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Disease detection through traditional techniques such as scouting fields on foot, 

molecular assays, or morphological identification of plant pathogens is time 

consuming and costly. Disease diagnosis in the field can be extremely subjective, and 

largely depends on the experience and knowledge of pathogen identification and 

disease quantification. This thesis provides an evaluation of remote sensing for 

assessing disease in agricultural field settings via an unmanned aerial vehicle and 

machine learning. Case studies are presented on two different fungal diseases 

important in western Oregon crop production: black leg on turnip (incited by 

Leptosphaeria spp.) and gray mold on hemp (caused by Botrytis spp.). Both case 

studies utilized a support vector machine model to classify pixels of digital images 

collected with a multispectral Micasense RedEdge-M optical sensor. Turnip leaves 

were imaged at 1.5 m in situ while hemp plant images were collected by an 

unmanned aerial vehicle with flights at 10 m ex situ. Detection of pixels exemplifying 

black leg leaf spot symptoms on turnip leaves had an overall accuracy of 97.0% with 

a model sensitivity of 0.48. The support vector machine model utilized in gray mold 

detection on hemp incorporated a novel vegetation index, a modified green-red 

vegetation index along with the triangular greenness index, to identify pixels of 

diseased hemp inflorescences extracted from background soil and vegetation. The 

model had an overall accuracy of 95.8% when identifying a hemp inflorescence as 



 

diseased or non-diseased. False negatives were found to be high with a sensitivity of 

0.70 in the hemp model. Additionally, gray mold disease incidence determined using 

the support vector machine model was compared with disease assessments collected 

by scouting on foot and was found to have similar treatment rankings, although the 

differences in the relative percentages between the two methods were found to be 

large. The findings of this study provide the foundation for further development of 

remote sensing techniques for black leg disease assessments in Brassica crops and 

potential deployment of remote sensing strategies for measuring gray mold in hemp 

fields.
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Chapter 1: Introduction 

 

 After a brief overview of agricultural production in the Willamette Valley, 

two agricultural commodities in Oregon are reviewed, turnip grown for seed and 

hemp grown for its flowers. Additionally, two of the most devastating pathogens 

associated with these crops, black leg on turnip and gray mold on hemp, are also 

reviewed. Lastly, a short review of remote sensing use in agriculture and a case study 

for potential applications in the two host-pathogen systems is provided. 

 

Agriculture in the Willamette Valley of Oregon 

The Willamette Valley of western Oregon is home to over 100 different 

cultivated crops (USDA FSA 2020). Among those, Brassica crops, otherwise known 

as crucifers, make up a large portion of the seed crops cultivated in the valley. This 

valley region extends about 210 km in length, ranges from 40 to 65 km wide, and 

experiences cool, wet winters and warm, dry summers (Walsh et al. 2010). Laying in 

the rain shadow of the Oregon coastal range, the valley receives an average of 110 cm 

of precipitation annually, largely between the months of October and May (Walsh et 

al. 2010). Over the years, growers have expanded crop production throughout the 

valley and benefitted from its ideal growing conditions. Specialty seed produced in 

Oregon and Washington supplies around 25% of the world’s market for Brassica seed 

(Inglis et al. 2013), and is one of the few locations in the world where high quality 

Brassica seed production can take place. The scarcity of summer rain and the 

relatively mild winters allows for the vernalization necessary for high quality 

specialty seed production of brassicas. While much of the seed is kept in or near its 

U.S. origin, Europe and Asia offer profitable markets for growers in Oregon. Before 

Brassica seed can be shipped overseas, seed quality must be tested to gain 

certification as disease-free for most markets, among other import/export testing 

requirements. Among the requirements, black leg-free seed is typically needed for 

international and domestic transport of Brassica seed. Disease management strategies 

are generally utilized in the Willamette Valley to reduce the likelihood of seedborne 
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diseases to ensure the greatest economic value of specialty seed crops. To prevent or 

limit diseases, early detection, informed sprays, and preventative measures are 

necessary to meet the demands and requirements of foreign and domestic regulations 

on Brassica seed produced in the valley. Common Brassica diseases in Oregon 

include clubroot (Plasmodiophora brassicae), downy mildew (Peronospora 

parasitica), powdery mildew (Erysiphe polygoni), Sclerotinia stem rot (Sclerotinia 

sclerotiorum), chlorotic leaf spot (Pyrenopeziza brassicae), black spot (Alternaria 

brassicae), white rust (Albugo candida), and black leg (Leptosphaeria maculans and 

Leptosphaeria biglobosa) (Pscheidt and Ocamb 2021).  

 

Black leg 

One of the pathogens that disrupts healthy growth of Brassica species in the 

Willamette Valley of Oregon and worldwide (Howlett et al. 2001) is the fungus that 

causes black leg. This fungal pathogen causes significant yield losses in canola 

(Brassica napa) production in Europe (Fitt et al. 2006), Australia (Khangura and 

Barbetti 2001), and North America (Markell et al. 2008; Del Rio et al. 2012; Nepal et 

al. 2014). Black leg hadn’t been a major disease problem in the Pacific Northwest, 

but outbreaks were observed on specialty seed crops in the Willamette Valley 

beginning in 2014 (Ocamb et al. 2015). Black leg was reported on canola in North 

Dakota in 1991 (Lamey and Hershman 1993), in Idaho in 2011 (Agostini et al. 2013), 

and soon after in Washington state (Paulitz et al. 2017). The recent reports of 

Leptosphaeria species in the Willamette Valley of Oregon occurred on Brassica 

vegetable and seed crops as well as weeds and the restricted acreage in canola 

production. Although this disease is widely regarded for its impact on canola due to 

large-scale production of canola across the world, black leg has even greater impact 

on many Brassicaceae crops including turnip (Brassica rapa) and radish (Raphanus 

raphanistrum) grown for seed, and also occurs on weedy Brassica species in the 

Willamette Valley of Oregon (Claassen et al. 2015). There are two fungal species 

known to cause black leg, Leptosphaeria maculans and L. biglobosa. This crucifer 
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disease, black leg, should not be confused as the potato bacterial disease caused by 

Pectobacterium atrosepticum, commonly referred to as blackleg. Recent studies have 

placed these Leptosphaeria species in the Plenodomus genus (De Gruyter et al. 2013), 

where the teleomorph L. maculans is now a synonym of Plenodomus lingam and the 

anamorph is Phoma lingam. Similarly, the teleomorph L. biglobosa, is now referred 

to as Plenodomus biglobosus with an unnamed anamorph. While much of the crop 

failure in canola has been associated with L. maculans (Markell et al. 2008), both 

species are found in the Willamette Valley and seem to be of similar destructive 

consequence. The two closely related pathogens are considered a species complex 

and can oftentimes be found occurring together (Mendes-Pereira et al. 2003; 

Dilmaghani et al. 2009). 

 

Black leg symptoms and disease biology 

Leptosphaeria species produce both initial (primary) inoculum as well as 

secondary inoculum. The primary inoculum is derived from the over-

summering/wintering or host-free period survival structures, and initiates infection 

during the next cropping cycle. Secondary inoculum is the inoculum generated after 

the first infection event takes place. The spore-bearing survival structure of L. 

maculans and L. biglobosa is a pseudothecium, which gives rise to sexual spores 

known as ascospores. Generally, Leptosphaeria will produce pseudothecia on 

infected crop residue, which provides the source of primary inoculum during the fall, 

winter, and spring in the Pacific Northwest. The mature ascospores are forcefully 

ejected from asci located inside the pseudothecia found on crop residues and are 

dispersed broadly across the landscape by wind (West et al. 2001). Ascospore release 

is associated with dry intervals within rainy periods, which commonly occurs during 

Oregon’s autumn and winter, and ascospores can persist after release from the 

pseudothecium for up to 6 weeks (West et al. 1999). Infected canola residues have 

been shown to remain infectious for longer than 24 months in western Oregon (Berry 

2019). Leptosphaeria-infected seeds may also act as an inoculum source (Rimmer 
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and Van de Berg 2007), but this is generally a less common occurrence when 

certified Leptosphaeria-free seed requirements are followed (West et al. 2001). A 

third source of primary inoculum comes from Brassicaceae weeds such birdsrape 

mustard, black mustard, wild radish, and others (Claassen et al. 2015). Fields within 

close proximity to Brassicaceae weeds are at risk for black leg due to the frequency of 

infected weed plants (Claassen 2016). 

Secondary disease spread occurs on overwintered Brassicas with the 

production of asexual pycnidiospores (conidia) by pycnidia. Pycnidia appear as tiny 

black spots on foliar lesions or stem cankers (Fig. 1.1 B). The conidia typically do not 

travel more than one meter upon splash-dispersal (Hall et al. 1996), while the 

ascospores are reported to have traveled 500 meters from infected residues (West et 

al. 2001). Germinating spores typically infect through stomata or wounded tissues of 

the plant and have not been reported to infect via direct penetration of the cuticle 

(Sprague et al. 2007). Upon infection, hyphae can grow through vascular bundles of 

the xylem vessels or between parenchyma cells along the xylem and in the cortex, 

extending down into the basal region of the stem where the pathogen can remain 

symptomless (Sexton and Howlett 2001; Rouxel and Balesdent 2005). Small, light 

colored lesions develop on leaves and expand to about 2 cm in size, and the centers 

may hole punch (shothole effect) from the force of water droplets hitting the necrotic 

tissue in the center of leaf lesions (Figure 1.1) (West et al. 2001). As the spores inside 

the pycnidia mature and environmental conditions are met, conidia 3 to 5 μm by 1.5 

to 2 μm in size will discharge in a column of light pinkish to purplish to white colored 

ooze called cirrhus (Ghanbarnia et al. 2011). Conidia are generally transmitted 

through splashing water droplets and are viable for up to 10 days (Li et al. 2007). The 

conidia incite secondary infections and further the spread of disease within a field. In 

Canada, black leg has developed in the field in the absence of ascospore showers, 

suggesting pycnidiospores may act as the main source of inoculum under some 

conditions (Ghanbarnia et al. 2011). In addition to leaf spots, gray to brown, oval-

shaped lesions may present themselves on the stems and storage roots of susceptible 

plants. If canola and turnip are seriously compromised by stem infections, cankers 
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can lead to girdling of the plant and lodging. Because the black leg fungus grows 

systemically, seed pod infection can result in contaminated or infected seed (West et 

al. 2001). Although this disease has been referred to as monocyclic in Europe (West 

et al. 2001) and Australia (Li et al. 2007), the Willamette Valley in western Oregon 

experiences a polycyclic disease cycle, increasing the destructiveness of this 

pathogen. 

Figure 1.1 Turnip leaf displaying black leg leaf lesions as a result of infection by 

Leptosphaeria (A). Stereoscopic view of a leaf lesion with small black pycnidia (B). 

 

The fall through spring rainfall in the Willamette Valley can exceed 100 cm 

during most years (Walsh et al. 2010), providing the cool, moist conditions for 

sporulation and infection by the fungus causing black leg. Around 8 to 72 hours of 

leaf wetness duration and 8 to 24°C can lead to leaf spot development, with 48 hours 

at 20°C resulting in the greatest number of leaf spot lesions (Biddulph et al. 1999). 

Huang et al. (2005) reported that development of black leg was different among 

countries, based on weather patterns. Aggressiveness of Leptosphaeria can vary 

depending on host crop, cultivar, weather, species, and strain of Leptosphaeria. 

 

 

 

A B 
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Black leg management 

Cultural management practices 

The best practices for disease suppression or elimination typically start with 

good cultural management. It is suggested to practice a four-year crop rotation before 

sowing another plant species susceptible to Leptosphaeria (West et al. 2001; Guo et 

al. 2005). This recommendation comes at the understanding that crop residue may 

harbor pseudothecia over three years, with the ascospore-bearing structure count 

diminishing greatly after this period. Crop residues are managed with different 

techniques among countries and depend on grower preferences. Countries such as 

India and China, which typically plant rice after a canola, tend to remove the entire 

canola plant from the field (West et al. 2000). This requires extra efforts from the 

growers but is good practice in diminishing the source of inoculum as well as 

following the practice of crop rotations. This may account for the absence of L. 

maculans in China, although a less aggressive L. biglobosa population does occur. 

Growers in other countries practice deep tillage and bury the crop residues 

underground. This can be damaging to the soil structure but is preferred over shallow 

tillage or no-till in regard to black leg management (Gladders and Musa 1980). Deep 

tillage also helps in combating volunteers of shattered seed from previous seasons in 

comparison to shallow tillage.  

Field proximity to other susceptible crop fields previously planted is another 

important cultural management consideration. Conidia typically travel no more than a 

few meters, whereas ascospores likely don’t travel more than a few kilometers. In 

terms of field-to-field transfer of the pathogen, ascospores are generally regarded as 

the primary concern where infected crop residues may exist. A separation of 500 

meters between Brassica residues and new crops has been accepted amongst growers 

and researchers alike (West et al. 2001). Despite these distances traveled, ascospores 

are thought to travel distances greater than 500 meters, and subsequently, 500 meters 

should be considered a minimum distance and not an absolute when it comes to field 

protection (West et al. 2001).  
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Other cultural control recommendations include planting later in the spring or 

earlier in the fall when conditions are not as conducive for black leg in the Pacific 

Northwest. Additionally, awareness of mechanical spread of the disease when using 

equipment in an infected field, ensuring equipment is properly cleaned before 

working in another field, or avoided all together will help control disease spread. 

Because black leg is capable of growing on many crucifer crops, control of weedy 

Brassica species nearby which may harbor the disease is also important. For organic 

production, simply removing infected leaves or infected plants is also helpful in 

slowing the spread of disease.  

Chemical control practices 

A number of chemicals can be used to control black leg, but eradication 

through chemical treatment is not likely. Canola plants tend to be more susceptible to 

disease during the early stages of growth rather than more mature plants (Ghanbarnia 

et al. 2011). Mature canola plants may outgrow the disease and tend to be less 

susceptible to infection. Although it can be burdensome and financially difficult to 

cover the costs of preventative fungicide applications, black leg is best treated early 

with fungicides, and prior to infection. Because younger plants are more susceptible 

and timing is noted to be of great importance with black leg management, fungicide 

applications should be conducted not later than the first two months after germination 

(West et al. 1999). Later fungicide sprays are almost unnecessary in canola because 

the fungicides are not designed for eradication, nor do they offer significant kick-back 

effects. Once the pathogen has reached the stem, current fungicides registered for 

canola do not further control the disease, thus the need to protect leaves from initial 

infections and to spray early rather than later in plant development (Gladders et al. 

1998). Another step to black leg management is using treated seed. In the U.S. Pacific 

Northwest region, thiabendazole (Mertect 340-F) and iprodione (Rovral 4F) are 

registered as seed treatments for turnip and other Brassica crops (Pscheidt and Ocamb 

2021). 
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The foliar fungicides registered for management of black leg in turnip in 

Oregon include pyraclostrobin (Cabrio EG), prothioconazole (Proline 480 SC), and 

azoxystrobin (Quadris Flowable) (Pscheidt and Ocamb 2021). There are additional 

fungicides that are registered in Oregon for black leg management in canola and other 

Brassicaceae crops. When determining the best time to apply fungicides, four 

agronomic factors should be considered: cultivar susceptibility, soil type, plant 

growth stage, and plant vigor (West et al. 2001). In the Willamette Valley, the crop 

type (vegetable vs. vegetable seed crop vs. canola grown for oilseed) is a critical 

consideration for timing of fungicide applications, both the onset of the first 

application and intervals of protective sprays. 

Host resistance and biological control practices 

Different biological control agents have been explored with limited success 

for black leg management. Fungi that break down plant residue have been effective in 

lowering black leg fungal populations as well as the application of a bacterium with 

known antifungal properties (West et al. 2001). Prior to any fungicide applications, 

canola seed lines should be selected from germplasm which contains at least some 

resistance to the pathogen, and seed should be certified as free of Leptosphaeria. 

Breeding programs seeking R-genes in canola have been underway for years. 

