom row in the 

table shows classification results reflecting the number of complete leaves classified 

correctly such that all the windows within any leaf are classified correctly to the same class.   

Table 8  Window classification matrix with a 10.7 nm spectral resolution 

  Colour and spectrum (λres=10.7nm) 

 Class 1 2 3 4 5 6 Average 

1 97.2 1.8 2.5 0.5 0.0 0.9  

2 0.3 98.0 1.0 0.9 0.0 0.0  

3 1.1 0.1 96.3 0.5 0.0 0.0  

4 1.5 0.0 0.2 98.0 0.3 0.0  

5 0.0 0.1 0.0 0.0 99.6 0.0  

Windows 
classified 
as (%) 

6 0.1 0.0 0.0 0.0 0.1 99.1 98.0 

Complete leaf 
classification (%) 

88.4 90.6 80.6 88.5 96.3 98.2 90.4 

 

5.3.3 CLASSIFICATION OF OVERLAPPING LEAVES 

The results of the test with overlapping leaves are presented in Table 9.  The same 

classification functions were used as with separate leaves, but only leaves from classes 1-4 

were imaged in this test. 

Table 9  Classification results of windows on overlapping leaves 

  
Classification of overlapping leaves 

(λres=10.7 nm) 
 Class 1 2 3 4 Average 

1 86.9 12.9 10.8 10.7  

2 3.2 82.8 2.8 1.0  

3 7.9 0.6 85.6 2.5  

4 0.5 3.1 0.7 85.7 85.2 

5 0.0 0.6 0.0 0.0  

Windows 
classified after 
filtering  as (%) 

6 1.5 0.0 0.1 0.0  

Before filtering (%) 86.4 81.1 83.5 85.1 84.0 

      

The results are not as good as with separate leaves.  There seems to be a strong bias to 

incorrectly classify windows to class 1.  One reason for lower performance may come from 

the fact that leaves are somewhat transparent and spectral data is of mixed plant material at 

certain locations.  The current detection system can make sure no soil is mixed into spectral 

measurements but it cannot necessarily separate different plants from each other. 
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5.3.4 LEAF BORDER ESTIMATION 

An example of leaf border estimation is shown in Figure 51, where the centre locations 

of the classified windows are shown on a conventional image of leaves in (a), the estimated 

results in (b) and the correct borders in (c).  The correct borders were derived manually 

from the segmented binary image of plants and soil.  In this example few windows are 

misclassified, resulting in small errors compared to the true borders. 

 

Figure 51  An example of leaf border estimation. (a) An RGB image of leaves showing  

centre points of classified windows, Rugosa Rose, Silver Birch and Hawthorn, (b) 

estimated leaf borders and (c) true leaf borders based on segmented images 

The results of leaf area estimation with overlapping leaves are presented in Table 10.  It 

is not valuable to compare the leaf border estimation results directly to the window 

classification results.  Comparison can be made to a previous relatively complex method by 

Johansson and Baerveldt (2005), where 80% of the leaf area was correctly estimated.  The 

average result in this project was 84.3%, which is slightly higher than the previous results. 

Table 10  Estimation results of borders and area with overlapping leaves 

  
Estimation of leaf borders and area 

(λres=10.7 nm) 
 Class 1 2 3 4 Average 

After filtering (%) 86.4 80.8 85.1 84.9 84.3 

Before filtering (%) 85.7 79.7 83.0 84.3 83.2 

 

A valuable use for the leaf border estimates would be to further process the border 

estimates such that partial shape recognition could be applied.  Thorough investigation of 

the benefits of such use of data is beyond the scope of this project. 

5.3.5 FINDING IDEAL DESCRIPTORS FOR PLANT CLASSIFICATION 

It is important to know which descriptors have the highest significance for 

classification purposes.  Calculation of only the most significant descriptors can save 
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processing power and time.  The significance of a descriptor is dependent on the properties 

of the objects being investigated and the differences it is able to describe between classes. 

A simple test of frequency of occurrence for each of the descriptors used in this study 

was done with both the full leaf and window methods.  The test with full leaf method was 

done using all five descriptor sets and nine different spectral resolutions.  Figure 52 shows 

an example of descriptor occurrence for all descriptors and their order of significance in 

the final classification model.  Each row in the figure represents a model with a different 

spectral resolution data.  The columns on the left side of the figure show the twelve shape 

and colour descriptors and the right side shows the spectral descriptors.  In the figure, the 

shape and colour descriptors fill an entire square and spectral descriptors fill a width 

proportionate to the spectral band width.  Darker colours, as shown in the order of 

occurrence legend, represent descriptors with higher order of occurrence and thus higher 

significance to the model. 
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Figure 52  An example of descriptor occurrence in classification model with all 

descriptors and varying spectral resolutions using full leaf method. Darker colours 

represent a descriptor with higher significance in the classification model. 

It is clear in the figure that the two shape descriptors of eccentricity and compactness 

are important regardless of the spectral resolution used.  Colour descriptors become 

significant only when the spectral resolution is at a fairly broad band corresponding better 

to the wide spectral band from red, green and blue sensor elements.   

By definition, the eccentricity and elongation descriptors seem to be describing similar 

shape properties of an object.  However, only eccentricity is shown to be significant for 

classification purposes.  The low significance of the elongation descriptor cannot be 
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contributed to the stepwise selection process of the variables, where prior selection of the 

eccentricity descriptor could have excluded a similar descriptor (elongation) from entering 

the model.  When eccentricity was removed from the model, elongation did not take its 

place as a significant descriptor.  Correlation coefficient, a measure of similarity of 

variables, between elongation and eccentricity is only 0.55.  Explanations to low correlation 

and the low significance of the elongation descriptor compared to the eccentricity were not 

found. 

Four spectral data regions can be separated with a relatively high occurrence in 

classification models.  These regions or bands are approximately at 500-525, 650-675, 700-

725 and 775-800 nm.   

The region around the ‘red edge’ just beyond 700 nm as shown in Figure 8 seems to 

hold the most important spectral descriptors regardless of the spectral resolution.  This is 

no surprise, since the reflectance signature of a living plant is greatly shaped by the 

chlorophyll content and its reflectance and absorbance properties.  The slightest 

wavelength shifts in high gradient curve of the red edge region, caused by the chlorophyll 

concentration and the physical structure of the plant, can create relatively high differences 

in descriptor magnitudes.  It seems that a spectral descriptor encasing the 710 nm 

wavelength right on the ‘red edge’ is present in the classification model at nearly all spectral 

resolutions with a high significance.  The apparent variation in the descriptor location at 

the red edge at different resolutions is most probably due to the discrete nature of the 

descriptor locations. 

The descriptor goodness can also be visualised like in Figure 53, where the best 

performing descriptor pair in a) and the worst performing descriptor pair in b) are shown 

with the training set data using the 22.6 nm data.  The figure a) shows how most classes are 

separated using only two descriptors and b) how most classes are overlapping with less 

descriptive descriptors.  It is important to note that in this example class 6 is not separated 

in a) but can clearly be separated in b).  This illustrates the power of discriminant analysis 

with multiple descriptors or variables, where a class is often separated from others only 

with a combination of variables. 
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Figure 53  An example of differences between (a) best and (b) worst performing 

descriptor pairs with 22.6 nm spectral data from full leaves 

Descriptor occurrence frequencies were also tested for the window method.  The 

available descriptors were six colour descriptors and spectral descriptors in six different 

spectral resolutions from 8.3 to 20.2 nm.  The standard deviation of the blue channel was 

the most significant of the colour descriptors, followed closely by green mean and green 

standard deviation.  

A closer look was taken of the spectral descriptor occurrence frequencies for a 

comparison with previous research projects.  The frequencies for all wavelengths were 

added together from the four descriptor sets using spectral data in both full leaf and 

window methods, and the relative occurrences are shown in Figure 54.  The figure also 

shows a comparative spectral data occurrence from Thenkabail, Enclona et al. (2004).   
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Figure 54  Measured spectral band occurrences compared to similar data from 

(Thenkabail, Enclona et al. 2004) 

The full leaf data shows high occurrence values at the previously mentioned spectral 

bands as expected.  There is a high correlation between the ~690 nm peak in the window 

data and the comparison data by Thenkabail, Enclona et al. (2004), but the peaks between 
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the comparison data and the full leaf data look to be offset.  This offset may be a result of 

differences or errors in calibration or plant types, but no conclusions can be made.  The 

overall trend does look to be similar, with important wavelengths at around 500-550 nm 

and 650-800 nm.  The differences above 900 nm can possibly be explained by the poor 

sensitivity of the used CCD sensor during measurements in that range, whereas the 

equipment used by Thenkabail, Enclona et al. (2004) was a high quality spectrometer for 

the spectral range of 400-2500 nm.  Their comparison data was recorded with a 10 nm 

spectral resolution.  Vrindts, Baerdemaeker et al. (2002) have also identified the most 

important wavelengths in their research.  Wavelength regions around 755 nm, 710 nm, 805 

nm and 520 nm in this order were determined to be the most significant in the total range 

of 480 – 820 nm.  These observations coincide also with the measurements in this project. 

Comparison of colour and shape descriptor occurrences with previous studies show 

that compactness has been found to be important also by Åstrand and Baerveldt (2002).  

They also note that green mean and elongation are relatively significant.  It has to be 

remembered that spectral data and eccentricity descriptors were not used in their study.  

Green mean has a high significance in this study as well.  Apart from elongation, it can be 

said that the significant shape and colour descriptors in this study are similar to the ones in 

Åstrand and Baerveldt (2002). 

5.4 DISCUSSION 

The results from laboratory testing were equal to or better compared to previous 

studies on the subject.  These results give evidence that the proposed system works well in 

its intended application under controlled circumstances.  The classification probabilities of 

85% or higher depending on the method used are high enough for significant reductions in 

chemical use in weed control. 

Using information from both colour and spectral cameras has been shown to perform 

best.  Low cost spectral solutions are limited to using silicon sensor cameras with a 

relatively low bit depth.  The silicon sensor limits the spectral range to approximately 400-

1000 nm.  With a low cost system like this it cannot be expected that using spectral data 

alone would perform better than classification with data from a high quality spectral camera 

like presented in Thenkabail, Enclona et al. (2004). 

