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A B S T R A C T

Frost damage is one of the major concerns for crop growers as it can impact the growth of

the plants and hence, yields. Early detection of frost can help farmers mitigating its impact.

In the past, frost detection was a manual or visual process. Image-based techniques are

increasingly being used to understand frost development in plants and automatic assess-

ment of damage resulting from frost. This research presents a comprehensive survey of the

state-of the-art methods applied to detect and analyse frost stress in plants. We identify

three broad computational learning approaches i.e., statistical, traditional machine learn-

ing and deep learning, applied to images to detect and analyse frost in plants. We propose a

novel taxonomy to classify the existing studies based on several attributes. This taxonomy

has been developed to classify the major characteristics of a significant body of published

research. In this survey, we profile 80 relevant papers based on the proposed taxonomy. We

thoroughly analyse and discuss the techniques used in the various approaches, i.e., data

acquisition, data preparation, feature extraction, computational learning, and evaluation.

We summarise the current challenges and discuss the opportunities for future research

and development in this area including in-field advanced artificial intelligence systems

for real-time frost monitoring.

� 2022 China Agricultural University. Publishing services by Elsevier B.V. on behalf of KeAi

Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction technology with high-resolution spatiotemporal data from
Agriculture provides the primary source of food for humans

and plays a vital role in economies worldwide. It is antici-

pated that grain production will need to be doubled by 2050

to meet the increased global demand from population growth

[1]. To meet this increased demand, agricultural practices

need to adopt smart technologies to ensure better yields [2].

Precision agriculture is a process that uses information and
cite this article as: S. Shammi, F. Sohel, D. Diepeveen et al., A surve
nts, Information Processing in Agriculture, https://doi.org/10.1016/j
atmospheric and soil conditions [3]. Precision agriculture pro-

vides farmerswith opportunities by enabling remote monitor-

ing technologies and targeted management for high yields

and risk mitigation.

However, significant reductions in crop yield can occur due

to adverse environmental events. Frost is a significant

weather event that directly impacts plant growth and flower-

ing, hence yields. In recent years, frost events have increased
y of image-based computational learning techniques for frost detection
.inpa.2022.02.003
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in frequency [4,5]. These events cause substantial economic

damage by limiting the growth of both wild and crop plant

species. In Europe and North America, late-frost damage

causes more economic losses to agriculture than any other

hazard related to climate [6,7]. In 2017, a single late spring

frost caused economic losses in Europe of 3.3 billion Euros

[8]. Frost damage costs the grains industries of Australia an

estimated $360 million annually [9]. Hence, early frost detec-

tion technologies with appropriate decision support systems

can help to mitigate the impacts of such adverse frost events.

For detecting the effects of frost-damage, quantifying

techniques such as, frost exclusion chambers with active

heating can be used to compare damaged and non-damaged

crops [10]. However, temperatures are commonly measured

near the crop canopy and field-scale to determine the crops’

exposure to frost [11,12]. Imaging-based techniques offer a

non-destructive method for detecting frost-damage in plants.

Imaging provides extra insight for understanding freezing

and shows ice formation on the plant surface to clarify the

nature of the damage. Various imaging types, such as thermal

and spectral, can be used to screen for frost in plants. This

functionality is essential for early detection to enable frost

risk management, especially at field-scale. This could limit

economic losses by making timely operational decisions,

including changing harvest strategies [13] or when to cut

the crop for forage [10].

At present, researchers manually investigate the ice nucle-

ation and freezing patterns inside plants [14,15]. However,

recent implementations of imaging-based systems with com-

putational approaches are being used more widely. Computa-

tional approaches allow mathematical models to study the

behaviour of a complex system by computer simulation. For

example, statistical analysis is one of the computational

approaches that is being used in frost analysis [16,17]. The

use of traditional machine learning (ML) and deep learning

(DL) techniques for frost detection is increasing. Statistical

methods can be used to analyse variations of the patterns

in the image data. Traditional ML techniques can estimate

the outputs based on feature extraction and training themod-

els. DL techniques use many layers of artificial neurons that

transform the input images into outputs by learning deep fea-

tures. Because of their promising performance, imaging-

based ML and DL techniques are being used more widely in

automatically counting of grain ears or spikes, for yield esti-

mation, and for analysing the impact of frost damage [18–20].

The research presented here provides a comprehensive

survey of the papers on imaging-based frost detection in

plants and crops over the last ten years. We propose a taxon-

omy and classify 80 papers related to frost detection and anal-

ysis in plants. We have summarised these papers (in Table 3)

with the acronyms from the taxonomy, and categorised them

according to the computational method applied. We have also

categorised them according to their image modality, image

collection, pre-processing, and feature extraction techniques.

In this review, we discuss the techniques including image

acquisition, preparation, feature extraction, and classification

methods. We also provide an overview of different evaluation

metrics were used to determine the efficiency of image-based

detection techniques. Overall, our taxonomy aids the cate-
Please cite this article as: S. Shammi, F. Sohel, D. Diepeveen et al., A surve
in plants, Information Processing in Agriculture, https://doi.org/10.1016/j
gorisation and a summation of a large number of publications

on image-based frost detection.

The remainder of the paper is organised as follows: Sec-

tion 2 justifies the importance of this survey. It first discusses

the review articles on frost detection and analysis. It then

highlights that there is no survey paper on image-based frost

detection using computational learning methods. Although

the focus of this survey is on image-based computational

models, for the sake of completeness, in Section 3 we briefly

cover the prior art (e.g., pre 2010). It indicates the works were

mainly done via manual inspection. Section 4 describes the

criteria used for selecting the papers that are thoroughly

reviewed in this survey. In Section 5, the image modalities

are discussed in detail as a component of the frost detection

techniques. Section 6 discusses the overall process of compu-

tational frost detection. In Section 7, we present the taxon-

omy and in Section 8 the popular computational methods

used in image-based frost detection are described. Subse-

quently, we summarise the 80 articles based on frost detec-

tion and analysis in plants in Table 3. Various evaluation

metrics for statistical, ML and DL methods are discussed in

Section 9. In Section 10, we discuss the data sets used in

the papers covered in this survey. In Section 11, we discuss

current and future opportunities and the challenges in

image-based automated frost detection in crops. The paper

is concluded in Section 12.

2. Related surveys

The study of freezing mechanisms in plants has long been an

interest to researchers. Fennell [21] summarised the mecha-

nisms of freezing tolerance in grapevines concerning the

influence of genotype, phenological development, and envi-

ronmental factors. Neuner [22] reviewed the key components

of frost resistance in alpine woody plants. Their report

reviewed complex and diverse ways to survive the frost dam-

age. On the other hand, Ambroise et al. [23] reviewed the root

causes of freezing stress in plants, and discussed the root

level of plant frost damage-inducing cold hardiness. In addi-

tion, their paper included the plants’ metabolic and molecu-

lar responses depending on plant age, category and species.

They also discussed how the roots sense frost and environ-

mental signalling for cold acclimation. Their discussion was

limited to molecular analysis of plant frost effects, but

advanced computational techniqueswere not used to address

them.

Imaging techniques have been more commonly used for

frost detection in plants. Humplı́k et al. [24] reviewed RGB,

chlorophyll fluorescence, thermal and hyperspectral imaging

for phenotyping plant stress response. Their study only cov-

ered a few articles related to cold stress, rather they focused

on drought stress. Recently, Yu and Lee [25] reviewedmethods

available for evaluating the freezing injury in temperate fruit

trees. They discussed the visual evaluation, thermal analysis,

electrolyte leakage analysis, and Triphenyl tetrazolium chlo-

ride (TTC) reduction analysis for evaluating freeze injury.

Their review was limited to temperate fruit trees and also to

textual data, and did not discuss any other image-based com-

putational approaches. Gao et al. [26] showed that DL-based
y of image-based computational learning techniques for frost detection
.inpa.2022.02.003
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Fig. 1 – One of the earliest ways of observing freezing in cranberry plants using infrared thermography [15]

Table 1 – Total number of retrieved articles for the keywords indicated.

No. Digital library Search query Number of retrieved documents

1. Google Scholar [[[‘‘Frost” OR ‘‘Freeze” OR ‘‘Cold Stress”] AND
‘‘Damage”]] AND [‘‘Crop”AND ‘‘Imaging”] AND
[‘‘Statistical Analysis” OR ‘‘Machine Learning”
OR ‘‘Deep Learning”]

972

2. Scopus TITLE-ABS-KEY (‘‘Frost” OR ‘‘Freeze” OR ‘‘Cold
Stress”) AND (‘‘Crops”OR ‘‘Plants”) AND
(‘‘Image” OR ‘‘Imaging”) AND (‘‘Statistical
Analysis” OR ‘‘Machine Learning” OR ‘‘Deep
Learning”)

110

3. ScienceDirect (‘‘Frost” OR ‘‘Freeze” OR ‘‘Damage”) AND
(‘‘Crops” OR ‘‘Plants”) AND(‘‘Image” OR
‘‘Imaging”) AND (‘‘Statistical” OR ‘‘Machine
Learning”)

60

4. SpringerLink ‘(‘‘Frost Damage”) AND (‘‘Crops”) AND
(‘‘Imaging”) AND (‘‘StatisticalAnalysis” OR
‘‘Machine Learning” OR ‘‘Deep Learning”)’

23

5. MDPI (‘‘Frost Damage”) AND (‘‘Crops”) AND
(‘‘Imaging”) AND (‘‘StatisticalAnalysis” OR
‘‘Machine Learning” OR ‘‘Deep Learning”)

27

6. Murdoch University Library (TitleCombined:(\(‘‘Frost” OR ‘‘Freeze” OR ‘‘Cold
Stress” OR \)) AND (\(‘‘Image” OR ‘‘Imaging” \)
AND (Abstract:(\(‘‘Crops” OR ‘‘Plants” \))AND
(\(‘‘Statistical Analysis” OR ‘‘Machine Learning”
OR ‘‘Deep Learning” \))

38
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Fig. 2 – The number of selected papers on image-based plant

frost detection from 2010 (January) to 2021 (March).
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plant stress diagnosis could be deployed in crop stress imag-

ing and phenotyping tasks. Their study explained that imag-

ing systems could be required for non-destructive approaches
Fig. 3 – An overview of various data modalities for plant frost d

discussed in this review.

Please cite this article as: S. Shammi, F. Sohel, D. Diepeveen et al., A surve
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in precision agriculture. They discussed imaging and deep

learning principles. However, their study focused on other

abiotic stresses rather than on cold stress.

Fitzgerald et al. [10] reviewed both active and passive

methods for early frost damage quantification. Their study

discussed remote sensing for cold stress mapping techniques.

They also described non-destructive approaches such as

spectral reflectance and spatial distribution of temperature

to identify frost in crops. They focused on different field-

based methods used for early frost detection. Barlow et al.

[27] reviewed current knowledge on the impacts of frost on

wheat production and how these impacts are incorporated

into contemporary process-based crop models.

Most of the existing reviews focused either on imaging or

ML techniques [28] for biotic stress detection, but not on frost

damage. For instance, Pineda et al. [29] published a review

article for detecting biotic and abiotic stress from thermal

images. The study reported that thermography is more effi-

cient than traditional image processing methods for detecting

plant stress. They also mentioned that thermography
etection (best viewed in colour). The coloured branches are

y of image-based computational learning techniques for frost detection
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requires corrections to achieve an accurate interpretation of

the stress. In their review, they covered thermography for

plant stress detection. Most importantly, this study did not

adequately cover the breadth and depth of the literature for

detecting frost stress specifically. Some studies reviewed

other techniques for evaluating frost injury at the molecular

level without using any ML or statistical approaches. It is evi-

dent that, with the rapid development of digital sensing tech-

nologies, low cost capturing of high-quality imaging data has

become more accessible. Therefore, in the past decade, there

have been many research articles based on computing hard-

ware as well as image processing, computer vision tech-

niques, and decision support for stress detection. There is

also a continuous growth in research articles, both in terms

of quality and use of diverse and contemporary tools and

methods to detect plant stress. However, there is still a
Fig. 4 – Examples of vario
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research gap in implementing these technologies in detecting

frost in plants. To the best of our knowledge, there is no

review article in which plant frost damage has been detected

or quantified with the help of imaging and computational

methods. Given the breadth, depth and contemporary devel-

opment of the field, a comprehensive review of the contem-

porary literature is justified.

