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Evaluating Self-Adaptive Authorisation

Infrastructures through Gamification
(Regular Paper)

Abstract—Self-adaptive systems are able to modify their be-
haviour and/or structure in response to changes that occur to
the system itself, its environment, or even its goals. In terms of
authorisation infrastructures, self-adaptation has been shown to
provide runtime capabilities for specifying and enforcing access
control policies and subject access privileges, with a goal to
mitigate insider threat. The evaluation of self-adaptive autho-
risation infrastructures, particularly, in the context of insider
threats, is challenging because simulation of malicious behaviour
can only demonstrate a fraction of the types of abuse that
is representative of the real-world. In this paper, we present
an innovative approach based on an ethical game of hacking,
protected by an authorisation infrastructure. A key feature of
the approach is the ability to observe user activity pre- and
post-adaptation when evaluating runtime consequences of self-
adaptation. Our live experiments captured a wide range of
unpredictable changes, including malicious behaviour related
to the exploitation of known vulnerabilities. As an outcome,
we demonstrated the ability of our self-adaptive authorisation
infrastructure to handle malicious behaviour given the existence
of real and intelligent users, in addition to capturing how users
responded to adaptation.

Index Terms—self-adaptive systems, authorisation infrastruc-
tures, insider threats, gamification

I. INTRODUCTION

Self-adaptive systems are able to modify their behaviour

and/or structure in response to changes that occur to the system

itself, its environment, or even its goals [5]. Based on this, a

self-adaptive authorisation infrastructure refers to the run-time

adaptation of access control policies and their enforcement.

An important aspect when evaluating a self-adaptive autho-

risation infrastructure is to demonstrate its ability to mitigate

abuse of access when faced with uncertainty. The simulation of

insider threat scenarios is limited because they would not be

able to portray an accurate perception of reality. Moreover,

when considering self-adaptive authorisation infrastructures

the usage of existing data has little value because of the

dynamic aspects of the infrastructure that continuously adapts

itself in response to changes. In terms of insider threats, it

is necessary to evaluate the consequence of self-adaptation in

terms of how human users respond to automated mitigation.

In light of a feedback loop, users may change their behaviour,

for instance, to mask their malicious activity. Such change

is unpredictable, resultant of intelligent user interaction, and

therefore challenging to simulate.

This paper presents an approach whereby gamification [7]

is used to emulate a real-world environment. Gamification

is the use of online games to solve complex problems and

generate meaningful data as a consequence of human player

participation. It is a crowd sourcing technique to capturing

large volumes of data by using the premise of a game to

motivate human participation. Gamification allows generating

diverse and unpredictable data from real user activity. In

particular, it enables the observation of mitigating cases of

abuse at runtime, and the observation of user activity post

mitigation. As such, the success of mitigation can be validated,

along with evaluating the consequence of self-adaptation by

analysing user response to mitigation.

In this paper, we employ the Self-Adaptive Authorisation

Framework (SAAF) for evaluating the effectiveness of self-

adaptive authorisation infrastructures. The objective of evalu-

ating SAAF in a live deployment is twofold. First, to demon-

strate that the observations and actions performed by SAAF

have a real consequence to human users accessing a resource.

Second, to generate data that portrays the effectiveness of

self-adaptation in mitigating observed attacks, including data

related to the consequences of self-adaptation. To fulfil these

objectives, an experiment was conducted whereby human users

were invited to participate in an ethical game of hacking. Users

were asked to play an online game based on the classic board

game of Snakes and Ladders [20]. For the purpose of the

experiment, the game is used as a platform to enable users

to perform malicious activity. Users are given the freedom to

play the game and to choose to act honestly or dishonestly,

such as exploiting vulnerabilities in the game resource or host

server.

The experiments conducted seek to answer the following

two research questions: are self-adaptive authorisation infras-

tructures capable of mitigating acts of malicious behaviour?

What are the consequences of self-adaptation? To reflect on

this problem statement, we identify three key hypotheses:

Hypothesis 1. Self-adaptive authorisation will mitigate mali-

cious activity, whilst limiting future attacks.

Hypothesis 2. An experienced subject is capable of carrying

out sophisticated and complex attacks.

Hypothesis 3. The behaviour of a malicious subject will

change in response to adaptation, in order to circumvent future

detection and mitigation.

This evaluation is specific to the mitigation of malicious

subject activity related to the abuse of access. However, there

are some limitations associated this exercise. Notably, human

participants are aware of the true nature of the experiment,

and as such, it cannot be said that a participant of the

game is representative of a ‘true’ malicious insider. Basically,

1



participants are aware that they can be malicious to win the

game, though, the game as a whole is representative of the

actions of a malicious insider.

The contribution of this paper is an approach to evaluating

self-adaptive systems through gamification [7]. A key feature

of the approach is the ability to observe user activity pre- and

post-adaptation, in order to evaluate the runtime consequences

of self-adaptive systems. The effectiveness of Self-Adaptive

Authorisation Framework (SAAF) is evaluated by way of

deploying an online game as a protected resource within an

authorisation infrastructure.

The rest of this paper is structured as follows. In Sec-

tion II, we present some basic concepts related to self-adaptive

authorisation infrastructures and insider threats. Section III

describes the design of an online game in which diverse and

unpredictable behaviour can be observed. Section IV discusses

the deployment of the game in a self-adaptive authorisation

infrastructure. Section V describes the phases and execution

of the experiment within the game environment, and discusses

the results of the experiments. In Section VIII, a summary of

the paper is provided in addition to some insights regarding

future work.

II. BACKGROUND

A. Self-adaptive Authorisation Framework

The goal of Self-adaptive Authorisation Framework (SAAF)

is to make existing authorisation infrastructures self-adaptable,

where an organisation can benefit from the properties of

dynamic access control without the need to adopt new access

control models [1], [2]. SAAF is based on the MAPE-K [11]

feedback loop, which monitors the distributed services of an

authorisation infrastructure to build a modelled state of access

at runtime (i.e., deployed access control rules, assigned subject

privileges, and protected resources). Malicious user behaviour

observed by a SAAF controller is mitigated through the gen-

eration and deployment of access control policies at runtime,

preventing any identified abuse from continuing. Adaptation

at the model layer enables assurances and verification that

abuse can no longer continue. In addition, model transfor-

mation has been shown to generate access control policies

from an abstract model of access. This has the potential to

enable the generation of policies specific to many different

implementations of access control.