The spatially accurate colour data is invaluable in detecting the leaf borders at a sub-

millimetre level, while spectral data allows for robust classification.  The colour data can 

also easily be used to verify the spectral data is collected from only plant material.  This 

eliminates the need for complex algorithms to be used for spectral unmixing. 
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Shape has shown to be a valuable addition for classification.  Simple shape calculations 

work well when plants or leaves are separate, but extracting shape information in cases 

when plants are overlapping is much more complicated and unreliable.  The window 

method gives tools for recognizing overlapping plants with a good accuracy, but extraction 

of full shapes from occluded leaves is difficult.  High spatial resolution of a colour camera 

is needed for accurate shape estimation. 

Many previous research projects have recorded their plant classification accuracies for a 

two class case i.e. a crop plant and a class for all weed plants.  When data from this project 

was investigated such that one class was selected as a crop plant and others as weeds, the 

classification with linear discriminant functions did not work well.  The poor performance 

is most likely due to restrictions in the linear method.  Typically the measurements for any 

class form a cluster of data in the multidimensional space of descriptors.  When these 

clusters are well apart, a linear separation can be created around them.  When a separation 

of one cluster from all other scattered clusters is attempted, the creation of reliable linear 

boundaries becomes difficult. 

The performance was much better when each class was classified in their own class and 

the two-class conversion done after this classification.  Such performance figures can be 

estimated from the classification error matrices.   Classification accuracy for the selected 

crop class is the same as the classification shown in the matrix diagonal.  The 

misclassification of the crop can be calculated by adding together the other values in the 

selected column.  The other plants then form the weeds-class.  Their combined 

classification accuracy can be estimated by adding together all the values in remaining 

classes excluding the values at the row of the selected crop plant and dividing the sum with 

the number of classes to be combined.  An example result from Table 8 choosing the class 

1 as the crop and others as weeds is shown in Table 11. 

Table 11  Two-class classification example 

 Crop Weeds 

Crop 97.2 1.1 
Weeds 3.0 98.8 

 

Certain results from the laboratory testing can be used to re-evaluate the design of the 

system towards faster and more economical solutions.  First, the optimal spectral resolution 

was found to be lower than the nominal spectral resolution of the spectrograph and second 

only certain spectral regions were shown to be significant for classification.  Lower spectral 

resolution requirements can be fulfilled with lower resolution monochrome cameras thus 
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lowering the cost.  Also, random access of spectral image information to output only the 

most important wavelengths can increase the speed of the system. 

The performance differences between different spectral resolutions in full leaf method 

were not significant.  This may lead to the conclusion that using only lower spectral 

resolution data cannot be overlooked as an option.  This reduction in spectral resolution 

could potentially save greatly in image transfer and processing time.  There exists no 

previous study on spectral resolution sensitivity analysis in plant classification.   

The optimal spectral resolution using the window method was less than half of the 

nominal spectral resolution of the spectrometer.  It needs to be noted that the spectral 

resolution of 10.7 nm is optimal only for this particular camera setup.  Higher or more 

accurate spectral resolutions might be optimal when cameras with higher bit-rates or lower 

noise levels would be used. 

The laboratory tests have given a sound base for outdoor tests in real field 

environment.  Outdoor tests are needed to provide verification of the system capabilities in 

uncontrolled conditions. 
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6.0  PLANT CLASSIFICATION IN FIELD CONDITIONS 

Laboratory tests had proven that the system was capable of accurate plant detection 

and classification.  Outdoor field tests were the natural next step to verify system 

usefulness in a more realistic environment.  Outdoor conditions expose the system to 

several additional variables compared to the controlled laboratory environment.  These 

include the changes in lighting due to weather, season and time of day, rain drops on leaves 

and random plant patterns. 

This chapter gives an overview of the field test arrangements and the modifications 

made to the test rig and the data processing methods.  A thorough analysis of the field test 

results is also presented and the results compared with previous studies. 

6.1 FIELD TESTS 

6.1.1 TEST RIG MODIFICATIONS FOR FIELD TESTS 

The test rig was originally designed for laboratory use where the rig need not be 

moved.  Mobility became important once the rig was in the field.  The main change to 

enhance mobility was the addition of four wheels to the rig.  The wheel base was fixed but 

the wheels could be individually adjusted along their axis to fit between plant beds in order 

to avoid running over plants. 

A hard cylinder with a soft curtain extending the ground level blocking the outside light 

from the imaging area was also added.  This was done as the original curtain from a soft 

fabric could not maintain its shape in the wind and occasionally let some unwanted light in.  

The soft curtain dragging on the ground allowed plants to enter and exit the imaging area 

unharmed, and also provided added cover from the outside light.  It also dealt with slightly 

uneven ground better than a rigid structure.   

A shelf was also added to the rig to hold the computer.  This was covered in clear 

acrylic plates to protect the equipment from light rain.  During the outdoor tests the rig 

was powered by a petrol generator.  All the main modifications are shown and labelled in 

Figure 55.  An image of the test rig during actual field tests on a sugar beet bed can be seen 

in Figure 56.  

A small modification was also done to the microcontroller program and the 

communication between the computer and the microcontroller.  An RS-232 link was added 

between them to control image acquisition and movement of the cameras. 
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Figure 55  Test rig modifications for field tests  

 

Figure 56  Test rig on the field 

6.1.2 DATA COLLECTION GUI 

A simple graphical user interface (GUI) was created in Visual Basic to help with the 

collection of the data.  The interface was designed to handle the communication between 

the microcontroller and the computer and allow simple buttons to perform image 

acquisition, changes in camera properties and manual and automatic movement of the 

camera head. 

A screen shot of the GUI is shown in Figure 57.  Separate functional areas are labelled 

in the image.  Buttons in area 1 control the serial communication between the 

microcontroller and the computer.  The coloured square shows if the communication link 

is open (green) or closed (red).  The buttons in the area 2 control the camera head 

movement.  Coloured circles indicate which activity is currently in operation.  The Go 

Home-button will move the camera head to the home position at the beginning of the 
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linear guide, the Acquire-button will start the automatic image pair recording and the 

STOP-button will stop all movement and recording.  The button in area 3 is used to send a 

break signal into the serial bus in case the system gets jammed due to a communication 

error.  The buttons in area 4 are used to move the camera head step by step and buttons in 

area 5 to record individual image pairs.  Buttons 1-5 automatically name the saved image 

files with respective numbers.  Area 6 is used to choose the folder in which the images are 

currently saved.  Areas 7 and 8 are showing the live images from the colour and spectral 

cameras.  The buttons and text fields in these areas can be used to access and alter the 

respective camera settings. 

1. 2.

3.

4.

5.

6.

7.

8.

 

Figure 57  Screenshot of the GUI for measurements 

6.1.3 CALIBRATION PROCEDURES DURING FIELD TESTS 

Lighting calibration was considered the only calibration procedure that needed to be 

done every day before taking the measurements.  During transportation of the rig, the 

relatively loosely fixed lights could change their position slightly.  Lighting calibration 

images for the colour camera were taken as during the laboratory tests by acquiring images 

of white paper filling the entire camera field of view (see §5.1.6).  Spectral images were 

acquired at the same time and the white paper images were used in spectral lighting 
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calibration as well instead of using the Spectralon reflectance tile.  Images taken of white 

paper gave full calibration images without the need to manually move the reflectance tile in 

the camera field of view. 

The Spectralon tile specifications claim the tile has a uniform diffuse reflectance of 

90% of the light over the spectral band of 400 – 1000 nm.  Figure 58 shows a comparison 

of measured white paper reflectance to Spectralon tile reflectance over the used spectral 

range.  The white paper has a fairly uniform reflectance of approximately 75% of the light.  

Differences in the reflectance values do not affect the overall results as long as all the 

lighting calibration is always done with the same method.  The comparison figure just 

shows that even white paper produces fairly uniform reflectance over a wide spectral range. 
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Figure 58  Spectralon vs. white paper reflectance 

6.1.4 THE FIELD TEST SETUP 

The field tests took place in an allotment plot in Loughborough (United Kingdom) 

over June and July 2007.  Seeds from four crop plants and five weed plants were sown on 

the 21st June, and a list of the sown plant seeds is shown in Table 12. 

Table 12  Plants sown in for field tests 

Sown Crop Plants Sown Weed Plants 
Winter wheat (Triticum aestivum) Charlock (Sinapsis arvensis) 
Winter oat (Avena sativa) Cleaver (Galium aparine) 
Oilseed rape (Brassica napus) Chickweed (Stellaria media) 
Sugar beet (Beta vulgaris) Mayweed (Matricaria inodora) 
 Black grass (Alopecurus myosuroides) 

 
Wheat, oat and oilseed rape were sown into 6 rows with 12.5 cm row spacing.  Wheat 

and oat seeds were sown 30 mm and oilseed rape seeds 60 mm apart.  Sugar beet seeds 

were sown with 35 cm row and seed spacing into four rows.  An image of the whole test 

field taken at the end of the trials is shown in Figure 59.  In the image all the plant rows are 

in near vertical direction. 
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Figure 59  Trial field and crop plant bed locations imaged 29 days after sowing 

Figure 60 illustrates how weed seeds were sown into eleven regions (A-K) in each crop 

bed and also how imaging areas were located and named for each bed.  The weed regions 

were identical among the four crop plant beds, e.g.. the top left corner of each crop bed 

had a weed region A and an imaging area ‘11’. 

In the figure, different colours represent the weed regions.  One weed region was left 

free of sown weed seeds and others had a selection of weed seeds as explained in Figure 

60.  Sowing pattern of weeds was random within a region.  This was done to realistically 

represent the occurrence of weeds in fields.  A separate weed plant bed was also sown as a 

control area where only the sown weed plants would grow with other naturally occurring 

weeds.  This weed bed consisted of weed regions B-F. 

 Each plant bed was also divided into an imaging grid indicated by column and row 

structures in Figure 60.  Each imaging cell represented an area where images were captured 

during one measurement without moving the test rig.  During the measurements the test 

rig was moved manually over each imaging area.  In practice, the imaged areas were slightly 

overlapping.  In the oat, wheat and oilseed rape beds an imaging column enclosed two crop 

rows and in the sugar beet bed only one crop row.  In fact, the sugar beet bed enclosed 

four imaging columns and the weed bed only one column with three imaging rows. 
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Figure 60  The regions for sown weed seeds and the imaging areas within each crop 

plant bed. 

The soil naturally had plenty of commonly occurring weed seeds within it.  During the 

outdoor measurements eleven additional weed species were recognized.  These are listed in 

Table 13. 