Acquiring novel canola lines with known resistance is a crucial step in combating 

black leg in the field. Additionally, new canola lines that are genetically modified are 

produced every few years and provide the grower greater control over their field. 

These plant lines may contain resistance to highly-effective fungicides which could 

not be used otherwise, as well as the input of R-genes that impart some level of 

resistance to Leptosphaeria. Overcoming major gene (R-genes) resistance is of great 

concern due to the constant pathogen selection that occurs with sexual recombination 

(ascospores) in the field, thus demanding continuous cultivar development (Howlett 

et al. 2001). In Australia, single R-gene resistance appears to break down in 3 to 4 

years. Kutcher et al. (2011) suggest an integrated approach that combines multiple 

strategies in concert rather than reliance on a single strategy for providing the best 
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management of black leg. These recommendations outlined in this chapter are not all-

inclusive, nor provide all the tools growers have access to or everything that has been 

reported as effective. Awareness of disease threats and regular scouting of Brassica 

fields for black leg will allow for the timeliest decisions and help crop experts and 

growers to make the soundest management decisions. 

 

The reemergence of hemp production in the U.S. 

After decades of legislative restrictions on the cultivation of Cannabis in the 

United States, legislation passed by the federal government has now led to the 

reemergence of the hemp industry. While Cannabis production may now be more 

mainstream than it has anytime in the past century, this crop has been cultivated by 

humans for thousands of years. Research suggests that Cannabis and Humulus 

diverged about 27.8 million years ago, with the center of origin for Cannabis possibly 

near Qinghai Lake on the northeastern Tibetan Plateau (McPartland et al. 2019). 

Evidence of Cannabis first being used by humans goes back 10,000 years to its utility 

in Japan as a food source (McPartland et al 2019). Kraezel et al. (1998) suggests 

Cannabis may have been used roughly 12,000 years ago in Central Asia, where relics 

of sand pottery with hempen cord fiber along the surface were recovered. Others 

suggest it was not until 5,600 years ago in China that hemp fiber was first used for 

silk and spinning wheels (McPartland et al. 2019). Documented use of Cannabis 

sacramentally dates back 2,500 years ago with evidence discovered in the Jiaya tomb 

of a Chinese male in modern northwest China (Jiang et al. 2006; Jiang et al. 2016). 

While many of these origins are still under debate, the cultivation and uses of 

Cannabis are known to be ancient and among the first crops cultivated by humans. 

 

Hemp taxonomy 

Cannabis sativa L. was first described by the “father” of taxonomy, Carl 

Linnaeus. At the time, Linnaeus was unaware of the types found in Asia and India 
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and thus, classified C. sativa as the sole species of the genus in 1753 (McPartland 

2017). In Europe, C. sativa was cultivated as a fiber crop, distinct from the medicinal 

Cannabis found in both India and Asia (Hartsel et al. 2016). Jean-Baptiste Lamarck, 

another well-known taxonomist of the time, recognized the differences in plant size, 

shape, leaf structure, and psychoactive effects associated with those found in India 

and Asia. This ultimately led him to create a separate species in 1785 that was 

reported as Cannabis indica (McPartland 2017). Over a century later, a third 

Cannabis species was named by a Soviet botanist, D.E. Janischevsky. In Soviet 

Russia, a shorter auto-flowering variety was named Cannabis ruderalis, becoming the 

third member of this genus (McPartland 2018). There is still controversy concerning 

the taxonomy of these three species. The two dominating schools of thought are split 

between monotypic and polytypic position (Hartsel et al. 2016). Many botanists 

believe that all Cannabis species are C. sativa because the three are often interbred to 

generate unique phenotypes. This would therefore support the biological species 

concept making them one species and three separate varieties or subspecies with 

unique phenotypes. Alternatively, Sawler et al. (2015) conducted a genome-wide 

analyses using 14,000 SNPs on 81 marijuana and 43 hemp lines or strains and 

demonstrated that enough genotypic distinction exists between C. sativa and C. 

indica to classify the two as individual species. While this debate is still ongoing, in 

this thesis, the polytypic nomenclature is used unless distinguished otherwise. 

 

Hemp biology 

 Cannabis is dioecious, but under stressful environmental conditions, typically 

from artificial changes in the light cycle, may cause the plant to become 

hermaphroditic, leading to a monoecious plant. Generally, the female plants are much 

rounder and bushier while the males are tall and slim (Raman et al. 2017). While this 

dioecious growth pattern is a generalization, growth patterns of hemp are largely 

dictated by environment and cultivar selection as either fiber, seed, or medicinal type. 

The fiber cultivars are most often C. sativa-dominate strains while medicinal types 
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favor C. indica genetics. Most cultivars grown today are not true C. sativa, C. indica, 

or C. ruderalis, but are crosses between members of these three species. Despite this, 

there are known morphological differences between C. sativa, C. indica, and C. 

ruderalis which have been described by Anderson (1974), and draws distinctions 

defined by woody tissue anatomy. But as previously remarked, cultivars of today are 

a melting pot of the three-wild type varieties and/or species, and original wild-type 

species are believed to have been lost. Hemp cultivars used for fiber are generally 

taller in height and have a narrower canopy than the medicinal types grown for the 

chemical content of their flowers, which have a ‘Christmas tree’ appearance to them. 

Leaves are alternate or opposite in position on the stem, palmately compound or more 

recently termed, actinodromous, with 3 to 11 leaflets (Jiang et al. 2006; Chandra et al. 

2017). The center leaflet is typically largest in size and lanceolate in shape with 

serrate margins and pinnate venation. Leaflets become more linear the further they 

extend from the center leaflet, but margins and venation remain the same. Adaxial 

surface ranges from a lighter pale green to dark green, depending on leaf age, with 

cystolith non-glandular trichomes while the abaxial surface is much lighter in color 

with a whitish-green appearance and capitate-sessile glandular trichomes and non-

glandular covering trichomes (Raman et al. 2019). Flower formation occurs at the 

nodes where the leaf petioles meet the stem and the female or male reproductive 

organs are found. The stigma will begin to form a ‘pre-flower’ early in the bloom 

period and continuously grows to form a ‘bud’. The collection of buds on a hemp 

stalk or stem is referred to as a ‘cola’ or inflorescence. Hemp seeds are smooth and 

spherical with color being light brown to dark gray and often times a mottled 

appearance (Ehrensing 1998). Seeds are 2.5 to 4 mm in diameter and 3 to 6 mm in 

length (Dewey 1913), weighing on average 16 grams, but can be much smaller or 

larger (Dempsey 1975). Additional morphological characterization of Cannabis 

species and anatomy can be found in Chandra et al. (2017). 
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Modern hemp history 

While China was the major producer of hemp early on, hemp eventually 

became a cash crop in Europe during the 1500’s due to its versatility as a fiber and for 

the high nutrient content found within its seeds (Johnson 1999). Despite widespread 

hemp production across Scotland, England, Wales, and Ireland in the following 

centuries, hemp demands could not be entirely met (Gibson 2006). This void was 

filled by Russia, who became the premier producer of hemp-based products and its 

number one agricultural exporter (Fortenbery and Mick 2014). With its noticeable 

strength and resistance to corrosion from saltwater, hemp was commonly used in 

seafaring vessel mast-cloth and rope construction. The use of hemp-fiber for military 

might allowed Italy to create one of the greatest naval fleets of the 1700’s, during a 

period when it had the highest quality hemp cultivars (Kraenzel et al. 1998). This 

came prior to England’s naval dominance that was largely attributed to hemp fiber as 

well (Fortenbery and Mick 2014). With the colonization of America and its close ties 

with European heritage, hemp was introduced to America and cultivated for fiber in 

1645 (USDA ERS 2000).  

 Despite many years of stigma accompanied by a ban on production, people 

across America still remember its importance during America’s early years. Hemp 

was reportedly used for cordage, sailcloth, uniforms, the first U.S. flag, drafting of the 

Declaration of Independence, and was even cultivated by the U.S. presidents 

Washington and Jefferson (Kraenzel et al. 1998; Fortenbery and Mick 2014). The 

hemp industry boomed during the mid-1800’s, primarily in Kentucky but also in 

Missouri and Illinois. By the end of that century, the relevance of hemp began to 

shrink largely due to the cotton gin’s ability to separate seed from cotton fibers along 

with the steam-powered engines taking over transportation markets. While many of 

the U.S. states attempted to cultivate hemp, essentially all production took place in 

Kentucky from the end of the Civil War to 1912 (Wright 1918). In 1913, the U.S 

production of hemp came to a halt, despite the fact that production was already 

dwindling, as the Marijuana Tax Act was imposed that gave the U.S. Treasury 
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Department oversight of its production. This tax was chiefly put in place as an 

attempt to prohibit production of Cannabis strains that were high in THC content 

(Ehrensing 1998). There was a slight resurgence in hemp production during WWII 

when both jute and abaca supplies were disrupted and roughly 13 U.S. states began 

growing hemp to help meet demands for fiber (Wright 1918; Dempsey 1975). While 

Oregon is now one of the nation’s leaders in hemp production, commercial 

production never occurred during the state’s early years. However, Ehrensing (1998) 

remarks that experimental crops were planted in the 1930’s for a fiber crop trial 

conducted by the USDA and a hemp breeding program in Corvallis, Oregon was 

established, but soon after was transferred to Wisconsin. Recently, hemp cultivation 

has found much stronger footing in the state of Oregon.  

 

Uses and economics of hemp 

Hemp is said to have over 50,000 different uses, which suggests it could have 

large financial impacts on the world economy (Carus and Sarmento 2016). Estimates 

of hemp product sales and as a state-to-state commodity are difficult to measure due 

to the lack of data collection by USDA National Agricultural Statistics Service. States 

like Oregon are said to be in the top five in terms of hemp acreage in an almost 

billion-dollar national industry projected to reach almost $2 billion USD by 2022 

(Smith 2019).  

The three categories that encompass hemp uses include fiber, seed, and oil. 

While hemp-fiber was once in great demand, driving early hemp cultivation, hemp 

fiber has become less relevant today as alternatives such as flax, cotton, and synthetic 

fibers hold a production and cost-effective advantage. In 1999, hemp fiber only held 

0.3% of the world fiber market demand (Cherney and Small 2016). From 1982 to 

2002, the European Union (E.U.) subsidized hemp and flax harvesting and processing 

technologies with millions of dollars, giving them a share in the hemp fiber market 

(Small and Marcus 2002). The largest current supplier of hemp fiber is China; cheap 
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labor and a developed industry have made this market very difficult to compete with. 

The fiber in hemp is bast fiber, which is found between the phloem and bark. Primary 

uses include textiles, plastic composites, pulp for paper, building materials, and 

animal bedding (Small and Marcus 2002). The U.S. imported about $10 million 

(USD) worth of hemp fiber in 2013 (Fortenbery and Mick 2014), which was slightly 

down from the preceding three years. For the most part, the hemp fiber industry has 

been stable during the past 20 years. The hemp seed, oil, and oilcake industries have 

seen a large increase in production in Europe and Canada but little production in the 

U.S. and thus the U.S. requires importation to meet consumer demands (Cherney and 

Small 2016).  

Hemp grown for seed holds promise for North American farmers. In 2013, 

there was roughly $85 million USD worth of hemp seed oil and oilcake imported into 

the U.S. (Fortenbery and Mick 2014). Hemp seed is generally used as food for both 

humans and livestock. It is also popular for edible oil and personal care products like 

soaps, shampoos, perfumes, etc. One of the advantages of oil derived from hemp seed 

is that new technologies are not required for processing. Machinery used for other oil 

seed crops’ extractions have been shown to be effective for hemp seed oil extraction 

and is one of the reasons hemp oilseed production is more economically feasible in 

the U.S. compared to hemp fiber. There are also restrictions on the intercontinental 

shipment of seed from places like China and the E.U. into the U.S. and coupled with 

the seed certification and the chance of the product going rancid, makes it a challenge 

for foreign producers to penetrate the U.S. hemp seed market.  

Finally, oils extracted from the glandular trichomes contained in the flowers 

have become the primary target for the U.S. hemp industry of late. The compounds of 

hemp most sought after are cannabidiol (CBD) and more recently, cannabigerol 

(CBG). While there are already many useful chemical compounds found in the 

trichomes of hemp, more continue to be discovered as potential sources of valuable 

cosmetic, dietary, and health products. Hemp Business Journal estimates in 2017 that 

23% of hemp sales came from CBD, 22% from personal care, 18% for industrial 
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applications, and 17% for food products (Smith 2019). This article also estimates that 

just under 35% of future hemp sales will go towards CBD in 2022. The future of 

hemp production in the Pacific Northwest is anticipated to predominantly revolve 

around the CBD market, along with other chemical compounds found in the 

trichomes of Cannabis flowers. 

 

Hemp laws and regulations 

Oregon lawmakers signed off on industrial hemp in 2009 by the approval of 

SB 676 but hemp production would have to wait a bit longer for the federal 

government to agree to the legalization of hemp production with the approval of the 

2014 and 2018 Farm Bills. In 2014, the Federal Agricultural Act of 2014, commonly 

referred to as the 2014 Farm Bill (Jeliazkov et al. 2019), allowed for state pilot 

programs to begin cultivation of industrial hemp by both commercial growers and 

universities. Oregon’s statewide hemp program was established soon after in 2015, 

guided by the 2014 Farm Bill. With the success of the 2014 Farm Bill and need for 

further legislation, another act was passed into law by the U.S. government in 2018. 

The Agriculture Improvement Act of 2018, commonly referred to as the 2018 Farm 

Bill, addressed commercial cultivation of industrial hemp and designated the USDA 

Agricultural Marketing Service to develop regulations (Jeliazkov et al. 2019). The 

interim rules for hemp production were released by the USDA on October 29, 2019. 

On January 15, 2021, the USDA published a final rule on the regulation covering the 

production of hemp in the U.S., which built on the rules set in October 2019 and were 

to take effect on March 22, 2021 (USDA AMS 2020). While laws and regulations 

may be changing in the coming years as new, improved legislation for the U.S. and 

Oregon is put into effect, there are no current signs that the hemp industry will 

imminently slow down.  

Due to its high market value, hemp production acreage has increased rapidly 

since the inception of the 2014 Farm Bill. During 2018, Oregon had 584 registered 
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growers and 1441 registered grow locations (ODA 2020). This increased during 2019 

to 1960 growers and 6040 registered grow sites. While the numbers have not been 

released for 2020 or 2021, production appears to be escalating in Oregon. The Oregon 

Department of Agriculture statistics show that as of August 21, 2020, over 25,000 

acres of outdoor industrial hemp were registered for production (Jones 2020). 

Although the market is still stabilizing, hemp provides a potentially valuable crop for 

many farmers throughout Oregon. 

While Oregon was one of the first states to legalize cultivation of hemp, its 

success and high demand has spurred many other states to follow suit. As of 

December 15, 2020, every continental state except for Idaho and Mississippi allows 

the cultivation of hemp for commercial, research, or pilot programs. With the 2018 

Farm Bill and the removal of hemp from the Controlled Substances Act, researchers 

are now realizing the many research opportunities that this crop presents. 

 

Diseases affecting hemp 

In hemp disease reviews by McPartland (1996) and McPartland et al. (2000), 

88 species of fungi were reported to attack C. sativa while more than 100 are listed by 

Farr and Rossman (2021). The numbers reported by McPartland occurred during a 

period when production of Cannabis was largely illegal across the world and little to 

no research was conducted tracing the plant health related issues. Now that Cannabis 

has taken a more global stage, with legalization seen not only across the U.S. but 

many places across the world, it is likely that the estimated number of pathogens 

infecting Cannabis will increase as more time passes.  