3. Early days of image-based frost detection in
plants

In studies before 2010, freezing patterns in crops and wild

plants were observed visually thermal images [14,30,31]. For

example, Ceccardi et al. [32] studied the freezing mechanisms

through differential thermal analysis in 1995. Their method

incorporated infrared thermography to visualise exothermic
us image modalities.

y of image-based computational learning techniques for frost detection
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events in jojoba. Wisniewski et al. [14] demonstrated infrared

thermography as an excellent method for studying ice nucle-

ation and plant propagation. In their research, monitoring of

an array of plant species under different freezing conditions

revealed that ice nucleation and propagation are readily

observable by thermal video.

Workmaster et al. [15] provide evidence that stomata are

the probable avenue through which ice penetrates into cran-

berry leaves. However, the cuticle on the adaxial leaf surface

provides an adequate barrier to ice propagation. This valuable

observation was also supported by infrared video thermogra-

phy. In Fig. 1, their observation of ice nucleation and propaga-

tion is explained in sequential images. Ice nucleation started

from the bacterial droplet and propagated through the stem

to the terminal leaf. Pearce and Fuller [31] investigated the

freezing of barley by using infrared video thermography. In

laboratory tests with barley, initially, an interesting observa-

tion was made. Ice spreading delayed from the crown to the

leaves and roots, while ice propagated through the leaf to

the rest of the plants. Wisniewski et al. [33] used infrared ther-

mography to study the freezing behaviour of extrinsic nucle-

ating agents. These are agents which can cause freezing at

warmer temperatures. In 2003, the utility of infrared imaging

was examined for detecting freezing events in whole turf-

grass plants [30].

Although computational methods were not widely avail-

able only a few years ago, researchers were nevertheless able

to demonstrate that thermal videography was a potential tool

for visualising the freezing patterns in real-time [15,30,33].

This valuable observation led to an understanding that the

formation and propagation of ice inside plant tissues, and

opened the door for more research in this area.

4. Paper selection criteria for this survey

Our central research theme was: What is the role of imaging

associated with the state-of-the-art techniques for detecting

and analysing frost in crops? For selecting the papers, we fol-

lowed three main steps: (i) a search for related papers, (ii)

selection of the most relevant papers and (iii) detailed analy-

sis of these papers. In this research, we provide a comprehen-

sive survey of image-based computational learning

techniques for frost detection in plants. In Section 3, we

briefly summarised the traditional techniques used for

image-based frost detection. The focus of this paper is how-

ever, on image-based computational models for frost detec-

tion and analysis. We have included papers published since

2010, when computational models started to be popularly

used in frost detection. We used a keyword-based search

strategy across all major digital libraries and indexing repos-

itories to collect related work based on this research question.

We searched Google Scholar, Scopus, ScienceDirect, Springer-

Link, Multidisciplinary Digital Publishing Institute (MDPI), and

Murdoch University Library databases for journal articles and

conference papers. We limited the search to between January

2010 and March 2021. Table 1 shows the number of papers

found from the search queries.

We then combined all the identified papers and removed

duplication, which resulted in a total of 1 054 papers. How-
Please cite this article as: S. Shammi, F. Sohel, D. Diepeveen et al., A surve
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ever, the search returned a large number of papers covering

post-harvest freeze damage, disease and other stress detec-

tion, crop growth and quality monitoring through imaging,

and food storage. These papers are not the primary focus of

this study (although they are relevant in other contexts).

Therefore, we considered that these papers were not relevant

for our review, as the focus is on investigating frost-damage in

agricultural crops. In addition, we sought papers that used

images as a data type, and which applied at least one compu-

tational method. As a result, we manually selected the papers

that focused on detecting and analysing frost issues in plants

from images as the final step.

The bar graph in Fig. 2 shows the yearly count of relevant

articles for the search query from 2010 to 2021 (March). In this

study, we only reviewed these articles. It can be seen in Fig. 2

that, before 2018, the number of publications related to

image-based computational methods for frost damage analy-

sis was quite low. Moreover, Fig. 2 shows there has been an

upward trend in recent years, i.e., since 2018. Therefore, we

reviewed the publications from 2010 to March 2021 to under-

stand how image-based frost detection and analysis tech-

niques (in crops and wild plants) have evolved during this

period.

5. Overview of image modalities

A critical component of determining frost in plants is the type

of data that is used. In this context, data can be image and

ambient, such as temperature, humidity and wind speed.

According to the literature review, researchers have used var-

ious image modalities as data types for visual and automatic

evaluation. Therefore, the scope of this study is limited to

image-based computational methods. In Fig. 3, we propose

a tree to show various data modalities, where a summary of

the different image types is also illustrated. We can divide

the image modalities into three categories: light, sound and

others. Light-based techniques can be further split into sub-

groups. We only cover the highlighted branches of the tree

as shown in Fig. 3. In the following subsections, we discuss

the commonly used image modalities for frost detection.

5.1. Infrared thermal

Infrared thermography offers a view of temperature differ-

ences or thermal properties of subsurface measurements.

Modern thermal cameras can convert the information gath-

ered from the infrared spectrum into true colour graphical

images with temperature levels represented by different col-

our palettes [34]. Infrared thermography can be used to study

the freezing mechanism inside plant tissue [35–38] and ice

nucleation [39–41].

In addition, thermography can be used to capture the

propagation of ice formation inside plant leaves, and stem

[35,40]. Neuner [22] and Hacker et al. [37] measured tempera-

tures and freezing patterns throughout the freezing experi-

ments with FLIR S60. In Fig. 4(a), the freezing progression of

a wheat plant is shown [35]. In this figure, the wheat plant

went through ice nucleation and propagation from b to l

(the notations are shown at the top part of the figure). Hoer-
y of image-based computational learning techniques for frost detection
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miller et al. [42] monitored cooled Arabidopsis thaliana plants

with a FLIR thermal camera. Livingston et al. [40] used a High-

Definition FLIR SC8303 sensor to collect images of 1 280 � 720

pixels of wheat plants freezing. Kokin et al. [43] recorded ther-

mal radiation to measure the temperature at >40 000 points

on the leaf surface. A high-resolution thermal camera (DJI

Zenmuse XT2 with a 19 mm lens) by Yuan and Choi [44]

was deployed to achieve radiometric functionalities and to

map the temperature in an apple orchard for timely frost

management.

5.2. Spectral

Spectral imaging uses multiple bands across the electromag-

netic spectrum. For example, frost damage can be assessed

through spectral imaging sensors [19]. According to Fitzgerald

et al. [19], physiological changes can occur in plants, includ-

ing damage to photosynthetic processes and physical damage

to tissues, which can potentially manifest as changes in plant

colour detected using spectral sensors. In the following sub-

sections, we discussed various subgroups of spectral imaging.

5.2.1. Multispectral
Multispectral imaging captures data within specific wave-

length ranges across the electromagnetic spectrum. Mul-

tispectral images were used to determine the impact of frost

by many researchers [20,45–47]. Goswami et al. [47] and Jelow-

icki et al. [46] chose medium resolution multispectral images

covering 13 spectral bands, from 0.443 to 2.190 mm. To distin-

guish frost affected areas of plants using multispectral cam-

eras, four different spectral bands: green (530–570 nm), red

(640–680 nm), red edge (730–740 nm), formed the multispec-

tral data. Jelowicki et al. [46] also investigated the influence

of spatial resolution of the multispectral data to estimate

the damaged area. Goswami et al. [47] recorded the multi-

spectral images in the central wavelength in green, red, red

edge and NIR channels for further pre-processing.

5.2.2. Hyperspectral
Although hyperspectral imagery is a part of the multispectral

spectrum, it consists of a large number of narrow bands (10–

20 nm) in the electromagnetic spectrum. From such images,

useful spectral information is extracted for plant phenotyp-

ing. Lacoste et al. [48] used hyperspectral images consisting

of 64 000 pixels, acquired from 240 spectral bands from 392

to 889 nm (spectral resolution 2.1 nm) by 640 pixels (spatial)

from the flag leaves of 15 wheat plants. Wei et al. [49] col-

lected leaf spectra from the wavelength range between

400 nm and 2 400 nm. Canopy reflectance measurements

were made using ASD Field Spec FR, ASD Inc., resulting in

libraries of spectra from 350 to 2 500 nm [13,19,50]. Feng

et al. [50] measured this data before freeze injury and 5, 10,

20, 35 days after freeze treatment.

Fitzgerald et al. [19] collected data for the meta-analysis at

the canopy, head, and leaf scales to represent canopy variabil-

ity. Asante et al. [17] utilised hyperspectral data to see the cold

tolerance difference to nitrogen treatment. Hyperspectral

reflectance images of frozen tea leaves with different nitrogen

concentrations are shown in Fig. 4(c). According to Lu et al.

[51], Spectralon fluoropolymer was used to standardise the
Please cite this article as: S. Shammi, F. Sohel, D. Diepeveen et al., A surve
in plants, Information Processing in Agriculture, https://doi.org/10.1016/j
spectral responses of the hyperspectral images. The hyper-

spectral images were acquired over the wavelength range of

390–1000 nm (at 462 wavelengths). Zhang et al. [52] studied

frost damage characteristics from the hyperspectral images

with a spectral range of 400–1000 nm. Hyperspectral sampling

of plant components was conductedwith a PIKA II hyperspec-

tral camera [20,53]. Shao et al. [54] composed the hyperspec-

tral image at a spectral resolution of 5 nm. The imaging

sensor used by Gao et al. [55] had spectral ranges of 517–1

729 nm. Choudhury et al. [56] measured high-resolution spec-

tral reflectance of vegetation and soil in field and laboratory

conditions covering the 350 –2500 nm spectral region.

5.2.3. Near infrared spectral
Near-infrared spectral (NIRS) imaging is captured from the

near-infrared region of the electromagnetic spectrum (from

780 nm to 2 500 nm). Near-infrared spectral data was used

to distinguish frost-damaged seeds and kernels [58,59]. Agelet

et al. [58] measured 141 spectral points ranging from 850 nm

to 1 650 nm, at 5 nm intervals. However, Jia et al. [59] used a

total of 633 wavelength points from 1 110–2 500 nm, where

they showed that NIRS is feasible to analyse frost-damaged

kernels. Agelet et al. [58] also discussed the limitations of

NIRS. They argued that NIRS is only suitable for single-seed

analysis because of the variation between single-seeds within

a plant head. The performance also degrades for high concen-

trations due to its detection limitations.

5.2.4. Narrow waveband spectral
Narrow waveband spectral images provide detailed and accu-

rate information by capturing precise measurements of speci-

fic wavelengths. Wu et al. [60] adopted a new spectral image

for predicting frost-damaged yield loss during stem elonga-

tion in wheat. The images were captured between 1 400 and

2 100 nm wavebands. They demonstrated that a narrow band

could determine the optimal spectral index for predicting

yield loss caused by frost.

5.2.5. Terahertz
Frost damage assessment through terahertz imaging is a rel-

atively new technique. Terahertz imaging is non-ionizing and

can penetrate most dry and non-metallic materials. Accord-

ing to Lee et al. [57], the terahertz images were collected at

275 GHz and 10 000-pixel resolution. This technique provided

additional information in the images of the spikes for grain

water content. Their imaging technology is shown on the left

side of Fig. 4(d).

5.3. Rgb

An RGB image is a colour image captured in the range of the

visible electromagnetic spectrum. The image is reproduced

from red, green, and blue light reflected from the object.

RGB is the most popular and well-known imaging technique.

An RGB image captures the visible symptoms of frost damage.

Such images have been used to identify the frost-damaged

areas of plants after a few days after a frost [61,62]. Macedo-

Cruz et al. [61] captured RGB images of healthy and frost-

damaged areas of oat crops. The colour differs from the

green-healthy crop to the frost-damaged discoloured crops.
y of image-based computational learning techniques for frost detection
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HamidiSepehr et al. [62] applied a similar strategy. However, L´

opez-Granados et al. [63] captured sequential RGB images to

monitor flowering dynamics of almond trees to reduce frost

risk. Furthermore, RGB images can also be an efficient tech-

nique for frost management [44]. They used high-resolution

(1920 � 1080) RGB images and thermal images to determine

the heating requirements in an apple orchard. Kimball et al.

[64] used RGB images to compare and evaluate the green

cover and accuracy of their visual ratings of frost severity.