Table 13  The recognized additional weeds 

Weed Plants in Soil 
Fat-Hen (Chenopodium album) 
Docks (Rumes spp.) 
Perennial Sowthistle (Sonchus arvensis) 
Annual Sowthistles (Sonchus spp.) 
Crane’s-Bill (Geranuim spp.) 
Shepherd’s Purse (Capsella bursa-pastoris) 
Red Dead-Nettle (Lamium purpureum) 
Common Couch (Elymus repens) 
Henbit Dead-Nettle (Lamium amplexicaule) 
Small Nettle (Urtica urens) 
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Measurements were taken on five different days over a period of 2 weeks.  These were 

11, 14, 18, 21 and 25 days after sowing (DAS).  All imaging areas were used on the first 

four days, and locations 11-21 were excluded on the fifth.  The exclusions were due to 

plants growing too high for the current system to image them reliably. 

6.1.5 APPLICATION SPECIFIC IMAGING PROBLEMS 

6.1.5.1 Perspective Error from Camera Positioning 

The laboratory measurements were taken of plant leaves on a flat surface.  In this 

setup, the location of the cameras relative to each other and their precise angle with respect 

to the leaves was not meaningful as long as the position of the spectral line could be 

located precisely within each colour image.  However, the separation of the camera optical 

axes becomes meaningful when the objects are at varying distances from the cameras.  In 

the case of the presented system, the cameras stay at a constant distance from the ground 

while the height of the plants varies. 

When the camera optical axes are separated, the same image cannot always be seen at 

both cameras at the same time.  Occlusions, as presented in Figure 61.a, where the colour 

camera cannot see point x when the spectral camera can, become then possible.  When the 

cameras are moved along the linear guide, the original view of the spectral camera becomes 

eventually available for the colour camera as shown in Figure 61.b.  In the test rig setup this 

offset was 20 image pairs, i.e. objects in spectral camera field of view in image I_spectral1 

appeared at the optical axis of the colour camera in the image I_colour21. 

 

Figure 61  Occlusion and perspective error due to separated optical axes 

The need for the image offset could have been avoided by using a half mirror setup as 
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shown in Figure 62, where the optical axes of the cameras would be aligned.  The 

disadvantage of this setup is that the amount of light for both cameras is halved.  This was 

the reason such a setup was not initially chosen for the application where available light 

intensity was thought to be limited and exposure times critical. 

Spectral 

FOV

Colour 

FOV

Half mirror

 

Figure 62  An alternative camera setup using a half mirror to align the optical axes 

The camera movement can be used to create a stereo image pair and give estimates of 

plant height from colour images.  A stereo camera pair can be created with two stationary 

cameras or one moving camera.  As long as an estimation of the camera movement within 

a pixel or two can be given, the height of the objects in view can be calculated.  Further 

analysis of this stereo problem is beyond the scope of this project. 

6.1.5.2 Effect of  Moving Plants 

During the tests, tall and thin plants were moving in the wind.  The curtain blocking 

the outside light was also dragging close to the ground making the plants move.  These 

effects could be clearly seen in the registered images.  Figure 63 shows an example of two 

consecutively captured colour images and a registered image consisting of these two and 

many more images.  The black oval in all three images is covering the same location relative 

to the ground.  In the two example images, the wheat leaves are clearly in different places.  

This movement of leaves between frames creates discontinuous plant parts in the 

registered image, which is constructed a few image rows at a time.  A data window could 

not always be reliably placed on locations where the leaves are moving since the registered 

image was used for plant segmentation.   
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Figure 63  Effect of moving leaves in registered images 

The moving leaves occurred rarely and almost solely with grassleaved plants.  This 

effect was therefore not considered important for further analysis.  Test rig modifications 

were also not considered. 

6.2 DATA PROCESSING 

The following section explains the post-processing used for field test data where it 

differs from the procedures during the laboratory tests.  Whenever possible, Figure 19 is 

referred to when additions or changes are explained. 

6.2.1 IMAGE PRE-PROCESSING 

Image pairs at maximum camera resolutions, 24-bit 659 x 493 pixel colour and 8-bit 

1360 x 1024 pixel monochrome images, take a lot of storage space.  It was decided that 

only the first 300 rows of the colour image would be recorded and the image resolution of 

the monochrome images was reduced to 680 x 512 during the outdoor tests.  This 

effectively reduced the required storage of any image pair significantly without losing any 

important information.  Even fewer colour image lines were needed for the final 

processing, but the CCD camera did not allow a complete choice over the region of 

interest.   

After each measurement session a further reduction was done to the images.  Only 

colour image rows 140 – 300 were saved.  This selection was based on the need to save the 

original spectral line location and the central line (optical axis) of the colour image with a 

buffer of some 20 lines on both sides.  Every nine spectral points along the vertical spectral 

axis of the monochrome images were averaged together.  This reduction of 512 data points 

to 56 along the spectral axis gave a spectral resolution of 10.7 nm.  This spectral resolution 

was determined to be optimal for the system during laboratory testing.  The combination 

of these reductions brought the required storage space for an image pair from 2.3 MB to 

620 kB.  In Figure 19 these steps happen at 2.a in spectral images and 1.b in colour images. 
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6.2.2 LIGHTING NORMALISATION IN COLOUR AND SPECTRAL IMAGES 

During the laboratory tests it was easy to adjust the light setup to give the most 

uniform lighting throughout the field of view.  The setup was not subject to vibration 

during transportation and thus remained constant for all laboratory tests.  This was not the 

case for the field tests.  The lighting setup changed significantly from day to day, but did 

remain constant for the duration of the measurements in one day.  The changes to the 

normalisation procedure explained here are applicable to 1.a and 1.b in Figure 19. 

The basic effect of these changes in lighting was introduction of significant intensity 

changes in the images.  It was quickly realized that the lighting normalisation explained in 

§5.1.6 (the old method) for each of the RGB channels separately did not maintain the 

colour information.  A new method was needed.  After trial and error, a modified 

calculation of chromaticity values was chosen as described with the following equation: 



















++

++

++

=

















)(/

)(/

)(/

222

222

222

CCC

CCC

CCC

Norm

Norm

Norm

BGRB

BGRG

BGRR

B

G

R

, (6.1) 

where CR , CG  and CB  are normalised calibration image channels (taken of white paper) 

containing values from 0 to 1.  This effectively maintains the colour relationship while 

normalising the intensity changes described by the calibration image channels.  The 

denominator for each channel represents the length of an RGB vector at a current location.  

This modified chromaticity calculation was observed to perform better than the original 

calculation where the denominator would simply consists of the sum of all three channels.  

A comparison of the old method and the new method is shown in Figure 64.  

The colour information is not preserved with the old method even though the overall 

intensity changes are removed.  The colours remain correct only in the central portion of 

the image where the intensity is greatest.  The image after the new normalisation method 

has a uniform colouring without intensity changes.  Although difficult to see, the difference 

between the methods is significant. 
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a) Original Image 
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b) Calibration image RGB vector length 

 
c) Normalized using the old method 

 
d) Normalized using the new method 

Figure 64  Comparison of the light intensity normalisation. a) The original image with 

intensity changes, b) calibration image RGB vector length (the modified chromaticity 

denominator), c) the image normalised using the old method and d) the image 

normalised using the new method 

During the laboratory testing the lighting in spectral images was normalised according 

to the highest values at each spatial location.  The method did not correctly account for the 

possible changes in individual wavelengths, but multiplied the whole spectrum at a given 

spatial location with one value.  This resulted in problems with classification especially in 

the edges of the image due to a similar effect that can be seen in Figure 64 with the old 

colour normalisation method.  Data especially in the edges of the spectral image did not 

preserve the correct spectral curve shape after a simple normalisation.  Therefore, a 

method of normalising each wavelength or spectral data point separately needed to be 

used.   

The new method used full spectral calibration images consisting of values from 0 to 1.  

The acquired spectral image pixels are simply divided with corresponding calibration image 

pixels.  As a result, the spectrum in the image follows the spectral properties of the lighting 

at each spatial location. 

Colour 
information 
lost 

Colour 
information 
preserved 
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6.2.3 CHECKING FOR NON-MIXED SPECTRAL DATA 

The plant segmentation was noticed to be inadequately accurate for making sure the 

windows were completely on plants when data from the field was analysed.  The 

segmentation method shown in §3.1.3 was able to correctly extract the entire plant area, 

but shadowed areas and small gaps between the plants were often segmented as plants as 

well.  An additional verification step was required just prior to classifying the data, i.e. 

before point 6 in Figure 19, to verify that the spectra in the windows was of plant material 

only and did not include soil or other material in the signal.  This was done by checking the 

existence of the ‘red edge’, the rise in reflectance in the near infra-red region caused by 

chlorophyll content.  This spectral signature feature is unique to all living plants.   

To check the red edge, the difference between the normalised reflectance values of 

spectral data points at 748 nm and 683 nm was first measured.  If this difference exceeded 

the manually set limit of 1.75 the spectral signal was accepted to be of plant material only.  

The threshold value of 1.75 was manually chosen after examination of all different plant 

types used in the test allowing for adequate variation in spectra.  An example case in Figure 

65 shows oilseed rape spectra signals and the wavelengths used for mixed signal detection.  

An arrow with a length of 1.75 also indicates the scale of the required difference in value 

for the non-mixed signal.   
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Figure 65  Example plot showing non-mixed and mixed rape spectra and wavelengths 

that are used for the detection of mixed signals 

6.2.4 MANUAL PLANT RECOGNITNION AND LABELLING 

Correct performance assessment of any classification system requires knowledge of the 

true class of each sample.  Therefore, the real class for each sample, called the ground truth 

data, needed to be extracted.  In this project the ground truth data could only be 

established by manual labelling of plants.  Table 12 and Table 13 show the weed and crop 
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plant types present in the field.  During the five measurement days nearly 300 measurement 

sets were gathered consisting of images from one acquisition run of the test rig length.  

Plants in over half of these images were manually identified and labelled accordingly. 

Figure 66 shows an example of the labelling of output images.  The original image a) 

shows high weed infestation.  The labelled plant types in b) were recognized in registered 

images and their corresponding areas in the segmented binary image were coloured giving 

each plant type a distinctive colour.  Unknown plants were left white.  The separation of 

individual plants in Figure 66 c) by labelling each separate plant with a different value was 

done for oilseed rape and sugar beet data only.  This was done to gather statistics on 

system performance in detecting separate plants.  Each individual plant is shown in a 

different colour.  The background blue represents non-plant or unknown areas.  Finally, d) 

shows an example of labelled windows.  Each pixel in d) represents one window.  The 

plant label in b) that has the majority at each 7 by 7 pixel window area location is selected 

as the window plant label in d).  Since each pixel in d) represents a 7 by 7 pixel area in b), 

the image in d) looks somewhat ‘pixelated’. 