Pathogens of Cannabis are beginning to receive more attention from 

researchers, but diseases have not yet seen extensive study. We do know that different 

growing environments, cultivation techniques, and strain or cultivar choices impact 

disease development. Of the many diseases associated with hemp, some of the more 

recent reports are presented. Among the foliar diseases, powdery mildew caused by 
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Golovinomyces spp. in BC, Canada, Kentucky, Ohio, and Oregon have all been 

reported on Cannabis (Punja 2018; Szarka et al. 2019; Farinas and Peduto Hand 

2020; Wiseman et al. 2021). Powdery mildew caused by Podosphaeria macularis has 

been reported to occur in Oregon (Bates et al. 2021a) and in BC, Canada (Punja 

2020b). Leaf spot symptoms derived from the casual agents Bipolaris spp. and 

Cercospera spp. as well as stem cankers due to southern blight caused by Athelia 

rolfsii have resulted in significant impacts to yield in Tennessee (Hansen et al. 2020). 

Other foliar diseases of importance include downy mildew, olive leaf spot, Sclerotinia 

stem canker, and other less commonly reported fungal, bacterial, viroid, and viral 

pathogens (McPartland 1996, 2003). 

Soilborne diseases include root rots caused by Fusarium oxysporum (Punja 

2020a; Thiessen et al. 2020), F. solani, F. brachygibbosum (Punja et al. 2018; Punja 

et al. 2019), and F. graminearum (Thiessen et al. 2020). Root rot of Cannabis has 

also reportedly occurred due to Pythium dissotocum, P. myriotylum, and P. 

aphanidermatum in Canada (Punja et al. 2019). Furthermore, there have also been 

reports of Rhizoctonia solani-infected crops in Tennessee (Hansen et al. 2020). 

Pathogens of Cannabis floral organs include Penicillium olsonii, P. copticola, 

F. solani, F. oxysporum, (Punja et al. 2019), and F. equisetii (Punja et al. 2018). Of 

these Fusarium species, F. solani was noted to have caused the most severe bud rot 

symptoms (Punja et al. 2018). The powdery mildew species, Golovinomyces 

cichoracearum (Punja 2018) and P. macularis (Bates et al. 2021a), are also reported 

to infect the flowers of Cannabis. While only G. cichoracearum and P. macularis 

were reported to have been detected on flowers, it is plausible other powdery mildew 

species may infect Cannabis flowers. Additionally, Sclerotinia sclerotiorum was 

observed on hemp flowers in western Oregon during 2020 (C. M. Ocamb, personal 

communication). Of the pathogens known to impact the flowers of Cannabis, by far 

the most widespread and impactful floral disease is gray mold, incited by Botrytis 

species, primarily B. cinerea (McPartland 1996; Punja 2018, Thiessen et al 2020).  
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This list of pathogens contained above is not a comprehensive list of all 

pathogens known to impact hemp. While the list primarily focuses on those 

pathogens impacting Cannabis grown for CBD found in flowers, hemp grown for 

fiber and/or oilseed will experience different levels of disease severity, symptoms, 

and possibly range of pathogens. Greenhouse conditions which are often used for 

Cannabis production can also give rise to the presence of additional fungal diseases 

not commonly found under field conditions.  

 

Botrytis 

Botrytis is a fungus in the Sclerotiniaceae family and was one of the first 

genera of fungi described. This genus has since undergone reconstruction over the 

centuries since being first described in 1729, due to changes in genus concepts, age of 

the genus, and the relatively recent development of genomic tools used to designate 

fungal taxa. In 2020, there were 30 recognized species in the genus Botrytis that are 

collectively reported to impact more than 1400 cultivated crops (Elad et al. 2016). 

Comprehensive histories of Botrytis nomenclature and taxonomy are accounted for by 

Hennebert (1973), and more recently by Walker (2016). Among the Botrytis species, 

B. cinerea is recognized by some plant pathologists as one of the most important 

pathogens not only in this genus but among all pathogenic genera, owing primarily to 

its negative impact on pre- and post-harvest yields (Jarvis 1977) and recognition by 

the scientific community as an important pathogen for genomics research (Dean et al. 

2012).  

It wasn’t until 2013 at the Botrytis Symposium in Bari, Italy that the Botrytis 

researcher community agreed upon the generic species name, B. cinerea (Elad et al. 

2016). Prior to a single species name, plant taxa were given a teleomorph (sexual 

stage) name which was Botryotinia fuckeliana and an anamorphic name for the 

asexual stage, which is now its current name, Botrytis cinerea. Because of the vast 

host range of this fungus, Botrytis also has a broad geographic range, expanding from 
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temperate Alaska (Anderson 1924) to subtropical areas like Egypt (El-Helaly et al. 

1962) and extending to every continent of the world (Jarvis 1977). With a pathogen 

capable of causing disease across the world on such a large number of crops and 

requiring pre- and post-harvest disease management, large economic losses are 

associated with this pathogen. While reliable estimates of crop loss are difficult to 

account for, reports suggest diseases caused by Botrytis spp. are responsible for up to 

$100 billion USD in annual losses worldwide (Boddy 2016). 

 

Gray mold disease biology 

Gray mold caused by B. cinerea has been investigated little on Cannabis 

because of the relatively short recent history as an agricultural commodity in the 

United States. While B. cinerea may be the predominant Botrytis spp. impacting 

flowers and stems of hemp, there are three Botrytis spp. known to cause gray mold in 

Oregon: B. cinerea, B. pseudocinerea, and an unnamed species (Garfinkel 2021). 

Botrytis is thought to be widely present in the landscape which may account for why 

aspects of reproduction, liberation, and dispersal of this pathogen lack sufficient 

research (Jarvis 1980).  

Botrytis cinerea produces both primary inoculum and secondary inoculum. 

The overwintering or survival structures that function as a source of primary 

inoculum for B. cinerea include sclerotia, hyphae, and chlamydospores. Sclerotia may 

be the main source of primary inoculum for B. cinerea and sclerotia can persist for 5 

to 9 months (Thomas et al. 1983), with survival ultimately determined by 

environmental factors such as its depth buried in the soil (Ellerbrock and Lorbeer 

1977). Sclerotia can vary in size and are composed of mycelium encompassed in a 

melanized rind and an inner medulla containing a matrix of beta-glucans, both of 

which shield this overwintering structure from desiccation, ultraviolet radiation, 

microbial parasitism, etc. (Backhouse and Willets 1984, Pârvu and Pârvu 2014). 

Sclerotia of many Botrytis spp. go through carpogenic germination, giving rise to 
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apothecia bearing ascospores. Nonetheless, as noted by Carisse (2016), ascospores 

are considered a minor threat and in most cases, myceliogenic germination of 

sclerotia yields macroconidia, which then act as initial or primary inoculum. 

Microconidia can also arise from macroconidiophores or vegetation mycelium but are 

less common. Spore-bearing structures arising from sclerotia have been shown to 

sporulate for approximately 12 weeks under laboratory conditions (Nair and 

Nadtotchei 1987).  

Although conidia are generally thought of as secondary inoculum and the 

source of secondary infections, they also play a major role in primary infections. 

Mycelium (a collective or mass of hyphae) is capable of overwintering in plant debris 

and seeds from the previous season. Overwintering mycelium lacks thorough 

investigation, making it difficult to determine how large of a role mycelium plays in 

overwintering of this fungus. Furthermore, B. cinerea is also known to produce 

chlamydospores, which can then result in either microconidia or macroconidia 

generation under both natural and artificial infections (Urbasch 1983; Urbasch 1986). 

It is thought that chlamydospores may offer an additional survival option during 

shorter, less favorable conditions (Urbasch 1983). 

Secondary inoculum production by B. cinerea is largely crop specific and 

little has been investigated as to what temperatures, relative humidity levels, and time 

frameworks along with other factors facilitate conidial production on various plant 

species. Epton and Richmond (1980) suggested that formation of conidia is 

stimulated by specific wavelengths of light while Jarvis (1980) reported that 

conidiation by B. cinerea has an optimal temperature and wetness period that is 

dependent on the crop (Carisse 2016). Conidial release may occur due to several 

factors such as insects (Louis et al. 1996; Engelbrecht 2002), solar radiation, 

temperature (Blanco et al. 2006), leaf vibration, air movement, or water splash (Jarvis 

1962a; Jarvis 1962b; Jarvis 1980; Carisse 2016). The primary dispersal of conidia is 

by wind and has three phases: liberation, transport, and deposition (Aylor 1990). 

Liberation is the freeing of conidia from the conidiophores, transport is the movement 
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of conidia from its origin to a new location, and deposition is the surface the conidia 

is deposited. The greatest level of conidia release is typically when the wind speed is 

fastest (Jarvis 1962b). Western Oregon tends to experience fastest wind speeds in 

early mornings and evenings absent of storm fronts. Periods with the fastest wind 

speeds are generally negatively associated with relative humidity and positively 

associated with increasing air temperature. The wind speed (Harrison and Lowe 

1987), location in the canopy (Johnson and Powelson 1983), and conidial size are 

among the main factors influencing how far conidia can travel, and these should be 

kept in mind when considering disease management strategies. Conidia of B. cinerea 

reportedly traveled no more than a few meters in vineyards (Fitt et al. 1985) and snap 

bean fields (Johnson and Powelson 1983). The production of secondary inoculum is 

continuously created during the growing season, but the rate of reproduction appears 

to heavily depend on the crop (Carisse et al. 2015) and increases as the growing 

season progresses. The survival rates of conidia are affected by ambient temperature, 

moisture levels, microbial activity, and exposure to sunlight (Seyb 2003). In general, 

conidia of Botrytis spp. are thought to be short-lived (Holz et al. 2007). Upon 

deposition, B. cinerea conidia can form germ tubes within 1 to 3 hours in inoculation 

studies done under conducive conditions (Holz et al. 2007). Most investigations have 

been conducted in vitro and not much is known about Botrytis growth on a host 

surface or pathways used to enter and infect the host tissues (Holz et al. 2007; Carisse 

2016). 

Botrytis spp. can thrive under a range of environmental conditions, but 

environmental conditions along with several biological and agricultural factors will 

influence the development of disease. The two most important environmental factors 

for the germination of a Botrytis conidium are relative humidity and ambient 

temperature. While this pathogen is known for its extremely high genotypic and 

phenotypic plasticity, giving it the ability to adapt to many environments and 

allowing Botrytis spp. to persist within a broader spectrum of temperatures and 

humidity ranges, the optimal conditions are temperature generally between 15 to 

20°C -with the presence of free water or a relative humidity above 93% (Carisse 
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2016). Generally, the minimum period of time during which the temperature and 

relative humidity requirements should be met is four hours, but the longer the 

conducive environmental conditions persist, the greater likelihood of an infection 

event, regardless of crop (Bulger et al. 1987; Broome et al. 1995). Cool to moderate 

temperatures and a high relative humidity are common conditions in the Willamette 

Valley of Oregon, particularly in the late summer and early fall, posing circumstances 

that are high risk to hemp plants for developing disease due to Botrytis. Botrytis is 

known to remain latent within the plant until the required environmental conditions 

are met in the infected host tissues. Once environmental conditions are favorable, it is 

only a matter of days before symptoms becomes visible, and shortly thereafter, 

disease can reach epidemic proportions if effective disease management strategies are 

not instituted (McPartland 1996). 

Hemp floral organs serve as the primary infection court for Botrytis spp., but 

this fungus can also infect wounded tissues as well as senescing portions of a plant, 

and oftentimes will remain quiescent before symptoms develop. While the primary 

mode for Botrytis infection of hemp is not well studied, penetration is known to occur 

on other crop hosts through natural openings such as carpels (De Kock and Holz 

1992) and stomata (Fourie and Holz 1995; Hsieh et al. 2001), although Botrytis may 

infect through an undamaged cuticle in some cases (Nelson 1951). Symptoms on 

hemp flowers begin with fan leaflets turning yellow and wilting followed by 

browning of the pistils. Soon after, flowers become covered in gray mycelium, 

conidiophores, and conidia, resulting in a gray to brown, fuzzy appearance that gives 

rise to the disease name, gray mold (McPartland 1996). Shortly after, disease can 

spread encompassing large portions to entire inflorescence (Figure 1.2). While gray 

mold on hemp flowers is a primary focus of this research project, Botrytis spp. also 

can cause damping-off of seedlings or incite stem cankers when plants are nearing 

full maturity, especially on cultivars grown for fiber production (McPartland 1996; 

McPartland et al. 2000). 
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Figure 1.2 Hemp inflorescence with single flower infected with Botrytis, the causal 

agent of gray mold (A); gray mold along an inflorescence after disease spread among 

flowers resulting in flower necrosis (B). 

 

An improved epidemiological understanding of B. cinerea and other Botrytis 

spp. in hemp production along with the refinement of monitoring tools and sampling 

techniques is needed to accurately detect and quantify this pathogen. Despite 

improvements made by Carisse et al. (2009; 2015) in detection and quantification, 

there is still much that remains to be done, particularity for a relatively new crop like 

hemp. With an increased understanding of the epidemiology and improved ability to 

monitor Botrytis on hemp, IPM strategies can be developed that effectively and 

efficiently manage Botrytis-incited gray mold. 
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Management of gray mold 

Management of Botrytis-incited gray mold is challenging but has seen large 

improvements in many crops over the past few decades, primarily due to the advent 

of fungicides effective for this pathogen. Where many crops have an array of 

available conventional fungicide active ingredients that can be applied individually or 

in unison to slow the spread of Botrytis-induced diseases, hemp has a very limited list 

of pesticide products registered for current use. As of December 2019, the EPA list of 

registered pesticides for use on hemp includes 56 biopesticides and one conventional 

pesticide (EPA, 2021). Currently, effective control of Botrytis on hemp primarily 

relies on cultural control methods, innate resistance of hemp lines, and biopesticides. 

Cultural management practices 

When crops are first introduced to a new region for cultivation, cultural 

control methods tend to be the first practices adopted for disease management. 

Cultural control modifies the plant environment in a way to reduce pest or pathogen 

pressure. Generally, these strategies are not only more economical to implement than 

chemical control methods, but also less detrimental to the local ecosystem. Cultural 

control of gray mold can be accomplished through varying means, but it is not always 

a one-size-fits-all approach and will work to varying degrees on individual farms. 

One of the most successful methods to diminish the likelihood of a Botrytis 

epidemic is to decrease the relative humidity. Botrytis spp. are reliant on humid 

conditions for fungal growth and plant infection (Elad 2016). Greenhouses are 

commonly plagued with Botrytis outbreaks, and methods aimed at reducing the 

relative humidity are routinely utilized to aid in disease suppression (Nicot et al. 

2016). Under field-based conditions, choosing sites with adequate wind movement 

that prevents air stagnation, increased spacing between plants and rows of plants, 

orientation of rows with the predominate wind direction, avoiding locations with 

higher relative humidity (especially late in the season), and reducing the presence of 
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free water on plants will help to decrease the risk for gray mold outbreaks (Elad 

2016).  

Other cultural controls such as removing dead and dying tissues, optimizing 

sanitation, exclusion, and avoidance methods can be employed to reduce the 

likelihood of Botrytis-incited gray mold being present in a production site. Because 

this pathogen is a necrotroph, removal of dead plant tissue prevents Botrytis from 

obtaining the foothold it oftentimes requires for disease. This ties in closely with 

maintaining a strict level of sanitation in hemp production. Plant debris, trimmings, 

etc., should ideally be removed from production fields and greenhouses. By doing so, 

potential infection courts and inoculum sources are removed, reducing the threat from 

Botrytis. Exclusion of the pathogen can be accomplished by growing indoors, using 

greenhouses with filtered air circulation to prevent Botrytis introduction, cultivation 

in regions where Botrytis is not as well established, or using faster maturing hemp 

cultivars to avoid late season rains and subsequent disease development. 

