167 research outputs found

    Evaluating Self-Adaptive Authorisation Infrastructures through Gamification

    Get PDF
    Self-adaptive systems are able to modify their behaviour and/or structure in response to changes that occur to the system itself, its environment, or even its goals. In terms of authorisation infrastructures, self-adaptation has been shown to provide runtime capabilities for specifying and enforcing access control policies and subject access privileges, with a goal to mitigate insider threat. The evaluation of self-adaptive authorisation infrastructures, particularly, in the context of insider threats, is challenging because simulation of malicious behaviour can only demonstrate a fraction of the types of abuse that is representative of the real-world. In this paper, we present an innovative approach based on an ethical game of hacking, protected by an authorisation infrastructure. A key feature of the approach is the ability to observe user activity pre- and post-adaptation when evaluating runtime consequences of self- adaptation. Our live experiments captured a wide range of unpredictable changes, including malicious behaviour related to the exploitation of known vulnerabilities. As an outcome, we demonstrated the ability of our self-adaptive authorisation infrastructure to handle malicious behaviour given the existence of real and intelligent users, in addition to capturing how users responded to adaptation

    Self-adaptive Authorisation Infrastructures

    Get PDF
    Traditional approaches in access control rely on immutable criteria in which to decide and award access. These approaches are limited, notably when handling changes in an organisation’s protected resources, resulting in the inability to accommodate the dynamic aspects of risk at runtime. An example of such risk is a user abusing their privileged access to perform insider attacks. This thesis proposes self-adaptive authorisation, an approach that enables dynamic access control. A framework for developing self-adaptive authorisation is defined, where autonomic controllers are deployed within legacy based authorisation infrastructures to enable the runtime management of access control. Essential to the approach is the use of models and model driven engineering (MDE). Models enable a controller to abstract from the authorisation infrastructure it seeks to control, reason about state, and provide assurances over change to access. For example, a modelled state of access may represent an active access control policy. Given the diverse nature in implementations of authorisation infrastructures, MDE enables the creation and transformation of such models, whereby assets (e.g., policies) can be automatically generated and deployed at runtime. A prototype of the framework was developed, whereby management of access control is focused on the mitigation of abuse of access rights. The prototype implements a feedback loop to monitor an authorisation infrastructure in terms of modelling the state of access control and user behaviour, analyse potential solutions for handling malicious behaviour, and act upon the infrastructure to control future access control decisions. The framework was evaluated against mitigation of simulated insider attacks, involving the abuse of access rights governed by access control methodologies. In addition, to investigate the framework’s approach in a diverse and unpredictable environment, a live experiment was conducted. This evaluated the mitigation of abuse performed by real users as well as demonstrating the consequence of self-adaptation through observation of user response

    Malicious Changeload for the Resilience Evaluation of Self-adaptive Authorisation Infrastructures

    Get PDF
    Self-adaptive systems are able to modify their behaviour and/or structure in response to changes that occur to the system, its environment, or even its goals. In terms of authorisation infrastructures, self-adaptation has shown to be a promising solution for enforcing access control policies and subject access privileges when mitigating insider threat. This paper describes the resilience evaluation of a self-adaptive authorisation infrastructure by simulating a case study related to insider threats. As part of this evaluation, a malicious changeload has been formally defined in order to describe scenarios of abuse in access control. This malicious changeload was then used to stimulate self-adaptation within a federated authorisation infrastructure. The evaluation confirmed the resilience of a self-adaptive authorisation infrastructure in handling abuse of access under repeatable conditions by consistently mitigating abuse under normal and high loads. The evaluation has also shown that self-adaptation had a minimal impact on the authorisation infrastructure, even when adapting authorisation policies while mitigating abuse of access

    Network of excellence in internet science: D13.2.1 Internet science – going forward: internet science roadmap (preliminary version)

    No full text

    Model-driven Personalisation of Human-Computer Interaction across Ubiquitous Computing Applications

    Get PDF
    Personalisation is essential to Ubiquitous Computing (Ubicomp), which focuses on a human-centred paradigm aiming to provide interaction with adaptive content, services, and interfaces towards each one of its users, according to the context of the applications’ scenarios. However, the provision of that appropriated personalised interaction is a true challenge due to different reasons, such as the user interests, heterogeneous environments and devices, dynamic user behaviour and data capture. This dissertation focuses on a model-driven personalisation solution that has the main goal of facili-tating the implementation of a personalised human-computer interaction across different Ubicomp scenarios and applications. The research reported here investigates how a generic and interoperable model for personalisation can be used, shared and processed by different applications, among diverse devices, and across different scenarios, studying how it can enrich human-computer interaction. The research started by the definition of a consistent user model with the integration of context to end in a pervasive model for the definition of personalisations across different applications. Besides the model proposal, the other key contributions within the solution are the modelling frame-work, which encapsulates the model and integrates the user profiling module, and a cloud-based platform to pervasively support developers in the implementation of personalisation across different applications and scenarios. This platform provides tools to put end users in control of their data and to support developers through web services based operations implemented on top of a personalisa-tion API, which can also be used independently of the platform for testing purposes, for instance. Several Ubicomp applications prototypes were designed and used to evaluate, at different phases, both the solution as a whole and each one of its components. Some were specially created with the goal of evaluating specific research questions of this work. Others were being developed with a pur-pose other than for personalisation evaluation, but they ended up as personalised prototypes to better address their initial goals. The process of applying the personalisation model to the design of the latter should also work as a proof of concept on the developer side. On the one hand, developers have been probed with the implementation of personalised applications using the proposed solution, or a part of it, to assess how it works and can help them. The usage of our solution by developers was also important to assess how the model and the platform respond to the developers’ needs. On the other hand, some prototypes that implement our model-driven per-sonalisation solution have been selected for end user evaluation. Usually, user testing was conducted at two different stages of the development, using: (1) a non-personalised version; (2) the final per-sonalised version. This procedure allowed us to assess if personalisation improved the human-com-puter interaction. The first stage was also important to know who were the end users and gather interaction data to come up with personalisation proposals for each prototype. Globally, the results of both developers and end users tests were very positive. Finally, this dissertation proposes further work, which is already ongoing, related to the study of a methodology to the implementation and evaluation of personalised applications, supported by the development of three mobile health applications for rehabilitation

    A Review of Digital Twins and their Application in Cybersecurity based on Artificial Intelligence

    Full text link
    The potential of digital twin technology is yet to be fully realized due to its diversity and untapped potential. Digital twins enable systems' analysis, design, optimization, and evolution to be performed digitally or in conjunction with a cyber-physical approach to improve speed, accuracy, and efficiency over traditional engineering methods. Industry 4.0, factories of the future, and digital twins continue to benefit from the technology and provide enhanced efficiency within existing systems. Due to the lack of information and security standards associated with the transition to cyber digitization, cybercriminals have been able to take advantage of the situation. Access to a digital twin of a product or service is equivalent to threatening the entire collection. There is a robust interaction between digital twins and artificial intelligence tools, which leads to strong interaction between these technologies, so it can be used to improve the cybersecurity of these digital platforms based on their integration with these technologies. This study aims to investigate the role of artificial intelligence in providing cybersecurity for digital twin versions of various industries, as well as the risks associated with these versions. In addition, this research serves as a road map for researchers and others interested in cybersecurity and digital security.Comment: 60 pages, 8 Figures, 15 Table

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management
    • …
    corecore