5.4. Fluorescence

Fluorescence imaging helps visualise biological processes tak-

ing place in plants. For example, fluorescence images are used

to characterise frost damage in crops and plants [65]. Perry

et al. (2017b) explored four excitation bands (ultra-violet, blue,

green, and red) and three detection bands (yellow, red and far-

red). They combined both activation and detection wave-

lengths for the measurements of frost indices. Fluorescence

microscopy was adopted by Livingston et al. [66] to under-

stand the survival mechanism of freezing in oat crowns. This

technique revealed that the frozen tissues emitted fluores-

cence with excitation between 405 and 445 nm wavelengths.

5.4.1. Chlorophyll fluorescence
Chlorophyll fluorescence is one of the widely used modalities

to assess chilling injury [16,67,68]. Chlorophyll fluorescence

imaging can capture plant stress parameters and spatial

heterogeneity distribution [69]. Dong et al. [70] used chloro-

phyll fluorescence images and fluorescence parameters to

find chilling injury in tomato seedlings. In an extended

research article by Dong et al. [67], they used chlorophyll flu-

orescence to discriminate different types of cold stress.
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Combinatorial chlorophyll fluorescence imaging can dif-

ferentiate cold tolerant and sensitive accessions [16]. A

chlorophyll fluorescence image from their work is in Fig. 4

(b). Fluorescence emission can provide highly contrasting fea-

tures to reveal plant tolerance to low temperatures [71]. On

the other hand, Arnold et al. [68] suggested considering

chlorophyll fluorescence when there is a clear understanding

of plants’ tolerance to temperature extremes.

5.5. Others

A few other image modalities have been used to analyse frost

in plants. Electrical impedance tomography (EIT) and

reflected light microscopy are the two other image modalities

used in frost detection, as illustrated in Fig. 3. Electrical impe-

dance tomography (EIT) has rarely been used to study plant

freezing. Qian et al. [72] explored EIT to identify the freezing

resistance in rose stems. They used different excitation cur-

rents such as 100, 150, 200, 250, 300 and 500 micro amperes

(mA), but the best image was constructed when the size and

frequency of the excitation current were 250 mA and 1 kHz.

Stegner et al. [73] detected ice inside plant tissues from

reflected light microscopy. They observed glowing light reflec-

tions from the ice crystal. Magnetic resonance imaging has

also been used [74].

6. Image-based computational approaches for
frost detection and analysis

Image-based computational approaches have a typical work-

flow of image acquisition, preparation, feature extraction,

computational model application, and model evaluation
y of image-based computational learning techniques for frost detection
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[17,53,75–77]. In Fig. 5, a summary of the workflow is provided

for frost detection and analysis techniques. The green rectan-

gles represent the key steps and green arrows show the

respective workflow. The blue rectangles represent possible
Please cite this article as: S. Shammi, F. Sohel, D. Diepeveen et al., A surve
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ways to accomplish the respective steps. The dashed lines

with respect to the ‘‘Feature extraction” step indicate that

some methods may not use this step, and rather operate

directly on the image data.
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The first step is data acquisition. In a specific image-based

implementation, image acquisition can be remote or proxi-

mal [19,40,52,78]. Different image acquisition devices provide

image qualities to capture the desired images, such as ther-

mal, RGB, and hyperspectral cameras [35,61,79]. The image

quality is also dependent on how the cameras are mounted

on the platforms.

The images usually require pre-processing before they can

be used by any computational method. Different image pro-

cessing techniques have been applied for frost damage detec-

tion [51,67,80,81]. Prediction models are built depending on

the most relevant features [51,58,59,82,83]. For RGB images,

a common feature type is colour [61–64]. Other feature types

include spectra, texture and temperature [43,49,65,67,84].

Infrared thermography is used to capture the exothermic fea-

tures [35,36].

Traditional computational approaches such as statistical

and ML-based techniques depend on the selected features

from the acquired images. A feature extraction method is

required based on the type of feature and the data type. The

success of statistical and ML models depends on their ability

to identify a hierarchy of features and generalised trends

from the available data. Feature extraction tools have also

been demonstrated for integrating disparate and redundant

data to draw coherent patterns for identification, and quan-

tification [49,85]. The performance of the statistical and ML

models rely on the quality of the features. Feature extraction

removes redundant information to obtain the most valuable

information or clues [83]. As the dimensionality increases,

the computational cost also increases. Therefore, it is neces-

sary to find a way to reduce the number or dimension of fea-

tures being considered [86]. On the other hand, deep learning

models can learn suitable features automatically. A convolu-

tional neural network (CNN) is a type of artificial neural net-

work that is usually designed to extract features from the

data and classify the high dimensional data [53,87]. The net-

work structure can learn distributed feature representations

of data by combining lower level features to form more

abstract, higher-level characteristics or features for classifica-

tion [88]. These abstract and invariant features of the data can

be extracted as an essential deep feature [89].

Many statistical, traditional machine and deep learning

methods have been used to detect frost damage. The most

frequently used statistical models are regression, correlation,

significance test [50,67,78,90]. Research related to infrared

thermography for frost detection and analysis often apply

infrared differential thermal analysis (IDTA) to see the

changes in plants over time [12,37–39,42,43]. More recently

for frost detection, ML models are used more widely. For

example, several researchers classified frost using Support

Vector Machines (SVM), a traditional ML model [58–60,91].

The crucial components of an ML model are a moderate-

sized data set, an algorithm, feature extraction and a training

component [92]. Other ML models such as K-Nearest Neigh-

bors (K-NN), Regression, Artificial Neural Networks (ANN) will

be discussed in more detail in Section 8.

Deep learning is currently being actively used for high

throughput plant phenotyping. Although CNNs are used for

analysing and classifying images, these models require prop-

erly labelled images. A typical convolutional network is a
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stack of convolutional layers. The term convolution means fil-

tering, so each layer refines the input data, convolves them,

and feeds the output to the next layer. This process simplifies

the data for better processing. Furthermore, a DL network has

some key components, such as convolutional layers, pooling

layers, activation functions, dense or fully connected layers

[93]. A few recent publications have applied DL models for

cold stress in plants [53,83].

Evaluation is required to validate the performance of the

models. The most commonly implemented evaluation metrics

to validate the performance of statistical models aremaximum

likelihood, correlation or determination co-efficient [20,79]. On

the other hand, confusion matrix, precision, recall and F-score

are widely used to evaluate ML models [58–60,91]. Intersection

over Union (IoU) and mean average precision (mAP) are rou-

tinely used evaluation metrics for deep learning models

[44,53]. Themetrics compare the predictionswith ground truth,

and generate quantitative scores of performance.
7. Taxonomy of frost detection and analysis
techniques

A well-designed taxonomy helps to fit and review different

papers in the proposed context. We developed a novel taxon-

omy based on a typical workflow summary. We divided each

key step of theworkflow (Fig. 5) based on the surveyed papers.

An overall taxonomy of frost detection techniques is shown

in Fig. 6. The taxonomy helps to categorise the papers and

their underlying techniques into different categories from

various viewpoints. We have summarised 80 papers based

on the taxonomy shown in Table 3 In this table, we have used

the acronyms at the end of each leaf from the taxonomy. We

also have categorised the papers based on the crop, image

modality, feature extraction and the computational method

in Table 3.

This taxonomy has been used to summarise the table in an

organised way. For instance, the first paper [60] indexed in

Table 3 applied partial least squares regression (PLSR) and

Support Vector Regression (SVR) as statistical analysis to pre-

dict percent yield difference of damaged wheat based on nar-

row waveband spectral images. The data set size varied

between 77 and 112, and the prediction of frost damage was

based on spectral features. The last column in the table uses

the acronyms of the taxonomy leaf nodes; as such, this study

used a controlled environment (CE) for data collection,

smoothing (S) and normalisation (N) for noise removal in the

data preparation step. In addition, to extract the region of

interest (ROI), reflectance-based indices (IG) for various spec-

tra were generated, and the data were labelled data pixel-

wise (PW). Finally, two regression (R) analyses, namely, PLSR

and SVR were applied. This classification essentially sum-

marises the basic building blocks of the paper. All the papers

indexed in Table 3 are classified in the sameway. In the follow-

ing sections, we discuss the taxonomy branches in detail.
7.1. Data acquisition

Frost detection and analysis techniques require sufficient

data. Data can be collected either using sensors or crowd-
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sourcing. Crowdsourcing can be defined as data collection

from outsourcing tasks to many non-professionals [94].

Crowd-sourcing is being increasingly used in scientific

research and applications. This type of data collection

method is contributing to big data analytics in agricultural

research and development projects [95]. In addition, advanced

cameras and data loggers can capture data in different

modalities. We discuss possible ways of data collection for

frost detection and analysis.

7.1.1. Controlled environment
For frost analysis, controlled environments (CE) include con-

trolled growth rooms or greenhouses for optimised plant-

growing systems and sample preparation. Controlled frost

treatments are conducted in an artificially controlled environ-

ment [17,60]. Generally, image acquisition inside these con-

trolled environments is defined as proximal sensing. Hyper-

spectral imaging systems are often used to collect images

after the freezing treatment on the mobile electric platform

controlled by software and adopt the push-broom method

[83,96]. A push-broom method is done by arranging the sen-

sors perpendicular to an object’s direction. Gao et al. [55] also

used a similar method. Their system uses a push-broom

imaging spectrograph at a distance of 38.4 cm from the object.

A push-broom hyperspectral camera, PIKA II, was used,

which was mounted on a linear gear slider and a Dayton DC

gear motor [53].

Alternatively, Dong et al. [70] collected fluorescent images

with a chlorophyll imaging system–IMAG-MAX/B inside an

artificial climate chamber. A hyperspectral imaging system

named Dualix spectral Imaging was used to capture hyper-

spectral images [97]. Shao et al. [54] acquired the NIR hyper-

spectral images with SpectralSENS. A DSLR Camera (Nikon

D5 100) with an 18–55 mm lens was mounted on a Provista

7 518B Tripod that produced the digital images [80]. To repre-

sent canopy variability as input data, Fitzgerald et al. [19] col-

lected spectral images from the head, canopy and leaf with an

ASD Field Spec spectrometer. The images were collected by

routing the probe into the freezer while undergoing treatment

[49]. On the other hand, Duddu et al. [84] used a 10-bit mono-

chrome CCD camera as an imaging spectrograph. Hyperspec-

tral images were collected with artificial lighting, mounted on

either side of the lens of the Perten DA 7 200 NIR system in a

room with controlled temperature [58]. Arnold et al. [68]

obtained their images from a Pulse Amplitude Modulation

(PAM) chlorophyll fluorescence imaging system mounted

185 mm above the Peltier plate.

Thermal cameras from the FLIR are often used to collect

thermal images [22,35,62]. FLIR cameras come with FLIR

Research IR software where the thermal images can be visu-

alised and analysed [62,98]. Neuner [41] took close up thermal

images collected by a Therma-CAM S60 camera.

7.1.2. Natural conditions
In field environments, frost assessment is required for the

early prediction of yield loss. Non-destructive proximal or

remote sensing techniques can make rapid, spatial assess-

ment of frost damage [65]. Thus collecting images from field

conditions is a crucial step to limit economic losses through

timely management decisions [12].
Please cite this article as: S. Shammi, F. Sohel, D. Diepeveen et al., A surve
in plants, Information Processing in Agriculture, https://doi.org/10.1016/j
7.1.2.1. Mounted on platform. Cameras are often mounted

on platforms to collect images from field-grown crops. For

example, Macedo-Cruz et al. [61] placed a digital camera

1.5 m above the ground. Feng et al. [50] placed the probe ver-

tically downward at the height of 0.5 m from the canopy. Sim-

ilarly, Ma et al. [81] oriented the camera vertically downwards

over the canopy at a distance of 1.5 m. on a tripod.

7.1.2.2. Handheld. Canopy reflectance was measured by a

handheld spectroradiometer [12,13,79]. Nuttall et al. [12] and

Perry et al. [13] used an ASD fieldSpec FR to measure spectral

reflectance after the frost treatments. Nuttall et al. [12] also

measured fluorescence with a handheld active light

fluorometer.

7.1.2.3. Satellite. Recently, high-resolution satellite images

have been employed to assess frost risk in cultivated lands, i.e.

moderate resolution imaging spectrometer (MODIS) and med-

ium resolution imaging spectrometer (MERIS) images [99].