Biopesticides and biological control practices 

Biological control agents and biopesticide formulations targeting Botrytis on a 

number of crops have shown limited success despite extensive research efforts (Nicot 

et al. 2016). As previously noted, outbreaks of Botrytis on many crops have been 

primarily managed via the applications of synthetic fungicides with various modes of 

action (Leroux 2007; Balthazar et al. 2020). Currently, biopesticides for targeting 

Botrytis on hemp lack sufficient evidence to recommend for their use to control this 

pathogen. Because hemp has had restrictions or bans on production until just recently, 

very little research has been conducted into the management of Botrytis by biological 

control means, let alone conventional fungicides. Furthermore, the stringent laws 

surrounding chemical residue levels on hemp products as well as chemical company 

concerns about product usage in marijuana (recreational Cannabis grown for THC), 

all extend the difficulty of developing effective fungicide spray programs for 

controlling key diseases in hemp production (Seltenrich 2019).  
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More recently, attempts have been made at understanding biological control 

agents and bear promising results (Lyu et al. 2019; Balthazar et al. 2020; Taghinasab 

and Jabaji 2020). These studies attempt to address biological control and the potential 

development of biopesticides by decoding the phytomicrobiome of hemp. There is 

optimism for discovery of closely associated microorganisms that may potentially 

serve as biocontrol control agents for plant pathogens (Lyu et al. 2019). Significant 

breakthroughs in this current pursuit of research and development haven’t been seen 

as of yet, but the envelope of biocontrol used to manage Botrytis on hemp has been 

pushed forward and has not been entirely unsuccessful. Use of a biopesticide on hemp 

has been shown to decrease Botrytis incidence and severity in a recent field trial in 

the Willamette Valley of Oregon (Bates et al. 2021b). Despite the dearth of research 

suggesting biocontrol methods are capable of preventing Botrytis epidemics, a 

growing list of EPA-registered biopesticides and the current biopesticides in other 

cropping systems is signaling success (Abbey et al. 2019), supplying some 

confidence for the use and future development of biological control methods. 

Hemp genetic lines 

Hemp breeding can lower gray mold risk in numerous ways. One approach is 

generating hemp cultivars that avoid disease via early maturation. Hemp cultivars can 

be divided into two groups, photosensitive and auto-flowering lines. Daylight 

sensitive or photosensitive hemp cultivars transition from vegetation growth to 

flowering based on the number of hours of light exposure. From the time flowering 

begins, hemp flowers generally take 7 to 10 weeks to fully mature and are then ready 

for harvest. Cultivars that have a lesser flowering time length or begin to flower 

sooner avoid late season conditions of higher humidity, cooler temperatures, shorter 

day lengths, etc., all of which can increase gray mold disease pressure. Moreover, 

hemp cultivars referred to as autoflowering do not transition from vegetation growth 

to flowering based on photosensitivity, but rather have an 8- to 11-week period to 

maturation from seed to harvest. Autoflowering hemp is developed through breeding 

a combination of either C. sativa or C. indica with C. ruderalis, which is native to 
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central and eastern Europe, but the origins of autoflowering hemp are not fully 

understood (Punja et al. 2017). These C. ruderalis crosses are able to survive during 

shorter growing seasons. The shortened time from sowing to full maturity allows for 

hemp harvest prior to the onset of environmental preferences conducive for Botrytis, 

resulting in exclusion of the pathogen. While Botrytis is still capable of causing 

flower rot post-harvest on C. ruderalis crosses, this disease aspect can be managed 

through proper storage conditions. 

Finally, plant structure can play an important role in Botrytis suppression. 

Larger, more dense hemp flowers tend to exhibit the greatest incidence and severity 

of gray mold. This is most likely the result of trapped moisture and/or a higher 

relative humidity within the flower parts, resulting in favorable conditions for Botrytis 

infection (McPartland 1996). Hemp buds that are smaller and less compact are 

generally considered unfavorably by hemp growers harvesting flowers, but the 

smaller buds would be preferable for disease suppression. Finding a balance of flower 

size and compactness with yield may prevent gray mold via plant characteristics. 

Additionally, hemp cultivars with plant structure conducive for maximizing airflow 

will help to reduce periods of free water and high relative humidity. Plants that aren’t 

as dense, nor as compact, or shorter in stature would allow for more sunlight and 

increased airflow to penetrate the plant canopy. 

 

Remote sensing 

Unmanned aerial vehicles (UAVs) are a new tool being adopted by growers to 

scout fields via remote sensing to assess plant health and disease levels in agricultural 

fields. Remote sensing is the nondestructive observation of an object(s) or 

phenomenon (Lillesand et al. 2015). This is typically accomplished with an optical 

sensor that collects data at a specific wavelength or a range of wavelengths (spectral 

bands) within the electromagnetic spectrum. One of the first applications of remote 

sensing was made in the early 1900s using panchromatic filming of aerial flights 
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during World War I (Moore 1979). Remote sensing with optical sensors was not 

applied in agriculture until the mid-1900’s, where black and white aerial photography 

was conducted by the U.S. Department of Agriculture. Upon recognition of the 

billions of dollars lost to pests and diseases, the Agricultural Board of the National 

Research Council created the Committee on Remote Sensing for Agricultural 

Purposes in 1961 to help gain insights on management strategies (Macdonald 1984). 

It was not until 1970 that a researcher attempted to collect information in a plant 

pathology context for an agricultural system when Pisharoty used remote sensing in a 

manned aircraft flown at 500 and 1000 feet above ground level for detection of 

coconut root wilt disease (Dakshinamurti et al. 1971).  

The inception of remote sensing and its subsequent progression were driven 

by potential applications for the U.S. military. With the spark of the digital revolution 

and technology advancements booming, newer optical sensors and aircrafts were 

developed at a rapid pace in the 1960’s. More importantly, optical sensors were being 

designed specifically for agricultural applications. Presently, more powerful camera 

options have become available and more affordable. Additionally, we are no longer 

limited to using satellites or airplanes to collect imagery, as we now have access to 

small fixed-wing and multicopter UAVs. These newer flight platforms have many 

advantages over previous systems used for aerial data collection, especially for plant 

disease detection. The combination of recently developed sensors and UAVs, along 

with sophisticated machine learning models, has opened a door to many possibilities 

in the application of precision agriculture.  

 

Optical sensors used in remote sensing 

 There are a relatively small number of sensors currently undergoing 

evaluations for their ability to gather information on crop health. Researchers and 

other workers within the precision agriculture industry are seeking to find the optimal 

sensor types and spectral band requirements needed to approximate crop yields, 
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nutrient deficiencies, pests, pathogens, phenotypes, and more via remote sensing. No 

single sensor will offer the best solution to the broad range of plant-related issues. 

Some of the more common optical sensors include chlorophyl fluorescent, thermal, 

LiDAR, visual spectrum (RGB), hyperspectral, and multispectral (Araus and Cairns 

2014; Mutka and Bart 2015; Sankaran et al. 2015; Mahlein 2016; Zhang et al. 2019).  

The most success for disease detection has come through the application of 

hyperspectral and multispectral sensors (Sankaran et al. 2015; Zhang et al. 2019). The 

distinction between the two is arbitrary; multispectral is simply an optical sensor 

which collects information at nine or fewer spectral bands where hyperspectral is ten 

or more (Lamb 2000). Typically, this includes bands in the visible spectrum of light, 

referred to as RGB, which includes the red, green, and blue wavelengths. More 

capable sensors extend into the far-red and near-infrared regions of the 

electromagnetic spectrum and are commonly used for disease detection (Sankaran et 

al. 2010; Abdulridha et al. 2019; Lu et al. 2018; Dammer et al. 2011). Both 

multispectral and hyperspectral sensors have positive and negative attributes 

associated with their use, but their implementation ultimately comes down to the 

goals of the user. 

Band lengths for multispectral optical sensors tend to range from 10 nm to 50 

nm but are generally broader in the infrared regions (Deng et al. 2018). As with many 

of the remote sensing tools, sensors are developed to satisfy a specific purpose which 

directs the number, size, and placement of the spectral bands. Larger spectral bands 

have a lack of spectral resolution making it difficult to discern subtle differences in 

the electromagnetic spectrum observed between features. The primary advantage of 

hyperspectral cameras over multispectral is their ability to resolve features in the 

electromagnetic spectrum because of their increased spectral resolution. Finding 

differences in spectral bands is a key requirement for plant disease detection. The use 

of spectral indices or vegetation indices has become a primary approach for disease 

detection by multispectral users due to the lower spectral resolution (Yang et al. 2007; 

Naidu et al. 2009; Behmann et al. 2014; Candiago et al. 2015). A vegetation index is 
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a spectral calculation between bands meant to reveal characteristics of the plant not 

apparent otherwise. Many vegetation indices have been developed over the past few 

decades, including spectral indices designed for a single disease (Mahlein et al. 

2013). Camera selection should consider both narrowband and broadband sensors as 

well as which bands allow for spectral index calculations required for detection of a 

particular disease (Deng et al. 2018). 

 Two additional resolutions important to plant disease detection include the 

radiometric and spatial resolution. Cameras have different radiometric resolutions 

which are reflected in the number of ‘bits’ the camera has. A 12-bit camera for 

example will have a possible 212 range of digital numbers per pixel based on the 

spectral reflectance. A high digital number will be representative of high reflectance 

at a given spectral band, while a low digital number indicates low reflectance. In 

essence, a higher radiometric resolution will provide greater detail of the spectral 

characteristics of measured features. Similarly, higher spatial resolution results in a 

finer detailed image through increasingly smaller-sized pixels. The coupling of high 

spatial and radiometric resolution gives the user better quality images. 

Sensor weight, cost, and data storage are three other components worth 

considering when selecting a camera for disease detection techniques. Multispectral 

cameras strike a balance between cost and weight (Deng et al. 2018). With the 

adaptation of drones for aerial imaging, compact and light weight cameras are needed 

to maximize flight time of the UAV. The optical sensors fixed to the drone can have 

one of greatest influences on duration of flight time. Sensors designed for UAVs will 

have as much weight shaved off as possible but that may come at a cost. High quality 

multispectral sensors can be currently purchased for $10,000 USD or less whereas 

hyperspectral sensors are five times or more expensive and generally weigh more. 

Finally, the amount of data collected by a hyperspectral camera can be burdensome 

for storage and processing. Hyperspectral sensors will require vast storage space 

within the UAV during flights and a powerful computer for processing data. 
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Aerial platforms used in remote sensing 

The platform by which an optical sensor is mobilized is integral for quality 

data collection required for plant disease detection goals. The primary aerial 

platforms used for disease detection by remote sensing include satellites, manned 

aircrafts, and more recently, UAVs. While all these platforms have shown to be 

successful in disease detection, UAVs are better adapted for the specific needs of 

disease detection (Garcia-Ruiz et al. 2013). Satellites have variable temporal 

resolutions, but in comparison to both manned and unmanned aircrafts, satellites have 

the lowest temporal resolution. Additionally, data derived from satellites are going to 

have the lowest spatial resolution, followed by manned aircrafts, and the greatest 

spatial resolution come with UAVs. Unmanned aerial vehicles are also lower in cost 

in comparison to manned aircrafts (Wing et al. 2014) and the availability of UAVs, 

such as fixed wings and multicopters, has increased accessibility for a larger 

community of users (Araus and Cairns 2014).  

The temporal resolution of an aerial platform is important for meeting disease 

detection goals. Experienced growers, agronomists, and researchers have a strong 

sense of when disease is likely to show up in a field. This may be after heavy rainfall, 

periods of minimum or maximum temperatures, the time of the season, growing 

degree-day models, or visual disease observations that drive these approximations. 

Researchers and managers should align aerial surveys with anticipated disease 

detection windows or immediately after visual observation. Satellites have a fixed 

schedule based on their orbit and are therefore, limited in their ability to collect data 

on a moment’s notice. Manned aircrafts typically require a hired pilot which can be 

more costly and may not actually be available for flights when it is necessary. 

Unmanned aerial vehicles, commonly referred to as drones, allow for flexible flight 

schedules not easily accomplished with manned aircrafts or satellites (Deng et al. 

2018). The issues of temporal frequency and spatial resolution are addressed by the 

adaptation of UAVs in data collection (Lelong et al. 2008). While issues such as 

cloud cover, rainfall, high winds, or other environmental conditions may result in 
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UAV limitations, it still stands as the best option for meeting the necessary flight 

times for data collection. 

As mentioned previously, spatial resolution is a critical limiting factor for 

disease detection by remote sensing. In order to capture the signs or symptoms of a 

disease, high spatial resolution is pertinent. While satellite spatial resolution continues 

to improve, their lack of high spatial resolution is still one of the greatest drawbacks 

for remote detection of plant diseases using satellites. High spatial resolution satellite 

imagery used in measuring plant characteristics is scaled in meters (Li et al. 2019) as 

compared with centimeters or millimeters through in UAVs. Because plant disease 

symptoms or signs cannot be observed with such low spatial resolution, obvious 

challenges arise. Manned aircrafts can fly at lower distances to the ground but not as 

low or controlled as UAVs. While both satellites and manned aircrafts are capable of 

much greater payloads than UAVs, resulting in more powerful optical sensors, this 

does not generally offset their increased spatial distances from the object being 

measured. Unmanned aerial vehicles can ultimately fly as low as disease detection 

surveys necessitate. Issues such as chopper spray, danger of hitting the plant canopy, 

and hazards such as surrounding trees or telephone wires are a concern but can be 

managed with careful flight planning. The lower flight altitudes permitted by UAVs 

allow for the highest spatial resolution, down to millimeters in size, providing the 

resolve needed for detecting plant disease. 

Unmanned aerial vehicles can be divided into four groups: parachutes, blimps, 

rotocopters, and fixed-wing aircrafts (Sankaran et al. 2015). More recently, the 

development of hybrid platforms, a combination of fixed-wing and multirotor UAVs, 

have increased in popularity. For disease detection and most agricultural uses in 

general, rotocopters and fixed-wing aircrafts have outcompeted the other models in 

development and are now a staple of aerial detection platforms in agriculture. A 

fixed-wing aircraft is an airplane that uses the wings to generate lift whereas a 

multicopter uses the rotary speed of its many rotors to generate lift. Fixed-wing 

aircrafts have the advantage of longer flight times and increased speeds leading to 
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greater range in comparison to multicopters (Sankaran et al. 2015). Alternatively, 

multi-rotor UAVs are able to hover and are more easily flown at lower elevations and 

with greater precision. Both rotocopters and fixed-wing aircrafts offer advantages and 

disadvantages worth considering and choices should be based on needs of the 

researcher or growers’ goals. 

 

Precision agriculture and UAVs 

Precision agriculture can be defined as “a management strategy that uses 

information technology to bring data from multiple sources to bear on decisions 

associated with crop production” (Candiago et al. 2015). The crossroads between 

agriculture and geographic information science (GIS) essentially gave rise to the 

precision agriculture concept and practices of the early 1980’s. Application of this 

new farming strategy was not routinely applied until 1988 with the SoilTeq (Fairchild 

1988), a fertilizer blender and distributer (Stafford 2000). Much of the applicability of 

precision agriculture came with the advent of the global positioning system (GPS). 

But early on, the GPS was a challenge for the lay person to adopt into practice, and 

further efforts to increase its reliability and usability were needed (Stafford 2000). By 

the early 1990s, maturation of the GPS and other technologies led to a rapid 

expansion in adoption for agriculture and inspired the development of spatially 

variable herbicide applicators (Stafford and Miller 1993), soil organic matter sensors 

(Price and Hummel 1994), yield mapping technology (Pierce et al. 1997), and more. 

The early adoption of precision agriculture is highlighted in studies by Daberkow and 

McBride (2000; 2003), and Griffin and DeBoer (2005). Within a few decades of 

development, the objectives of precision agriculture to optimize available resources 

for increased profits, decrease negative environmental impacts, and improve the 

workplace environment and social aspects of agriculture have been used to help 

address farming problems across the world (Gebbers and Adamchuk 2010). 
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Some of the more popular precision agriculture tools are auto-steer systems, 

variable rate technology for input applications such as fertilizers, and GPS-based 

mapping systems for crop health (Schimmelpfennig 2016), dating back to the late 

1990’s (Lambert et al. 2004). Others include yield, field, soil, and crop sensors, 

robotic harvesting systems, and remote sensing (Zhang et al. 2002). Trimble 

Agriculture suggests aerial imaging through satellites and UAVs will be one of the 

primary tools used in crop management in 2021 (Trimble Ag. 2021). Places like 

Canada, Europe, Asia, and South America tend to incorporate UAVs in agricultural 

practices more often than the U.S. due to the lack of airspace and licensing 

restrictions (Stehr 2015). Despite a relatively slow start for remote sensing, largely 

because of the low spatial resolution of satellite and manned aircraft data (Zhang et 

al. 2002), the Association for Unmanned Vehicle Systems International is expecting 

an 80 to 90% growth in the UAV market coming from agricultural use (Karst 2013). 