During the recognition and labelling process some plants could not be identified.  Such 

plants were left blank and were not considered during classification.  Also, perennial 

sowthistle and annual sowthistle were extremely difficult to correctly tell apart by a human 

from the available images.  The manual recognition with these plants is mixed.  Sowthistles 

were considered as separate groups when creating the classification functions, but are 

shown both separate and combined in the results.  Overall, the manual plant recognition 

did not create an error free ground truth data, but the errors were considered negligible for 

reliable estimation of classification performance. 
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Figure 66  Plant labelling example. a) Registered image of oilseed rape imaging area 

33 taken 21 DAS, b) labelled plant types, c) separated individual plants and d) labelled 

windows 
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6.3 RESULTS 

This section shows the classification results when the window method was applied to 

the outdoor measurements.  The results also show the temporal changes in the reflectance 

spectra and the effects these changes have for classification.  System performance is 

evaluated and thorough analysis conducted using measurements from both individual plant 

beds and all available data.  Individual plant bed analysis provides insight into performance 

figures when one crop plant and some weed plants are present.  The analysis using the 

complete data set shows the performance with multiple crop and weed plants.  This 

analysis method using the full data was considered more descriptive for the total system 

performance evaluation.  Majority of the analysis was therefore done using all data. 

6.3.1 CLASSIFICATION IN A SINGLE CROP PLANT BED 

The system performance was first evaluated by creating classification functions with 

training sets from individual plant beds where one crop plant and some weed plant species 

were available.  The results for individual crop plant beds are shown in Table 14.  The 

results show the crop plant, combined weed plant and average classification performance 

figures and the number of windows classified in each case.  The number of weed species 

available for each case is also shown.  The average value was calculated by averaging the 

individual plant class percentages. 

The highest crop classification probabilities of 96.0% and 91.3% can be found from 

wheat at 11 DAS and sugar beet 25 DAS, respectively.  The highest weed classification 

probabilities of 100% and 98.1% are from wheat at 14 DAS and sugar beet at 21 DAS.  

The highest average probabilities were 96% and 93.7% from wheat at 11 and 18 DAS.  

Overall, the results were in the same levels as the results from the laboratory tests.  The 

presented investigation of results can also be compared with the results shown by Vrindts, 

Baerdemaeker et al. (2002).  The results in this project are comparable or higher than the 

ones presented by them, where sugar beet and weeds were classified with probabilities up 

to 95% and 84%, respectively. 

Results can be highly dependent on the selection of plants and the similarity in their 

reflectance properties.  Oilseed rape classification results were significantly lower than with 

other crops.  This was due to very similar spectra with charlock and resulted in high 

misclassification probabilities between the plants.  The effect is explained in more detail 

with further results. 
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Table 14  Classification into crops and weeds. Average class performance, number of 

windows in the sample sets and the number of weed species available for each case are 

also shown. 

 DAS / (Number of Classified Windows) 

Oat 11  # win. 
 14 # win. 

 18 # win. 
 21 # win. 

 25 # win.  
Crop 88.7 (141) 89.4 (559) 80.3 (3736) 88.9 (9464) 88.3 (25249) 
Weeds - (0) - (0) - (0) 87.8 (13) 92.6 (233) 
Average 88.7  89.4  80.3  89.0  82.8  
Weed species 2  4  3  3  5 

Wheat           
Crop 96.0 (859) 90.5 (2581) 94.9 (8619) 86.6 (16159) 88.3 (31088) 
Weeds - (0) 100 (46) 94.2 (465) 93.9 (1167) 95.8 (5128) 
Average 96.0  90.9  93.7  75.8  72.8  
Weed species 2  4  7  8  9 

Oilseed rape          
Crop  49.6 (3084) 88.5 (5290) 71.3 (12760) 65.1 (30369) 41.1 (60747) 
Weeds 85.2 (263) 76.7 (1010) 78.6 (3749) 85.2 (8767) 91.5 (17488) 
Average 65.7  82.4  78.7  78.9  60.2  
Weed species 6  12  13  13  11 

Sugar beet          
Crop 81.8 (258) 83.3 (837) 88.9 (3149) 89.8 (8550) 91.3 (25440) 
Weeds 93.2 (322) 91.1 (1409) 96.1 (4206) 98.1 (12818) 96.6 (34843) 
Average 86.7  82.9  83.1  81.4  78.3  
Weed species 3  9  12  14  14 

 
The weed infestation in the oat and wheat imaging areas included in the analysis was 

relatively light.  The classification training set included 120 samples for each plant type, and 

the rest, if available, were left for the sample set.  The number of weed species samples 

with oat did not exceed 120 in any weed plant type before 21 DAS, where 13 windows 

from weed plants were available in the sample set.  Lack of weed plant windows was likely 

to elevate the overall classification results for the grassleaved plants. 

The general trend of performance figures is that the classification as early as possible 

resulted in the best results.  This can be partially due to lower number of total plants 

available at earlier dates, but is nevertheless encouraging early action in weed control. 

6.3.2 CLASSIFICATION OF WINDOWS USING ALL PLANT BEDS 

The system performance figures with a single crop plant and some weed plants were 

high.  However, it is important to analyse how well the system is capable of classifying 

plants when all known plant types or classes are included in the training set.  This analysis 

gives an estimate on how flexible the system is to any number of plant classes. Table 15 
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shows the percentages of correctly classified windows for each day and all available plant 

combinations.  An empty cell indicates that samples were not available for that particular 

class and day combination.  Performance figures at or over 85% are in green and figures 

under 50% are in red for ease of reading.  Two more weed plant species were detected than 

are included in this table.  The two missing plant types had fewer than 120 data windows in 

total and these windows were therefore included in the training set only.  The table also 

shows the total number of available windows in sample sets for each case.  The available 

number of windows for each plant class increases with passing time simply because the 

growing plants are covering more area. 

The average classification performance varied between 62% and 85% over the 

measurement days.  This included average performance variations of 70-87% among the 

crop plants and 59-78% among the weed plants.  The combined class of sowthistles 

(classes 6&10) was used in calculation of the averages instead of the individual classes 6 and 

10.  Data for 2nd 25 DAS was measured at a spectral resolution of 8.3 nm.  All other data 

sets used 10.7 nm data.  The discussion on higher spectral resolution available at 25 DAS is 

given later in §6.3.9. 
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Table 15  Classification probabilities of windows in all plant types on different days.  

The total number of windows for each plant is shown in parenthesis.  Performance 

figures of 85% or above are in green and under 50% in red.  2
nd

 25 DAS data spectral 

resolution was 8.3nm, all others 10.7nm. 

Plant type 
Classification performance % 

(Number of classified windows) 

 DAS 

 11 14 18 21 25 2
nd

 25 

1. Fat-hen   55.4 64.6 17.6 48.4 

(Chenopodium album)   (57) (1108) (4084) (3383) 
2. Blackgrass    68.3 61.1 66.2 

(Alopecurus myosuroides)     (166) (1941) (1362) 
3. Mayweed   67.4 80 69.2 75.5 

(Matricaria inodora)    (224) (1441) (9005) (5765) 
4. Chickweed    77.2 75.9 82.4 

(Stellaria media)     (92) (1413) (1051) 
5. Docks    89.7 78.6 86.0 

(Rumes spp.)     (301) (2046) (1763) 
6. Perennial Sowthistle   66 53.9 48.5 60.2 

(Sonchus arvensis)    (315) (1154) (4321) (3763) 
7. Cleaver    66.7 70 85.4 

(Galium aparine)     (45) (253) (199) 
8. Crane’s-Bill  88.8 67.3 49.9 52.1 62.6 

(Geranuim spp.)   (80) (306) (884) (1843) (1565) 
9. Shepherd’s Purse   79.3 59.5 50.8 67.1 

(Capsella bursa-pastoris)    (213) (972) (2709) (2202) 
10. Annual Sowthistles   66.3 57.7 50.5 51.6 

(Sonchus spp.)    (86) (542) (1320) (1069) 
11. Charlock 78.2 63.7 61.7 67.5 46.2 61.8 

(Sinapsis arvensis)  (831) (2884) (9022) (23057) (51753) (44332) 
13. Common Couch   100    
(Elymus repens)    (3)    
6. & 10. Sowthistles combined   86.5 84.4 71.5 81.4 

   (401) (1696) (5641) (4832) 

20. Winter oat 90.1 90.9 87.8 98 71.6 73.7 

(Triticum aestivum) (141) (559) (3736) (9464) (25249) (20523) 
21. Winter wheat 98 79.5 90.6 86.6 77.8 78.0 

(Avena sativa) (859) (2581) (8619) (16159) (31088) (23460) 
22. Oilseed rape 73.8 81.3 72.4 70.3 41.6 55.9 

(Brassica napus)  (6603) (12303) (30799) (77124) (60763) (47420) 
23. Sugar beet 85.3 89.2 84.9 93.2 88.6 92.5 

(Beta vulgaris)  (258) (837) (3149) (8550) (25439) (23187) 

 

Average performance % 

(Weighted Average performance %) 

Plant Class Average 85.1 82.2 77.6 75.4 62.3 72.6 

 (77.2) (79.1) (75.2) (75) (58.8) (68.8) 
Crop Average 86.8 85.2 83.9 87.1 69.9 75.0 

 (77.1) (81.8) (77.9) (76.8) (63.2) (71) 
Weeds Average 78.2 76.2 74 70.8 59.3 71.7 

 (78.2) (64.4) (63.3) (68.4) (51.2) (65.1) 
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These outdoor results are lower than the ones obtained from the laboratory 

measurements, but are still at a level allowing substantial improvements in chemical 

reductions or efficient mechanical weed removal without affecting the yield.  This 

performance reduction can be assumed to come from an increased number of uncontrolled 

variables in the classification.  These variables can include leaf reflectance measurements at 

various angles, minor changes in illumination, or water or dirt on leaves.  A greater number 

of classes also typically reduces the performance.  All such factors can have a great effect 

on the final results.  

The plant class average classification performance calculated directly from individual 

class performance figures decreased over time, while the weighted performance, as 

calculated with equation 6.2, remained relatively constant until 25 DAS.  The weighted 

performance, wp , was calculated using 
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where pi is the performance figure of each individual plant type and ni the corresponding 

number of windows classified in each case.   