Figure 1 presents a conceptual view of SAAF in which

an autonomic controller monitors and adapts multiple sys-

tems within an authorisation infrastructure. This presents a

challenge since no single system provides a complete view

of access in terms of what users own in access rights, what

access control rules exist, and finally, how users are utilising

access rights. In its current form, SAAF ensures that whatever

adaptations take place will not break conformance to the

service’s implemented access control methodology (ABAC),

nor conflict with application domain requirements (e.g., ensure

access to business critical systems). To implement ABAC, we

provide an identity service referred to as LDAP [12], which

is a directory service commonly used to hold information

Fig. 1. SAAF conceptual design

(including user roles) about users within an organisation,

and a standalone service authorisation service, known as

PERMIS [4], used to generate ABAC access control decisions

based on roles owned by users.

B. Insider Threats

Insider threat refers to an organisation’s risk of attack by

their own users or employees. This is particularly relevant to

access control, where the active management of authorisation

has the potential to mitigate and prevent users from abusing

their own access rights to carry out attacks.

A common characteristic of insider threat is that malicious

insiders utilise their knowledge of their organisation’s systems,

and their assigned access rights, to conduct attacks. This places

a malicious insider in a fortuitous position, whereby the insider

(as an authorised user) can cause far greater damage than

an external attacker, simply due to their access rights [3].

Such form of attack is representative of the attacks that many

organisations consider to be most vulnerable from, being the

abuse of privileged access rights by the employees of an

organisation [17]. Unless additional measures are put into

place, malicious insiders can abuse existing security measures,

where current approaches fail to robustly adapt and respond to

the unpredictable nature of users. Whilst there are a number of

novel techniques that enable the detection of insider threat [8],

[16], [21], there is little research that utilises such techniques

within an automated setting.

III. THE GAME OF SNAKES AND LADDERS

Snakes and Ladders is a classic board game which requires

players to roll a dice and move their player from a starting

square to a finishing square. Players can land on certain

squares resulting in them being pushed ahead (i.e., travelling

up ladders), or moved backwards (i.e., falling down snakes).

The first player to land on the finishing square wins the game,

which is purely based on chance.

Considering the objectives of the evaluation, the concept

of Snakes and Ladders was chosen for a variety of reasons.

These include: familiarity and ease of use; the ability to collect

a wide range of data from player interaction; contains a clear

set of rules that honest players are expected to follow, which

can be used to verify the existence of malicious behaviour;

has a set of actions that can be protected by an authorisation

infrastructure (e.g., game start, roll, move, end).
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It can be argued that a game of Snakes and Ladders is

not a realistic portrayal of real world resources. However, the

game itself represents many of the processes and concepts

a real resource would exhibit. These include the ability for a

subject to authenticate and gain access to the resource, perform

multiple tasks in light of some goal, and have an impact against

the resource itself.

Whilst Snakes and Ladders presents a narrower scope in

the type of malicious behaviour that can affect the game in

comparison to a real world resource (e.g., a database), the

rules of the game act as requirements of the user. These

requirements provide a base to validate behaviour against.

In addition, the game itself will appeal to a wider audience,

allowing for a range of attack profiles, including, non-technical

opportunist profiles, to technical and informed profiles of

attack.

The rest of this section discusses the design of the Snakes

and Ladders game as a protected resource. In addition, vulner-

abilities are discussed that are purposely left within the game

to enable dishonest play.

A. Game Design

The Snakes and Ladders game is designed in the form of a web

application, hosted on an Apache web server, and accessible

via any modern web browser. Figure 2 portrays the general

activity flow of the web application. To simulate the notion of

an ‘insider’, participants must create an account. Upon signup,

each subject is issued with the same level of access (in the

form of an X.509 certificate) that initially provides the subject

with full access to the game.

Fig. 2. Activity flow of the game resource

Once a participant has been provided subject status, they

are capable of authenticating, then requesting and playing

instances of the game. Players request access to start a game,

in which a game instance is returned to their client. Game

logic is handled via both client side and server side processes.

The game interface (Figure 3) is dynamically updated in order

to reflect the subject’s actions and state within the game.

Subjects are capable of performing a set of protected actions

within the game resource. These actions are expected to be

governed by an external ABAC authorisation service, which

validates a subject’s level of access in relation to a requested

action. An authorisation policy is expected to define the criteria

of access, and should protect access against the following

actions: start game, roll dice, move player, use ladder, end

Fig. 3. Screenshot of the implemented Snakes and Ladders game

game, and use bonus (an added feature to the original game,

which moves the player towards the end of the game).

Once access has been authorised for an action, the player

is able to perform the action within the game. The process

of authentication and authorisation is enforced by a policy

enforcement point (PEP) built into the game resource. Each

action the player carries out is then logged (along with

metadata) and interpreted in a backend database, providing

context to any authorisation request.

B. Vulnerabilities

The design of the game facilitates players performing

malicious activities through exploiting known and unknown

vulnerabilities. The game itself is considered a honeypot [21],

where a subject that exploits known vulnerabilities within

the game is likely to garner some malicious intent (i.e., to

complete the game unfairly). These ‘known’ vulnerabilities

exist at the level of the game resource (i.e., the game’s

interface, the game’s code, and the game sessions), and are

further discussed as follows.

1) Game Interface Vulnerabilities: These symbolise the

simplest form of attack, whereby subjects identify bugs within

the game logic simply through interaction with the game itself.

For example, the dice can be rolled multiple times, or the

player can land on any square within the given dice role range.

2) Code Injection Vulnerabilities : Code injection [10]

depicts a more advanced class of attack, where players must

have an understanding of how a client operates with a server.

Through code injection, the player is capable of modifying

the game logic in order to gain an unfair advantage within the

game.

To enable code injection exploits, participants must play the

game in an environment where they have some access to the

code. As a result, through the use of obfuscated [13] JavaScript

and PHP, a game instance can be delivered to the participant’s

client web browser, whereby parts of the game rely on client-

side execution.