Drones are expected to be popular for use in mid-season crop health monitoring, 

irrigation equipment monitoring, weed identification, variable-rate fertility 

(Veroustraete 2015), water monitoring, nutrient monitoring, identification of disease 

stress, and much more (Daponte et al. 2019). The opportunities to incorporate 

precision agriculture are not limited to crop production but have value pre- and post-

harvest as well. Precision agriculture is a very broad concept that encompasses more 

than just the technologies but also the generated data. Making use of big data has 

been a major roadblock for precision agriculture users (Erickson and DeBoer 2020). 

Applying data derived from precision tools correctly takes practice or a trained expert 

and is critical to receiving farm profits. In the early 2000’s, it was difficult to 

understand the financial benefits of adopting precision agriculture approaches 

(Lambert et al. 2004). Recent economic studies looking at adoption of precision 

agriculture by Erickson and DeBoer (2020), Schimmelpfennig (2016), and Griffin et 

al. (2018) have brought to light which types of agricultural producers this technology 

can help and how farmers can benefit from adopting precision agricultural 

approaches. 
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The tools of precision agriculture were initially utilized by larger farms, and 

adoption over the years has mostly been limited to these larger producers. In the early 

2000’s, utilization of precision agriculture technologies was up to 22% of U.S. 

growers cultivating the dominant row crops such as corn and soybean 

(Schimmelfennig 2016). A 2010 USDA Agricultural Resource Management Survey 

(ARMS) provides data showing that corn and soybean farmers are more prone to the 

adoption of precision agriculture tools where yield monitoring is used by about half 

of these farmers, representing about 70% of U.S. dent corn and soybean acreage 

(USDA ARMS 2010). The disproportion of acreage versus the percentage of farmers 

utilizing precision agriculture suggests that smaller farms are less likely to adopt these 

tools compared to larger farms. In this same 2010 study, 12% of corn farms with less 

than 600 acres used yield mapping, guidance systems, and variable rate technology. 

Alternatively, corn farms greater than 3,800 acres used precision agriculture 

technologies at a much greater percentage; yield mapping was used on 80% of these 

corn farms, 84% used a guidance system, and 40% used variable rate technology. 

Schimmelfennig (2016) suggests implementation of these technologies on farms was 

largely driven by not only farm size, but also by machinery used and farm labor costs. 

Location also seems to influence where these tools are most often used. Because 

many of these major crops are grown in the middle of the U.S., it is not unexpected 

that precision agriculture technology is used more often in the Midwestern U.S. 

(Erickson and DeBoer 2020) and the corn belt region of the U.S. (Schimmelfennig 

2016). But the trend of precision agriculture adoption for cultivation practices by 

farmers has certainly gone up from its inception in the 1980s till now. Agronomy 

companies across North America have launched precision agronomy programs. At 

most agronomy companies, you can now find an employee with the job title, 

‘Precision Agronomist’. In a survey offered to mostly agricultural retail input 

suppliers, they were asked whether or not they would be offering nine service- and 

sensor-related precision agriculture technologies over the next three years, and all 

technologies saw an upward trend in offerings (Erickson and DeBoer 2020). 

Universities, such as South Dakota State, are recognizing these trends toward a new 
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age in agriculture and have created a degree in precision agriculture. While precision 

agriculture is gaining traction as an emerging farm practice, some precision 

agriculture tools have seen more development and usage than others because of the 

financial benefits gained.  

While the effect of precision technologies on corn farms, based on USDA 

economic research service data, has a positive net return of 1.1 to 1.8% compared to 

those who don’t use them, precision technologies are not a one-size-fits-all 

(Schimmelfennig 2016). Many variables come into play which impact the net returns 

seen with utilization of precision agriculture tools. In compensation for the fact that 

precision agriculture efforts have primarily targeted the major row crop systems in the 

U.S., a large amount of funding in the past decade has gone towards research and 

development of precision agriculture utilization for specialty cropping systems, which 

composes about one-third of U.S. agricultural crop receipts. Between 2008 and 2018, 

the USDA funded $287.7 million USD on the increased development and utilization 

of automation in the production and processing of specialty crops. Between 2010 and 

2018, another $3.4 billion USD was granted for the development of digital 

infrastructure for increased automation and mechanization as well (Astill et al. 2020). 

Universities funded by federal grant programs have pushed to move conventional 

agriculture practices toward precision agriculture. This effort has not been futile, and 

adoption of these tools by the industry are increasing. On a survey with over 20 

precision technology service offerings, dealerships showed anywhere from 71% of 

the retailers making a profit on variable‐rate technology fertilizer application down to 

0% on robotic crop scouting or weeding, but with 85% responding they were unsure 

about profits on the latter (Erickson and DeBoer 2020). The global precision 

agriculture market was valued at $4.7 billion USD in 2019 and is estimated to 

increase at a compound annual growth rate of 13.0% from 2020 to 2027 (Grand View 

Research 2020). Drones are expected to play a major factor in future farming trends 

and are listed at $9.9 billion USD in 2019 and expected to grow at 7.1% from 2020 to 

2025 (Mordor Intelligence 2020). Precision technology is the future of agriculture and 

is now being recognized as such by those in the agricultural industries. 
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Remote sensing of plant diseases 

 Most of the literature emphasizes the utilization of multispectral or 

hyperspectral digital images for disease detection (Barbedo 2013), but in the infancy 

of disease detection by remote sensing, RGB was the most commonly used method 

and still has value because of its low cost and ease of use. Many studies have reported 

success using RGB images for disease detection (Camargo and Smith 2009a; 

Camargo and Smith 2009b; Arivazhagan et al. 2013; Neumann et al. 2014; Barbedo 

et al. 2016). Reviews by Barbedo (2013; 2016) give practical explanations for why 

RGB is still relevant for disease detection. Despite RGB’s ability to detect plant 

diseases, studies that have compared RGB and multispectral images most often report 

that multispectral cameras are more proficient for disease detection (Dammer et al. 

2011; Abdulridha et al. 2019). Much of this is likely attributed to the reflectance of 

vegetation in the near-infrared region of the electromagnetic spectrum often captured 

in multispectral data but not RGB.  

 A large portion of reports on disease detection via remote sensing utilized 

controlled environments for experiments. This ignores the reality of field-like 

conditions where plants are often exposed to many pathogens or pests and are 

influenced by abiotic factors such as nutrient deficiencies or drought stress. Predictive 

models generated on healthy plants void of any abiotic symptoms or other pathogens, 

generally lack the ability to accurately predict disease when put into field-based 

applications. A limited number of studies have had success using predictive disease 

detection through remote sensing on plants with two or more pathogens (Franke and 

Menz 2007; Mahlein et al. 2010; Rumpf et al. 2010). Additionally, detection of 

abiotic factors by remote sensing, such as leaf nitrogen content (Cohen et al. 2010; 

Vigneau et al. 2011), drought stress (Winterhalter et al. 2011), and a range of soil 

properties (Rossel et al. 2006) have also been successful. But many of the studies fail 

to simultaneously detect disease in the presence of abiotic and biotic factors 

(Abdulridha et al. 2019, Ferentinos et al. 2019). The easiest way to accomplish this is 

by field-based data collection rather than using greenhouse- or lab-grown plants. 
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Early stages of model optimization may focus on accurate prediction of abiotic or 

biotic factors influencing plant health ex situ. But future work should be extended to 

in situ, where many practical aspects of disease detection by remote sensing can be 

utilized. Detailed reviews on digital image classification of plant diseases have been 

conducted and include a range of host-pathogen systems which have had successful 

disease detection model creation, and where the future research should focus to 

increase scientific breakthroughs (Sankaran et al. 2015; Mahlein 2016; Thomas et al. 

2018). While remote sensing is not an instant solution to the complex task of plant 

disease identification and quantification, it is proving to be a very useful tool for 

researchers, agronomists, and agricultural producers. 

 

Remote sensing of black leg on turnip and gray mold on hemp 

This thesis covering case studies on remote sensing and machine learning 

used for disease detection of black leg on turnip and gray mold on hemp addressed 

two research questions. Firstly, can remote sensing and machine learning be used to 

detect the diseases black leg on turnip and gray mold on hemp? Secondly, can the 

combination of remote sensing and machine learning be used as an alternative disease 

detection method for traditional field-based techniques? 

Disease detection through traditional techniques such as field scouting on 

foot, molecular assay methods, or morphological identification of plant pathogens is 

time consuming and costly. While molecular testing techniques may be more 

objective than visual identification of disease, it generally does not provide insights 

on disease incidence or severity levels and requires an unpredictable length of time to 

accomplish and resources unavailable to the grower (Barbedo 2016). Additionally, 

collecting samples from the field as well as field scouting on foot can be destructive 

to crop plants.  

Under these circumstances, it seems sensible to investigate alternative 

methods that mitigate these shortcomings or concerns with traditional field sampling 
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techniques for disease identification. Digital image collection by UAVs, coupled with 

machine learning, is a newer method with a record of success (Mahlein 2016). 

Machine learning can be defined as the study of artificial intelligence used in 

computer algorithms that learn from data and improve accuracy automatically 

through experience. Remote sensing combined with machine learning for disease 

detection provides a more objective method of field sampling that can be 

nondestructive, inexpensive, and potentially faster than traditional techniques. 

Considering that plant diseases can have devastating impacts on crop yields if 

not addressed appropriately, the research described in this thesis provides a case study 

on digital image analysis with machine learning techniques for detection of two 

different diseases important in western Oregon crop production, black leg on turnip 

grown for seed and gray mold on hemp. The contrast between the utility of remote 

sensing for disease detection in these two different disease systems are covered in 

detail. The applicability for disease incidence assessment is presented. A detailed 

methodology for application of disease detection under field conditions in hemp and 

in situ for turnip is conducted and the viability for agronomists, growers and 

researchers is discussed. 
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Chapter 2: Materials and Methods 

 

Model building and application of plant disease detection via remote sensing 

and machine learning can be broken down into five steps: data acquisition, data 

processing, model training, model testing, and application. The first case study is on 

the detection of black leg on turnip and methods are assessed in this framework. This 

is followed by the second case study, gray mold one hemp, which utilizes these 

similar steps and addresses application in a biofungicide field trial. 

 

2.1   Turnip sites  

Turnip leaves affected by black leg were collected on 7 and 15 March 2019 

from two commercial farms in the Willamette Valley. Unmanned aerial vehicle 

(UAV) flights were also conducted at these fields on the same dates and were selected 

based on cloud-free days during the winter months when leaf spot could be observed 

(Figure 2.1). Symptomatic leaves were sufficient in supplying enough plant material 

representative of healthy tissue and diseased, and were the only leaf samples 

collected. Leptosphaeria spp. causing black leg leaf spots in selected turnip seed 

fields were not confirmed with molecular testing or microscopic morphology but 

were documented with images and determined to be Leptosphaeria-induced leaf spots 

based on characteristic symptoms and signs. Following UAV flights and the 

collection of 100+ diseased leaves from each location; leaves were taken to the lab 

and either placed in the cold room (~5°C) for preservation at a maximum of 48 hours 

or immediately used for image collection. 
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Figure 2.1 Leaf spot on turnip leaf showing pycnidia and shothole effect of fragile 

plant tissue, typical of a leaf spot caused by L. maculans and/or L. biglobosa in 

western Oregon (A). Turnip leaf displaying symptoms of leaf spots characteristic of 

black leg (B) (Image A by C. M. Ocamb). 

 

2.2   Turnip data acquisition 

A Micasense RedEdge - M (AgEagle Aerial Systems Inc., Seattle, 

Washington) (Table 2.1) optical sensor containing five multispectral bands was fixed 

to a UAV platform, the DJI Matrice 210 RTK (SZ DJI Technology Co. Ltd., 

Shenzhen, China) (Table 2.2). The UAV was flown at 10 m and 20 m above ground 

level on 4046 m2 between 11:00 a.m. and 1:00 p.m. Flights contained 80% image 

overlap and a double grid flight pattern using the DJI Pilot software (SZ DJI 

Technology Co. Ltd., Shenzhen, China). A reflectance panel was imaged before and 

after flights for radiometric calibration. 

The Micasense RedEdge – M optical sensor was also mounted to a PVC 

structure approximately 1.5 m above ground level with a power cable running to a 

laptop serving as the power source. The optical sensor was directed downward where 

the sensor view area included a black tarp and plastic tray as the background with a 

single turnip leaf placed at the center. Beside the tray was a reflectance panel used in 

radiometric calibration (Figure 2.2). Turnip leaves with leaf spots characteristic for 

black leg were imaged outdoors under the PVC structure between 11:00 a.m. and 

1:00 p.m. to ensure properly lit photos. Images of 60 to 100 turnip leaves were 

A B 
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collected for each of the two field locations on both dates with a spatial resolution of 

~0.1 cm and with a radiometric resolution of 12 - bit. 

 

Table 2.1 Spectral bands and associated bandwidth of the Micasense Rededge - M 

optical sensor used to collect image data of turnip leaves growing in fields affected by 

black leg 

Band name Bandwidth (nm) 

Blue 465 - 485 

Green 550 - 670 

Red 663 - 673 

Near Infrared (NIR) 820 - 860 

Red edge 712 - 722 

 

 

Table 2.2 Specifications of the DJI Matrice 210 RTK drone used in remote sensing 

survey of a hemp research field on the Oregon State University Botany and Plant 

Pathology Field Laboratory 

UAS Model M210 RTK 

Dimensions unfolded 887 × 880 × 408 mm 

Weight (with two TB50 batteries) ~ 4.42 kg 

Maximum payload weight (with TB50 batteries) ~ 1.72 kg 

Maximum flight time (no payload, with TB50) 23 min 
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Figure 2.2 The red band image of PVC structure, calibration panel, background tarp, 

black plastic tray, and a single plant leaf enclosed by the identifying red circle. Leaf 

spots are apparent on the leaf, appearing as gray to whitish-colored areas. 

 

2.3   Turnip data processing 

 Flight data was determined to have insufficient spatial resolution at 10 m 

above ground level. This was determined by assessing individual images in ArcGIS 

Pro version 2.2 (ESRI, Redlands, California) by zooming in to view individual turnip 

leaves on the turnip plant, leaf spots could not be seen in any of the five spectral 

bands. Flights below 10 m resulted in too much chopper spray that disturbed the 

plants with wind movement, and required manual flights rather than autonomous 

ones. So, the remainder of the black leg on turnip case study utilized images taken at 

1.5 m from the PVC structure. These images were uploaded into ArcGIS Pro for 

image processing. No radiometric calibration was applied to the image set. Five to ten 

images of turnip leaves were selected from each location on each date based on visual 

appearance of symptoms seen in the red band, and all five bands of each turnip image 
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were uploaded into ArcGIS Pro. Because the lens for each optical sensor associated 

with the five bands are located in a different position on the camera, a slight 

difference in the field of view for each band resulted in images with improper 

overlap. To correct this, georeferencing options in ArcGIS Pro allowed for movement 

of the near infrared (NIR) band 8 pixels down to get a proper overlap of the of the 

NIR and red band image scenes. All images were adjusted, and the NIR band and red 

band were used to create the normalized difference vegetation index (NDVI) for each 

of the turnip leaf images (Table 2.3). 

 

2.4   Turnip model training and testing 

Training data were then generated in ArcGIS Pro by manually selecting black 

leg-affected pixels and pixels representing healthy tissue from 10 of the turnip 

images, and utilizing at least one turnip leaf from each of the two fields on each date. 

