243 research outputs found

    Tactile Weight Rendering: A Review for Researchers and Developers

    Full text link
    Haptic rendering of weight plays an essential role in naturalistic object interaction in virtual environments. While kinesthetic devices have traditionally been used for this aim by applying forces on the limbs, tactile interfaces acting on the skin have recently offered potential solutions to enhance or substitute kinesthetic ones. Here, we aim to provide an in-depth overview and comparison of existing tactile weight rendering approaches. We categorized these approaches based on their type of stimulation into asymmetric vibration and skin stretch, further divided according to the working mechanism of the devices. Then, we compared these approaches using various criteria, including physical, mechanical, and perceptual characteristics of the reported devices and their potential applications. We found that asymmetric vibration devices have the smallest form factor, while skin stretch devices relying on the motion of flat surfaces, belts, or tactors present numerous mechanical and perceptual advantages for scenarios requiring more accurate weight rendering. Finally, we discussed the selection of the proposed categorization of devices and their application scopes, together with the limitations and opportunities for future research. We hope this study guides the development and use of tactile interfaces to achieve a more naturalistic object interaction and manipulation in virtual environments.Comment: 15 pages, 2 tables, 3 figures, surve

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Actual and Illusory Perception in Parkinson's Disease and Dystonia: A Narrative Review

    Get PDF
    Sensory information is continuously processed so as to allow behavior to be adjusted according to environmental changes. Before sensory information reaches the cortex, a number of subcortical neural structures select the relevant information to send to be consciously processed. In recent decades, several studies have shown that the pathophysiological mechanisms underlying movement disorders such as Parkinson's disease (PD) and dystonia involve sensory processing abnormalities related to proprioceptive and tactile information. These abnormalities emerge from psychophysical testing, mainly temporal discrimination, as well as from experimental paradigms based on bodily illusions. Although the link between proprioception and movement may be unequivocal, how temporal tactile information abnormalities and bodily illusions relate to motor disturbances in PD and dystonia is still a matter of debate. This review considers the role of altered sensory processing in the pathophysiology of movement disorders, focusing on how sensory alteration patterns differ between PD and dystonia. We also discuss the evidence available and the potential for developing new therapeutic strategies based on the manipulation of multi-sensory information and bodily illusions in patients with these movement disorders

    Variation of corticospinal excitability during kinesthetic illusion induced by musculotendinous vibration

    Get PDF
    Abtract Despite being studied for more than 50 years, the neurophysiological mechanisms underlying vibration (VIB)-induced kinesthetic illusions are still unclear. The aim of this study was to investigate how corticospinal excitability tested by transcranial magnetic stimulation (TMS) is modulated during VIB-induced illusions. Twenty healthy adults received vibration over wrist flexor muscles (80 Hz, 1 mm, 10 s). TMS was applied over the primary motor cortex representation of wrist extensors at 120% of resting motor threshold in four random conditions (10 trials/condition): baseline (without VIB), 1 s, 5 s, and 10 s after VIB onset. Means of motor-evoked potential (MEP) amplitudes and latencies were calculated. Statistical analysis found a significant effect of conditions (stimulation timings) on MEP amplitudes (P = 0.035). Paired-comparisons demonstrated lower corticospinal excitability during VIB at 1 s compared with 5 s (P = 0.025) and 10 s (P = 0.003), although none of them differed from baseline values. Results suggest a time-specific modulation of corticospinal excitability in muscles antagonistic to those vibrated, i.e., muscles involved in the perceived movement. An early decrease of excitability was observed at 1 s followed by a stabilization of values near baseline at subsequent time points. At 1 s, the illusion is not yet perceived or not strong enough to upregulate corticospinal networks coherent with the proprioceptive input. Spinal mechanisms, such as reciprocal inhibition, could also contribute to lower the corticospinal drive of nonvibrated muscles in short period before the illusion emerges. Our results suggest that neuromodulatory effects of VIB are likely time-dependent, and that future work is needed to further investigate underlying mechanisms. NEW & NOTEWORTHY The modulation of corticospinal excitability when perceiving a vibration (VIB)-induced kinesthetic illusion evolves dynamically over time. This modulation might be linked to the delayed occurrence and progressive increase in strength of the illusory perception in the first seconds after VIB start. Different spinal/cortical mechanisms could be at play during VIB, depending on the tested muscle, presence/absence of an illusion, and the specific timing at which corticospinal drive is tested pre/post VIB

    Pseudo-haptics survey: Human-computer interaction in extended reality & teleoperation