With the appropriate tools a subject is capable of changing

the game logic. For instance, the subject could inject code in
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order to roll an impossible dice roll value, change the player’s

starting square position on the game board, move to any square

on the game board, or simply trigger the game end conditions.

3) Session Vulnerabilities: Session poisoning involves at-

tacks where a client injects data into a session held by a

server [18]. Such injection will change the client user’s state

between requests to the server, potentially overriding the need

for authentication and authorisation.

As players progress within the game, their activity is held

within a server side session. The session is essential to main-

taining transitions of state between a client’s HTTP requests

to the server, and is required in order to log player activity.

Players can therefore perform session poisoning attacks to

change the state of play.

4) Summary Attack Model: Given the described known

vulnerabilities, abuse of access can be modelled as a high

level attack tree [15]. Listing 1 describes the attack tree of a

player abusing their access rights in order to win a game via

malicious means. This model of attack defines the scope of

malicious behaviour to be mitigated in this evaluation.

1 Goal : Win a game through e x p l o i t a t i o n o f v u l n e r a b i l i t i e s
2 Precondition : A t tacker i s an i n s i d e r ho ld ing a game account
3 Attack :
4 AND: 1 . Au then t i ca te w i th i d e n t i t y se rv i ce
5 2. Gain a u t h o r i s a t i o n to s t a r t game
6 OR:
7 1. E x p l o i t g l i t c h e s w i t h i n the game ’ s i n t e r f a c e
8 OR: 1 . Ro l l more than 1 dice r o l l per tu rn
9 2. Ignore snakes

10 3. Ignore ladders
11 4. Trave l up a snake
12 5. Land on any square w i t h i n d ice r o l l range
13 2. I n j e c t code to change game behaviour
14 OR: 1 . Reduce s ize o f game board
15 2. I n j e c t i n v a l i d d ice r o l l
16 3. Perform an i n v a l i d move
17 4. Prematurely t r i g g e r game end
18 3. Poison session to f a l s i f y game play
19 OR: 1 . E x p l o i t AJAX endpoints
20 2. E x p l o i t session v a r i a b l e s i n HTTPS GET requests
21 OR: 1 . F a l s i f y r o l l ac t i on
22 2. F a l s i f y move ac t i on
23 3. F a l s i f y game end ac t i on
24 Postcondition : A t tacker f i n i s h e s game wi th u n f a i r advantage

Listing 1. High Level Attack Tree for Snakes and Ladders

It is recognised that attackers can perform other patterns of

attack within the game environment (including the entirety of

the authorisation infrastructure). For example, an attacker does

not need to rely on their access rights alone to attack the game

resource. An attack tree could exist where an attacker bypasses

authentication via performing an SQL injection attack, poten-

tially enabling the attacker to falsify game records (i.e., create

a fictitious game) or delete game records entirely. These types

of attacks, whilst worth investigating in future work, remain

out of scope of this evaluation.

C. Limitations

Several trade-offs were made in order to enable malicious

behaviour within the game. In a real-world environment, devel-

oping a resource that has known vulnerabilities is inherently

insecure. In addition, executing code on the client machine

could be considered rare. However, for the purpose of the

experiment it was necessary to use client side technologies

(i.e., JavaScript) to present an achievable environment for

subject’s to inject code.

Lastly, the fact that subjects are capable of injecting code

in the client means that authorisation could be bypassed.

A subject could manipulate the game logic to bypass the

resource’s policy enforcement point (PEP). As a result, any

games that bypass authorisation are out of scope of the

evaluation.

IV. DEPLOYMENT

The game is deployed into the environment of a ficti-

tious organisation, whereby it is protected by an Attribute-

Based Access Control (ABAC) authorisation infrastructure.

The following describes the configuration of the authorisation

infrastructure, configuration of a SAAF prototype controller,

and data to be logged.

A. Self-Adaptive Authorisation Infrastructure

The infrastructure is comprised of three virtual machines

(VMs), as shown in Figure 4, with each VM is configured to

run Ubuntu v12.04.5 TLS, with 1024MB RAM.

ProbeEffector

PERMIS
Standalone

ProbeEffector

Access 
Log

SAAF 
Controller

Probe

Resource Server VM 

Authorisation Server VM 

Identity Server VM

openLDAP
Directory

LDAP
DB

Game 
Resource

Game 
DB

1. Client  connect

(HTTPS)

2. Authent ication 3. Request access

4. Validation

5. Access decision

6a. Policy & 

access change
7b. Policy 

adaptation

6b. Resource 

change

6c. Subject 

change

7a. Subject 

adaptation
Adaptation
Log

Adaptation flow

Authorisation flow

Fig. 4. Game experiment authorisation infrastructure

1) Identity Server: The Identity Server VM hosts an openL-

DAP directory, and a bespoke LDAP probe developed for

SAAF. The LDAP directory maintains attribute certificates

of each player account within the game. These represent a

player’s access rights in the form of a set of signed attributes.

The LDAP probe exists to monitor changes within the LDAP

directory. Should a change be identified, the probe notifies the

SAAF controller in order to ensure a synchronised model of

access.

2) Authorisation Server: The Authorisation Server VM

hosts an instance of the PERMIS standalone authorisation ser-

vice [4], a probe and effector to monitor and adapt PERMIS,

and the SAAF controller.

A single PERMIS ABAC authorisation policy exists, which

defines a hierarchy of attributes. Each level of the hierarchy

contains a scope of access, which is relevant to the game.

In practice, given a subject’s set of attributes, the subject is
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capable of performing a prescribed set of actions within the

game, in conformance to the PERMIS policy.

The SAAF controller is deployed on this server to observe

and manage access to the game. It observes data pushed from

the resource probe, the LDAP probe, and the PERMIS probe,

in order to model access and subject behaviour at runtime.

3) Resource Server: The Resource Server VM hosts the

web application that contains the Snakes and Ladders game,

an integral policy enforcement point (PEP), a probe, and a

backend database. The resource is served via an Apache web

server over a HTTPS connection to requesting client machines.

The probe is designed to identify malicious play interpreted

within the game’s backend database. The probe itself can be

viewed upon as an external detector that informs the SAAF

controller of malicious activity. It utilises SQL-based trigger

rules to detect log entries that do not conform to the rules of

the Snakes and Ladders game, expanding upon SAAF’s own

detection methods.