Currit and St Clair [100] studied MODIS images to evaluate

the spatial pattern and themagnitude of damage in the Aspen

forests due to spring freeze. Liu et al. [75] and Cogato et al. [45]

used Sentinel- 2A/B images for further processing and analy-

sis. Fayad et al. [101] collected sentinel-1 time-series images.

Gobbett et al. [102] studied the influence of temperature for

frost risk from Landsat 5 TM images. The spatial resolution

of Landsat images allow extracting data to identify chilling

damage with high precision [103]. On MODIS imagery, spatial

interpolation was applied to minimum temperature data to

acquire a spatially continuous image [104]. MODIS normalized

difference vegetation index (NDVI) data were collected from

satellite images covering Kansan and Ukraine cultivated lands

[105]. In contrast, She et al. [78] used both MODIS and Chinese

HJ-1A/B images for their study. Overall, satellite images pro-

vide information on a large scale, but the implementation

and accuracy depend on the images’ delivery time.

7.1.2.4. Unmanned aerial vehicles (UAV). Unmanned aerial

vehicles (UAV) can be used to collect data in precision agricul-

ture. Yuan and Choi [44] mounted an RGB and thermal cam-

era on a DJI Matrice 600 Pro UAV to collect images from an

apple orchard. The UAV flew at a nominated altitude to pre-

vent blurry images. In 2019, Choudhury et al. [56] mounted

a spectroradiometer and chlorophyll meter on a UAV to col-

lect spectral and chlorophyll reflectance, respectively. Chen

et al. [106] performed UAV flights at an altitude of 30 m above

a wheat field. The UAV collected spectral reflectance through

a MicaSence multispectral camera. Goswami et al. [47] flew a

UAVover experimental fields of maize during the peak season

to collect four-channel multispectral images. L´opez-

Granados et al. [63] acquired UAV imagery to monitor almond

flowering dynamics at field scale. Canopy reflectance was

measured with a multispectral camera flown on a multi-

rotor UAV over a wheat field [13].
7.2. Data preparation

Data preparation corresponds to cleaning and transforming

the raw data before applying them to any analytical method.
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Raw data usually suffers from various nuisances, e.g. noise,

blur, inconsistent illumination, affecting the results. There-

fore, to obtain correct results, proper preparation and

research design is a crucial step. This includes setting up

the research design to enable the generation consistent

images with minimal noise.

7.2.1. Image enhancement
In data preparation, image enhancement is one of the most

important and complex techniques [107]. There are many

image enhancement techniques such as colour conversion,

contrast adjustment, thresholding, morphological operations

used to make the image ready to apply any computational

model [52,97].

7.2.1.1. Colour conversion. Fluorescence parameter images

are usually one-dimensional grayscale images [67]. To facili-

tate the visualisation of the cooling phenomenon in tomato

seedlings, they converted to RGB valued colour images

[67,70]. However, converting to grayscale is commonly per-

formed as image pre-processing [52,81,97].

7.2.1.2. Contrast enhancement. Contrast can enhance an

image so that the pixels’ colour properties are intensified

from the neighbouring pixels. This process is adopted at the

beginning of the image enhancement to make further pro-

cessing easier[51,62]. After modifying the contrast of the

image, the green colour of the healthy crop was enhanced

[61].

7.2.2. Noise removal
Noise in an image can be defined as the random variation of

colour or brightness information. It is produced by the sensor

device, i.e., digital camera or circuitry of the scanner. Noise

removal is a critical step for removing unnecessary informa-

tion from the data. However, noises in an image can cause

increased complexity resulting in increased false positives

[62].

7.2.2.1. Filtering/smoothing. Filtering or smoothing is

applied to remove noise from image data [17,60]. The atmo-

spheric water absorption wave- lengths are removed from

the spectra [49,60]. Weak spectral signals are removed to

reduce the reflectance errors as well. Moreover, in their study,

the Savitzky-Golay smoothing convolution was applied to

smooth the reflectance curves [49,56,60]. Zhang et al. [52]

excluded the noise wavelengths for better classification

results. The global navigation satellite system (GNSS) mod-

ule’s images also contain noise. Median values are being used

to remove this noise [44,55]. However, to remove the noise

regions, mean spectra are calculated [17,50,97,108]. The pixel

continuity determines noise reduction, excess green index,

the ratio of blue/green, and red/green pixels [106]. Liu et al.

[108] reconstructed a multi-phase NDVI time series using

the Savitzky–Golay filtering. In contrast, Agelet et al. [58] used

a smoothing method named Standard Normal Variate (SNV)

to reduce the scattering effect. However, Macedo-Cruz et al.

[61] averaged threshold values to smooth the spectral

components.
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7.2.2.2. Normalization. Normalization is another approach

for noise removal [60]. Normalization is achieved by dividing

the spectral data by the mean of reflectance [45,60,83]. Asante

et al. [17] removed noise from the data within each image

region by applying maximum normalization. The reflectance

parameters were normalized using principal component

analysis (PCA) to reduce the noise from multiple dimensions

[50]. In the study of Macedo-Cruz et al. [61], they normalized

the indexes of the three primary colours to generate tristim-

ulus values relative to the white colour. In this study, they

used the CIELab colour model. Jelowicki et al. [46] calculated

the irradiance that was coming from the sun through the sun-

shine sensor included in a Sequoia camera. This feature

enables them to normalize the images quickly. However, Perry

et al. [13] normalized the spectra by continuum removal to

reduce illumination artefacts from the spectral image.

7.2.3. Region of interest (ROI)
In a proximal or remote sensed image, there is considered

unnecessary and redundant information, which leads to inac-

curate prediction. A region of interest (ROI) is a portion of an

image or data filtered to operate. For example, cropping is a

basic image manipulation process to remove unwanted por-

tions of an image [62,81].

7.2.3.1. Segmentation. Segmentation is partitioning an

image based on objects or pixels [109,110]. For spectral

images, calculating mean spectra in the spectral range are

required to segment the border of the noise region [17]. A

two-stage segmentation method was used by Ma et al. [81].

In their work, they followed coarse and fine segmentation

with DCNN (Deep Convolutional Neural Network) and FCN

(Fully Convolutional Networks). FCN allows pixel-wise

semantic segmentation to remove the noise pixels. Segmen-

tation can be based on thresholding, edge extraction, or mor-

phological operation [111].

Thresholding is pixel-based segmentation [20,58,62,76],

and probably the most straightforward method [111]. Otsu’s

method is a popular thresholding method for maximizing

the variance of the black and white pixels. Otsu’s method

was used to scale the principal component score of the image

[17,52,61]. Otsu’s method was also applied to grey-scale

images. Zhang et al. [52] applied the method at 500 nm, while

Macedo-Cruz et al. [61] used the same method for a bi-class

problem. Lu et al. [51] used an automatic threshold to achieve

the best image contrast for plant segmentation.

Morphological operation is applied to segment images into

smaller parts to enable further processing [51,61,80]. Morpho-

logical erosion was applied to the segmented images to elim-

inate areas that did not represent freeze injured tea leaves

[17]. Enders et al. [80] detected edges of the plants by isolating

only plant pixels. The pixels outside this boundary were

excluded to facilitate the trait extraction.

7.2.3.2. Masking. Masking is a bitwise operation to set the

background pixels to zero. With this operation, the pixels of

the region of interest are identifiable. Masking was applied

to the original hyperspectral images, and the average spec-

trum was applied to process the data before the analysis
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[80,83]. Cogato et al. [45] created masks with QGIS 2.4 (http://

www.qgis.org/) for sentinel images to avoid border effects. In

the study of Jelowicki et al. [46], the biggest challenge was

identifying the roads and soil in the image. They applied a

masking operation to subtract the road from the index rasters

[45]. Enders et al. [80] applied masking to remove soil pixels

from the plant pixels, which was important to measure the

attributes of the cold stress in the plant.

7.2.3.3. Image correction. Images of different modalities

require corrections before analysis. Usually, hyperspectral

images come with white and dark references. So, the calibra-

tion of the hyperspectral image is calculated for correcting

the raw images [17,55]. Fayad et al. [101] used calibrated

Sentinel-1 image correction to covert pixel values into back-

scattering coefficients. A whiteboard approach was used for

correction during measuring canopy hyperspectral reflec-

tance [79]. Crop imagery was corrected for reflectance by

using calibration panels at the canopy level [49,65]. However,

Liu et al. [108] applied radiometric calibration, atmospheric

correction, and geometric correction on satellite images. A

similar approach was adopted by She et al. [78]. Becker-

Reshef et al. [105] used BRDF-corrected MODIS reflectance

imagery for their study.

7.2.3.4. Indices generation. The mathematical combina-

tions of reflectance are generally calculated into spectral

indices according to wavelength [60,102]. Wu et al. [60]

extracted indices developed for chlorophyll-sensitive and

water-sensitive stresses to predict yield loss in winter wheat.

Eight vegetation indices are calculated based on Sentinel-2

data to describe the vegetation characteristics [20,75]. Murphy

et al. [20] extracted vegetation-only pixels from the Red (656–

670 nm), and Near Infrared (804–818 nm) regions. NDVI is one

of the most commonly used indices for remote sensing of

vegetation [20,78,79,100,105,108]. Liu et al. [108] compared

NDVI values for different time phases of cultivated fields.

However, Zhao et al. [104] assessed two-phase frost damage

and showed the degree of damage by normalized vegetation

indices. Gao et al. [55] generated a bud injury (BI) index for

estimating the percentage of damage in flower buds. Feng

et al. [50] calculated freeze-injury comprehensive evaluation

index (FICEI) as an agronomic parameter. Twelve spectral

indices that are correlated with frost damage and yield loss

were measured by Perry et al. [65] In their study, they also

used nine distinct fluorometer indices. Wei et al. [49] mea-

sured chlorophyll concentration indices from leaf spectra.

They also discussed optimal band positions for each type of

spectral vegetation index in their study. Mishra et al. [16]

measured cold tolerance by generating parameters ChlF

parameters: maximum quantum yield of PSII photochemistry

(FV/FM) and fluorescence decrease ratio (RFD).

7.2.4. Labelling
Labelling is one of the most important steps of data prepara-

tion. This process can be very labour-intensive [81]. For proper

characterisation or classifications, the data is tagged with one

or more labels. Labelled data is beneficial for traditional

machine learning and deep learning. Our study found that
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labelling can be pixel-wise, or it can be bounding boxes or log-

ical arrays.

7.2.4.1. Pixel-wise labelling. There are various methods for

pixel-wise labelling. Many researchers use pixel-wise labelling

based on colour [16,63,68,72,78,90,99,104]. Different colour gra-

dientswere used as labels to classify the damage [52]. Cho et al.

[82] labelled pixels according to three classes based on coeffi-

cients of variation, mean and standard variation of spectra.

In comparison, Asante et al. [17] labelled the pixels as defective

or non-defective and classified an image of a single grainwhen

it contained more than five defective pixels. Dong et al. [70]

also labelled the pixels into four categories depending on the

cold injury level. In their work, they rejected the pixels that

were less than their defined threshold value. Perry et al. [65]

labelled pixels as frosted or non-frosted. The mean value of

the indexes are assigned to the pixels [46]. NDVI values are

labelled to individual pixels [13,78,84,100,103,105,106]. Gos-

wami et al. [47] used labels to build the data set of four classes

(healthy, stressed,weeds, non-cropped). Thermal image pixels

are labelled with the corresponding temperature [43].

In the study by Yang et al. [53], a softmax function for the

pooling layer of a convolutional neural network was used to

output the classification label. Ma et al. [81] adopted a sam-

pling strategy for the sub-images using image-labelling soft-

ware to minimise the labour of labelling. Their data set

consisted of 96 images with pixel labels. In unsupervised clas-

sification, a cluster labelling was done in an unsupervised

classification on the RGB image by Macedo-Cruz et al. [61].

For MODIS images, pixels were labelled based on land sur-

face temperatures [75,101,102]. Liu et al. [108] labelled 1 km

pixels using the generalized split-window algorithm.

7.2.4.2. Bounding box labelling. Bounding box annotation

defines the target object surrounded by a rectangular box.

Yuan and Choi [44] labelled eight stages of apple flower by

bounding boxes. The bounding boxes were different sizes

depending on the bud stage. These annotationswere prepared

in Darknet format using YoloLabel (an open-source tool).