These images were selected because they contained characteristic leaf spots caused 

by black leg. Training data derived from the red band and NDVI were uploaded into 

RStudio Version 1.3.1093 (R, Boston, Massachusetts) and used for training the 

support vector machine (SVM) model (Hearst et al. 1998; Kuhn 2020; Meyer et al. 

2020) and subsequent validation testing. SVM uses a hyperplane to separate and 

classify data points by minimizing the distance between data points and the line using 

support vectors, hence the name, support vector machine. A hyperplane is a decision 

boundary and points that fall on one side or the other, and are attributed to separate 

classes. Support vectors are only data points within a margin of the hyperplane and 

define the model hyperplane. The digital numbers, commonly referred to as the pixel 

value, of the training data derived from the 10 images were merged and partitioned 

into 70% for training and 30% for testing. A SVM model was used and trained with 

1576 pixels, with approximately equal black leg-affected pixels and healthy leaf 

tissue pixels. The accuracy of the model was assessed with 676 pixels in the testing 

data set and used to create a confusion matrix for model assessment looking at 

accuracy, specificity, sensitivity, false positives, and false negatives. Cohen’s Kappa 
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coefficient is another assessment of model accuracy which grants a metric of 

agreement between user-defined classes and assigned classes by the predictive model, 

and also considers accuracy generated by random chance (Cohen 1960). This ranges 

from -1 to 1, where 1 indicates complete agreement between the user and classifier. 

Cohen’s Kappa was once regarded as more robust than overall accuracy and the best 

assessment of machine learning accuracy, but has recently seen criticism due to its 

redundance to accuracy and therefore, should not be used alone for model assessment 

(Pontius and Millones 2011; Olofsson et al. 2014). Model assessment for our research 

purpose is primarily focused on the balance of accuracy, sensitivity, and specificity, 

and included Cohen’s Kappa for those who still value its model assessment 

capabilities. Sensitivity is the proportion of the pixels predicted as positives that were 

positives (true positives). Specificity is the proportion of classified negatives by the 

model that are negatives (true negatives). This model was applied to all the pixels of 

four turnip leaves extracted from the black background to visually assess accuracy 

and provide practical application to this process.  

 

2.5   Hemp site 

On 18 June 2020, 0.28 hectares (2833 m2) of the hemp cultivar ‘White CBG’ 

were planted at the Oregon State University Botany Field Laboratory in Corvallis, 

Oregon for a biofungicide efficacy trial for gray mold on hemp (Figures 2.3 and 2.4). 

This field study utilized a randomized block design containing five replicate-blocks 

with four treatments, including a nontreated control. Each plot consisted of two rows 

of 10 plants spaced at 1.8 m between rows and 1.2 m between plants within rows. 

Two plant buffers of untreated hemp were used between replicate blocks and three 

plant buffers between plots within each block provided a 3.7 m spray buffer. A 

broadcast fertilizer of Nutri Rich (Stutzman, Canby, Oregon) 4-3-2 with 7% Ca at 

544 kg/A was applied one week prior to planting and again at 54 kg/A the first week 

of bloom, which began 13 July ± 4 days. Weeds were mechanically controlled by 
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hand and overhead irrigation was applied when necessary. Details of this study can be 

found in Bates et al. (2021b). 

 

Figure 2.3 An aerial perspective of the hemp field study site on the Oregon State 

University Botany and Plant Pathology Field Laboratory taken at 10 m above ground 

level on 7 Oct 2020. 
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Figure 2.4 The hemp research plot on 9 Oct 2020 at Oregon State University Botany 

and Plant Pathology Field Laboratory (A). Hemp flowers exhibiting gray mold, 

induced by Botrytis species (B). A hemp plant with severe gray mold on multiple 

inflorescence (C).  

 

 

 

A 

B C 
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2.6   Hemp data acquisition 

Field level survey 

 From June to October, Botrytis spp., P. macularis, and Fusarium spp. were 

observed causing disease within the hemp field, with the first visual observation of 

Botrytis occurring on 22 September 2020. Visual assessments of disease incidence in 

the uppermost 30-cm portion of eight individual inflorescence on each of five 

randomly chosen plants in each plot were made on 25 Sep, 2 Oct, and 9 Oct 2020. 

Incidence data were analyzed as repeated measures in a generalized linear mixed 

model assuming a binomial distribution of the response variable. Treatment, rating 

date, and their interaction were fixed effects. Replicate block was a random effect. 

Temporal correlation of residuals was modeled assuming a first-order autoregressive 

covariance structure. Analyses were conducted using the GLIMMIX procedure in 

SAS version 9.4 (SAS Institute, Cary, North Carolina).  

Aerial survey of field 

 UAV flights were conducted on 26 Aug, 22 Sep, and 7 Oct 2020 between 11 

a.m. and 1 p.m. for each flight. The UAV was flown at 10 m above ground level and 

ranged from a 21 to 24 min in duration with 80% image overlap and a double grid 

flight pattern covering 3642 m2 using DJI Pilot software. A reflectance panel was 

imaged before and after flights for radiometric calibration. The aircraft platform was 

the DJI Matrice 210 RTK (Table 2.2) with a Micasense RedEdge - M (Table 2.1) 

optical sensor containing five multispectral bands. Spatial resolution was 0.69 cm 

with a radiometric resolution of 12-bit.  

 

2.7   Hemp data processing 

Images were uploaded and processed by Pix4Dmapper version 4.5 (Pix4D, 

Prilly, Switzerland) to generate an orthomosaic for each band in addition to a digital 

elevation model. This software automatically detects images containing the 
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reflectance panel and applies a radiometric calibration across the image set. A PDF 

document from Pix4D provided flight statistics and was used to ensure flight images 

were accurately geotagged, overlapped, and radiometrically calibrated. Raster-based 

images derived from Pix4Dmapper were then uploaded to ArcGIS Pro for vegetation 

indices calculation and raster development. The band combinations and names used 

for vegetation index creation are given in Table 2.3. 
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Table 2.3 Spectral vegetation indices and formulas tested for model optimization in 

support vector machine and random forest machine learning classifiers 

GCI (Green Chlorophyll Index) 

Gitelson et al. (2005) 

NIR

Green
− 1 

 

MSRE (Modified Simple Ratio Red-

Edge) 

Cao et al. (2013) 

 

 

 

 

(
NIR

Red edge
) − 1

√((
NIR

Red edge
) + 1)

 

MSR (Modified Simple Ratio) 

Chen (1996) 

 

 

 

(
NIR
Red

) − 1

√(
NIR
Red

) + 1

 

GNDVI (Green Normalized Difference 

Vegetation Index) 

Gitelson et al. (1996) 

 

NIR − Green

NIR + Green
 

NDRE (Normalized Difference Red-

Edge) 

Barnes et al. (2000) 

 

NIR − Red edge

NIR + Red edge
 

GRVI (Green Red Vegetation Index) 

Tucker (1979) 

 

Green − Red

Green + Red
 

TGI (Triangular Greenness Index) 

Hunt et al. (2013) 

 

(120 ∗ (Red − Blue)) − (190 ∗ (Red − Green))

2
.

 

NDVI (Normalized Difference 

Vegetation Index) 

Rouse et al. (1974) 

 

NIR − Red

NIR + Red
 

RECI (Red-Edge Chlorophyll Index) 

Gitelson et al. (2005) 

 

NIR

Red edge
− 1 

OSAVI (Optimized Soil Adjusted 

Vegetation Index) 

Rondeaux et al. (1996) 

 

NIR − Red

(NIR + Red + 0.16) ∗ (1 + 0.16)
 

SAVI (Soil Adjusted Vegetation Index) 

Huete (1988) 

 

NIR − Red

(NIR + Red + 0.5) ∗ (1 + 0.5)
 

MGRVI (Modified Green Red Vegetation 

Index) 

 

Green − Red

Green + Red
+ NIR 
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2.8   Hemp model training and testing  

Training data were generated in ArcGIS Pro as described in section 2.4. 

Selection of pixels which showed ‘Botrytis-infected inflorescence’, ‘healthy 

inflorescence’, ‘unhealthy leaves’, and ‘healthy leaves’ consisted of 1853, 1443, 

2734, and 13,711 identified pixels, respectively. Pixel classes were determined based 

on false color images of vegetation indices and spectral bands show distinctions 

between digital numbers. A composite raster containing all five bands and 12 

vegetation indices was exported from ArcGIS Pro and uploaded to RStudio along 

with training data polygons. Training polygons were used to extract the digital 

numbers of each of the 17 bands or vegetation indices found within those regions. 

Pixel values for each band or vegetation index were normalized on a scale of 0 to 1 

using the formula: (x-min(x)) / (max(x) - min(x)). Outliers were then identified and 

removed from each of the four training groups using the formula: (quantile 1 - 1.5 × 

interquartile range) × (quantile 3 + 1.5 × interquartile range). Finally, the four training 

groups were randomly sampled down to 1400 values per band for ‘Botrytis-infected 

inflorescence’ and ‘healthy inflorescence’ and 2500 values per band for ‘unhealthy 

leaves’ and ‘healthy leaves’ for a total of 7800 digital numbers per band across the 

four training groups. Data were partitioned into 70% training and 30% testing data. 

The training data set was then visually assessed at each spectral band in a box and 

whisker plot to initially determine if digital number differences were captured within 

specific bands or vegetation indices. Bands and vegetation indices were analyzed in 

an ANOVA, Mean Decrease Gini using a random forest (Liaw and Wiener 2002; Han 

et al. 2016), and a pairwise t-test of means with a Bonferroni adjustment. Mean 

Decrease Gini is essentially a measure of variable importance for estimating a 

determined variable. Bands or vegetation indices which showed no statistical 

difference between any of the two groups or had a large overlap in digital numbers 

were dropped from the model. Values low in the Mean Decrease Gini were also 

removed. 
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During the first phases of model creation, SVM (Meyer et al. 2020) and 

Random Forest (RF) (Breiman 2001; Liaw and Wiener 2002) were used. Sets of 

bands and vegetation indices selected as variables based on univariate statistics and 

combined into SVM models which were optimized by adjusting the cost and gamma. 

The same variables combinations were used in the RF model and the number of trees 

and number of splits at each node were adjusted to optimize the RF model. The 30% 

subset of the data held out was used to test the various models. A cycle of model 

parameter tuning, band combinations, and machine learning model options were 

conducted in pursuit of a model with the greatest balance of accuracy, specificity, 

sensitivity, and reduced variables. A new vegetation index composed of the previous 

GRVI (Green-Red Vegetation Index) spectral index and NIR was created, and named 

Modified Green-Red Vegetative Index (MGRVI) (Table 2.3). The digital numbers of 

‘healthy leaves’, ‘healthy inflorescence’, and ‘unhealthy leaves’ were merged into 

one class, thus creating a binary classification of ‘Botrytis-infected inflorescence’ and 

all other plant tissue. The training data set used for the final model was comprised of 

4,513 pixels of ‘healthy inflorescence’, ‘healthy leaves’, and ‘unhealthy leaves’, now 

referred to as ‘other plant tissue’, and 947 ‘Botrytis-infected inflorescence’ pixels. 

The model was tested with 30% of partitioned test data which was 1,887 pixels of 

‘other plant tissue’ and 453 pixels of ‘Botrytis-infected inflorescence’. A confusion 

matrix was used to assess the model’s accuracy along with the associated statistics 

described in section 2.5. Other packages used in R included ‘rgdal’ (Bivand et al. 

2020) and ‘raster’ (Hijmans 2020), along with base R (R Core Team 2013) to upload, 

visualize, and manipulate raster data. 

 

2.9   Hemp model validation 

Further confirmation of the model’s ability to classify outside of the selection 

of pixels in the model training data set was conducted by applying the generated 

SVM model to hemp plants extracted from the background of soil and vegetation, 

because it provided the greatest accuracy, sensitivity, specificity compared to the RF 
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model. The digital elevation model was converted to a canopy height model (Zhang et 

al. 2016; Roussel and Auty 2020; Roussel et al. 2020) by subtracting the canopy 

height from the ground in RStudio and exported as a raster to ArcGIS Pro. The NDVI 

raster in ArcGIS Pro was used for the segmentation function, which is dictated by 

three parameters: spectral detail, spatial detail, and the minimum segment size, which 

were set to 15.5, 9, and 5000, respectively. A mask was then applied to this 

segmented image to remove the background vegetation and soil. This newly 

segmented image, along with the canopy height model, were stacked and an 

intersection was applied that generated a layer which only included regions that 

overlapped on both layers (canopy height model and segmented NDVI) of polygons. 

Finally, a buffer was added that shrank these polygon regions inwards the equivalent 

of 8 pixels to ensure no background data were included in the analysis. These 

polygons were exported from ArcGIS Pro and imported into RStudio where they 

were used to extract the plants from the background soil and vegetation. Upon 

extraction of the plants, the SVM model was used to classify all the pixels of the 

hemp plants within the plots. A threshold of greater than -3000 in Triangular 

Greenness Index (TGI) was applied to pixels that were classified as ‘Botrytis-infected 

inflorescence’ and converted them to the ‘other plant tissue’ class. The raster for each 

plot was then exported and uploaded to ArcGIS Pro for visualization and sampling. 

Three disease incidence rating methods were used for comparison in the final 

assessments. The first method used was the field-based strategy, which is the 

conventional method of data collection derived from on-the-ground sampling. The 

next two include the classified model and the reference false color images, both of 

which came from remotely sensed data from aerial collection on the 9 Oct flight. The 

classified model was the output raster identifying pixels classified as either ‘diseased’ 

or ‘non-diseased’, based on the SVM model and TGI thresholds. The reference false 

color images was a visual assessment of the collected images using the MGRVI, 

NDVI, and TGI spectral indices to rate inflorescence “by hand” as either ‘diseased’ or 

‘non-diseased’ and served as a reference for comparison to the classified model. This 

was necessary to determine if the pixels were either correctly or incorrectly classified 
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by the classified model. Sampling of the classified model pixels within the hemp 

plants were conducted using the same methodology as field sampling. The same five 

plants within each plot used for an in-field visual assessment were used for remotely 

sensed aerial image analysis, and eight inflorescences were randomly selected per 

plant. Visual appearance of pixels within inflorescence using the reference images 

allowed for identification inflorescence as ‘diseased’ or ‘non-diseased’ and were then 

compared with the classified model’s predictions as ‘diseased’ or ‘non-diseased’ to 

estimate disease incidence in the field through remote sensing. A threshold of 4 pixels 

within an inflorescence identified as ‘diseased’ or ‘non-diseased’ was used as the 

minimum number of pixels to characterize the prediction as an accurate classification 

by the model. By setting the threshold too low, the model may return too many false 

positives. Alternatively, a threshold too large may result in an issue with increased 

number of false negatives. The binary classification of both the disease detection 

through the reference false color images utilizing the MGRVI, NDVI, TGI spectral 

indices and the classified model prediction was analyzed as incidence data with a 

generalized linear mixed model assuming a binomial distribution of the response 

variable. Treatment was the fixed effect with replicate block as a random effect. 

Analyses were conducted using the GLIMMIX procedure in SAS version 9.4. 

Reference data from MRGVI and the classification of the model were assessed in a 

confusion matrix for insights to accuracy, false positives, false negatives, specificity, 

and sensitivity. Lastly, the incidence data for each treatment of each block were 

plotted on a graph for comparison of all the sampling methods and fitted with a line 

of best fit and associated R-squared value.   
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Chapter 3: Results 

 

3.1   Classification and assessment of black leg on turnip  

A clear division was observed between the ‘Leptosphaeria-affected’ 

(diseased) and ‘healthy plant tissue’ (non-diseased) pixels (Figure 3.1). A total of 34 

support vectors were used to determine a hyperplane for the binary classification of 

pixels when applying the SVM model with a Gamma = 0.1 and cost = 1. 

Figure 3.1 A plot of pixels used in the training data set to determine the hyperplane 

of the SVM model with hyperplane drawn through the training data using 34 data 

points as support vectors. When testing data are used, points below the line will be 

classified as ‘diseased’, while pixels above will be classified as ‘non-diseased’. 