B. SAAF Controller Configuration

The SAAF controller is configured to maintain (at runtime)

a synchronised model of access within the authorisation infras-

tructure (Figure 4). The controller is expected to detect and

respond to violations of known malicious behaviour patterns,

with the aid of external detectors deployed within the game

resource.

1) Monitoring: The controller observes environment and

system changes via the three deployed probes. All probes are

configured to ‘push’ the following changes to the controller:

• Subject change: The LDAP probe notifies the creation of

subjects, and any changes to subject access rights;

• Policy change and access change: The PERMIS probe

notifies changes to the PERMIS authorisation policy,

as well as logged requests and decisions in regards to

authorisation;

• Resource change: The resource probe generates signature

based patterns that capture malicious activity within au-

thorised sessions of the game.

Upon receipt of change, the SAAF controller either updates

its model of access (ABACM ) through the use of model

transformation programs [9], or updates its behaviour model

to reflect player authorisation and resource activity.

2) Behaviour Policy: The controller’s behaviour policy is

defined in accordance to known game vulnerabilities. The

trigger rules contained within the policy are characterised

with relation to malicious patterns of access, and malicious

patterns of activity within the game resource:

Access related

• rollMoveViolation - transaction / pattern based rule requiring that
every request to roll should be followed by a request to move, triggering
once a subject breaks this transaction more than 3 times within a short
interval;

• fastRollViolation - pattern based rule that seeks to identify high
frequency roll requests beyond human ability (i.e., scripted activity);

• fastMoveViolation - pattern based rule that seeks to identify high
frequency move requests beyond human ability (i.e., scripted activity);

• fastStartsViolation - pattern based rule that seeks to identify
a subject persistently restarting a game, typical of a subject aborting
games until they receive a beneficial outcome.

Resource related

• illegalMoveViolation - signature based rule that triggers a
violation if the resource probe indicates a player did not land on a
square in accordance to a given dice roll;

• ignSnakeViolation - signature based rule that triggers a violation
if the resource probe indicates a player ignoring the requirement to
travel down a snake;

• upSnakeViolation - signature based rule that triggers a violation
if the resource probe indicates a player travelling up a snake;

• rollInjectionViolation - signature based rule that triggers a
violation if the resource probe indicates a player injecting code into the
game client, in order to roll an unexpected roll value (e.g., roll value
500);

• moveInjectionViolation - signature based rule that triggers a
violation if the resource probe indicates a player injecting code into the
game client, for moving in an unexpected way (e.g., start square 1, end
square 64);

• bypassAuthsViolation - signature based rule that triggers a
violation if a subject attempts to bypass authorisation within the game
resource.

3) Solution Policy: The controller is deployed with a fixed

solution policy, which remains constant throughout the exper-

iment. The tailorable solutions can be categorised by subject

adaptation, and policy adaptation. The available solutions are

summarised below:

• S0: noAdaptation is the default solution for when all other solu-
tions cause greater impact over an observed behaviour;

• S1: warnSubject will notify a subject of their behaviour, typical
for first offences triggering low impact violations (subject change);

• S2: lowerSubjectAccess reduces the level of access a subject
has in conformance to the attribute hierarchy contained within the
authorisation policy (subject change);

• S3: removeAllSubjectAttributes removes all attributes from
a subject, typical for when subjects are persistently abusing access
(subject change);

• S4: removeAttributeAssignment removes trust in an identity
provider in issuing a valid attribute (policy change);

• S5: removeAllAttributeAssignments removes all trust in an
identity provider in issuing valid attributes (policy change);

• S6: deactivatePolicy removes all access to all resources (policy
change).

The solutions warnSubject and lowerSubjectAccess were

introduced given the context of the game resource, and the use

of an attribute hierarchy within the PERMIS policy. Given the

extent of a subject’s activity in violating the behaviour policy,

it is expected that subjects are first warned of their behaviour,

before being subjected to increased punitive measures.

In regards to policy adaptation, it is expected that should the

SAAF controller succeed in mitigating individual malicious

subjects, no policy adaptation should occur. However, policy

actions are configured should subject mitigation fail (e.g.,

effector failure within the identity service).

4) Execution: Once a solution has been selected, the con-

troller mitigates malicious activity via either the generation

and deployment of X.509 certificates or PERMIS authorisation

policies.

• Subject adaptation: X.509 digital certificates are gen-

erated through a process of model transformation and

serialisation to define a subject’s new level of access,

which is then deployed via the LDAP client embedded

in the controller’s executor component;
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• Policy adaptation: PERMIS authorisation policies are

generated through model transformation and serialisation

to create a PERMIS policy document, which is then

deployed via a bespoke PERMIS effector.

C. Logs

Considering the deployment of the game and SAAF, data

is logged in regards to the following perspectives.

1) Game: Player activity is logged by the game resource,

which is interpreted within its backend database. All player

activity is linked to a player account (identified by their

distinguished name assigned in the LDAP identity service), an

authorisation request, and the player’s authenticated session.

Player activity provides context to authentication and au-

thorisation requests, and stores the following information:

authentication requests via the resource and their correspond-

ing success; authorisation requests via the resource and their

corresponding success; roll activity (including contextual data,

such as time, rate, roll value); move activity (including start-

ing position, end position, corresponding roll); creation and

completion of game sessions; an audit log of abnormal game

behaviour, created via SQL triggers.

In addition to the database, server logs are also maintained.

Requests sent between clients and the server that hosts the web

application are logged via the Apache server. SQL executed

directly against the database is also logged, via the game’s

database server. These logs are necessary to validate that data

logged within the database has not been tampered with, as well

as enabling the identification of anomalous activity in regards

to client / server requests.

2) Identity Management: The LDAP identity service logs

all activity against the LDAP directory in the form of server

logs. This includes the retrieval of attribute certificates (as

part of PERMIS’s credential validation), changes to attributes

within an LDAP entry (due to adaptation by SAAF or human

administration), the creation of new LDAP entries (when a

participant creates an account), and lastly, subject authentica-

tion.

3) Authorisation: From start to finish of a game instance, a

player is required to request access to perform specific actions.