HamidiSepehr et al. [62] used an image labeller to label images

with bounding boxes for Faster R-CNN (Region-based Convo-

lutional Neural Network) model. At the same time, they used

a Matlab script and LabelImg software for preparing the labels

for RetinaNet and YOLOv2 (You Only Look Once: version 2),

respectively. On the other hand, bounding circles were drawn

to discriminate between healthy and cold injured flowers [55].

7.2.4.3. Logical array. A logical array is a set of two classes

inside the array that decide true or false. For instance, class

labels are entered as a logical array, where each class is repre-

sented as a column of zeros or ones [58,59]. In this case, the

two classes correspond to frost-damaged or healthy maize

seeds [59]. In another study, Agelet et al. [58] also used similar

labelling, where a threshold determined the class separation

between frosted and sound corn kernels.

7.3. Feature extraction

For any computational approach, with the rise of data dimen-

sionality, the complexity of the analysis also increases [86].
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Feature extraction is used to select the most useful data char-

acteristics. The goal is to have a small number of features that

preserve information for the data analysis [112].

7.3.1. Data dimensionality and redundancy reduction
Redundant information also increases the complexity of the

analysis. The key to reducing data complexity is an accurate

and efficient dimensionality reduction [113]. Principal compo-

nent regression (PCR), partial least squares regression (PLSR)

and linear model (LM) were examined to extract features

[17,50]. PCR is a dimension reduction method that transforms

highly correlated variables into uncorrelated principal com-

ponents variables [114]. Partial least square regression (PLSR)

decomposes the spectral information and response variables

by using covariances [115], while a linear model (LM) can be

used to estimate predictor variables [17]. Lu et al. [51]

extracted spectral features from the reflectances in blue, red

and NIR regions. These spectral features helped build models

for freeze-induced damage and assessment [51]. Extraction of

distinct spectral features is needed for hyperspectral image

analysis [13,19,58].

In the study of Zhang et al. [83], principal component anal-

ysis (PCA), successive projection algorithm (SPA) and neigh-

bourhood component analysis (NCA) were evaluated for

extracting spectral features. PCA converts high dimensional

data into a small set of comprehensive indicators by remov-

ing redundant information [116]. PCA is widely applied for

extracting spectral information [54–56,117]. Jia et al. [59] used

PCA and OLDA (orthogonal linear discriminant analysis)

together to extract features from NIR spectra for normal

and frost-damaged maize seeds. According to their study,

OLDA was calculated from the extracted principal compo-

nents to create an accurate model of extracted features. SPA

removes redundant information and arranges the character-

istic variables according to the size of correlation [118]. SPA

is another popular method used for feature extraction

[54,55]. However, NCA extracts features to achieve dimension-

ality reduction by measuring the Mahalanobis distance [119].

7.3.2. Keypoint descriptor
A keypoint descriptor is the point of interest in an image. A

keypoint feature-based approach was used by Yuan and Choi

[44]. In their study, they chose BRISK (Binary Robust Invariant

Scalable Keypoints) over standard algorithms such as SIFT

(scale-invariant feature transform) or SURF (Speeded up

robust features). BRISK provides better accuracy and compu-

tational efficiency [120]. It identifies the image keypoints by

comparing neighbouring image points in a binary manner

[44]. In contrast, Mishra et al. [16] applied sequential forward

floating selection (SFFS) to create a high-performing classifier.

7.3.3. Convolutional layers
In traditional machine learning, a feature map is required

first, and then the classifier is applied. This process is some-

times complex because every set of data has diversity for dif-

ferent problems [121]. But in deep learning, convolutional

layers can automatically generate the features from low-

level to high-level layers according to their architecture

[53,121]. Ma et al. [81] extracted low-level features for their

shallow machine learning model. Resnet50, VGG16, and Dar-
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knet19 were chosen as feature extractors for Faster RCNN,

RetinaNet, and YOLO [62]. In convolutional neural networks

(CNNs), the layers continuously learn the input features

[53,97]. The feature map passes through convolutional layers

and the max-pooling layers to build the classifier [53].

7.3.4. Spatiotemporal pattern
From satellite imagery, the feature of frost damage depends

on the spatiotemporal patterns. The changes in colour and

texture on land cover over time can measure the minimum

temperature variation in satellite image pixels [99,100]. Gob-

bett et al. [102] extracted variables from satellite data that

are change factors depending on temperature and time. The

temperature profiles over the land cover provide spatial

matching between the experimental plots by utilising the

nearest neighbour approach [101]. Liu et al. [75] have con-

structed a feature library with time, terrain, and vegetation

features. She et al. [78] and Becker-Reshef et al. [105] evalu-

ated spatial and temporal variations in surface features from

MODIS images.

7.3.5. Phase change over time
Freezing happens when the temperature is below zero

degrees over a period of time. In laboratory tests, after a freez-

ing treatment, water inside plant tissues changes phase and

forms ice [37,40,64,68]. This type of feature can be observed

through visual inspection. The physical changes of plants

are also a type of feature for following frost damage [68,117].

7.3.6. Other
In this section, we discuss several feature extraction methods

that have been used but do not fit into any of the previous cat-

egories. Wu et al. [60] examined a coefficient of determination

approach to select the best wavelengths having spectral fea-

tures. However, from the green, red, red edge, and near-

infrared spectral bands, three vegetation indices were chosen

as features [46]. Murphy et al. [20] assessed mean spectral

reflectance for target features. Colour based features are also

a common method [51,61,72]. Another important feature

selection is the Gini index, which can identify the best fea-

tures by calculating the error based on misclassified pixels

[47].

8. Computational methods used in image-
based frost detection

Researchers investigated the freezing process in the early

days by manual observation, were discussed in Section 3.

More recently, computational methods have been developed

that make frost detection and analysis more efficient. The

first steps in the computational approach require data acqui-

sition, preparation and feature extraction. In our review, we

survey statistical, traditional machine learning and deep

learning as computational methods.

8.1. Statistical analysis

A statistical analysis uncovers the patterns and trends in col-

lected data. In our review, we found most of the articles used
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statistical analysis. For instance, mean, regression, hypothe-

sis testing and descriptive statistics are most commonly used.

In the sections below, we discuss the statistical methods

adopted for frost detection in plants and crops.

8.1.1. Regression
Regression is a statistical approach to understand the rela-

tionship between variables. Wu et al. [60] evaluated the level

of frost damage by predicting the percent yield difference

(PYD). Their work selected nine vegetation indices on the best

wavelength combination to establish a linear regression

model. Their regression model showed significantly higher

accuracy than partial least square regression (PLSR) and sup-

port vector regression (SVR) models. Similarly, to establish a

quantitative evaluation of cold injury in tea plants, three

regression models were compared [17]. Linear regression

models outperformed the PLSR and principal component

regression (PCR) to predict the cold injury. Feng et al. [50]

observed the best performance for evaluating freeze stress

in wheat with multiple linear regression (MLR). Feng et al.

[50] compared five methods such as PCA, PLSR, correlation

analysis, variable analysis and MLR to establish the freeze-

stress prediction model.

Linear regression was used to predict the yield reduction

in field crops [12,19,49,72,79]. Xie et al. [79] applied MLR to

explore the effect of low-temperature stress in winter wheat.

They evaluated the relationship between spectral reflectance

and the yield of winter wheat. Their model showed better per-

formance than SPA in predicting crop yield. Fitzgerald et al.

[19] quantified the frost damage with linear regression mod-

els. Wei et al. [49] discussed the findings by applying MLR

for automatic detection and monitoring of freezing injury in

oilseed rape leaves. They assessed the physiological status

and yield loss by investigating the vegetation indices through

their model. Regression-based cold-sum based on the indices

was used for predicting wheat yield loss [13], where a cold

sum is a product of negative temperature and the duration

of the freezing event.

Cho et al. [82] compared satellite-derived regression mod-

els with field-based models to test the dependency of temper-

ature and satellite phenology. They explored the patterns and

factors that control the thermal parameters of the canopy by

regression analysis. Gobbett et al. [102] also applied Multivari-

ate Adaptive Regression Splines (MARS) on high-resolution

MODIS data. They observed the relationship between night-

time temperature and its impact on current and future frost

risk in grapevines. Kotikot et al. [90] statistically characterised

some known topographical risk factors such as elevation, con-

vexity, aspect and land surface temperature through a binary

logistic regression in the Kenyan highlands. Becker-Reshef

et al. [105] evaluated a regression model on MODIS images to

forecast winter wheat production due to frost events.

Lu et al. [51] studied freeze-induced damage and predic-

tion in loblolly pine seedlings with a regression model. They

assessed the freeze-induced damage from hyperspectral

imaging combined with some chemometric techniques. They

observed a significant relationship between the minimum

winter temperature and freeze damage. Arnold et al. [68]

described a linear model for characterising plant function

with response to minimum temperature.
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8.1.2. Hypothesis test
Analysis of variance (ANOVA) and Student t-test are statistical

methods for observing the relationship or comparison in two

or more groups [122]. The Student t-test observed statistical

significance to assess frost [20,45,117]. To do so, they observed

the relationship between spectral reflectance and numerous

vegetation indices.

The correlation between cold sensitivity and genotypes

was shown by ANOVA [42,80]. Choudhury et al. [56] also devel-

oped the hypothesis for chlorophyll absorption index with

spectra taken after frost. A significance test was used along

with object-based image analysis to observe better the moni-

toring of flower density [63]. Kimball et al. [64] applied ANOVA

across four freezing temperatures on St. Augustinegrass to

observe the response. In 2016, Livingston III et al. [35] also

investigated freezing patterns in different wheat genotypes

using ANOVA (standard F-tests and Tukey-Kramer mean sep-

aration tests).

8.1.3. Descriptive statistics
Descriptive statistics are used to summarise the features of

the data [123]. Mean and Standard Deviation (SD) is used in

many research works for frost analysis [16,57,70,106,108].

Dong et al. [70] calculated the mean and SD on grey-scale

co-occurrence to evaluate chilling damage in tomato seed-

lings. Liu et al. [108] established a threshold model for frost

detection by taking the mean value of time.

8.1.4. Time-series analysis
Time-series analysis of thermal data is a popular method to

investigate the freezing behaviour in plants [42]. Stegner

et al. [38] studied the freezing process in potato leaves by

employing infrared differential thermal analysis (IDTA). This

process clarifies freezing behaviour by explaining the rela-

tionship between frost injury and ice propagation

[36,38,39,66]. Neuner [22] observed the freezing process in

vegetative buds by using IDTA. This process enhanced the

ability to visualise ice nucleation and propagation. Kokin

et al. [43] used time series analysis to see how the strawberry

leaf surface temperature varied in night frost conditions.

Frost susceptibility in blackberry crowns was determined by

measuring the exotherm with IDTA [124].
8.2. Traditional machine learning

Traditional machine learning algorithms such as support vec-

tor machines (SVMs) are mature enough to be applied to

images [125]. However, there is still room for improvement.

In the articles reviewed, most of the researchers applied SVMs

as traditional machine learning algorithm [47,52,54,91,97].

This is one of the best general classifiers in traditional

machine learning [126]. In this section, we review few tradi-

tional ML algorithms that have been used for frost detection

in plants.

8.2.1. Support vector machine
A Support Vector Machine (SVM) [127] is a traditional machine

learning method that is now often used because of its sim-

plicity and flexibility for addressing a range of classification
y of image-based computational learning techniques for frost detection
.inpa.2022.02.003
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Table 2 – Evaluation metrics used in frost detection models.

Method Evaluation metric Definition and interpretation Sample references
where used

Statisticalanalysis R2 It gives the percent variation between
variables.0 � R2 � 1Higher value
indicates better model.

[60,82,17,68,102,104,12,19,90,50,72,106,49,13,105].

p� value It is used to find the significance
level.0 < p� value < 1p > 0.05, null
hypothesis is true;p � 0.05, test
hypothesis is false;p > 0.05, no effect
was observed.

[60,82,51,65,117,56,64,66,45,80,20,42,103,36].

RMSE It is basically prediction
error.0 < RMSE < 10.2 < RMSE < 0.5, good
prediction;RMSE � 0.5, poor prediction;
Lower value indicates better
performance.

[17,102,49].

TraditionalMachinelearning/
Deeplearning

Confusion matrix It is a table consisting true positives,
false positives, true negatives and false
negatives.

[75,97,59,55,99,61,53,83,91,47].

