127 research outputs found

    Eukaryotic genome size databases

    Get PDF
    Three independent databases of eukaryotic genome size information have been launched or re-released in updated form since 2005: the Plant DNA C-values Database (), the Animal Genome Size Database () and the Fungal Genome Size Database (). In total, these databases provide freely accessible genome size data for >10 000 species of eukaryotes assembled from more than 50 years' worth of literature. Such data are of significant importance to the genomics and broader scientific community as fundamental features of genome structure, for genomics-based comparative biodiversity studies, and as direct estimators of the cost of complete sequencing programs

    Toward 959 nematode genomes

    Get PDF
    The sequencing of the complete genome of the nematode Caenorhabditis elegans was a landmark achievement and ushered in a new era of whole-organism, systems analyses of the biology of this powerful model organism. The success of the C. elegans genome sequencing project also inspired communities working on other organisms to approach genome sequencing of their species. The phylum Nematoda is rich and diverse and of interest to a wide range of research fields from basic biology through ecology and parasitic disease. For all these communities, it is now clear that access to genome scale data will be key to advancing understanding, and in the case of parasites, developing new ways to control or cure diseases. The advent of second-generation sequencing technologies, improvements in computing algorithms and infrastructure and growth in bioinformatics and genomics literacy is making the addition of genome sequencing to the research goals of any nematode research program a less daunting prospect. To inspire, promote and coordinate genomic sequencing across the diversity of the phylum, we have launched a community wiki and the 959 Nematode Genomes initiative (www.nematodegenomes.org/). Just as the deciphering of the developmental lineage of the 959 cells of the adult hermaphrodite C. elegans was the gateway to broad advances in biomedical science, we hope that a nematode phylogeny with (at least) 959 sequenced species will underpin further advances in understanding the origins of parasitism, the dynamics of genomic change and the adaptations that have made Nematoda one of the most successful animal phyla

    Nuclear DNA content in the red conger eel Genypterus chilensis (Guichenot, 1881) (Actinopterygii: Ophidiidae)

    Get PDF
    Los estudios sobre contenido de ADN nuclear en el género Genypterus son escasos, y el presente trabajo entrega por primera vez la estimación del contenido de ADN nuclear de Genypterus chilensis con un valor 2C = 1,0 + 0,06 pg, valor cercano al descrito para otras especies de Ophidiidae que varían entre 1,2 y 1,68 pg.Studies about nuclear DNA content in the genus Genypterus are scarce, and the present study gives the first estimate of nuclear DNA content of Genypterus chilensis, with a value of 2C= 1.0 + 0.06 pg, value close to that obtained for other Ophidiidae species wich range between 1.2 and 1.68 pg

    Diversity of DNA and protein contents of spores of the closely related oyster fungi Pleurotus pulmonarius and P. ostreatus as studied by flow cytometry

    Get PDF
    For quantitative evaluation of nuclear DNA and protein contents of spores, the flow cytometer (PAS) with staining DAPI SR101 was employed. A total of 22 specimens of Pleurotus were studied. Bi-parametric analysis of spore DNA and protein contents revealed that fruitbodies of P. ostreatus produce one or two distinct spore populations the DNA and protein contents of bigger of which are comparable to those of P. pulmonarius that produces only one distinct spore population. The difference in genome size and chromosome number within P. ostreatus appears as heteroploidy (see Fungal Genome Size Database http://www.zbi.ee/fungal-genomesize/). We presume that the divergence that arises from a spore print reflects the fate of a hybrid genome in meiosis. Our results seem to confirm that parental genomes of different sizes segregate in meiosis. Zygotic meiosis can occur even in the case of low density of homology between chromosomes (CLP and aneuploidy) and may ensure distribution of highly different strains.

    Genome wide SNP discovery, analysis and evaluation in mallard (Anas platyrhynchos)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Next generation sequencing technologies allow to obtain at low cost the genomic sequence information that currently lacks for most economically and ecologically important organisms. For the mallard duck genomic data is limited. The mallard is, besides a species of large agricultural and societal importance, also the focal species when it comes to long distance dispersal of Avian Influenza. For large scale identification of SNPs we performed Illumina sequencing of wild mallard DNA and compared our data with ongoing genome and EST sequencing of domesticated conspecifics. This is the first study of its kind for waterfowl.</p> <p>Results</p> <p>More than one billion base pairs of sequence information were generated resulting in a 16× coverage of a reduced representation library of the mallard genome. Sequence reads were aligned to a draft domesticated duck reference genome and allowed for the detection of over 122,000 SNPs within our mallard sequence dataset. In addition, almost 62,000 nucleotide positions on the domesticated duck reference showed a different nucleotide compared to wild mallard. Approximately 20,000 SNPs identified within our data were shared with SNPs identified in the sequenced domestic duck or in EST sequencing projects. The shared SNPs were considered to be highly reliable and were used to benchmark non-shared SNPs for quality. Genotyping of a representative sample of 364 SNPs resulted in a SNP conversion rate of 99.7%. The correlation of the minor allele count and observed minor allele frequency in the SNP discovery pool was 0.72.</p> <p>Conclusion</p> <p>We identified almost 150,000 SNPs in wild mallards that will likely yield good results in genotyping. Of these, ~101,000 SNPs were detected within our wild mallard sequences and ~49,000 were detected between wild and domesticated duck data. In the ~101,000 SNPs we found a subset of ~20,000 SNPs shared between wild mallards and the sequenced domesticated duck suggesting a low genetic divergence. Comparison of quality metrics between the total SNP set (122,000 + 62,000 = 184,000 SNPs) and the validated subset shows similar characteristics for both sets. This indicates that we have detected a large amount (~150,000) of accurately inferred mallard SNPs, which will benefit bird evolutionary studies, ecological studies (e.g. disentangling migratory connectivity) and industrial breeding programs.</p

    Law of Genome Evolution Direction : Coding Information Quantity Grows

    Full text link
    The problem of the directionality of genome evolution is studied. Based on the analysis of C-value paradox and the evolution of genome size we propose that the function-coding information quantity of a genome always grows in the course of evolution through sequence duplication, expansion of code, and gene transfer from outside. The function-coding information quantity of a genome consists of two parts, p-coding information quantity which encodes functional protein and n-coding information quantity which encodes other functional elements except amino acid sequence. The evidences on the evolutionary law about the function-coding information quantity are listed. The needs of function is the motive force for the expansion of coding information quantity and the information quantity expansion is the way to make functional innovation and extension for a species. So, the increase of coding information quantity of a genome is a measure of the acquired new function and it determines the directionality of genome evolution.Comment: 16 page
    corecore