The PERMIS authorisation service logs all such requests,

along with corresponding decisions based on a player’s distin-

guished name within an identity service. These logs contain

the subject’s distinguished name (DN), the resource they wish

to access, and the actions to be carried out.

4) Adaptation: The SAAF controller maintains two sepa-

rate log files, along with trace logs that capture the state of

access per each adaption made to its access control model.

The first log file contains detailed information per cycle of

the feedback loop, portraying identification of violations, anal-

ysis, planning, and execution. The second log file maintains

information specific to the detection and mitigation of subject

violations.

V. EXPERIMENTS

This section describes the experiments performed within

the game environment, conveying data that demonstrates the

SAAF controller monitoring and responding to malicious

behaviour.

A. Experiment Execution

The experiment is executed over four phases, whereby

human participants attempt to beat the game of Snakes and

Ladders in as few turns as possible. The experiments were

conducted over a period of 7 months, as to obtain a wide range

of data. Over the course of each experiment phase, violations

(known attacks) were detected and mitigated, preventing ma-

licious players from persisting with dishonest play. A small

number of unknown attacks were successful in enabling a

player to beat the game in an unexpected way, resulting in the

player obtaining what should have been an impossible score

(e.g., completing the game in 0 or 1 turns).

• Control - The game is released to a closed set of

participants to observe honest play, for validation of

detectors. It was conducted over a period of 1 week where

ten players were observed and asked to play a number of

games in conformance to the rules of snakes and ladders.

It was conducted over a period of 1 month. It resulted in

a single player account successfully performing a code

injection attack in which the game’s resource probe could

not detect and notify the SAAF controller;

• Phase 1 - The game is released within the School of

Computing, University of Kent, requesting participants to

play the game honestly or dishonestly. It was conducted

over a period of 1 month. It resulted in a single player

account successfully performing a code injection attack,

in which the game’s resource probe could not detect and

notify the SAAF controller;

• Phase 2 - The game is released externally, advertised

via academic and research community mailing lists, in

addition to external Universities, requesting participants

to play the game honestly or dishonestly. It was conducted

over a period of 5 months. It resulted in a single player

account successfully performing a code injection attack,

which the SAAF controller failed to detect;

• Phase 3 - The game is again released internally within

the School of Computing, University of Kent, requesting

participants to play the game honestly or dishonestly. It

was conducted over a period of 1 month. It resulted in two

player accounts successfully performing a code injection

that was not detected by the game resource probe or by

the SAAF controller.

In each phase, participants were provided the same guidance

in the form of a participant declaration that described the

purpose of the experiment, and a brief overview of how the

game works. At the end of each phase, the SAAF controller

is updated to account for any unknown attacks that have been

successful in beating the SAAF controller. This exemplifies

SAAF’s ability to be extended in order to cope with previously

unknown attacks, as well as promote additional challenges for

participants within future phases.

Each phase is subject to a set of independent, dependent,

and control variables. Independent variables are indicative
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of environment change, and driven by human participation.

Dependent variables measure environment change, which refer

to the consequence of human participation. For example,

the performance of SAAF, violations detected, unknown at-

tacks performed, the state of the access control, and game

usage statistics. Control variables denote the configuration

of the authorisation infrastructure and the SAAF controller.

These include the SAAF controller’s perception of behaviour

(behaviour policy), available solutions to the controller, the

availability of probes and effectors, and configuration of the

game environment.

B. Observed Environment Change

The following section discusses two aspects of the observed

environment change, namely game statistics and trends in

player activity.

1) Game Statistics: Over the course of the experiment

phases, 1455 games were played and 366 game accounts were

created (Table I). Out of these 366 game accounts, it was

observed that account creations stemmed from 264 unique

devices (based on a device’s IP address). The number of

devices provide some indication of the number participants.

TABLE I
HIGH LEVEL STATISTICS OF GAME RELATED DATA

Control P1 P2 P3 Total

Game accounts 20 62 195 89 366
Games played 269 168 692 326 1455
Unique devices 10 34 152 68 264
Unique games played 265 118 422 134 939
Unique turns 1482 329 1007 248 3066
Unique game actions 363 130 216 48 757

Of particular importance, was the observation of diverse

player interaction. In this instance, out of the 1455 games

played, 939 games were unique. In addition, out of all of

the games played, 3066 unique game turns were observed,

where a unique turn is a signature of a player’s turn (e.g.,

turn number, roll, and move). The 757 unique game actions

observed indicate that there were a number of illegal actions

performed as a result of anomalous behaviour.

In addition to game data, a number of authentication and

authorisation requests were observed (Table II). The high

number of failed authentications is largely due to a number of

(unsuccessful) attacks against the game’s account login page.

TABLE II
AUTHENTICATION AND AUTHORISATION STATISTICS

Control P1 P2 P3 Total

Authentication requests 34 175 880 616 1705
Granted authentication 31 104 395 177 707
Failed authentication 3 71 485 439 998
Authorisation requests 6174 2430 9446 3485 21535
Granted access 6174 2262 9109 3292 20837
Denied access 0 168 337 193 698

Regarding authorisation, 21,535 requests were observed,

evidential of the extent of player activity. A number of

these authorisation requests were denied, representative of the

SAAF controller modifying subject access rights during game

play. Whilst 20,837 requests were granted by the PERMIS

authorisation service, the actual number of actions performed

within the game are not one-to-one. This is evidence of users

bypassing authorisation within the game resource.

2) Player Behaviour: A high level analysis of player has

identified a number of trends that reflect the controller’s per-

ception of malicious behaviour. However, it also demonstrated

the challenges in defining malicious behaviour. For example,

comparing player activity from the control phase and other

phases demonstrated little correlation in terms of high level

activity (e.g., time to perform actions or finish a game, number

of actions per game, etc.). Only by observing particular

contextual features of player behaviour (such as roll to move

ratio) demonstrated clear differences to malicious and non-

malicious activity. This emphasises the fact that observation

of non-contextual activity (such as rate of access) is limited

in detecting wider scopes of malicious behaviour.

C. Detection and Mitigation

Over the course of experiment phases 1 to 3, 1246 violations

were detected (Table III). Out of the violations detected, 1203

violations triggered a resultant mitigation, whereby a solution

was enacted by the SAAF controller.