The stability of the weighted performance over time indicates that the classification 

method is robust in creation of classification functions, while the class average shows a 

better picture of how well individual classes can be classified and separated from each 

other.  The weighted average results are greatly biased towards oilseed rape classification 

probabilities because the number of samples from this class was by far the highest in all but 

measurements gathered 25 DAS.  A greater number of plant classes seemed to reduce the 

classification probabilities overall and generally crop plants were classified with a greater 

accuracy than weed plants.   

It is difficult to find a reason why crop species classification is outperforming weed 

species classification when all species are classified separately.  Weeds were classified better 

when a two class case was considered and presented in Table 14.  It can be speculated that 

some biological differences in the plants make the difference.  Crop plants have been 

developed over years while selecting the varieties that produce the best yield and most 

consistent plants.  This is not necessarily true for the weed plants, although a weed plant is 

only a weed by definition at a given time in a given location.  However, crop plant 

descriptors in the presented tests have on average 12% higher standard deviation than 
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weed plant descriptors. 

Some selected scatter plots using the most descriptive wavelengths are shown in Figure 

67 from 21 DAS training data.  The separation of the data clouds in the figure represent 

how well different plant classes can be distinguished from each other.  All weed plants are 

plotted in red and crop plants separately with different colours.  Similar data representation 

was shown for laboratory measurements in Figure 48. 
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Legend:  x  oat,  x  wheat,  x  oilseed rape,  x  sugar beet,  •  weeds 
Figure 67  Scatter plots showing separation of crop and weed plants with selected 

descriptors from 21 DAS training data 

The scatter plots illustrate the level of difficulty in classifying the plant species.  Most 

data clouds are overlapping, but as the final classification results show, classes are separable 

using a large number of descriptors.  Considerable amount of crop plant data points are 

separated from the weed plants in Figure 67 a), b) and d) and the crop plants are relatively 

distinct from each other.  In general the combined weed plant data clouds are spread in 
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larger areas than the crop plant data clouds.  The shown figures help in understanding why 

crop classification seems to work better than weed classification when all species are 

classified separately and why weed classification works better in a two class case of 

combined weeds and a crop plant. 

The results in the Table 15 suggest that the ideal time for classification is any time from 

emergence until 21 DAS.  This indicates that plants are easier to separate with the 

presented system when they are fairly small in size.  This time constraint is well in tune with 

the ideal chemical application time shown in Figure 3.   

Some visual examples of classification results and correctly and incorrectly classified 

windows at 21 and 25 DAS can be seen in Figure 68.  a) - d) show examples from sugar 

beet bed and e) - h) from oat bed.  Correctly classified windows are shown in grey and 

incorrectly classified windows in black in b), d), f) and h).  The growth of the plants in four 

days can be seen when images a) and e) are compared to c) and g).  At 25 DAS the soil was 

wet from rain and looked much darker than at 21 DAS.  This did not effect the 

classification since plant segmentation was shown to work well in all conditions. 

 

Figure 68  Examples of correctly and incorrectly classified windows within sugar beet 

and oat beds at 21 and 25 DAS. 
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A thorough investigation of the classification results and the number of false positives 

and negatives can be done with an error matrix, as shown during the laboratory test result 

analysis.  An error matrix for the classification results gathered at 21 DAS is shown in 

Table 16.  Here the distribution of the classification percentages for each plant class is 

detailed in each table column.  The diagonal of the table shows the correctly classified cases 

in bold.  

Table 16   Classification matrix for data gathered at 21 DAS. Percentage figures of 

correctly classified windows are shown in bold in the table diagonal. Class 12: the red 

dead nettle and 13: the common couch, other plant class numbers are as shown in 

Table 15. 

Plant Class Classified 

as (%) 1 2 3 4 5 6 7 8 9 10 11 20 21 22 23 6&10 

1 65 0 0 1 3 0 2 5 0 0 0 0 0 1 1 0 
2 1 68 5 7 0 0 4 1 2 0 0 0 4 0 0 0 
3 0 4 80 1 0 0 0 1 6 0 0 0 1 0 0 0 
4 1 3 2 77 0 1 4 2 3 2 0 0 0 0 0 1 
5 4 0 0 1 90 1 0 2 0 0 0 0 0 0 0 1 
6 0 1 0 0 1 54 0 0 1 311 0 0 0 0 0 46 
7 0 2 0 4 0 1 67 3 1 2 1 1 1 0 0 1 
8 5 1 2 0 0 7 2 50 3 2 4 0 1 52 0 5 
9 1 1 4 2 1 1 0 4 59 0 4 0 3 3 0 1 
10 0 0 0 0 0 291 4 0 0 58 0 0 0 1 0 38 
11 3 4 1 0 0 0 0 6 6 0 68 0 1 143 5 0 
12 1 2 3 3 1 0 2 3 11 0 3 0 1 1 0 0 
13 1 0 0 3 0 0 0 8 1 3 0 0 0 2 0 1 
20 7 0 0 0 0 3 0 4 0 0 0 98 0 0 0 2 
21 2 5 0 0 3 3 9 1 1 1 2 1 87 2 0 2 
22 5 4 1 0 1 0 0 102 3 0 163 0 0 70 0 0 
23 5 5 1 0 0 0 4 0 2 0 2 0 0 0 93 0 

6&10 - - - - - - - - - - - - - - - 84 
1
 Misclassification high between two sowthistles (6&10).  This is mainly due to mistakes in 

manual recognition.  Column 6&10 represents the classification probability where the 
sowthistles are combined. 

2
 Misclassification relatively high between crane’s bill (8) and oilseed rape (22) 

3 Charlock (11) and oilseed rape (22) are very similar in early stages of their growth and are 
relatively difficult to tell apart.  This is reflected in their classification probabilities. 

 
From the Table 16 it is clear that sowthistle plant classes (6 and 10) are highly similar 

and its samples are being misclassified into each others’ classes.  This is mainly due to the 

mistakes in the manual recognition and creation of the ground truth data.  A more 

representative result for sowthistle classification can be given by combining these two 

classes into one as is done in the rightmost column of the table.  Misclassification between 

oilseed rape and charlock is also significant.  In their early growth stages these plants are 

highly similar in appearance and also share near identical spectral signatures.  This similarity 

and misclassification can explain the lower classification probability of oilseed rape 
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compared to the other crop plants.  Exclusion of either oilseed rape or charlock from the 

tests would have increased the overall classification probabilities.  This is evident when 

results from single plant beds are compared to the case with all possible plants.  Exclusion 

of plants was thought counterproductive as it is important and meaningful to investigate 

and report the system performance using the most difficult cases available. 

The results from the full data set can also be investigated as a two-class case of crop vs. 

weeds.  This investigation is comparable to the results given with the individual plant bed 

analysis.  The two-class results are shown in Table 17.  The values were calculated from the 

full classification matrices, as shown in Table 16, including the correct and incorrect 

number of classified windows instead of classification percentages.  All weed plant results 

and crop plant results were added separately together for final figures. 

Table 17  Two-class classification performance over time, comparing weed 

classification against sugar beet and all crops. 

DAS Weeds vs. 
Sugar 

beet 

 
Weeds vs. 

All 

Crops 

11 99.3  89.4  83.4  84.1 
14 92.5  91.0  68.7  99.5 
18 95.7  87.4  74.2  80.3 
21 97.6  93.7  83.1  78.5 
25 95.9  90.8  83.8  71.6 

 
The results in Table 17 show two cases; all weed species are compared with sugar beet 

or all crop plants.  The results with sugar beet comparison are much higher than when all 

crop plants are included.  This is again mainly due to the high misclassification probability 

between oilseed rape and charlock.  The shown results with sugar beet are also higher than 

the ones obtained from the sugar beet bed in §6.3.1.  This indicates that the classification 

method is not too sensitive to number of classes.  The system seems much more sensitive 

to highly similar plants. 

6.3.3 CLASSIFICATION OF INDIVIDUAL PLANTS 

Individual plants were labelled in the ground truth images of oilseed rape and sugar 

beet.  This information can be used to present classification results related to the individual 

plants.  These results are shown in Table 18.  A plant was considered to be correctly 

classified if the majority of the windows within the plant were correctly classified.  The 

table also shows the total number of plants available for each class and the weighted 

average results for each day.  

Overall, sugar beet plants (23) are classified with a great accuracy.  Judging by the 

previous tables, oilseed rape (22) and charlock (11) classification are affecting each other.  
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Many of the individual weed plants (1-13) are not classified too well, but as shown in Table 

17, the weeds are generally missclassified as other weeds rather than crop plants. 

Table 18  Classification results for full plants.  Correct classification is shown (%) with 

the number of available plants (#).  The weighted average is calculated excluding 

classes 6 and 10 and including the combined class 6&10. 

 DAS 

11  14  18  21  25 Plant 

Class % #  % #  % #  % #  % # 

1       69.2 13  82.7 52  25.5 51 
2          77.8 18  65.8 38 
3       65.0 60  73.0 89  77.8 90 
4          76.5 17  84.6 39 
5          88.9 18  89.7 29 
6       77.3 22  59.3 27  64.7 34 
7          66.7 6  60.0 5 
8    85.7 7  44.4 9  27.3 11  37.5 8 
9       78.8 33  65.1 43  55.9 34 
10       50.0 14  56.3 16  25.0 8 
11 90.5 21  71.4 28  59.1 22  58.3 24  70.0 20 
13       100 3       

6&10       88.9 36  90.7 43  73.8 42 
22 76.1 209  82.2 202  85.5 186  85.8 176  50.8 65 
23 92.5 40  92.6 54  98.2 55  100 53  98.0 51 

               

Weighted 

Average 
79.6  83.2  81.3  80.5  67.8 

 

6.3.4 EFFECT OF SPATIAL FILTERING 

Spatial filtering of classified windows was shown to improve results in laboratory tests.  

The same filtering method was applied to the outdoor test data.  All the presented 

classification figures are after the spatial filtering. 

The effect of spatial filtering is visualized in Figure 69, where a) an original image and 

b) all classified windows are shown.  The misclassified windows are shown in black in c) 

and d) before and after spatial filtering, respectively.  As expected, the filtering step reduces 

the amount of individual misclassified windows and acts like a median filter reducing salt 

and pepper type noise in the images.  

Figure 69 shows the filtering effect visually, but the effect was also quantified.  The 

average improvement of the classification results from all classes and all data sets was 7.5%.  

