7,190 research outputs found

    GraFIX: a semiautomatic approach for parsing low- and high-quality eye-tracking data

    Get PDF
    Fixation durations (FD) have been used widely as a measurement of information processing and attention. However, issues like data quality can seriously influence the accuracy of the fixation detection methods and, thus, affect the validity of our results (Holmqvist, Nyström, & Mulvey, 2012). This is crucial when studying special populations such as infants, where common issues with testing (e.g., high degree of movement, unreliable eye detection, low spatial precision) result in highly variable data quality and render existing FD detection approaches highly time consuming (hand-coding) or imprecise (automatic detection). To address this problem, we present GraFIX, a novel semiautomatic method consisting of a two-step process in which eye-tracking data is initially parsed by using velocity-based algorithms whose input parameters are adapted by the user and then manipulated using the graphical interface, allowing accurate and rapid adjustments of the algorithms’ outcome. The present algorithms (1) smooth the raw data, (2) interpolate missing data points, and (3) apply a number of criteria to automatically evaluate and remove artifactual fixations. The input parameters (e.g., velocity threshold, interpolation latency) can be easily manually adapted to fit each participant. Furthermore, the present application includes visualization tools that facilitate the manual coding of fixations. We assessed this method by performing an intercoder reliability analysis in two groups of infants presenting low- and high-quality data and compared it with previous methods. Results revealed that our two-step approach with adaptable FD detection criteria gives rise to more reliable and stable measures in low- and high-quality data

    Accuracy and precision of fixation locations recorded with the low-cost Eye Tribe tracker in different experimental set-ups

    Get PDF
    This article compares the accuracy and precision of the low-cost Eye Tribe tracker and a well-established comparable eye tracker: SMI RED 250. Participants were instructed to fixate on predefined point locations on a screen. The accuracy is measured by the distance between the recorded fixation locations and the actual location. Precision is represented by the standard deviation of these measurements. Furthermore, the temporal precision of both eye tracking devices (sampling rate) is evaluated as well. The obtained results illustrate that a correct set-up and selection of software to record and process the data are of utmost importance to obtain acceptable results with the low-cost device. Nevertheless, with careful selections in each of these steps, the quality (accuracy and precision) of the recorded data can be considered comparable

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519

    Event Detection in Eye-Tracking Data for Use in Applications with Dynamic Stimuli

    Get PDF
    This doctoral thesis has signal processing of eye-tracking data as its main theme. An eye-tracker is a tool used for estimation of the point where one is looking. Automatic algorithms for classification of different types of eye movements, so called events, form the basis for relating the eye-tracking data to cognitive processes during, e.g., reading a text or watching a movie. The problems with the algorithms available today are that there are few algorithms that can handle detection of events during dynamic stimuli and that there is no standardized procedure for how to evaluate the algorithms. This thesis comprises an introduction and four papers describing methods for detection of the most common types of eye movements in eye-tracking data and strategies for evaluation of such methods. The most common types of eye movements are fixations, saccades, and smooth pursuit movements. In addition to these eye movements, the event post-saccadic oscillations, (PSO), is considered. The eye-tracking data in this thesis are recorded using both high- and low-speed eye-trackers. The first paper presents a method for detection of saccades and PSO. The saccades are detected using the acceleration signal and three specialized criteria based on directional information. In order to detect PSO, the interval after each saccade is modeled and the parameters of the model are used to determine whether PSO are present or not. The algorithm was evaluated by comparing the detection results to manual annotations and to the detection results of the most recent PSO detection algorithm. The results show that the algorithm is in good agreement with annotations, and has better performance than the compared algorithm. In the second paper, a method for separation of fixations and smooth pursuit movements is proposed. In the intervals between the detected saccades/PSO, the algorithm uses different spatial scales of the position signal in order to separate between the two types of eye movements. The algorithm is evaluated by computing five different performance measures, showing both general and detailed aspects of the discrimination performance. The performance of the algorithm is compared to the performance of a velocity and dispersion based algorithm, (I-VDT), to the performance of an algorithm based on principle component analysis, (I-PCA), and to manual annotations by two experts. The results show that the proposed algorithm performs considerably better than the compared algorithms. In the third paper, a method based on eye-tracking signals from both eyes is proposed for improved separation of fixations and smooth pursuit movements. The method utilizes directional clustering of the eye-tracking signals in combination with binary filters taking both temporal and spatial aspects of the eye-tracking signal into account. The performance of the method is evaluated using a novel evaluation strategy based on automatically detected moving objects in the video stimuli. The results show that the use of binocular information for separation of fixations and smooth pursuit movements is advantageous in static stimuli, without impairing the algorithm's ability to detect smooth pursuit movements in video and moving dot stimuli. The three first papers in this thesis are based on eye-tracking signals recorded using a stationary eye-tracker, while the fourth paper uses eye-tracking signals recorded using a mobile eye-tracker. In mobile eye-tracking, the user is allowed to move the head and the body, which affects the recorded data. In the fourth paper, a method for compensation of head movements using an inertial measurement unit, (IMU), combined with an event detector for lower sampling rate data is proposed. The event detection is performed by combining information from the eye-tracking signals with information about objects extracted from the scene video of the mobile eye-tracker. The results show that by introducing head movement compensation and information about detected objects in the scene video in the event detector, improved classification can be achieved. In summary, this thesis proposes an entire methodological framework for robust event detection which performs better than previous methods when analyzing eye-tracking signals recorded during dynamic stimuli, and also provides a methodology for performance evaluation of event detection algorithms