 

Of the 676 total pixels tested in the model, 96.8% were accurately classified 

as either diseased or non-diseased, while 3.2% were misidentified as either false 

positives or false negatives, 0.04 and 0.03, respectively. The model obtained a 

reported specificity of 0.96 and a sensitivity of 0.97 
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Table 3.1 Confusion matrix of black leg-turnip model for 676 pixels by a SVM 

model 

 

The final assessment of the SVM binary classifier was confirmed with 

classification of four individual leaves containing 15,519 pixels (Figure 3.2). 

Classification of pixels in the four leaves resulted in an average accuracy of 97.0% 

and a Kappa coefficient of 0.60 (Table 3.2). The specificity was 0.99 and sensitivity 

was 0.48. 

 

 

 

 Reference 

Prediction Diseased tissue Non-diseased tissue 

Diseased tissue 0.97 0.04 

Non-diseased tissue 0.03 0.96 
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Figure 3.2 Four turnip leaves removed from background with pixels classified as 

either ‘non-diseased’ (green) or ‘diseased’ (white). The black-colored pixels indicate 

pixels that were manually selected as ‘diseased’, true positives that were misclassified 

by the SVM model. 
 
 

Table 3.2 Confusion matrix of black leg-turnip model on four turnip leaves 

consisting of 15,519 pixels by SVM 

 Reference 

Prediction Diseased tissue Non-diseased tissue 

Diseased tissue 0.48 0.01 

Non-diseased tissue 0.52 0.99 
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3.2   Classification and assessment of gray mold on hemp 

 A generally high rate of ‘unhealthy leaf’ pixel misidentification by all models 

tested led to the development of a novel vegetation index, MGRVI. Initially, 

differences in the four training classes for each spectral band and vegetation index 

were assessed for relatedness in pixel ranges and overlap with an emphasis on the 

minimum and maximum values. Means of classes were less significant than large 

overlaps in range regarding SVM and RF classification models. Box and whisker 

plots of the MGRVI with outliers included (Figure 3.3) or removed (Figure 3.4) are 

visualized below and were used for the hemp-gray mold model development. With 

the outliers included, the maximum value for ‘Botrytis-infected inflorescence’ 

(unhealthy bud) was 0.91 and the minimum for ‘unhealthy leaves’ was 0.38, for a 

difference of 0.53 in digital number values. With outliers removed, the maximum 

value for ‘Botrytis-infected inflorescence’ (unhealthy bud) was 0.64 and the 

minimum value for ‘unhealthy leaves’ was 0.54, for a difference of 0.10 in digital 

number values. By merging ‘healthy inflorescence’, ‘unhealthy leaf’, and ‘healthy 

leaf’, no differences in minimums and maximums are seen because ‘unhealthy leaves’ 

represent the lowest values in the merging of these three classes.  
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Figure 3.3 The box and whisker plot of gray mold on hemp training data of MGRVI 

pixels with outliers included in the four training classes. 

 

 

Figure 3.4 The box and whisker plot of gray mold on hemp training data of MGRVI 

pixels with outliers removed from the four training classes. 
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The set of bands and vegetation indices were additionally tested for 

differences by an ANOVA when looking at data with four classes and were then 

further assessed with a pairwise t-test of means adjusted by Bonferroni. This analysis 

helped to remove vegetation indices or bands where there were no significant 

differences in observed means and would not have contributed significantly to the 

model’s ability to classify training groups. With two classes, an ANOVA was 

conducted using MGRVI, a significant difference was seen between classes (P < 

0.01). Mean Decrease Gini was used as a final assessment in determining variable 

importance and what should be used for the hemp-gray mold model. Bands or 

vegetation indices with greater Mean Decrease Gini values are associated with 

contributing to a better model fit. Table 3.3 lists the significance given to each 

variable for both classes, ‘Botrytis-infected inflorescence’ and ‘other plant tissue’, in 

addition to the four classes that include ‘Botrytis-infected inflorescence’, ‘healthy 

flowers’, ‘unhealthy leaves’, and ‘healthy leaves’. The MGRVI was the most 

important variable for the two classes and was subsequently, the sole variable 

selected for the final gray mold-hemp model. 
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Table 3.3 Mean Decrease Gini values associated with each band or vegetation index 

when assessing variables with two training classes and four training classes 

Band or vegetation index Mean Decrease Gini 

(2 classes) 

Mean Decrease Gini 

(4 classes) 

SAVI 76 478 

OSAVI 85 490 

RECI 6 31 

GCI 32 237 

MSRE 7 37 

MSR 87 507 

GNDVI 25 271 

NDRE 7 40 

NDVI 86 438 

GRVI 336 260 

TGI 257 384 

MGRVI * 430 315 

Red edge 30 47 

Red 7 167 

Near-infrared 37 50 

Green 48 178 

Blue 8 35 

*MGRVI was the selected variable for the gray mold-hemp SVM model. 

 

The final gray mold-hemp model utilized an SVM of Gamma = 1 and cost = 1 

with the new vegetation index, MGRVI, which was determined to provide the 

greatest balance of accuracy with the fewest variables included. The SVM model 

used 91 support vectors and resulted in an accuracy of 99.15% and a Kappa value of 

0.97 with a sensitivity of 0.97 and a specificity of 0.99 (Table 3.4). 

 

Table 3.4 Confusion matrix of a gray mold-hemp model for 2,340 classified testing 

pixels by SVM 

 Reference 

Prediction Botrytis-infected 

inflorescence 

Other plant tissue 

Botrytis-infected 

inflorescence 
0.97 0.01 

Other plant tissue 0.03 0.99 
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Field validation of the SVM model indicated misclassification of ‘unhealthy 

leaves’ as ‘Botrytis-infected inflorescence’. Due to many false positives of ‘unhealthy 

leaves’, another step was added to the analysis to reduce pixels falsely identified as 

‘Botrytis-infected inflorescence’ to ‘other plant tissue’. This post-SVM step used TGI 

to help optimize the accurate designation of pixel classification creating an iterative 

process. The differences between classes of pixels in the TGI, with and without 

outliers, are seen below in Figures 3.5 and 3.6, respectively. With the outliers 

included, the maximum value for ‘Botrytis-infected inflorescence’ was -680 and the 

minimum for ‘unhealthy leaves’ was -13,855, for a difference of over 13,000 in 

digital number values. With outliers removed the maximum value for ‘Botrytis-

infected inflorescence’ was -680 and the minimum value for ‘unhealthy leaves’ was -

3065 for a difference of 2385 in digital number values. A threshold of -3000 was 

determined to be effective at correcting for false positives of ‘unhealthy leaves’ and 

was included in the analysis, which changed ‘Botrytis-infected inflorescence’ with a 

digital number greater than -3000 to ‘other plant tissue’. An example of the 

intersection between canopy height model, segmented NDVI, and 8 pixels buffer is 

illustrated in Figure 3.7. Each SVM classified plot with the TGI threshold can be seen 

in Figure 3.8, along with an individual plant. 
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Figure 3.5 The box and whisker plot of gray mold on hemp training data of TGI 

pixels with outliers included in the four training classes. 

 

 

 
Figure 3.6 The box and whisker plot of gray mold on hemp training data of TGI 

pixels with outliers removed from the four training classes.  
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Figure 3.7 Hemp plant with blue polygon indicating the region being extracted 

through the overlap of ArcGIS Pro segmentation function, canopy height model, and 

8-pixel buffer.  
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Figure 3.8 An NDVI false color image of a hemp field at the Oregon State University 

Botany and Plant Pathology Field Laboratory with extracted plant polygons in white 

for each treatment plot (A). An individual plant with white pixels identifying healthy 

plant tissue and black identifying Botrytis-infected inflorescence (B). The hemp plant 

from image B without identified pixels as an NDVI false color image with red pixels 

indicating disease within the plant (C). 

 

The sampling of hemp inflorescence pixels from the classified model derived 

from the SVM model and TGI threshold had a 95.8% accuracy, with a Kappa of 0.80. 

The specificity was found to be 0.99 and the sensitivity was 0.70 (Table 3.5). 

 

 

 

A C 

B 
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Table 3.5 Confusion matrix of 800 classified inflorescences by the SVM and TGI 

gray mold-hemp model from each plot of a hemp field at the Oregon State University 

Botany and Plant Pathology Field Laboratory 

 Reference 

Prediction Botrytis-infected 

inflorescence 

Other plant tissue 

Botrytis-infected 

inflorescence 
0.70 0.01 

Other plant tissue 0.30 0.99 

 

ANOVA indicated significant treatment effects assessed using field-based 

disease incidence (the conventional on foot disease assessments) (P ≤ 0.0001), 

classified model rating disease incidence (P = 0.0885), and reference false color 

images disease incidence (P = 0.0289). Inflorescence in the nontreated control had the 

greatest estimated percentage of gray mold using each assessment method (Table 

3.6). However, the mean percentage of gray mold incidence for all treatments was 

much larger in field-based ratings than in either the classified model or the reference 

false color images disease rating method. The mean incidence percentage of gray 

mold rankings between the classified model and the reference false color images 

disease assessments were found to be the same. Significant differences between 

nontreated control and the three fungicide treatments were observed in both field-

based incidence and reference false color images incidence (P ≤ 0.05). The rank 

order of mean incidence between the field-based rating method versus the classified 

model method differed between plants in plots that received treatment 1 and 2, but 

means were not found to be significantly different for either treatment.  
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Table 3.6 Gray mold incidence on hemp inflorescence for the field-based, classified 

model, and reference false color images-based disease assessment methods 

 Gray mold incidence (%)  

Treatment Field-based X  SVM classified 

model Y 

Reference false 

color images Y 

Nontreated control 83.1  aZ 17.6  a 23.6  a 

Treatment 1 59.1  b 6.6    ab 9.9    b 

Treatment 2 58.0  b 7.5    ab 11.7  b 

Treatment 3 55.5  b 5.4    b 9.5    b 

X Field-based data rating and collected was conducted on 9 Oct 2020.  

Y Remote sensed data was collected on 7 Oct 2020 for both classified model and 

reference false color images disease assessment methods. 

Z Means within the same column followed by the same letter are not significantly 

different based on a generalized linear mixed effects model and pairwise t-test at P ≤ 

0.05. 

 

Field-based incidence ratings, classified model incidence ratings, and 

reference false color images incidence rating were plotted for each treatment at each 

block. Incidence ratings from the classified model ratings had a low R-squared at 

0.26, when regressed against disease incidence using field-based assessments (Figure 

3.9). Incidence ratings from the reference false color images and field-based disease 

assessments were found to also have a low R-squared value of 0.32. Disease 

assessment ratings from the classified model ratings were found to have the highest 

R-squared correlation with reference false color images disease ratings of 0.85.    
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Figure 3.9 Gray mold incidence for four treatments with five replicates by two 

disease assessment methods and a third disease assessment using by-hand 

classification of false color images. The conventional field-based and the classified 

model that utilizes an SVM and TGI threshold was regressed. (R-squared = 0.26) (A). 

The field-based and reference false color images disease incidence regression (R-

squared = 0.32) (B). The classified model and the reference false color images 

disease incidence regression (R-squared = 0.85) (C). 

A 

 

 

 

 

 

 

 

 

 

B 

 

 

 

 

 

 

 

 

 

 

C 

0

0.1

0.2

0.3

0.4

0.5

0.4 0.5 0.6 0.7 0.8 0.9R
ef

er
en

ce
 f

a
ls

e 
co

lo
r 

im
a
g
es

 i
n

ci
d

en
ce

Field-based incidence

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4R
ef

er
en

ce
 f

a
ls

e 
co

lo
r 

im
a
g
es

 i
n

ci
d

en
ce

Classified model incidence

0

0.1

0.2

0.3

0.4

0.4 0.5 0.6 0.7 0.8 0.9

C
la

ss
if

ie
d

 m
o
d

el
 

in
ci

d
en

ce

Field-based incidence



69 

 

 

Chapter 4: Discussion 

 

Classic field scouting techniques for pathogen identification and disease 

incidence quantification can be subjective and time-consuming. Furthermore, 

scouting on foot can be destructive to the plant, costly, and burdensome, especially 

during the rainy season (Barbedo et al. 2016). Traditionally, fungicide application 

programs treat pest pressure with a homogenous pesticide application rather than 

localized applications based on disease presence (West et al. 2003; Mahlein et al. 

2012). Remote sensing techniques can provide an alternative to traditional field 

sampling, resolving many of these concerns through an objective approach to 

sampling and provide more insightful IPM programs required for agricultural 

efficiency going into the future. 

The results of this research indicate that both black leg on turnip and gray 

mold on hemp can be accurately identified through remote sensing with a 

multispectral sensor and machine learning techniques. The development of a novel 

vegetation index, MGRVI, was necessary and reveals differences in reflectance 

values for hemp pixel classes not seen in the other bands or vegetation indices. 

However, this study indicates that a high accuracy of pixel classification with few 

false negatives and positives does not directly translate to dependable disease 

identification in field-based applications. Although estimated disease incidence was 

much lower in the classified model compared with the field-based ratings, ranking of 

treatment means by both methods were found to be similar. While rankings were 

similar at the experimental level, a low correlation between disease incidence ratings 

were found for each treatment plot when comparing the two methods. This research is 

the first report on detection of gray mold on hemp under field conditions, while 

Ferentinos et al. (2019) was able to detect gray mold on hemp in a greenhouse where 

other abiotic and biotic factors were present. This thesis research is also the first to 

report on detecting black leg on a Brassica crops. Others have identified leaf spot 

diseases on similar plants such as Cercospora leaf spot on sugar beet (Zhou et al. 
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2014) using a multispectral camera while Mahlein et al. (2010) detected Cercospora 

leaf spot on sugar beet with a SVM and a hyperspectral camera. This thesis work 

contributes to the current literature by broadening our understanding of methods that 

can be used for remotely sensed disease detection. It also provides a novel vegetation 

index for disease detection which may be of use in detecting disease in other host-

pathogen systems. The detection of gray mold on hemp case study also presents an 

alternative technique to traditional methods of disease detection. 

Because SVM models use support vectors to generate a hyperplane, 

understanding the range of data is more useful than comparing means. Box and 

whisker plots provide a clear visual depiction of the data spread along with the 

outliers, which tend to define the model’s hyperplane, particularly for an SVM. In 

many pixel-based analyses using machine learning, outliers are not removed from the 

training classes, but this approach of removing outliers has seen acceptance in other 

fields due to increased model accuracy (Maniruzzaman et al. 2018). Outliers were 

removed from this model for two reasons. Firstly, when generating a training data set, 

a limited number of misclassified pixels is not unexpected. If the data set is extremely 

large, these misclassified pixels have less of an impact on the generated hyperplane. 

Secondly, machine learning model building should utilize a cyclic process of model 

creation, repeated testing and fine-tuning of the model, until the best results are 

found. Through this repetition of model creation and testing, the removal of outliers 

provided a hemp-gray mold model with the best results with the data used as 

indicated in the confusion matrix. Pixels designated as outliers in the hemp model 

were found to be primarily pixels displaying very low levels or early stages of 

disease, or were chlorotic or necrotic leaves that visually appeared as gray mold-

affected inflorescence through the values of the MGRVI data.  

The black leg-turnip model did not utilize outlier removal, adhering to a more 

conventional machine learning model development method set. In the turnip training 

data set, overlap occurred with ‘non-diseased’ pixels merging into the ‘diseased’ 

cluster of pixels. This same problem arose in the training data set for ‘Botrytis-
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infected inflorescence’ and ‘other plant tissue’. This could be a result of genuine 

overlapping of reflective values between the diseased and non-diseased classes, an 

imperfect training data set, outliers, or an insufficient number of training values used 

in the model. As mentioned earlier, obtaining data points of the highest accuracy and 

precision as possible when generating a training data set is essential to creating a 

robust classification model with an SVM, and removal of outliers can be conducted at 

the user’s discretion to reduce overlap of classes. Although there is overlap, a clear 

distinction existed between the two training classes in both data sets and the 

distinction is supported by SVM models containing a high accuracy, specificity, and 

sensitivity for both case studies during validation using the test data.  