Kappa coefficient K � 1.1 indicates best performance. [75,47,91].
F1-score It is weighted from precision and

recall.0 � F1 � score � 1Higher value
indicates better prediction.

[46].

Intersection over union (IoU) It is measured from ground truth and
prediction boxes.0 � IoU � 1IoU > 0.5
indicates good performance.

[44].

Mean average precision (mAP) 0 < mAP < 100Higher value means better
accuracy.

[44,53].
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Table 3 – An overview of different image based computational approaches for frost detection and analysis. Note: a hyphen (-) indicates the attribute was not explicitly
mentioned in the respective paper.

Ref. Crop Application Data Type Data Set Size Remote/
Proximal

eature Type Method ML/DL/ Statistical Model Techniques Applied
(based on Taxonomy)

[60] Wheat Predicting percent yield difference
of frost damaged crop

Narrow waveband 77–112 Proximal Spectral features Statistical Analysis PLSR, SVR CE; (S, N, IG, PW); R.

[75] Grape Assessing risk of late frost Multispectral 90 Remote Vegetation Index Traditional Machine
Learning

RF S; (IG, PW); STP; RF.

[44] Apple Frost management Thermal, RGB 100, 6 120 Remote Temperature map Deep Learning YOLOv4 UAV; (F, BB); Ked; CNN.
[82] Subtropical forest Assessing chilling adaption Spectral Reflectance

(MODIS)
– Remote NDVI Statistical Analysis LR S; (IG, PW); STP; R.

[17] Tea Assessing nitrogen effect on cold
tolerance

Hyperspectral 24, 30 Proximal Spectral features Statistical Analysis PLSR, PCR, LM CE; (S, N, Sg, IC, PW);
DDRR; R.

[142] Periwinkle Detecting cold stress Fluorescence – Proximal Colour Statistical Analysis Non-linear Regression CE; (IG, PW); STP; R.
[51] Loblolly pine Predicting frost damage Hyperspectral – Proximal Temperature, Spectral Statistical Analysis SPA-PLS CE; (CEn, Sg, IC, PW);

DDRR; R.
[72] Rose Evaluating freezing resistance Electrical impedance

tomography
1 680 Proximal Temperature Statistical Analysis LR CE; (IG, PW); O; R.

[97] Corn Identifying freeze damage degree Hyperspectral 1 920 Proximal Spectral feature Deep Learning,
Traditional
MachineLearning

DCNN, SVM, K- NN, ELM CE; (CC, S, Sg, IC, PW); CL;
(SVM, K-NN); CNN.

[68] Lothian waxy bluebell,
Willow oak, Curtis and
Myretaceaebottlebrush

Assessing response to minimum
temperature

Chlorophyll
Fluorescence

– Proximal Temperature dependent
changes

Statistical Analysis LR CE; PW; PCoT; R.

[90] Tea Characterising frost prone zones Spectral Reflectance
(MODIS)

282 Remote Spatiotemporalpattern StatisticalAnalysis Significance test S; PW; STP; R.

[83] Rice Classifying frost damaged seeds Hyperspectral 1 800 Proximal Spectral features Deep Learning,
Traditional Machine
Learning

DF, DT, K-NN, SVM CE; (S, N, Sg, M, IC, PW);
(DDRR, CL); (SVM, K-NN,
DF).

[102] Grapevine Managing frost risk Spectral Reflectance
(Landsat)

– Remote NDVI Statistical Analysis MARS Model S; (IG, PW); STP; R.

[67] Tomato seedling Analysis of chilling injury Chlorophyll
Fluorescence

220 Proximal Chlorophyll
Fluorescence, Parameter
value, Histogram,
Texture, Colour
descriptor

Traditional Machine
Learning

BPNN CE; (CC, M, IC, PW); O; O.

[117] Arabidopsisthaliana Analysing repair of freeze damage Chlorophyll
Fluorescence

– Proximal Temperature dependent
changes

StatisticalAnalysis Significance test CE; PCoT; HT.

[62] Corn Detecting frost damage RGB 470 Remote Colour Deep Learning YOLOv2, RetinaNet,
Faster R-CNN

UAV; (CC, Sg, BB); CL;
CNN.

[45] Vineyard Assessing frost damaged vineyards Multispectral(Sentinel) 2 Remote Spectral StatisticalAnalysis Student’s t test S; (CEn, N, M, IG, PW); HT.
[46] Rapeseed Detecting frost damaged area Multispectral – Remote Spectral StatisticalAnalysis OBIA, SD UAV; (N, M, PW); O;
[57] Wheat, Barley Assessing frost damage Terahertz – Proximal Phenological difference StatisticalAnalysis SD CE; PW; DS.
[20] Wheat Detecting frost stress Hyperspectral 1 000 Proximal Spectral StatisticalAnalysis Student’s t-test CE; (IG, PW); O; HT.
[76] Corn Identifying frostbite condition in

seeds
Hyperspectral – Proximal Spectral features Traditional

MachineLearning
SVM CE; (S, Sg, IC, PW); O;

SVM.
[54] Wheat Classification of frost damaged

kernel
Hyperspectral 720 Proximal Colour, Morphological Traditional

MachineLearning
LS-SVM CE; (IC, PW); DDRR; SVM.

[101] Cropland Detecting frost in real-time Spectral Reflectance 133,154 Remote STP StatisticalAnalysis Quantitative Analysis S; (IC, PW); STP; HT.
[104] Wheat Monitoring winter frost damage Spectral reflectance 210 Remote Frost duration,

Temperature, NDVI,
Frost continuity

Traditional Machine
Learning

Regression, RF S;(IC, IG, PW); R.

[135] Loblolly pine Assessing freeze tolerance Hyperspectral 1 549 Proximal Spectral Traditional
MachineLearning

SVM CE; (IC, PW); O; SVM.

[79] Wheat Evaluating freezing injury Hyperspectral – Proximal Spectral StatisticalAnalysis MLR, PCR, SPA-MLR HH; (IC, IG, PW); DDRR; R.
[81] Wheat Segmenting frost-damaged spikes RGB 24 000,34 520 Proximal Colour DeepLearning DCNN, FCN MP; (CC, Sg, M, PW); CL;

CNN.
[73] Common box,

Snowdrop,Norway
spruce

Observing ice nucleation Reflected polarised light – Proximal State Statistical Analysis – CE; PCoT.

[108] Cultivated land Monitoring frost disaster onland
cover

Spectral reflectance 240 Remote Landscape feature StatisticalAnalysis STP analysis S; (F, PW); DDRR; DS.

[55] Blueberry Frost damaged floral bud detection Hyperspectral 390,360 Proximal Phenological difference,
Spectral

TraditionalMachine
Learning

PLS-DA CE; (S, IC, IG, BB); DDRR;
O.
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Table 3 – (continued)

Ref. Crop Application Data Type Data Set Size Remote/
Proximal

eature Type Method ML/DL/ Statistical Model Techniques Applied
(based on Taxonomy)

[80] Maize Cold Stress Analysis RGB 4 Remote Morphological StatisticalAnalysis ANOVA, Post-hocTukey
HSD

CE; (S, Sg, M, PW); HT.

[53] Corn Cold/frost damage prediction Hyperspectral 3 600 Proximal Abstract, Invariant DeepLearning CNN CE;(F, Sg, IC, PW); CL;
CNN.

[56] Maize Assessing frost damage Hyperspectral, RGB – Remote Spectral StatisticalAnalysis Regression UAV; (S, IG, PW); DDRR; R.
[106] Wheat Analysing winter survival strategy Multispectral – Remote Phenotyping features StatisticalAnalysis LM UAV; (IC, IG, PW); O; DS.
[47] Maize Frost affected area identification Multispectral 964,1 017 Remote Spectral TraditionalMachine

Learning
SVM, ANN, RF, RC UAV; (N, PW); O; (SVM,

RF, O).
[77] Maize Examining the yield due to frost Spectral reflectance – Remote Landscape feature Traditional

MachineLearning
ANN; S; (IC, IG, PW); O; O.

[63] Almond Reducing risk of late frost RGB – Remote Colour StatisticalAnalysis Tukey HSD UAV; PW; HT.
[38] Potato leaf Freezing process analysis Thermal – Proximal SpatiotemporalPattern StatisticalAnalysis IDTA CE; PCoT; TA.
[52] Corn Classification of frozen seeds Hyperspectral 180, 180, 144 Proximal Spectral Traditional

MachineLearning
SVM, K-NN, PLS- DA CE;(S, Sg, PW); DDRR;

(SVM, K-NN, O).
[12] Wheat Frost damage assessment Spectral, Fluorescence 40 Proximal Spectral StatisticalAnalysis Correlation,ANOVA, LR H; (IG, PW); O; (HT, DS, R).
[70] Tomato Diagnosis of chilling injury Chlorophyll fluorescence 220 Proximal Heterogeneity,

Histogram, Texture
StatisticalAnalysis Mean,

HistogramDistribution
CE; (IC, PW); DS.

[143] Oilseed rape Assessing freezing damage degree Spectral reflectance
(MODIS, MERIS)

– Remote NDVI, landscape StatisticalAnalysis Correlation S; (IG, IC, PW); O; DS.

[19] Wheat Frost damage assessment Hyperspectral 31 Proximal Spectral StatisticalAnalysis Regression CE; (IG, PW); DDRR; R.
[41] Alnus alnobetula Assessing freezing and ice

nucleation
Thermal 10 Proximal Ice nucleation

temperature
StatisticalAnalysis IDTA CE; TA.

[144] Peach flower Assessing low temperature
damage

Fluorescence 80 Proximal External structure StatisticalAnalysis – CE; PCoT.

[91] Common beech Assessing spring frost effects Spectral reflectance – Remote Phenological
homogeneity

Traditional
MachineLearning

SVM S; (N, PW); O; SVM.

[43] Strawberryleaf Observing frost dynamics Thermal 8 140–12 539 Proximal Temperature StatisticalAnalysis DTA MP; PW; TA.
[84] Canola Frost damage estimation Hyperspectral – Proximal Spectral StatisticalAnalysis ANOVA CE; (S, Sg, IC, IG, PW); HT.
[40] Wheat Observing ice nucleation and

propagation
Thermal – Proximal State StatisticalAnalysis – CE; PCoT.

[42] Arabidopsisthaliana Analysing frost resistance Thermal – Proximal Ice nucleating
temperature

StatisticalAnalysis – CE; PCoT.

[136] Tea Identification of frost damage Spectral reflectance
(MODIS)

41 Remote Landscape feature MachineLearning SLR S; (IG, PW); R.

[145] Beech forest Assessing the effect of latespring
frost

Spectral reflectance
(MODIS)

– Remote NDVI StatisticalAnalysis STP variability analysis S; (N, M, IC, IG); STP.

[50] Wheat Monitoring freeze stress Hyperspectral 87 Proximal Spectral StatisticalAnalysis MLR, Correlation MP; (S, N, IG, PW); DDRR;
(R, HT).

[65] Wheat Detecting frost damage early Multispectral,
Fluorescence

62 Proximal – StatisticalAnalysis ANOVA H; (N, IG, PW); O; HT.

[103] Rice Identifying chilling damage Spectral reflectance
(MODIS, Landsat)

– Remote Colour, landscape StatisticalAnalysis Comparison S; (N, PW); STP; DS.

[64] St. Augustinegrass Assessing freezing tolerance RGB – Proximal Green colour StatisticalAnalysis ANOVA CE; STP; HT.
Continued next page
Table 3 – continued from previous page

Ref. Crop Application Data Type DataSet Size Remote/Proximal Feature Type Method ML/DL/ StatisticalModel Techniques Applied
(basedon Taxonomy)

[49] Oilseed rape Characterising freezing injury Hyperspectral 26 Proximal Spectral StatisticalAnalysis PCA, ILR, SVM,SDR CE; (S, IG, PW); DDRR; R.
[13] Wheat Detecting frost damage Hyperspectral 44 Remote Spectral StatisticalAnalysis Regression UAV; (IG, PW); R.
[129] Oilseed rape Assessing freeze injury Spectral reflectance

(MODIS, MERIS)
– Remote NDVI StatisticalAnalysis Time-series analysis,

Correlation
S; (S, N, IC, IG, PW); STP;
(DS, TA).

[59] Maize Analysing frost damaged and non-
viable seed

NIR Spectral 400 Proximal Spectral Traditional
MachineLearning

SVM, BPR, MD CE; LA; DDRR; (SVM, O).