    End-to-End Eye Movement Detection Using Convolutional Neural Networks

    Get PDF
    Common computational methods for automated eye movement detection - i.e. the task of detecting different types of eye movement in a continuous stream of gaze data - are limited in that they either involve thresholding on hand-crafted signal features, require individual detectors each only detecting a single movement, or require pre-segmented data. We propose a novel approach for eye movement detection that only involves learning a single detector end-to-end, i.e. directly from the continuous gaze data stream and simultaneously for different eye movements without any manual feature crafting or segmentation. Our method is based on convolutional neural networks (CNN) that recently demonstrated superior performance in a variety of tasks in computer vision, signal processing, and machine learning. We further introduce a novel multi-participant dataset that contains scripted and free-viewing sequences of ground-truth annotated saccades, fixations, and smooth pursuits. We show that our CNN-based method outperforms state-of-the-art baselines by a large margin on this challenging dataset, thereby underlining the significant potential of this approach for holistic, robust, and accurate eye movement protocol analysis

    Detection of moving point symbols on cartographic backgrounds

    Get PDF
    The present paper presents the performance of an experimental cartographic study towards the examination of the minimum duration threshold required for the detection by the central vision of a moving point symbol on cartographic backgrounds. The examined threshold is investigated using backgrounds with discriminant levels of information. The experimental process is based on the collection (under free viewing conditions) and the analysis of eye movement recordings. The computation of fixation derived statistical metrics allows the calculation of the examined threshold as well as the study of the general visual reaction of map users. The critical duration threshold calculated within the present study corresponds to a time span around 400msec. The results of the analysis indicate meaningful evidences about these issues while the suggested approach can be applied towards the examination of perception thresholds related to changes occurred on dynamic stimuli

    EyeSite: A Framework for Browser-Based Eye Tracking Studies

    Get PDF
    The growing use of the web browser in HCI and data visualization presents an opportunity for advancement in eye tracking experiment software. Interactive experiments with features such as dynamic areas of interest and scrolling are difficult and time consuming to analyze with existing tools. EyeSite builds on open-source eye tracking software by communicating in real time with the web browser. This communication is used to transform screen-space gaze coordinates into coordinates on the web page. Point-to-element mapping is performed using DOM elements. EyeSite supports a wide variety of eye tracking hardware and software, remote experimental trials, and easy integration with common research workflows

    A computational model of visual attention.

    Get PDF
    Visual attention is a process by which the Human Visual System (HVS) selects most important information from a scene. Visual attention models are computational or mathematical models developed to predict this information. The performance of the state-of-the-art visual attention models is limited in terms of prediction accuracy and computational complexity. In spite of significant amount of active research in this area, modelling visual attention is still an open research challenge. This thesis proposes a novel computational model of visual attention that achieves higher prediction accuracy with low computational complexity. A new bottom-up visual attention model based on in-focus regions is proposed. To develop the model, an image dataset is created by capturing images with in-focus and out-of-focus regions. The Discrete Cosine Transform (DCT) spectrum of these images is investigated qualitatively and quantitatively to discover the key frequency coefficients that correspond to the in-focus regions. The model detects these key coefficients by formulating a novel relation between the in-focus and out-of-focus regions in the frequency domain. These frequency coefficients are used to detect the salient in-focus regions. The simulation results show that this attention model achieves good prediction accuracy with low complexity. The prediction accuracy of the proposed in-focus visual attention model is further improved by incorporating sensitivity of the HVS towards the image centre and the human faces. Moreover, the computational complexity is further reduced by using Integer Cosine Transform (ICT). The model is parameter tuned using the hill climbing approach to optimise the accuracy. The performance has been analysed qualitatively and quantitatively using two large image datasets with eye tracking fixation ground truth. The results show that the model achieves higher prediction accuracy with a lower computational complexity compared to the state-of-the-art visual attention models. The proposed model is useful in predicting human fixations in computationally constrained environments. Mainly it is useful in applications such as perceptual video coding, image quality assessment, object recognition and image segmentation
    corecore