Maximum improvement in any class was 21.6% and the minimum a decrease of 1.8%.  An 

average improvement of 7.5% is significant and shows the effectiveness of the used spatial 

filtering technique. 
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  a) b)

    

 c) d)

 

Figure 69  Illustration of the effects of spatial filtering in classified windows. a) 

Original colour image of sugar beet from location 43 taken 21 DAS, b) all found 

windows for classification, c) misclassified windows without and d) after filtering. 

6.3.5 IMPORTANT DESCRIPTORS OVER TIME 

Important descriptors for plant classification were evaluated during the laboratory 

testing and these results are given in §5.3.5.  The laboratory tests did not include 

measurements over a period of different growth stages.  The outdoor measurements were 

taken over a period of 2 weeks and therefore an additional analysis on the importance of 

the descriptors at different times can be done.  These results will show if certain 

wavelengths and colour descriptors are consistently important for classification regardless 

of the growth stages of the plants.  

Figure 70 shows the importance of the selected colour and spectral descriptors for each 

measurement day classification function separately.  The combined results including all five 

measurement days are also shown.  None of the single classification functions include all of 

the descriptors available.  Relative descriptive powers for individual descriptors are taken 

from normalised F-values given directly by the stepwise discriminant process. 
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Figure 70  Important descriptors in classification at five different days 

Similar wavelengths as seen previously in Figure 54 seem important for classification.  

The importance of these regions is relatively consistent throughout the data from different 

days.  Wavelengths at 500 – 800 nm are the most important ones.  Colour descriptors do 

not have high importance in the classification. 
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The general shape of the importance of the wavelength descriptors throughout the 

measurement range follows the CCD spectral sensitivity curve quite well.   This can be 

considered coincidental since the results from the previous studies including other more 

sensitive measurement technologies back up the general outcomes of the analysis in this 

project. 

The results strengthen the theory that certain wavelengths are consistently important 

for plant classification, and furthermore, their importance does not change at different 

growth stages.  These results can be used to guide hardware selection and the system setup 

such that the properties of the system are optimal for the most important wavelength 

range. 

6.3.6 TEMPORAL CHANGES IN PLANT SPECTRA 

Dennison and Roberts (2003) have studied the changes in spectral canopy at different 

years and its effects on classification performance using satellite data.  Unfortunately this 

and similar studies are not relevant for high resolution weed detection and the effects of 

temporal changes in spectral measurements over a period of some days.  As explained in 

§2.2.5.2, the existence or creation of spectral vegetation libraries covering all possible 

variations in spectra is practically impossible.  However, creation of libraries including local 

and short term spectral data could be achieved. 

The measurements in this project were taken over a period of 11 to 25 DAS.  These 

measurements can give an indication of the changes in plant spectra over a few days at 

early growth stages.  The collected data represents spectral changes in local conditions 

where soil, nutrient and irrigation properties remained the same for all plants. 

Figure 71 shows the mean spectra of oilseed rape on five different days over a 14 day 

growth period.  Regions a), b) and c) are zoomed in for clarity.  Some definite temporal 

spectral changes exist in this plant, although they appear random at most wavelengths.  The 

order of mean values at different days over wavelengths changes.  This variability can be 

explained by the local growing conditions and plant growth stages.  

Investigation of the temporal changes at certain wavelengths in different plant types is 

shown in Figure 72.  The plot for each plant a)-f) shows the trend of spectral change over 

five measurement days.  The length of the vertical lines for each data point represents a 

value two times the standard deviation and the mean is represented by the horizontal lines 

connecting the data points on different days. 
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Figure 71  Oilseed rape mean reflectance at different days. a), b) and c) zoomed in 

regions of the total spectra 
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Figure 72  Temporal changes in three wavelengths for six plants 

Clear spectral trends and reflectance levels over time for certain plants can be seen in 

this figure.  For example, the grassleaved plants of oat and wheat share similar trends and 

reflectance levels at the shown wavelengths.  This is also true for charlock and sugar beet 

data.  This investigation can give an indication on how well the classification functions 

created from data from one day work to classify plants on different days.  Unchanging 

spectra over several days indicates no potential problems for classifying a plant with 

a) 

b) 

c) 

a) b) c) 
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functions created from data gathered on different days and vice versa. 

The information on temporal trend changes in spectra could potentially be used to 

create a model to predict spectral changes and thus make created classification functions 

adaptable and robust to temporal changes without gathering new local training sets.  

Estimation of such models with meaningful predictive powers would, however, require 

much more in depth knowledge of spectral changes due to varying parameters.  Practical 

limitations in collecting measurements for all growing conditions and growth stages make 

the creation of thorough spectral libraries nearly impossible, although acceptable accuracies 

could be achieved by careful investigations. 

6.3.7 ROBUSTNESS OF CLASSIFICATION WITH TRAINING SETS FROM 
DIFFERENT DAYS 

It is interesting and important to examine how well the system can perform when the 

classification functions are created with data that is measured at different times.  Examining 

the performance on all possible date combinations will determine if the system is capable 

of using training data including temporal changes.  This is a type of sensitivity analysis of 

the system. 

The classification performance was evaluated for training sets at each date against all 

other dates.  Training sets from different days consisted of varying numbers of plant classes 

and naturally only the classes that are present in any particular training set could be used.  

The classification results of individual classes within any combination of training and 

sample sets were averaged together using the number of windows within each class as 

weights in averaging.  The results were then normalized such that a value of one was given 

to the performance of a system with the same date for training and sample sets and other 

performance figures calculated relative to it.  The results for all combinations of dates are 

shown in Table 19. 

Table 19  Normalized average classification results for all combinations of training and 

sample sets. Diagonal values of 1 indicate the performance using training and sample 

sets from the same days.  Other values show the normalised performance relative to this 

case. 

  Sample set date (DAS) 
  11 14 18 21 25 

11 1 0.64 0.78 0.66 0.5 
14 0.37 1 0.9 0.54 0.54 
18 0.06 0.55 1 0.36 0.35 
21 0.4 0.64 0.76 1 0.77 

Training set 
date (DAS) 

25 0.21 0.37 0.52 0.53 1 
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It is clear that the performance is at its best when the data for the training set is 

gathered on the day of the sample measurements.  The values to the right of the table 

diagonal on each row are the significant numbers indicating the predictive capabilities of 

the classification system created at an earlier stage.  The figures to the left of the diagonal 

on each row show cases where the future properties of the plants would be known and 

used in classification.  This could only be possible if a reliable spectral plant library would 

be available. 

The results show that the system performance is sensitive to even short term changes.  

It is evident that the changes in reflectance properties discussed in §6.3.6 are significant for 

classification purposes during a course of just few days. 

6.3.8 PERFORMANCE EVALUATION WITHOUT TRUE SAMPLES 

It is valuable to be able to estimate the performance of the classification functions 

before any true samples are collected.  This evaluation is then based solely on the 

information in the collected training set.  The estimate would be important, for example, in 

a scenario where a reasonable training set has been collected from the field and an estimate 

in the performance would be required for a decision whether a larger training set is needed.  

Low performance at a particular plant class could indicate a need for a larger training set 

for that class. 

The evaluation could be simply done by classifying the training set directly with the 

created functions.  This self-estimation is considered positively biased and should never be 

used as a reliable result.   This would be considered poor practice.  It is unlikely that the 

underlying class boundaries and true variability could be reliably modelled using a limited 

training set. 

Another approach, although only slightly more acceptable, is to use training set class 

mean and covariance matrices to create a simulated sample set.  This is the method 

adopted in the discriminant analysis toolbox for Matlab by Vandev (2003).  The methods 

provided in the toolbox create a simulated sample set with 6000 samples per class and 

classify this.  A full classification matrix is given as an output.  Table 20 shows the 

percentage difference between the simulated results and the actual results with real samples 

for all five data measurement days and available plant classes.  Positive values in the table 

indicate that the performance with the simulated data was better and negative values 

indicate poorer performance with the simulated data. 
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Table 20  Difference between simulated classification results and the actual results. 

Positive values indicate the performance was better with simulated results.  Values with 

a magnitude of 10 or over are shown in bold. 

 Plant Class 

DAS 1 2 3 4 5 6 7 8 9 10 11 13 20 21 22 23 

11           -2  6 -2 1 -4 
14        -11   3  0 6 -8 -11 

18 33  10   3  6 -11 3 11 -1 9 0 1 8 
21 14 10 -2 -5 8 13 2 6 -2 7 -4  1 2 -6 0 
25 31 7 5 -11 17 8 -9 -2 -6 15 -2  2 -3 22 -2 
                  

Generally the simulated performance matches well with the actual results.  There are 

only a few cases with large differences in the performance values.  The average over all the 

values is 3.1.  Overall, the evaluation of the performance seems possible and meaningful 

with a simulated sample set as long as the limitations of the method are kept in mind. 

6.3.9 CLASSIFICATION COMPARISON USING HIGHER SPECTRAL 
RESOLUTIONS 

The optimal spectral resolution for the system was evaluated during the laboratory tests 

and explained in §5.3.2.  The spectrograph internal focus was altered and the spectrograph 

field of view improved for data collection in the field tests.  Such changes may have caused 

the system to perform better at different spectral resolutions than originally determined.   

Most of the data in the field tests was collected with a spectral resolution of 10.7 nm 

and the only data set saved with a higher spectral accuracy was the one taken 25 DAS.  

Classification performance for this day decreased significantly from the previous days and 

was on average 62.3% with 10.7 nm spectral resolution data.  Classification performance 

on this day was also investigated using data with spectral resolutions of 5.6 and 8.3 nm.  

Figure 73 shows the classification performances for individual classes using the three 

spectral resolutions. Class-wise values for 8.3 nm data can also be found in Table 15 in the 

column labelled “2nd 25 DAS”. 
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Figure 73  Classification comparison at different spectral resolutions 25 DAS  

The average performance values over all plant types using 5.6 nm and 8.3 nm data were 

60.1% and 72.6%, respectively.  The highest resolution did not produce the best results.  A 

significant improvement of over 10% compared to using 10.7 nm data was achieved by 

using 8.3 nm data.  This implies that some improvements in classification accuracies may 

have been possible for the previous days as well.  These potential improvements are 

impossible to quantify after the data was saved with a lower resolution. 

The selection of spectral resolution seems sensitive to changes in imaging parameters.  

Therefore, it is suggested that an optimal resolution is evaluated for each different setup for 

best results. 