[124] Blackberryflower Evaluating freeze damage Thermal – Proximal Exotherm StatisticalAnalysis Time Series Analysis CE; TA.
[35] Wheat Analysing freeze tolerance in

different genotypes
Infrared thermal – Proximal Exotherm Statistical Analysis ANOVA,Standard F-Test,

Tukey-Kramer
separation

CE; PCoT; HT.

(continued on next page)
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Table 3 – (continued)

Ref. Crop Application Data Type Data Set Size Remote/
Proximal

eature Type Method ML/DL/ Statistical Model Techniques Applied
(based on Taxonomy)

[78] Oilseed rape Assessing freeze injury Multispectral – Remote Landscape, NDVI StatisticalAnalysis Correlation S; (IG, IC, PW); HT.
[48] Wheat Investigating freezing

susceptibility
Hyperspectral 70 Remote Spectral StatisticalAnalysis ANOVA CE;(IC, IG, PW); HT.

[146] Cropland Evaluating spectral indices with
frost

RGB – Proximal Colour StatisticalAnalysis Regression MP; (F, IG, PW); STP; R.

[99] Kenyan highlands Frost risk assessment Spectral reflectance
(MODIS, LST)

– Remote Landscape StatisticalAnalysis Time series analysis S; STP; TA.

[147] Grapevine Evaluating frost tolerance Chlorophyll fluorescence – Proximal Electrolyte leakage StatisticalAnalysis Significance test CE; (IC, PW); STP; HT.
[39] Blueberry Assessing freeze tolerance and ice

nucleation
Infrared thermal – Proximal Ice nucleation

temperature
StatisticalAnalysis IDTA CE; TA.

[22] Buds of woodyplants Analysing freezing and ice
tolerance

Thermal – Proximal – StatisticalAnalysis IDTA CE; TA.

[16] Arabidopsisthaliana Analysing cold acclimation Chlorophyll fluorescence 218 Proximal Cold tolerance StatisticalAnalysis LDA, LDC, QDC,k-NNC,
NMC

CE; (IG, PW); DDRR; HT.

[66] Wheat, Oats Assessing recovery from freezing RGB 100–300 Proximal Colour StatisticalAnalysis Tukeys HSD CE; O; HT.
[36] Wheat Observing cold acclimation and

freezing
Infrared Thermal 29–88 Proximal Exotherm StatisticalAnalysis DTA CE; TA.

[148] Wheat Monitoring freeze stress in
seedlings

Hyperspectral 30 Proximal Index variation StatisticalAnalysis Correlation CE; (IC, IG, PW); DS.

[149] Wheat Assessing freezing injury Hyperspectral 44 Proximal Spectral StatisticalAnalysis Correlation CE; (IC, PW); HT.
[58] Soybean, Corn Classifying frost damaged kernel NIR Spectral 504,480 Proximal Spectral Traditional

MachineLearning
PLS-DA,K-NN, LS-SVM,
SIMCA

CE; (S, LA); DDRR; (SVM,
K-NN, O).

[61] Oats Classifying healthy and frost
damaged area

RGB 2 000 Proximal Colour Traditional
MachineLearning

K-means clustering MP; (CC, S, PW); O; U.

[37] Alpine cushionplants Investigating freezing pattern Infrared thermal – Proximal Ice nucleation
temperature

StatisticalAnalysis IDTA, Correlation CE; STP; (TA, DS).

[71] Arabidopsis thaliana Assessing cold tolerance Chlorophyll fluorescence 325 Proximal Electrolyte leakage StatisticalAnalysis LDA CE; PCoT.
[100] Aspen Predicting defoliation due to frost Spectral reflectance

(MODIS)
– Remote NDVI StatisticalAnalysis SD S; (IG, PW); STP; HT.

[105] Wheat Forecasting yield due to frost Spectral reflectance – Remote NDVI StatisticalAnalysis Regression S; (IG, PW); O; R.
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problems [128]. The main advantage of SVM is that it is sim-

ple, computationally less expensive and, can be trained with

a small number of samples [127]. However, selecting the opti-

mal kernel and its parameters is the biggest challenge [47]. In

crop stress classification, SVM has been widely used. Zhang

et al. [83] applied SVMs on hyperspectral imaging to discrim-

inate rice seeds for different degrees of damage. In their

study, they compared other ML methods with SVMs to visu-

alise the most rapid classification. In another similar study,

Zhang et al. [97] compared four traditional MLmodels, includ-

ing SVMs, to measure corn seed freezing. In this case, the

deep learning model outperformed other traditional ML mod-

els. In another study, Zhang et al. [52] showed the comparison

among ML models. Jia et al. [59] applied three ML models to

see their performance for analysing frost-damaged maize

seeds. In their study, SVMs showed promising results to dis-

criminate between two classes.

Bascietto et al. [91] trained an SVM classifier on each pixel

of remotely sensed data to assess spring frost effects in a

beech forest. They assessed spring frost damage by using

anomaly detection on each pixel corresponding to an

enhanced vegetation index. After the data preparation, the

SVM is used for training the model to classify two cases

[47]. Their study demonstrated that the classifier could iden-

tify stress-free and stressed (before and after frost) maize

crops from remotely sensed hyperspectral data.

Agelet et al. [58] utilised the least square support vector

machine (LS-SVM) for corn kernel and soybean frost- damage

classification. However, their study shows that frost-damaged

corn kernels could not be accurately identified with LS-SVM

with data from near-infrared spectroscopy.

8.2.2. K-nearest neighbours
The K-NN algorithm makes classification decisions based on

the majority of the k-neighbouring samples in a feature space

of a specific category [129]. Zhang et al. [52] showed that the

classification results were similar with both K-NN and SVM.

In a similar study by Zhang et al. [97], K-NN showed poor clas-

sification accuracy for the freezing damage degree of corn

seeds. Agelet et al. [58] used standard normal variate to

decrease the misclassification rate. Despite doing that, K-NN

could not show satisfactory results comparing to PLS-DA.

8.2.3. Random forest (RF)
Random forest is an ML technique where many decision trees

are generated, and the class is elected by a voting process

[130]. Usually, the performance of the RF depends on the opti-

mal number of a decision tree. Liu et al. [75] applied random

forest classification on sentinel images to assess the late frost

risk on the open-air grape parcel. In their work, they trained

the RF model based on their proposed feature library. Their

model showed high accuracy when 200 trees were selected.

Zhang et al. [83] applied a cascaded RF model that contained

500 trees as their deep forest model base. According to Zhao

et al. [104], a random forest regression analysis was con-

ducted based on NNVAI and seven other features. This model

showed a satisfactory correlation between NNVAI and frost

severity in almost real-time. In 2019, Goswami et al. [47] built

an RF model with a base of 100 decision trees.
Please cite this article as: S. Shammi, F. Sohel, D. Diepeveen et al., A surve
in plants, Information Processing in Agriculture, https://doi.org/10.1016/j
8.2.4. Others
Zhang et al. [97] applied extreme machine learning (ELM) for

analysing seed freezing damage. ELM is a single hidden layer

feed-forward neural network that has good computational

speed. Though it showed good performance, it still was not

the best among the four models evaluated. On the other

hand, Goswami et al. [47] employed three hidden layers to

realise with back-propagation techniques to train an ANN

model. They achieved moderate accuracy for the

classification.

Goswami et al. [47] applied discriminant models for classi-

fying normal and frost injured buds. Partial least square dis-

criminant analysis (PLS-DA) was used to find a linear

relationship between dependent and independent variables.

In this study, Gao et al. [55] revealed their model depicted

optimal performance with sensitivity and specificity. PLS-DA

had higher accuracy than traditional SVM and K-NN models

[52]. Mahalanobis distance discriminant analysis was used

to assess frost-damaged maize for seed vigour, and viability

[59].

Macedo-Cruz et al. [61] applied an unsupervised approach

for frost-damaged oat-crop classification. Their study pro-

posed a new automatic unsupervised classifier to identify

frost-damaged oat-crop from the land area. Their methodol-

ogy included a variable number of clusters to identify four

classes.

8.3. Deep learning

Recently, some deep learning algorithm has been evaluated

for frost detection in crops. Yuan and Choi [44] used YOLOv4

(You Only Look Once: version 4) for classifying six apple

flower-bud growth stages as a measure of frost protection.

YOLOv4 is currently the state-of-the-art real-time object

recognition algorithm [131]. Yuan and Choi [44] performed

the model training, validation, and testing on the annotated

images. Their study also included a heating methodology

for proper frost protection. HamidiSepehr et al. [62] trained

and tested Faster R-CNN models, RetinaNet and YOLOv2

models to evaluate the performance for frost damage assess-

ment. Both YOLOv2 and RetinaNet demonstrated robust

capability to identify the frost-damage.

Zhang et al. [83] analysed the performance of a deep forest

(DF) model with some traditional machine learning models

such as decision tree (DT), K-NN, and SVM for classifying

frost-damaged rice seeds. They reported that the accuracy

of the DF model was superior to the other models in a

small-scale sample set. Similarly, Zhang et al. [97] compared

the performance of four models, namely K-NN, SVM, extreme

learning machine (ELM) and deep convolutional neural net-

work (DCNN), to classify the different freeze-damage of corn

seeds. In their five-category classification, the DCNN outper-

formed all the other methods.

9. Evaluation metrics

An evaluation metric is a tool to measure the performance of

a classification model. Our review discusses the relevant met-

rics for the three different computational learning methods,
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i.e., statistical, machine learning, and deep learning. There is

no unified quantitative metric that consistently reproduces

the overall performance score in all aspects. In general, no

single metric outperforms all other techniques from an ana-

lytical viewpoint. As such, a single evaluation metric is not

adequate to evaluate the performance. Therefore, several

evaluationmetrics are commonly used in literature. In Table 2,

we summarise some standard evaluation metrics used in the

reviewed publications.

In statistical analysis, coefficient of determination (R2) and

p-value are commonly used [132]. The coefficient of determi-

nation gives the variation in the dependent variable that is

predictable from the independent variables. R2 is represented

as a value from 0.0 to 1.0. A higher (R2) value indicates a better

fit for a model. On the other hand, a p-value is used to find the

smallest significance level to reject the null hypothesis. A

smaller p-value indicates stronger evidence of the alternative

hypothesis. A higher than 0.05P-value (>0.05) shows strong

evidence for the null hypothesis (i.e., statistically insignifi-

cant). The p-value is usually used in statistical hypothesis

testing. Another important evaluation metric is a root mean

square error (RMSE), commonly used in regression models.

RMSE is calculated based on the best fit line where the highest

concentration of data is found. It is calculated by the square

root of the mean square error. A lower value of RMSE reflects

the better ability of the model to predict the data accurately.

In both ML and DL, confusion matrix, F1-score, precision

and recall are commonly used to evaluate the performance.

The confusionmatrix allows visualization of the performance

of a model. For a two-class model, this table consists of true

positives, false positives, true negatives and false negatives

[133]. From a confusion matrix, five different metrics can be

calculated, e.g. accuracy, misclassification, precision, recall

(sensitivity), and specificity [134]. A higher value of accuracy

that is close to 1.0 is interpreted as a better classification.

F1-score is calculated from precision and recall, where the

highest possible value of an F1-score is 1.0 (i.e. indicates per-

fect precision and recall). On the other hand, a lower value of

the Kappa-coefficient indicates a better agreement between

the two raters. Unlike binary classifiers, for a multi-class

model, each row of confusion the matrix represents the

instances of an actual class, whereas each column represents

the instances of a predicted class or vice versa.

In deep learning, we note the use of intersection over

union (IoU) and mean average precision (mAP) as an evalua-

tion metric. IoU quantifies the percentage of overlap between

the prediction and target mask. Usually, IoU > 0.5 is consid-

ered a good prediction. An mAP is calculated by taking the

mean of the average precision on all particular object classes.

On the other hand, mAP computes the average precision

value for recall as a value over 0 to 1.