TABLE III
VIOLATION STATISTICS

P1 P2 P3 Total

Violations detected 228 738 280 1246
Violations mitigated 219 717 267 1203
Mitigation failures 9 21 13 43

The SAAF controller was shown to respond to 97% to

the violations detected. However, 43 mitigation responses

had failed for a variety of reasons. The majority of these

failures were due to the SAAF controller identifying several

violations in a single adaptation cycle. A limitation in the

SAAF prototype is that it handles multiple violations in an

sequential fashion, meaning that it mitigates the first violation

before mitigating the next. This was the case for 20 of the

failed mitigations. The remaining 23 violations occurred in

phase 2, where the resource probe failed to report the malicious

behaviour due to an error in its configuration.

There were also 50 violations caused by players within

the control phase. These violations were representative of

genuine player mistakes, and were associated with low severity

violations.

1) Violations: Figure 5 conveys the percentage of violation

types that were detected in phases 1 to 3 (see Section IV-B).

Violations rollMove and illegalMove represent the most

common violations.

Violations ignSnake and upSnake are not so obvious,

but still require little technical ability to perform. How-

ever, there was a greater percentage of ignSnake viola-

tions which is assumed to be because the violation was
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Fig. 5. Percentage of detected violations by type

more obvious to commit (sharing similar characteristics to

illegalMove). In addition, more sophisticated violations,

such as rollInjection and moveInjection were seen

to be rare.

2) Mitigations: Regarding mitigation, it was expected that

the SAAF controller would identify and perform an appro-

priate adaptation in response to a malicious subject’s current

and past behaviour. For example, a subject who persistently

performs low level violations over time would gradually lose

their access, and may be warned about this prospect in the

process. In contrast, a subject who performs a severe violation

(e.g., code injection) would immediately lose their access.

Fig. 6. Breakdown of violations and mitigations

Figure 6 portrays a complete percentage breakdown of

mitigation strategies enacted, and a breakdown of the most

common strategies enacted against a particular type of vi-

olation. The most common violations, such as rollMove,

illegalMove, and ignSnake were typically responded

with solution S0, where the decision to do nothing was chosen.

This is due to the fact that many of these violations were a

malicious subject’s first time offence, and from the controller’s

perspective did not warrant adaptation. Mitigation of such vio-

lations were followed up with enactment of solution S1, where

the decision to warn the subject was made, before lowering

the malicious subject’s level of access. Lastly, the majority

of high severity violations, such as rollInjection and

moveInjection were mitigated via an immediate removal

of access, preventing malicious subjects from completing a

game.

3) Controller Performance: The performance of the con-

troller was observed in each phase, recording the time it took

to decide and act on a detected violation. In addition, snapshots

of the ABACM access control model were also recorded, as to

correlate size of the access control model with the performance

of adaptation.

Fig. 7. Total mitigation time versus model size

Figure 7 portrays a snapshot of performance time in enact-

ing solution S2 (lower subject access) against the size of the

controller’s ABACM . Outliers beyond 200ms were removed,

which were representative of the problems caused by Java

warmup.

Observing the linear interpolation of the results, where

the size of the model is 1000 (including all elements and

associations), performance is shown to be 89ms. In regards to a

model size of 3000, the linear interpolation shows performance

at 103ms. As a result, it can be said that as the size the

controller’s ABACM increased (due to new game accounts

being created), the time to adapt increased at a linear rate.

VI. EVALUATION

In this section we demonstrate the hypotheses proposed

in Section I by analysing a set of attacks, and discussing

dependent variables relevant to each hypothesis.

A. Hypothesis 1 - Self-adaptation mitigates malicious activity

To demonstrate this hypothesis, the following exemplifies

three different attack profiles that were observed throughout

the experiment phases.

1) Mitigation of persistent weak violations: Single in-

stances of low level violations (i.e., rollMove, illegalMove,

ignSnake) alone do not necessarily warrant adaptation. This

is a result of the SAAF controller tolerating a threshold of

low level violations before adaptation. However, subjects who

persist in committing such violations are faced with adaptation,

as it is considered that repeat violations increase the confidence

in malicious intent. Taking a sample of games with more than

5 violations (characterising a persistent attack profile), 229
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games were recorded, whereby all players exhibited low level

violations leading to the eventual loss of access.

Fig. 8. Trace of a persistent weak violation profile against mitigation

Figure 8 portrays the player’s changes, over time, in terms

of requests sent to the authorisation service and corresponding

actions made in the game, as well as adaptation as a result of

the SAAF controller. Here, the player is repeatedly committing

the violation rollMove and ignSnake in order to beat the

game. The time at which these violations occurred and the

SAAF controller’s corresponding mitigation are shown in

Table IV.

TABLE IV
ADAPTATION TRACE OF AN PERSISTENT WEAK ATTACK GAME

Step Game Violation Enacted Solution Time
Time (s) (ms)

1 40 rollMove noAdaptation (S0) 53
2 67 rollMove warnSubject (S1) 51
3 88 ignSnake lowerSubjectAccess (S2) 152
4 92 rollMove lowerSubjectAccess (S2) 105
5 128 ignSnake lowerSubjectAccess (S2) 100
6 140 rollMove removeAllSubjectAttributes (S3) 216

After each violation, the SAAF controller performs a mit-

igative decision. Initially the decision to do nothing (S0) is

chosen, indicative of low level violations as a first offence.

However, as the player persists in committing low level

violations, the controller opts to first warn the player (S1),

followed by repeatedly lowering the subject’s access (S2).

In terms of evidence of mitigation, at 140 seconds into

the game, after observing 6 low level violations, the SAAF

controller removes all access from the subject (S3).
2) Mitigation of immediate high severity violations: A

more severe attack profile is one that contains single or multi-

ple instances of sophisticated violations (i.e., as a consequence

of code injection). In these instances, the SAAF controller

must mitigate the subject immediately.

Throughout the course of phases 1 to 3, 43 games exhibited

an attack profile of a single sophisticated violation (whereby

the game contained no other violation). This is said to be the

profile of a determined attacker, one who is aiming to beat the

game in a single turn or less, via the smallest set of changes.