The results of the SVM models developed for black leg on turnip and gray 

mold on hemp appear to be sufficient for ex situ applications based on the model 

validation findings using the test data. For further model validation, hemp plants and 

individual turnip leaves were extracted. Extraction of the hemp plants from the 

background noise such as brown-colored soil and weedy vegetation was one of the 

greater challenges of this portion of the remote sensing work with hemp, but can be 

accomplished through various means (Hamuda et al. 2016). To carry out extraction of 

the hemp plants from the field site used in our study, conservative methods were 

applied which removed the outer edge of most plants to ensure that little to none of 

the soil appeared in the analysis, as soil generally shows up as false positives. While 

not all of the pixels composing the plant were included in the final analysis, a large 

enough region of most plants were extracted for a representative sampling of the 

field. Unless the outer edges of the plants display more disease than the inner portion, 

which did not appear to be the case in this field site, this conservative approach to 

plant canopy extraction seems acceptable as a work around for the problems posed by 

exposed soil and other vegetation surrounding individual plants. However, the noise 

caused by soil and vegetation in this field that led to misclassification of pixels, may 

be less of an issue in commercial hemp fields that utilize black plastic within the plant 

rows. Because only the turnip leaves were manually extracted, rather than entire 

plants, false negative and positives were much less common, as would be expected. If 
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whole turnip plants were extracted, similar issues as posed by the hemp field would 

likely arise, making the classification process more difficult. Nonetheless, for any 

agricultural field-based application, extraction of the plants from the background is 

pertinent to obtaining accurate and meaningful analysis results.  

For application of this technology under field conditions, a much lower level 

of false negatives is necessary to make this remote sensing tool reliable. Through 

visual assessment of the classified pixels in the raster, it was clear that some of the 

false positives appearing on the hemp image were due to necrotic and/or chlorotic 

foliage rather than Botrytis-infected inflorescence. This tends to be a reoccurring 

issue and is one of the greatest challenges of this work; it is an anticipated problem 

when using field data rather than greenhouse or lab-grown plants free of other abiotic 

and biotic factors influencing or mimicking plant health and appearance of yellowing 

or browning plant tissues.  

TGI showed the least amount of overlap between the classes, ‘unhealthy 

leaves’ and ‘Botrytis-infected inflorescence’ among bands and vegetation indices 

examined. The maximum and minimums of both these classes, analyzed with and 

without outliers, were used to determine the threshold of -3000 to transfer pixels 

assigned to the ‘Botrytis-infected inflorescence’ class to the ‘other plant tissue’ class. 

This threshold resulted in fewer false positives, and while the inclusion of the 

threshold did slightly increase the occurrence of false negatives, the impact of 

including the threshold was important enough for it to be part of the final model used 

for field testing. 

In determining how the SVM model classified pixels, in some cases, 1, 2, or 3 

pixels were correctly classified as ‘Botrytis-infected inflorescence’ but were not 

counted because 4 pixels was considered the minimum number of pixels necessary 

for classification as a ‘Botrytis-infected inflorescence’. Lowering this threshold may 

have slightly influenced the results but only to a small degree. The SVM model and 

TGI threshold resulted in a high overall accuracy but low sensitivity, which is thought 

to be influenced partly by the TGI threshold. Many of pixels changed by the threshold 
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were indicating either early signs or symptoms of the disease or contained a mix of 

diseased and non-diseased pixels. Thusly, this model did not have optimal 

classification capabilities needed to classify pixels that were in early stages of disease 

development or were a mosaic of diseased/healthy pixels. This was confirmed 

through visual assessment during classification, where slightly diseased 

inflorescences in false color images (NDVI and MGRVI) appeared faintly red, 

whereas very diseased inflorescences appeared deep red.  

The final determination was comprised of comparison of the SVM and TGI 

pixel classification model (classified model) and the conventional disease assessments 

(field-based) for measuring gray mold incidence on hemp. While there was general 

agreement amongst both sampling strategies that the greatest disease incidence was 

observed in the nontreated control and lowest incidence was found in Treatment 3, 

the middle two ranked treatments, Treatments 1 and 2, had alternating rankings. 

Despite this switch, the means were not found to be significantly different. The 

disease incidence estimates seen in the classified model were found to be much lower 

percentages than what was observed in the field-based disease assessments. This 

likely comes from the inability to detect disease symptoms or signs that aren’t visible 

from directly above the plant (nadir perspective), e.g., disease lower down the length 

of the inflorescence goes unseen when assessments are done by an UAV. The 

classical field-based sampling assessed disease along the upper 30-cm length of the 

inflorescence, while the data used in the classified model most likely contained only 

the uppermost portions of each inflorescence and did not capture the sides or entirety 

of the 30-cm region. The nadir perspective of the aerial flights is one of the greatest 

challenges associated with remote disease detection via UAV for this reason. Aerial 

remote sensing was also conducted 48 hours later than the ground sampling disease 

incidence measurements were taken. During this 48-hour period, disease incidence 

likely increased and could have resulted in truly different levels of disease incidence, 

so the time differential may account in part for the lower incidence ratings found in 

the classified model versus the field-based results but due to large differences in 

treatment means between these two methods, it is highly unlikely that the time 
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difference accounted for most of the treatment means disparity. Additionally, as 

previously observed, the classified model’s sensitivity was too low to detect all signs 

or symptoms of Botrytis that were present. Disease observed through assessments 

utilizing the reference false color images of the same inflorescences used in the 

classified model rating, was found to be slightly higher, but means generated by the 

reference false color images were still much lower than field-based disease 

assessments. Both the classified model assessment of disease incidence and the 

reference false color images incidence had the same ranking of treatments. This 

indicates that although the classified model may have a low sensitivity, an increased 

sensitivity and associated decrease in false negatives would not have changed the 

rankings of gray mold incidence seen among the fungicide treatments. While the 

rankings were the same among the reference false color images and the classified 

model, the reference false color images showed a significant difference between 

nontreated control and the three biofungicide treatments while the classified model 

did not find a significant difference between nontreated and the three biofungicide 

treatments. This indicates that if the classified model had perfectly classified all hemp 

inflorescences, resulting in 100% overall accuracy and the equivalent to the reference 

false color images, the significance differences observed among treatments would 

have been the same as those found in the field-based assessment method. 

The comparison of disease incidence ratings for field-based assessment and 

the classified model resulted in a low R-squared value, which suggests there are large 

differences in incidence ratings between these two assessment strategies for each 

treatment plot. The R-squared is slightly increased in the comparison of the reference 

false color images disease ratings with field-based disease incidence assessment, but 

overall, both the classified model and the reference false color images ratings have a 

poor fit when compared with the field-based data. Mean disease incidence 

percentages for field-based rating in comparison to the other two methods shows 

large differences among treatments, but also they largely differ within each plot. 

Conversely, the reference false color images rating compared with the classified 

model rating for disease incidence resulted in a high R-squared value. This stronger 
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relationship is not unexpected since both methods utilized the same aerial images 

captured by the drone. Both of these remote sensing disease assessment methods, 

reference false color images and the classified model, had a less than ideal 

comparison to the field-based assessment, reinforcing that hemp gray mold incidence 

data collected aerially via remote sensing failed to capture the proportional 

percentage of disease incidence present that was detected by field-based disease 

assessment techniques. 

The remote sensing methods reported in this research were similar to what 

other researchers have reported in other pathosystems. The gray mold-hemp and 

black leg-turnip case studies utilized a similar methodology as outlined by 

Abdulridha et al. (2019), which consists of image acquisition, pre-processing, image 

segmentation, feature extraction, and classification. These steps are generally the 

standard framework for many remote sensing and model building processes. Image 

acquisition in our research fell towards the lower end of flight/image acquisition 

elevation, at 10 m above ground level for detection of gray mold in hemp and 1.5 m 

for black leg in turnip. Abdulridha et al. (2019) also collected images for detection of 

laurel wilt in avocado at 10 m but they were not collected via UAV. Similar to the 

turnip image acquisition case study, Dammer et al. (2011) acquired imagery at 2.4 m 

above wheat plants with Fusarium head blight, while images have been taken as low 

as 25 cm from the plant (Bravo et al. 2003). Others have conducted flights at 120 m 

above ground level (Albetis et al. 2017) with limited success, and successfully at 40 

m above the ground (Heim et al. 2019), based on overall accuracy assessments. While 

there are many factors that come into consideration which ultimately dictate the flight 

parameters, increased imagery collection elevations that maintain accuracy should 

always be a goal. 

The gray mold on hemp case study utilized a SVM along with a binary 

threshold parameter to classify pixels. While we chose not to use the random forest 

classifier, Heim et al. (2019) while looking at Myrtle rust on lemon myrtle, had a high 

overall classification accuracy, suggesting it is a viable machine learning model 
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option but likely dependent on crop and pathogen. Alternatively, Abdulridha et al. 

(2019) used both a neural network multilayer perceptron and K-nearest neighbor. The 

neural network proved to be more effective than the K-nearest neighbor, and this is 

generally true when supervised machine learning or deep learning models are used in 

comparison to unsupervised. While machine learning models have been a staple of 

pixel-based classification in the recent years (Sandino et al. 2018; Abdulridha et al. 

2019; Heim et al. 2019), deep learning models are now becoming more popular 

(Mohanty et al. 2016; Ramcharan et al. 2017; Ferentinos 2018; Ferentinos et al. 2019; 

Saleem et al. 2019). Prior to either of these classification techniques, unsupervised 

classification options such as K-means (Lu et al. 2018; Abdulridha et al. 2019) and 

the principal component analysis (Lu et al. 2018) were popular along with binary 

thresholds classifiers based on pixel values (Dammer et al. 2011). This thesis work 

yielded the best results when the adaptation of both machine learning for original 

classification of pixels is followed by binary threshold classification to correct 

misclassified pixels in the hemp model. 

The gray mold on hemp case study, along with many of other studies 

attempting to detect fungal diseases, incorporated fungicide applications that create 

varying degrees of disease incidence and severity (Franke and Menz 2007; Heim et 

al. 2019). This allowed for nontreated plots, which were heavily infected with 

disease, and treated plots that contained little to no disease, and the collection of 

ground truth data. We found this to be very helpful in our hemp gray mold study 

because it allowed for not only the presence of diseased plants and non-diseased 

plants at a plot level which could be used in statistical analysis, but also provided the 

opportunity to compare remotely-sensed results with ground truth disease incidence 

and application of this work in an agricultural setting. West et al. (2003) 

acknowledges the potential benefits of optical sensors for fungal disease detection in 

targeted spray treatments, but mentions the likelihood of underestimating disease 

patch size, which was also found to be true in this study. Bravo et al. (2003) and 

Zhang et al. (2011) evaluated various plant cultivars with different levels of resistance 
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to create disease gradients, which enabled a similar type of analysis and illustrates an 

additional application of remote sensing. 

The case study set explored in this thesis did discover limitations to this 

research and subsequent application of this technology. Because the lesions caused by 

Leptosphaeria on leaves of turnip and other brassicas are relatively small, optical 

sensors we had access to did not have the spatial resolution required for detection of 

black leg leaf spots on turnip for drone flights at 10 m and 20 m above ground level. 

Additional challenges arise when entire turnip plants are imaged ex situ rather than as 

individual leaves that are laid flat and imaged in situ. Field-like conditions, such as 

abiotic and biotic factors that influence the quality of image classification, will also 

increase the difficultly of remote sensing work. In gray mold on hemp, scaling up 

from a single acre to larger acreage may be difficult and would require increasingly 

long flight times and data storage space, among other factors. Models developed from 

this thesis work should be considered preliminary and could be ineffective when used 

in another field or region, thus requiring additional training data on a field-by-field 

basis until a sufficiently large data set is developed for the respective model. 

Additionally, these remote sensing methods are limited to data collected from a nadir 

perspective and lack the optical ability to detect disease found lower in the canopy, 

inside the canopy, or along the sides of the plant and flowering/non-flowering stems.  

The future of agriculture is becoming more reliant on precision technology as 

agricultural land becomes more valuable and growing concerns over food security 

that must be addressed to meet increasing food demands experienced globally 

(Gebbers and Adamchuk 2010). Using these tools in agricultural contexts will 

accelerate the advancement this technology, making it more likely to be adopted by 

researchers and growers when given effective examples of its use. Future research 

needs include model optimization for correct characterization of healthy and diseased 

plant tissue as demonstrated by a high model accuracy, specificity, and sensitivity 

through a more robust training data set, inclusion of variables with a greater ability to 

distinguish between pixel classes, larger data sets, and alternative machine learning or 
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deep learning models. Additionally, to make remote sensing feasible for larger 

acreage field sites, image acquisition at heights greater than 1.5 m AGL are necessary 

even for diseases that present as relatively small leaf spots, such as black leg on turnip 

in this case study. While the number of studies reporting on detection of plant disease 

by remote sensing has increased over the past two decades, the methods utilized in 

these case studies, commonly applied in many others, should continue to be extended 

to alternative diseases on different crops. Furthermore, studies which have found 

success in detecting biotic or abiotic stresses should be conducted over multiple 

years, in multiple fields of the same crop, and incorporate larger portions of cropping 

regions to ensure the models’ ability to effectively classify disease across a regional 

or national landscape scale.   
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Chapter 5: Conclusions 

 

This thesis covering case studies on remote sensing and machine learning 

used for disease detection of black leg on turnip and gray mold on hemp addressed 

two objectives. First, this research aimed to understand if remote sensing coupled 

with machine learning could be used to detect these two diseases. Based on the 

results, remotely-sensed data can be used to train an SVM using the novel vegetation 

index, MGRVI, which allows for detection of gray mold on hemp. Additionally, an 

SVM model using NDVI and the red band as indicators of disease, allowed for 

accurate detection of black leg on turnip. While these accomplishments should not be 

overlooked, further research and analysis is necessary to validate the application of 

these tools in field-based settings and in a larger regional setting. Secondly, this work 

also addressed whether remote sensing and machine learning could be used as an 

alternative disease detection method to the traditional field-based technique of 

scouting on foot. This was accomplished in the hemp case study by utilizing a 

biofungicide trial set-up and comparing disease incidence ratings done on foot to 

remotely-sensed disease incidence findings that incorporated machine learning tools. 

This research found that gray mold incidence could be quantified with remotely-

sensed data using an SVM model, but there are limitations to adopting as a 

replacement for traditional field scouting on foot. Results indicate this tool could be 

used as an alternative to field-based techniques if ranking the order of treatments is 

prioritized over the true percentage of disease incidence that would be found in the 

field on foot. In regard to the remote detection of black leg on turnip, results indicate 

that increased spatial resolution is needed for field-based applications of remote 

sensing technology along with further model development. 

This research builds on recent studies that have successfully used remote 

sensing with multispectral sensors for detection of plant disease. Our work utilized 

similar methodological frameworks found in other studies conducting detection of 

plant disease via remote sensing and machine learning. Flights of hemp fields were 
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conducted at an average elevation comparable to other studies that accomplished 

disease detection with UAVs, while the black leg on turnip detection utilized a lower 

elevation and likely requires an optical sensor/camera with greater spatial resolution 

for the inclusion of a UAV for disease detection. Both case studies utilized vegetation 

indices with an SVM model for pixel-based classification of vegetation. The hemp 

model also incorporates a binary classifier threshold, which is less commonly used 

but still effective; present work gravitates towards integrated machine learning and 

more recently, deep learning models. For detection of gray mold on hemp, a real-

world application for this research was utilized by comparing ground-based disease 

incidence rating with remote sensing model-based disease incidence ratings. Future 

work should demonstrate the application of remote sensing conducted ex situ to 

facilitate the adoption of these tools by growers and researchers. Furthermore, 

increasingly higher flight elevations, examination of a wider set of host-pathogen 

systems for remote disease assessment, and field-based detection in the presence of 

other abiotic and biotic factors should all be sought after as all are essential for the 

widespread adoption of remote disease detection.  
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