    Get PDF
    Pseudo-haptic techniques are becoming increasingly popular in human-computer interaction. They replicate haptic sensations by leveraging primarily visual feedback rather than mechanical actuators. These techniques bridge the gap between the real and virtual worlds by exploring the brain’s ability to integrate visual and haptic information. One of the many advantages of pseudo-haptic techniques is that they are cost-effective, portable, and flexible. They eliminate the need for direct attachment of haptic devices to the body, which can be heavy and large and require a lot of power and maintenance. Recent research has focused on applying these techniques to extended reality and mid-air interactions. To better understand the potential of pseudo-haptic techniques, the authors developed a novel taxonomy encompassing tactile feedback, kinesthetic feedback, and combined categories in multimodal approaches, ground not covered by previous surveys. This survey highlights multimodal strategies and potential avenues for future studies, particularly regarding integrating these techniques into extended reality and collaborative virtual environments.info:eu-repo/semantics/publishedVersio

    Advancing proxy-based haptic feedback in virtual reality

    Get PDF
    This thesis advances haptic feedback for Virtual Reality (VR). Our work is guided by Sutherland's 1965 vision of the ultimate display, which calls for VR systems to control the existence of matter. To push towards this vision, we build upon proxy-based haptic feedback, a technique characterized by the use of passive tangible props. The goal of this thesis is to tackle the central drawback of this approach, namely, its inflexibility, which yet hinders it to fulfill the vision of the ultimate display. Guided by four research questions, we first showcase the applicability of proxy-based VR haptics by employing the technique for data exploration. We then extend the VR system's control over users' haptic impressions in three steps. First, we contribute the class of Dynamic Passive Haptic Feedback (DPHF) alongside two novel concepts for conveying kinesthetic properties, like virtual weight and shape, through weight-shifting and drag-changing proxies. Conceptually orthogonal to this, we study how visual-haptic illusions can be leveraged to unnoticeably redirect the user's hand when reaching towards props. Here, we contribute a novel perception-inspired algorithm for Body Warping-based Hand Redirection (HR), an open-source framework for HR, and psychophysical insights. The thesis concludes by proving that the combination of DPHF and HR can outperform the individual techniques in terms of the achievable flexibility of the proxy-based haptic feedback.Diese Arbeit widmet sich haptischem Feedback fĂŒr Virtual Reality (VR) und ist inspiriert von Sutherlands Vision des ultimativen Displays, welche VR-Systemen die FĂ€higkeit zuschreibt, Materie kontrollieren zu können. Um dieser Vision nĂ€her zu kommen, baut die Arbeit auf dem Konzept proxy-basierter Haptik auf, bei der haptische EindrĂŒcke durch anfassbare Requisiten vermittelt werden. Ziel ist es, diesem Ansatz die fĂŒr die Realisierung eines ultimativen Displays nötige FlexibilitĂ€t zu verleihen. Dazu bearbeiten wir vier Forschungsfragen und zeigen zunĂ€chst die Anwendbarkeit proxy-basierter Haptik durch den Einsatz der Technik zur Datenexploration. Anschließend untersuchen wir in drei Schritten, wie VR-Systeme mehr Kontrolle ĂŒber haptische EindrĂŒcke von Nutzern erhalten können. Hierzu stellen wir Dynamic Passive Haptic Feedback (DPHF) vor, sowie zwei Verfahren, die kinĂ€sthetische EindrĂŒcke wie virtuelles Gewicht und Form durch Gewichtsverlagerung und VerĂ€nderung des Luftwiderstandes von Requisiten vermitteln. ZusĂ€tzlich untersuchen wir, wie visuell-haptische Illusionen die Hand des Nutzers beim Greifen nach Requisiten unbemerkt umlenken können. Dabei stellen wir einen neuen Algorithmus zur Body Warping-based Hand Redirection (HR), ein Open-Source-Framework, sowie psychophysische Erkenntnisse vor. Abschließend zeigen wir, dass die Kombination von DPHF und HR proxy-basierte Haptik noch flexibler machen kann, als es die einzelnen Techniken alleine können

    Getting a Feel for Tactile Space: Exploring Haptic Perception of Microtexture

    Full text link

    A Systematic Review of Weight Perception in Virtual Reality: Techniques, Challenges, and Road Ahead

    Get PDF
    Weight is perceived through the combination of multiple sensory systems, and a wide range of factors – including touch, visual, and force senses – can influence the perception of heaviness. There have been remarkable advancements in the development of haptic interfaces throughout the years. However, a number of challenges limit the progression to enable humans to sense the weight in virtual reality (VR). This article presents an overview of the factors that influence how weight is perceived and the phenomenon that contributes to various types of weight illusions. A systematic review has been undertaken to assess the development of weight perception in VR, underlying haptic technology that renders the mass of a virtual object, and the creation of weight perception through pseudo-haptic. We summarize the approaches from the perspective of haptic and pseudo-haptic cues that exhibit the sense of weight such as force, skin deformation, vibration, inertia, control–display ratio, velocity, body gestures, and audio–visual representation. The design challenges are underlined, and research gaps are discussed, including accuracy and precision, weight discrimination, heavyweight rendering, and absolute weight simulation. This article is anticipated to aid in the development of more realistic weight perception in VR and stimulated new research interest in this topic
    • 

    corecore