Fig. 9. Trace of an immediate high severity violation against mitigation

TABLE V
ADAPTATION TRACE OF AN IMMEDIATE STRONG ATTACK GAME

Step Game Violation Enacted Solution Time
Time (s) (ms)

1 29 rollInjection removeAllSubjectAttributes (S3) 128

Figure 9 and Table V portray the trace of a game that fits this

attack profile. The player performed three authorised actions

within the game, being a sequence of ‘Start’, ‘Roll’, and ‘Roll’.

In this instance, the second ‘Roll’ action was in actual fact

a code injection attack, where the player had superficially

increased the roll amount to 64 (beyond the legal range of 6).

Consequently the illegal roll was identified by the resource

probe, resulting in the SAAF controller removing all of the

subject’s access (S3), ensuring that future actions of the player

are denied.

An interesting observation of this attack is that, the player

who requested (and obtained) access to perform the roll, per-

formed the action after a long delay (13s). This is unusual as a

normal game exhibits a near immediate change in response to

a granted authorisation request. This suggests the player was

executing the game via a debugging tool, where the client code

could be paused, updated, and executed, post-authorisation.

B. Hypothesis 2 - Experience subject is able to carry sophis-

ticated attacks

A small percentage of violations detected were sophisticated

attacks (Figure 5), such as code injection attacks. It was

hypothesised that experience enables participants to perform

sophisticated attacks within a game.

To demonstrate this, Figure 10 portrays statistics pertaining

to malicious players prior to the point at which an injection

attack was detected and mitigated. Here, the number of games

played versus the number of violations detected are shown as

evidence of player experience. Each data point represents at

least 1 or more players (detected in performing an injection

9



Fig. 10. Violations and games played prior to injection attacks

attack) that have played x amount of games, and committed y

amount of violations.

Only 11 participants (based on devices used) were able to

perform an injection attack within their first couple of games.

Four of these were identified as committing an injection attack

as their first violation, where these participants are assumed

to have prior experience in ethical hacking. By contrast, the

majority of participants had played at least 3 games with 3

violations or more, before committing an injection attack.

As a result, some players were quick to perform a sophis-

ticated attack, whereas many players had gained experienced

via games played, and were identified in performing a number

of simple violations beforehand. In addition, it was observed

that 30 of the participants (based on device) who had been

identified had also created multiple accounts as a direct result

of adaptation (prior to committing an injection attack). In a

real deployment, these participants would have been prevented

in performing such violations by mitigation in response to

previously identified violations.

C. Hypothesis 3 - Subject behaviour changes post adaptation

This hypothesis proposes that a player, aware of adaptation,

will change their behaviour as to avoid detection or mitigation.

To demonstrate this, taking a sample of players (identified by

device), violations are analysed before and after the point at

which it becomes known to the player that adaptation has taken

place. It is considered that a player is aware of adaptation

once they have either been warned of their behaviour (i.e., the

controller enacts solution S1), or have been denied access to

performing an action in a game.

TABLE VI
CHANGES IN PARTICIPANT BEHAVIOUR POST-WARNING

Behaviour changes Participants

Did not repeat previous violation types, but performed new violation types 37
Repeated previous violation types, but performed no new violation types 26
Repeated previous violation types, and performed new violation types 114
Neither repeated or performed new violation types 0

Table VI identifies four types of changes in behaviour

observed after a player’s first warning in regards to their be-

haviour. A total of 177 players were identified to have received

a warning about their behaviour. It was identified that the

majority of these players (64%) went on to continue repeating

the same types of violations detected prior to warning, but

also were detected as performing new types of violations

post warning. However, 21% chose not to repeat previous

types of violations, and instead solely performed new types

of violations. Lastly, 17% simply chose to persist in repeating

the same violations they had previously been warned about.

TABLE VII
CHANGES IN PARTICIPANT BEHAVIOUR POST-DENY OF ACCESS

Behaviour changes Participants

Did not repeat previous violation types, but performed new violation types 10
Repeated previous violation types,but performed no new violation types 46
Repeated previous violation types,and performed new violation types 37
Neither repeated or performed new violation types 46

Table VII addresses the same four types of change, albeit

demonstrating change after a player’s first denial of access

(e.g., a roll, move, ladder or bonus square has been denied).

In this case, 139 players were identified as being aware of

having their access denied at some point in their game history.

In contrast to receiving a warning, 33% of players continued

to persist in performing the same violations that had led to

a denial of access, whereas only 6% of players chose not

to repeat previous violations. A significant amount of players

(33%) also chose to either stop playing the game, or halted

their malicious behaviour.

Considering the two perspectives, it can be said that the

majority of participants persisted with the same types of viola-

tions (i.e., behaviour) post knowledge of adaptation. However,

there is evidence to suggest that a small proportion of players

had factored in knowledge of adaptation, prior to performing

future attacks (due to not repeating violations that lead to

adaptation).

Fig. 11. Number of detected violations versus number of turns to win a game

Figure 11 portrays the number of violations observed within

malicious games, against the number of turns it took to win

the game. Malicious games that took longer to win (i.e.,

with a high number of turns) contained a greater number of

violations. Whereas, all of the lowest scoring games (i.e., 6
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turns of less) had a single violation. In each of these games the

player had sufficient experience in terms of number of games

played, and previous committed violations. This provides some

evidence to suggest that participants tactfully chose when to

commit low level violations in order to gain a better advantage

in the game, which was indicative of the number of low scoring

games with low level violations.

D. Summary

Each hypothesis set out to evaluate an aspect of the success

and limitations of self-adaptive authorisation in mitigating the

abuse of access rights by real and unpredictable users.

Hypothesis 1 identified that the SAAF controller was

capable in mitigating various forms of malicious behaviour,

where users adopted different strategies to beat the game. This

was necessary to demonstrate the robustness of the SAAF

controller in mitigating abuse by opportunistic low severity

attackers, versus determined attackers, in regards to escalating

appropriate solutions. Given the fact that experiments have

provided evidence that malicious subjects were no longer

capable in gaining access, this hypothesis has been confirmed.

However, one exception is that adaptation has only been shown

to succeed when faced with known violations.