The reviewed papers use different data sets (usually col-

lected independently) as well as a variety of training and test-

ing protocols. As a result, a direct comparison between the

reported results is not feasible. In addition to performance

(e.g., accuracy), the requirement of advanced computational

resources are major concerns for computational learning

models. Training on large and high-resolution data sets are

usually computationally expensive. Yet deep learning tech-

niques generally achieve superior performance compared to
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traditional machine learning techniques for image-based

frost detection. Yuan and Choi [44] applied YOLOv4 and

achieved 71.57% mAP for a test data set of 360 images. They

used NVIDIA GeForce RTX 2060 (USA) GPU and 16 GB RAM

to execute the training. Ma et al. [81] used NVIDIA Quadro

P4000 (8 GB memory) with CUDA 9.0 to train a large data set

of 19 199 and 23 775 images and achieved 92.15% accuracy

for fine segmentation. Zhang et al. [97] compared accuracies

of KNN, SVM, ELM, and DCNN models to classify damages

in corn with Spyder 3.1.4 (Anaconda, Austin, TX, USA). The

accuracies on the validation set are 95.3%, 99.7%, 98.4%, and

100%, respectively. In another study, RetinaNet and YOLOv2

were used by Hamidisepehr et al. [62] to distinguish the

extent of damage in corn, with AP ranging from 98.43% to

73.24% and from 97.0% to 55.99%, respectively. They executed

the models with NVIDIATesla P100 and NVIDIA Ge-Force GTX

1080 GPUs and empirically determined the learning rate,

batch size, epoch number to minimise the training time and

achieve higher accuracy. Zhang et al. [83] executed DT, K-

NN, SVM and deep forest (DF) models with Spyder 3.3.2 to

classify 300 rice seeds with different degrees of frost damage,

and overall accuracy reached 99.33% for DF classification. Jia

et al. [59] applied SVM, BPR and MD, and BPR achieved the

highest average accuracy of 97% in classifying normal and

frost-damaged seeds. In the study of Zhang et al. [52], the

SPA wavelength selection method increased the accuracy of

classification models to over 90% for classifying frozen corn

seeds. Goswami et al. [47] achieved an overall accuracy of

86.47% by RF that outperformed other traditional machine

learning techniques such as RC and SVM. Macedo-Cruz

et al. [61] classified healthy and frost-damaged oat crops by

K-means clustering with 90–97% accuracy. Several studies

incorporate other statistical analyses, which are not compa-

rable with these results. Furthermore, all the aforementioned

accuracies and training resources are based on specific crops,

evaluation metrics and different locally generated data sets

and therefore, are not directly comparable. These resources

are especially utilised by tuning hyperparameters such as

batch size, the number of epochs, learning rate to reduce

the long training time and increase accuracy. Deep learning

models require powerful GPUs and a longer time for training

compared to traditional machine learning. In contrast, deep

learning techniques are usually computationally efficient in

the testing phase, and they usually achieve higher accuracy

compared to traditional machine learning techniques.
10. Data sets

Data sets are crucial for computational techniques, especially

for machine learning and deep learning models. In general,

publicly available benchmark data sets are used in typical

machine learning research. In contrast, there is no bench-

mark data set available on frost detection. Moreover, the

papers we reviewed mainly used small data sets that are crop

and farm specific, and were collected locally by the respective

research teams.

In Table 3, we summarise the data set size used in these

papers. For example, Yuan and Choi [44] tested a deep learn-

ing model on 100 thermal images and 6 120 RGB images.
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Zhang et al. [97] created a data set of 1 920 images to apply

several traditional machine learning algorithms. Similarly,

others also applied deep learning and traditional machine

learning techniques on relatively small data sets. For exam-

ple, data sets of 1 800, 220, 478, 720, 210, 1 549, 3 600 samples

were used in [53,54,62,67,83,104,135], respectively. Ma et al.

[81] used a relatively large data set of 24 000 images of wheat

ears. Yet, they applied data augmentation to generate a larger

data set of 34 520 images. In contrast, Gao et al. [55] con-

structed a data set of 360 and 390 images in different cate-

gories. Zhang et al. [52] used 180 images in the data set. In

the study of Goswami et al. [47], and Jia et al. [59], they applied

traditional machine learning classifiers on spectral image

data sets of 964 and 400 images, respectively.

The image data sets obtained by satellite are usually cou-

pled with and supported by other data such as temperature,

rainfall and weather data. For example, Cogato et al. [45]

picked two Sentinel-2 images best suited for their study. In

the study of Kotikot et al. [136], their observations spread over

41 MODIS pixels. Each pixel value from MODIS or Landsat

data describes a specific portion of the landscape [45,136].

Therefore, it is quite common to use a relatively small data

set. In other studies, the data sets have been constructed by

taking a time-series of the images to observe the changes

[90,100].

As shown in Table 3 only about half of the studies explic-

itly mentioned the details about the data sets. Overall, the

data sets used are diverse, relatively small, crop specific, var-

ious modalities, and designed for specific applications. Con-

sequently, a direct combination of multiple data sets to

form a large data set may not be suitable for computational

learning methods.

11. Discussion

To predict the expected yield from frost events, real-time

information of crops is a crucial step. Visual assessment is

time-consuming and labour-intensive, yet potentially subjec-

tive. Automation in agriculture allows remote sensing to eval-

uate frost stress in plants and crops. Moreover, imaging is a

non-contact and non-invasive approach to assess frost in

real-time. In this sense, hyperspectral and thermal imaging

has been demonstrated for the early detection of frost in

plants. This is indeed critical, as frost can result in severe

head and stem damage in wheat, reducing the quality of

the grains and yields by up to 80% [10]. As indicated by the

Grains Research and Development Corporation (GRDC) Aus-

tralia, currently, there are no tools available to map the extent

of frost damage other than visual assessment [10]. Farmers

usually assess their crops visually soon after a frost event.

However, current farm practice in a severe frost event is to

cut the crops to produce fodder, or with frost events at the

very early stages of plant growth, resow with another crop.

Therefore, real-time information on the spatial extent of frost

damage in paddocks would greatly benefit farmers. This

knowledge will enable them to make decisions for selective

harvesting and better management, i.e. manipulating flower-

ing dates, identifying frost-prone paddocks, and selecting

appropriate crops for more frost-adverse areas. Both hyper-
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spectral and thermal imaging could provide a routine tool

for detecting frost early. Besides facilitating the farmer’s crop

management decisions, this would also minimize the eco-

nomic loss of the agriculture industry. These image modali-

ties can be adopted in high-throughput facilities to ensure

accurate frost-stress monitoring.

It should also be noted that different image modality is

helpful from different research perspectives in detecting

frost. For example, thermal imaging can screen the tempera-

ture inside the plants, which makes it an essential research

element from a physiological and climate science perspective.

However, it is unlikely to be of value for industry (when ther-

mal imaging is applied exclusively), as freezing in plants does

not necessarily indicate damage. To bridge this gap, thermal

imaging combined with other image modalities such as

hyperspectral and chlorophyll fluorescence may respond bet-

ter to pick up the frost-related damage. It is also extremely

important to consider the industry requirements for post-

event frost-damage identification. In the agricultural industry,

an understanding of the temperature dynamics in the pad-

docks is a real need. Moreover, a drone-based or ground-

based multi-modal imaging system may pick up valuable

information to map post-frost damage in crops. These gaps

open new research opportunities.

However, further research is necessary to address the chal-

lenges of employing thermal and hyperspectral imaging in

wide-scale agriculture [137]. These facilities may include

high-resolution sensors and automated or robot-assisted

equipment to capture large-scale images. There is consider-

able scope for innovative technologies for fine resolutions

and automated platforms. Most of the papers covered manual

image acquisition and low to mid resolution cameras in the

reviewed articles. Additional challenges such as variations

in illumination and background as well as mounting plat-

forms need to be adequately addressed. In these contexts,

there are still opportunities for future research.

In crop-stress monitoring, deep learning is still a novel

approach. Visible physiological changes in crops also occur

due to biotic and abiotic stresses other than frost [138]. It is

difficult to detect frost damage early when symptoms are

not visible to the human eye. According to the Food and Agri-

culture Organization (FAO), early frost protection and man-

agement is the key to reduce frost damage in crops [139].

Deep learning-based imaging techniques can overcome this

limitation. For both laboratory and field-scale testing, deep

learning can detect and quantify frost damage in plants.

Therefore, machine learning has a high potential to detect

frost early, but currently, they are not fully utilised. Moreover,

there is a significant gap in research for applying deep learn-

ing and imaging for frost detection in plants. We observed

that DL had outperformed the traditional ML techniques in

both speed and accuracy from the papers we reviewed.

According to our literature review, it is evident that the accu-

racy of ML is not yet sufficient in terms of detecting frost

damage. To the best of our understanding, there is still an

excellent opportunity to refine the ML algorithms to have bet-

ter performance and accuracy. Besides that, ML and DL tech-

nology is still developing; therefore, there is scope for

improvement in technical aspects.
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One major challenge for improving machine learning

applications or deep learning is the lack of publicly available

labelled data sets. To the best of our knowledge, there are

no public data sets available for detecting frost damage in

crops. While there exist some public data sets for agricultural

research, e.g. Plant Village [140], EdenPA, Eden library, they

focus on diseases, weeds, pests and nutritional deficiencies

in various crops. To further advance ML/DL-based frost detec-

tion research, the availability of appropriately labelled large

image data sets is a necessary requirement. Another chal-

lenge is that manually labelling the images is time-

consuming and costly. To overcome this, crowd- sourcing

could be an option to label an image data set. From our liter-

ature review, we noticed that no publication in this area used

a large labelled public data set for their work. In every case,

the researchers used small data sets they had manually

labelled. In that sense, their research could have been

expanded a lot more only if there was a large, labelled data

set. Therefore, further research is required to put more effort

into automatic labelling techniques. The biggest challenge

here is achieving the same performance level as humans in

this task. Nevertheless, the automatic annotation would

reduce the time for manual labelling. In this case, machine

learning could provide automatically annotated data that

would make the task easier.

A comprehensive performance evaluation of these tech-

niques would have been important in establishing a compet-

itive benchmark. However, the lack of available public data

sets is a key challenge in this regard. A future study could

construct a comprehensive benchmark data set that contains

data from multimodal sensors, multiple crops, and multiple

geo-locations. This data set could then be used in new

research as well as benchmarking existing techniques.

With the evolution of high-performance CPUs and GPUs,

artificial intelligence is contributing to agricultural technolo-

gies. Such innovative approaches of deep learning assisted

imaging will bring automation to frost-damage detection

techniques. However, real-time sensing and monitoring facil-

ities need to be implemented on low-power, low-performance

embedded systems for the broader deployment of such tech-

nology. For a larger-scale agricultural production, automation

for detecting andmapping frost-damaged areas is a necessity.

This would allow remotely sensed large scale data to be pro-

cessed for automatic decision support. This context gives rise

to research scopes for efficient communication protocols and

cyber-security. However, handling and securely storing large

scale data sets is also a challenge. According to a report from

FAO, information and automated decision of the early signs

and sector- specific risks in agriculture would build resilience

in risk management, and food security [141]. However, there

are still challenges, such as image acquisition in natural con-

ditions in the field. Moreover, optimisation of the parameters

used in deep learning training models is also a challenge.
12. Conclusion

In this survey, we studied imaging-based approaches for frost

damage detection analysis in plants. We reviewed 80 relevant

papers based on their methodology and data modality. We
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identified three computational learning approaches, namely

statistical, traditional machine learning and deep learning,

used for image-based analysis in the reviewed papers. This

article proposes a novel taxonomy based on the research

studies, which enabled the effective categorisation of all the

relevant papers. We also discussed different image modalities

that can provide insight into frost in plants. We found that

data acquisition technologies have evolved from typical RGB

to hyperspectral via infrared and thermal imagery over the

last decade. In addition, there have been changes in the

deployment of data acquisition sensors from handheld, to

fixed mounted, to moving platforms and flying drone ima-

gery. Overall, we have observed a growth in image-based frost

detection analysis publications, where computational

approaches such as ML and DL are now leading. We anticipate

that the availability of large public data sets for a variety of

crops and wild plants would trigger further high-quality

research in this field. However, some research questions still

need to be addressed. Such as, will readily available ML soft-

ware encourage the agricultural industry and farmers to take

up this technology? Will a tailored, robust and targeted, low

resource ML software can screen frost before any visual

symptoms? In this context, multiple modalities such as ther-

mal, spectral, and RGB can provide complementary and sig-

nificant data corrections that can be very useful in high

performing frost detection. Such multi-modal ML/DL tech-

niques could be the way to improve the results further. There-

fore, to improve real-time agricultural frost detection

applications, future studies incorporating multi-modal

imaging-assisted deep learning algorithms should be con-

ducted for determining the critical temperatures for freezing

in plants.
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