6.3.10 PRINCIPAL COMPONENT ANALYSIS 

The full measurement vectors for each window with 10.7 nm data consisted of six 

colour and 62 spectral variables.  This is a large number of input variables for any 

classification system.  Principal component analysis (PCA) can be used to create a set of 

uncorrelated variables, called principal components, from original data as explained in 

§2.2.5.1.  The number of variables can be reduced by using only the most relevant principal 

components. 

An analysis of the possible ways to reduce the number of variables was done for the 

measurement sets from all five days.  The most important variables were first found by 

stepwise discriminant analysis and 22, 48, 55, 54 and 47 input variables were found for the 

five data sets from days 11, 14, 18, 21 and 25 DAS, respectively.  PCA was then done for 

the training data sets using these variable sets. 

An eigenvalue magnitude for each principal component represents the total variance 

explained by that principal component, i.e. if the sum of eigenvalues is 100 and the first 

eigenvalue magnitude is 20, the first principal component represents 20% of the total 
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variance in the data.  Figure 74 shows a cumulative total variance proportion with different 

number of eigenvalues for all five data sets.  The figure shows that a high number (>10) of 

eigenvalues and therefore principal components are needed to explain over 95% or even 

90% of the total variance in the data sets.  This indicates that the reductions in the numbers 

of variables will not be great if classification accuracy is to be maintained.  When a 

threshold of 99% total variance is used, reductions of only 1, 7, 10, 10 and 7 variables can 

be made in the five data sets 11, 14, 18, 21 and 25 DAS, respectively. 

 

Figure 74  Cumulative proportion of the total variance vs. number of eigenvalues.  Data 

plotted for all 5 measurement days. 

Linear discriminant analysis was done using the reduced number of principal 

components for all five data sets.  Table 21 shows the performance percentage difference 

between the classification results from the original discriminant analysis compared to the 

classification with principal components.  Classification results for this analysis were taken 

before spatial filtering.  The negative values in the table indicate that the PCA method had 

a lower performance than the original discriminant analysis and positive values indicate that 

the discriminant analysis performed better. 

Table 21  Percentage difference in classification results between the PCA method and 

the original discriminant analysis.  Negative values indicate that the PCA method had a 

lower performance. The values of under -10 are shown in bold. 

 Plant Class 

DAS 1 2 3 4 5 6 7 8 9 10 11 13 20 21 22 23 

11           -7  1 -2 -3 -6 
14        -7   -4  -1 -1 -11 -9 
18 2  -2   -5  -8 -13 -1 -3 0 -1 -7 -1 0 
21 -5 -7 -6 0 -2 -3 -4 -3 -1 -3 -2  0 -3 0 -2 
25 16 -3 0 -1 2 3 2 4 -2 -4 0  -1 -3 5 1 

 
Overall the classification performance using the reduced number of principal 

components was lower than with the full set of variables selected with the stepwise 
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discriminant procedure.  Since a great reduction in the number of variables could not be 

achieved and the classification performance was reduced when any number of variables 

was omitted, there was no reason to use principal components in classification with this 

particular system or data sets.  In this case the benefit of classification accuracy from the 

full variable sets outweighs the benefits of improved calculation speed with the variable 

number reduction. 

6.4 DISCUSSION 

An explanation of field tests and a thorough analysis of the classification results using a 

dual camera system have been presented in this chapter.  The system was shown to be 

capable of correct classification of all measured plants on average between 62.3 - 85.1% 

over different days in field conditions.  In general, the classification results for crop plants 

were higher than for weeds.  The average classification in a two-class case, where all the 

crop plants and weeds were combined together was up to 99.5% for crops and 83.8% for 

weeds.  Similar results were shown when individual plant beds with one crop and some 

weed plants were analysed, and crop classification was up to 96.0% and weed classification 

up to 100% correct. 

Borregaard, Nielsen et al. (2000) used a similar line scanning spectrometer as in this 

project and gained classification probabilities of up to 90% using only four plants.  Vrindts, 

Baerdemaeker et al. (2002) also used the same spectral imaging technology with 

comparable number of total plants as used in this project.  Two class sugar beet and weed 

classification produced results of up to 95% and 84%, respectively.  Results for individual 

plant classes were not available and the spatial resolution was approximately eight times 

lower than in our system.  Plant part locations could not therefore be given with similar 

accuracy as in this project. 

Feyaerts and van Gool (2001) also show good results with a hyperspectral system 

classifying crop (sugar beet) and weeds with 80% and 91% correct classification, 

respectively.  They give classification percentages for individual weeds but their final 

classification is for crop and weed only.  The spatial resolution in their project was 

approximately ten times lower compared to the one used in this study. 

The classification performance with the described system is comparable to these 

previously built systems.  Classification performance figures collected from a set selection 

of plants can only give an indication of the true performance of the system, should the set 

of plants be different.  As shown with oilseed rape and charlock, certain pairs of plants are 

harder to distinguish from each other than others.  If charlock had been excluded from the 
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data sets the overall classification performance would have been much higher. 

Short term temporal changes in plant reflectance spectra and its effect on classification 

had not been investigated previously.  Measurements taken over a period of 14 days 

allowed this investigation.  The analysis showed that the plant spectra changes significantly 

over short periods of time, and classification using training data from different days 

produces less accurate results.  Modelling and prediction of these changes is difficult since 

the measurements do not include all possible variables in the growing conditions.  The 

ideal solution is to gather a training set immediately before classification.  The problem of 

gathering a training set autonomously or with minimal human input is not addressed in this 

project, but would have to be solved for usability of the detection and classification system. 

Better classification results with the crop plants relative to the weeds may be due to the 

fact that the crop growth was more uniform than the growth of some weeds.  The weeds 

had more variation in their size and growth stages.  Therefore, a classification system 

trained with weed spectra that consists of plants at different growth stages and possibly 

also under different conditions is assumed to have a lower performance than a system 

trained with plants at the same growth stage and under same conditions. 

The relative importance of wavelengths over 800 nm for classification compared to the 

band of 400 – 800 nm were low in these tests.  This may be due to low CCD sensitivity or 

lack of powerful illumination beyond the visible spectrum.  Since the importance of the 

higher wavelengths was lower, a lower cost monochrome camera sensor selection with a 

lower spectral response in the higher end of the spectrum could be made.  A lower sensor 

resolution could also be allowed, since the spectral image was reduced before classification. 

Principal component analysis with the measured data gave surprising results.  It is 

common that data with high correlation between its variables can be reduced to only few 

principal components without losing much of the total variance.  This was not the case 

with the data in this project.  Significant reductions in the number of variables were not 

possible without losing the much needed plant class separability. 

Overall, the results from the field test were promising and suggest that considerable 

reductions in chemical use or accurate mechanical weed control could be achieved with the 

proposed method.  The presented results have shown the spatial and spectral accuracy 

limits needed for quality classification.  These figures could be used to choose lower cost 

optical hardware and processing platforms aiming for real-time operation.  Also, the system 

has potential to be further developed to be used with shape features, 3D plant analysis or in 

applications of detection and classification with other objects than living plants. 
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7.0  RECOMMENDATIONS & CONCLUSIONS 

7.1 RECOMMENDATIONS FOR FUTURE WORK 

Although automatic weed detection and classification has been intensively studied over 

the years, no commercial products have been introduced that can distinguish within-row 

weeds from any variety of crop plant.  The main reasons for this are believed to be the 

economical limitations and the level of input required from a skilled operator.  Operating 

speeds have been too low and hardware cost too high for the benefits gained when 

compared to current weed control methods.  Skilled operator input has also been necessary 

to create a training set for the classification system.  Creation of a real-time system capable 

of autonomous classification with minimal or no operator input has not been previously 

achieved. 

Implementing the described system on a real-time platform is considered a task 

involving careful hardware selection and optimised algorithm code writing.  FPGA boards 

could be used for fast processing both within the cameras and in an external processing 

unit.  Relatively low-cost smart cameras with on-board processing capabilities and current 

interface technologies can reach high output rates of processed image frames estimated at 

over 100 fps. 

Autonomous creation of the classification training set requires further research.  This 

task is highly important in minimising the required human input.  Feyaerts, Pollet et al. 

(1999) have investigated automatic clustering of crop and weed data using information on 

crop row structures.  Their method was capable of correctly labelling all weeds and sugar 

beet at probabilities between 95% and 98.6% depending on the weed density.  The within-

row weeds were correctly labelled between 70% and 84.6%.  No current system for 

automatic labelling of each crop and weed species separately exists.  Also, further research 

is needed to adapt the weed and crop clustering to work with a variety of crop row 

structures and plant spacing. 

An analysis on temporal changes in the reflectance spectra revealed that short term 

changes follow a trend when investigated at individual wavelengths.  This information 

together with automatic clustering algorithms could allow creation of adaptable 

classification training sets.  For example, when a classified measurement falls close enough 

to their respective class cluster mean in the training set, the measurement would be 

included in this training cluster with a time stamp.  The oldest measurements in a cluster 

would then be removed, thus adapting the clusters to subtle temporal changes in the 

reflectance data. 
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Shape feature calculations were excluded from the window method based on heavy 

data processing needs and complications due to overlapping plants.  Accurate leaf contour 

data could be used together with a recent shape classification method capable of rotation 

and scale invariant partial shape contour classification (Petrakis, Diplaros et al. 2002).  

Further research would be needed to extract contours from a single plant or leaf. 

The presented imaging method creates a natural one-camera stereo imaging setup.  If 

the movement of the colour camera between frames can be estimated accurately, a height 

estimate of the objects in view can be calculated.  This height information could be a 

valuable addition to distinguishing objects.  Calculating a height estimate for all pixels in an 

image requires heavy computing and its benefits for use with real-time weed detection 

applications should be carefully considered. 

This section has outlined future tasks to make the presented system economically 

feasible and has given examples on how the system could be improved.  The main 

problems to solve are the implementation of real-time operation and the minimisation of 

required human input. 

7.2 CONCLUSIONS 

The aim of this project was to create an optical plant detection system capable of 

robust classification of all plants in field conditions while providing accurate weed plant 

locations for mechanical or chemical weed control.  For this purpose, a novel dual camera 

system consisting of a colour and a spectral camera was designed and tested in laboratory 

and outdoor field environments. 

Spatially accurate imaging devices made a novel data processing method of window 

classification possible, where spectral and colour data were sampled and filtered in a grid-

like formation while maintaining a spatial resolution of some millimetres.  Classification of 

plants at this high spatial resolution has not been available before and locations of crop and 

weed plants could be estimated at a high accuracy of just few millimetres.  The higher 

spatial accuracy of the presented system did not compromise the classification performance 

compared to previously built systems.  Also, overlapping plants did not limit the use of the 

new system.  