Hypothesis 2 analysed player violations over time. This

provided insight into the prominence of high severity viola-

tions within the game. Whilst players were aware they could

carry out malicious activity to beat the game, statistically,

many players opted to attempt simple attacks first before

carrying more complex attacks (e.g., code injection). In a real

deployment, only a small percentage of players would have

been capable of first performing a high severity violation,

where many players would have already lost their access rights

due to prior violations. This indicates that a SAAF deployment

is well suited to handling numerous low level attacks, and

as a consequence, is able to prevent malicious subjects from

gaining enough experience to carry out more complex forms

of attack.

Hypothesis 3 evaluated the consequences of self-adaptation

through observing change in participant behaviour post adap-

tation. An important aspect of this hypothesis was to address

the deterministic nature of the SAAF controller, where users

are capable of exploiting the operation of the SAAF controller

given past experiences of self-adaptation. Whilst many players

were statistically seen to persist with the same behaviour,

despite self-adaptation, some players reacted to adaptation (by

no longer performing a certain type of violation). Moreover,

patterns identified suggested that games completed by players

subject to prior self-adaptation, had tactfully performed viola-

tions to a point where they did not lose complete access.

It is worth noting that the evidence to demonstrate hypoth-

esis 2 and hypothesis 3 is based on patterns observed within

the statistics of the game. These statistics provided evidence

that on the whole, more experienced players carried out

complex violations, and that players changed their behaviour

post adaptation (i.e., in terms of exploiting adaptation, or no

longer persisting with a given type of violation). However,

given the limitation that player activity was analysed by

device address, it is not possible to accurately identify the

participants performing violations. Therefore, evidence can

only indicate the plausibility of these two hypotheses. To

concretely justify these hypotheses, a further experiment is

required where specific participant behaviour is assessed under

controlled conditions.

A lesson learned from using gamification to evaluate novel

approach for protecting a system against insider threats is that

gamification was quite effective in identifying vulnerabilities

that other conventional evaluation techniques would not be

able to identify. Evidence of this is that by fixing the identified

vulnerabilities in the earlier phases of evaluation lead to a more

robust SAAF. During the phase 3 of the experiment, the only

attack not identified was when a player accounts were falsified

without any attempt of playing the game. This was done by

manipulating the endpoints of the AJAX routines that handled

logging and policy enforcement for mimicking player activity.

VII. RELATED WORK

Self-protecting systems are a specialisation of self-adaptive

systems with a goal to mitigating malicious behaviour, and

SAAF can be considered a self-protecting system. In the

following, we discuss the few works that have demonstrated

self-protection within the context of mitigating insider attacks.

In particular, we discuss two self-protection approaches based

on the state of access control, and one approach based on the

state system architecture.

One of the approaches to self-protection via access control

is SecuriTAS [19]. SecuriTAS is a tool that enables dynamic

decisions in awarding access, which is based on a perceived

state of the system and its environment. SecuriTAS is similar

to dynamic access control approaches, such as RADac [14],

in that it has a notion of risk (threat) to resources, and

changes in threat leads to a change in access control decisions.

However, it furthers the concepts in RADac to include the

notion of utility. The main difference between SecuriTAS and

SAAF, is that SecuriTAS positions its own bespoke access

control model and authorisation infrastructure that incorpo-

rates self-adaptation by design. SAAF, on the other hand, is a

framework that describes how existing access control models

and authorisation infrastructures can be made self-adaptive,

and as such, configured to actively mitigate insider threat.

With that said, both approaches demonstrate an authorisation

infrastructure’s robustness in mitigating insider attacks, by

ensuring that authorisation remains relevant to system and

environment states (and preventing continuation of attacks by

adaptation of security controls).

In contrast to self-protection via access control,

architectural-based self-protection (ABSP) [22] presents

a general solution to detection and mitigation of security

threats, via runtime structural adaptation. Rather than reason

at the contextual layer of ‘access control’, ABSP utilises an

architectural model of the running system to identify the

extent of impact of identified attacks. Once attacks or security

threats have been assessed, a self-adaptive architectural
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manager (Rainbow [6]) is used to perform adaptations to

mitigate the attack. ABSP shares a number of similarities

with intrusion response and prevention systems, particularly

with the scope of adaptations that ABSP can perform

(e.g., structural adaptation against network devices and

connections). However, because ABSP maintains a notion of

‘self’, it is able to reason about the impact of adaptations and

provide assurance over adaptation before adapting its target

system.

VIII. CONCLUSIONS

This paper has demonstrated gamification as a viable ap-

proach for the evaluation of self-adaptive authorisation infras-

tructures. Gamification is a technique in which online games

are deployed to solve complex problems and generate real

meaningful data. It can enable the generation of diverse and

unpredictable malicious behaviour representative of intelligent

user behaviour, pre- and post-adaptation.

Using gamification, the Self-Adaptive Authorisation Frame-

work (SAAF) was shown to be able to mitigate the abuse

of access rights in a diverse and live environment. This

was achieved through the deployment of an online game,

protected by an authorisation infrastructure. A live experiment

captured a wide range of malicious behaviours related to the

exploitation vulnerabilities. This demonstrated SAAF’s ability

to handle malicious behaviour given the existence of real and

intelligent users, in addition to capturing how users responded

to adaptation.

Through the live experiment, this paper has identified some

key outcomes and future challenges applicable to self-adaptive

authorisation. Notably, a small number of unknown attacks

during the live experiment were successful. As a result,

additional detectors had to be manually configured in order

to detect future instances of the attacks. This is representative

of the limitations in the SAAF prototype’s current detection

techniques, and enforces the need for future approaches to

evolve at runtime once an unknown attack has been successful.

In addition, it was observed that malicious subjects may

change their behaviour upon awareness of adaptation. In

some cases, subjects began committing more sophisticated

violations, or chose not to repeat previously detected types of

violations. To compound this, there was evidence to suggest

that subjects were tactfully choosing when to commit low level

violations (to their advantage), as a result of understanding

the deterministic nature of the SAAF controller. This poses

a challenge that future approaches must consider, which is

the fact that self-adaptation could lead to malicious subjects

attempting to subvert detection, commit more damaging forms

of attack, or exploit the very nature of self-adaptation to their

gain, i.e., attacks models need to be reevaluated.
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