A weed detection system needs to be flexible enough to perform well with various 

plant combinations.  This flexibility is one of the benefits of the presented two camera 

system.  The classification figures of over 90% correctly classified windows in field 

conditions presented here are good enough for major reductions in the use of chemicals or 

for the precise mechanical removal of weeds.  The presented system also has the potential 
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to include shape recognition and 3D height estimation of the scene into the classification 

by using data from a single colour camera. 

The laboratory results using leaves from six tree and shrub plants with highly similar 

reflectance properties were comparable to the field tests when actual crop and weed plants 

were used.  Although a direct comparison between the laboratory tests and the field tests is 

difficult due to differences in plant selection and external circumstances, the results 

indicated that a reliable system performance evaluation is possible with any type of plant.   

The field measurements taken over a period of two weeks allowed analysis on short 

term temporal changes in the reflectance spectra of plants.  It was shown that the changes 

in spectra over few days are significant for classification, and a training set created from 

measurements taken on a particular day cannot be reliably used after a few days.  Also, their 

use on future crop cycles is thought limited due to subtle changes in growing conditions.  

The temporal changes follow a trend when investigated at single wavelengths, although the 

trends vary between the wavelengths.  With further research, this information could be 

used to automatically adapt the old training set to the new reflectance properties.  

Investigation of classification performance levels on different days revealed that the 

optimal time for weed classification using the presented system is approximately 20 days 

after sowing. 

The addition of a colour camera increases the system cost and data flow.  In the 

presented system with window method data processing, the colour camera provides 

accurate information of leaf borders, is used for plant segmentation and RGB feature 

calculations.  An estimate of the camera movement between the frames is also calculated 

using the colour data with means of cross-correlation calculations between image frames. 

There is a certain amount of redundancy in the two camera system.  For example, plant 

segmentation is possible at a slightly lower spatial resolution using the spectral data.  The 

camera movement between frames cannot be estimated from the spectral data, but 

additional odometric or inertial sensors could provide the same information without the 

high processing loads from colour image cross-correlation calculations.  The most 

important pieces of information for the window classification from the colour camera are 

the RGB features.  In theory, the RGB mean data is also available in the spectral data.  The 

use of a colour camera is well justified if shape, local texture, 3D information or accurate 

object borders are needed.  The superior spatial accuracy and the possibilities this 

information provides are the benefits of the colour camera over the spectral camera. 

The novel sensor system, window data processing and the temporal spectral analysis 
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are the most important original contributions of this project.  The presented novel dual 

camera system was shown to be capable of correct plant classification up to an average 

level of 85.1% in outdoor field conditions with a selection of numerous weed and crop 

plants.  Even performances of up to 100% were recorded when weeds were combined into 

one class.  Intelligent window data processing methods were introduced to be used with 

the system.  The analysis of temporal short term changes in plant reflectance spectra were 

shown to be significant for classification purposes.  Real-time implementation of the 

system is thought possible with careful hardware selections and optimised algorithm code 

writing. 
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APPENDIX A: CALIBRATION OF THE MATHEMATICAL 
DISCRIMINANT ANALYSIS TOOLS 

The mathematical functions in the Matlab discriminant analysis toolbox used in this 

project (Vandev 2003) needed to be calibrated to verify that the calculations were done 

correctly within it.  This calibration of the linear stepwise discriminant analysis was done 

manually using small training and sample data sets shown in Table 22. 

Table 22  Training and sample data sets for DA calibration 

 Training Set  Sample Set 
Class A B C D  A B C D 

1 0.6823 1.8729 1.7210 1.6084  0.5192 2.6423 1.1120 0.4052 
1 0.6488 1.5935 0.7961 1.5503  1.6356 1.9884 1.6699 0.4128 
1 0.6598 1.8631 1.6923 1.1394  0.8193 2.0647 1.1255 1.5681 
1 2.5127 2.0175 1.0132 0.8101  1.1479 2.6465 1.3001 1.1632 
1 0.7217 1.9184 1.0435 1.1516  1.4056 2.6163 1.5200 1.1461 
2 1.6897 1.7739 0.8438 2.0415  2.3607 1.4723 0.0359 1.4013 
2 2.6197 1.8869 1.7616 0.7569  2.6509 2.1575 1.2532 1.7607 
2 1.9786 1.9961 1.5786 1.0301  1.9107 1.3660 1.1148 0.8178 
2 2.2217 1.2846 1.2290 1.3954  2.5455 0.8932 0.9052 0.7466 
2 2.5383 1.4680 0.9729 1.1125  1.5513 2.5124 0.9718 0.6185 
3 1.3829 2.0557 1.5324 2.9590  2.0393 2.5749 0.6091 1.5972 
3 2.2125 2.1687 0.9151 2.1122  1.4260 2.2519 1.0989 2.6627 
3 1.6630 1.8454 1.3535 1.9369  1.8198 2.0050 1.8887 2.0795 
3 1.5051 1.2139 0.1057 2.4629  2.5006 1.6942 0.9461 2.0994 
3 1.0053 1.8230 1.1228 2.6149  2.0424 2.2123 0.8966 1.5901 

 
The data sets were created by randomly sampling from normal distributions illustrated 

in Figure 75.  Class 1 seems separable with variable A, class 2 with variable B and class 3 

with variable D.  Variable C does not add value to the classification, but is used to show 

how poor descriptors are not included in the final classification functions. 
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Figure 75  Normal distributions for the four variables used in calibration 
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Let us assume we have a training set consisting of vectors ( ) nixg ii ,...,2,1,, = , where 

ig  represents a group or a class a measurement ix  belongs to.  Group means are then 

calculated as follows.  

( )
( )∑

=
i

ix
gn

gm
1

 (7.1) 

Cross-products i.e. the within-group and between-group covariance matrices are given 

in the following two equations, respectively. 

( ) ( )( ) ( )( )T

i

i

i gmxgmxgW −−=∑  (7.2) 

( )∑=
g

in gWB  (7.3) 

The standard maximum likelihood-estimates are then calculated using 

( )
( )

( )gW
gn

gC
1

1

−
= , (7.4) 

and 

inB
Gn

C
−

=
1

, (7.5) 

where G is the number of groups or classes and n the number of samples. 

In a linear discriminant case it can be assumed that within-group covariance is equal to 

between-group covariance and Bin can be replaced by W(g) in equation 7.5. C also 

represents the total covariance of the system. 

f-value, a measurement of difference between individual distributions, was calculated 

individually for variables entering the model and for variables to be removed from the 

model with the following equations: 

( ) ( )( )
( )( )( )1
1

−

−−
=

bTgW

TgWan
f enter  (7.6) 

( ) ( )( )
( )1

11

−

−+−
=

b

TgWan
f remove , (7.7) 

where n is the number of training cases, a the number of total variables and b the number 
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of variables with a positive within-class covariance value.  In this example, f-value of 2.0 

was used for a variable to enter or to be removed from the discriminant model.  Two sets 

of covariance matrices are being updated; one including the variables in the model and one 

including the variables out of the model.  Updates of covariance matrices and variable f-

values were required every time a variable was added or removed from the two models. 

All of the shown equations were extracted from the toolbox functions and were 

manually used to calculate stepwise discrimininant analysis with the data in Table 22.  The 

initial situation of the model with all variables out of the actual classification model with f-

values is shown in Table 23.  As expected from investigation of the data in Figure 75, 

variables D and A have the highest significance for separating classes from each other. 

Table 23  Initial f-values for variables 

Variable f-value 

D 7.9936 
A 3.0677 
C 0.3230 
B 0.3049 

 
In the first step, variable D was selected to enter the model.  It had the highest f-value 

and it was over the set limit of 2.0.  Within- and between-class covariance matrices and f-

values were updated accordingly and the results for steps 1 and 2 are shown in Table 24.  

The results show how the variable A had the highest significance (> 2.0) after step one and 

was the next variable to be included into the classification model.  After addition of the 

variable A in step 2, no variables had high enough f-values to enter the model or low 

enough f-values to be removed from the model.  This was the end of the stepwise selection 

process and the final total covariance matrix of the model was then 









=

0.33950.1569-

0.1569-0.1708
C . 

Table 24  Two steps of the discriminant selection process showing variables in the 

classification model, model total covariance C and variables not in the model 

Step 1 In model f-value  Step 2 In model f-value 

 D 13.08   D 48.217 
     A 22.778 
       

 Not in model   Not in model 
 A 10.44   B 1.527 
 B 0.7134   C 0.643 
 C 0.0090     

 
The created model was then used to classify the sample cases using the knowledge of 
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class means m(g) and total covariance matrix C.  Mahalanobis distance, as calculated using 

the following equation, was used to measure sample measurerent distances to group means 

using the variable correleation information availbale in the covariance matrix. 

( ) ( )( ) ( )( )gmxCgmxgxd
T

−−= −1,  (7.8) 

The classification result was then determined by selecting the shortest distance to a class 

mean for each sample.  Table 25 shows the classification results and individual 

Mahalanobis distances for the samples.  All samples for class 1, 2 out of 5 for class 2 and 3 

out of 5 for class 3 were correctly classified.  Visual interpratation of the class overlaps in 

Figure 75 also indicate that samples in class 2 are the most difficult to classify correctly 

when only variables A and D are used. 

Table 25  Classification results for the sample set showing individual Mahalanobis 

distances to group means 

Sample 
Mahal. 

distance to 1 
Mahal. 

distance to 2 
Mahal. 

distance to 3 
Clasification 

result 
True 
class 

1 12.91 35.92 66.29 1 1 
2 4.29 13.74 39.40 1 1 
3 0.61 6.88 15.97 1 1 
4 0.05 6.92 21.64 1 1 
5 0.42 4.38 18.34 1 1 
6 10.94 0.49 6.13 2 2 
7 23.53 5.53 3.77 3 2 
8 2.22 3.78 21.32 1 2 
9 6.99 1.69 17.86 2 2 
10 2.38 10.53 32.98 1 2 
11 9.51 0.73 4.31 2 3 
12 26.07 12.68 0.40 3 3 
13 16.08 4.52 0.68 3 3 
14 29.77 9.76 2.79 3 3 
15 9.43 0.70 4.38 2 3 

 
When the Matlab toolbox functions were used for calculations with the given data, the 

results were identical with manual calculations.  The presented comparison of manual and 

tooldbox calculations gives the confidence to use the toolbox functions in further 

classification analysis. 


