168 research outputs found

    A Systematic Survey of Control Techniques and Applications: From Autonomous Vehicles to Connected and Automated Vehicles

    Full text link
    Vehicle control is one of the most critical challenges in autonomous vehicles (AVs) and connected and automated vehicles (CAVs), and it is paramount in vehicle safety, passenger comfort, transportation efficiency, and energy saving. This survey attempts to provide a comprehensive and thorough overview of the current state of vehicle control technology, focusing on the evolution from vehicle state estimation and trajectory tracking control in AVs at the microscopic level to collaborative control in CAVs at the macroscopic level. First, this review starts with vehicle key state estimation, specifically vehicle sideslip angle, which is the most pivotal state for vehicle trajectory control, to discuss representative approaches. Then, we present symbolic vehicle trajectory tracking control approaches for AVs. On top of that, we further review the collaborative control frameworks for CAVs and corresponding applications. Finally, this survey concludes with a discussion of future research directions and the challenges. This survey aims to provide a contextualized and in-depth look at state of the art in vehicle control for AVs and CAVs, identifying critical areas of focus and pointing out the potential areas for further exploration

    Hybrid Kinematic-Dynamic Sideslip and Friction Estimation

    Get PDF
    Vehicle sideslip and tyre/road friction are crucial variables for advanced vehicle stability control systems. Estimation is required since direct measurement through sensors is costly and unreliable. In this paper, we develop and validate a sideslip estimator robust to unknown road grip conditions. Particularly, the paper addresses the problem of rapid tyre/road friction adaptation when sudden road condition variations happen. The algorithm is based on a hybrid kinematic-dynamic closed-loop observer augmented with a tyre/road friction classifier that reinitializes the states of the estimator when a change of friction is detected. Extensive experiments on a four wheel drive electric vehicle carried out on different roads quantitatively validate the approach. The architecture guarantees accurate estimation on dry and wet asphalt and snow terrain with a maximum sideslip estimation error lower than 1.5 deg. The classifier correctly recognizes 87% of the friction changes; wrongly classifies 2% of the friction changes while it is unable to detect the change in 11% of the cases. The missed detections are due to the fact that the algorithm requires a certain level of vehicle excitation to detect a change of friction. The average classification time is 1.6 s. The tests also indicate the advantages of the friction classifiers on the sideslip estimation error

    Survey of the Application Fields and Modeling Methods of Automotive Vehicle Dynamics Models

    Get PDF
    In this paper, a review is presented on automotive vehicle dynamics modeling. Applied vehicle dynamics models from various application fields are analyzed and classified in the first section. Vehicle dynamics models may be simplified because of different reasons: several control/estimation/analysis methods are suitable only for simplified models (e.g. using control-oriented models), or because of the computational cost. Detailed/truth models of vehicle dynamics represent another field of vehicle dynamics modeling, these models play an important role in the virtual prototyping of vehicles. In the second section, the main modeling considerations of vehicle dynamics are presented in longitudinal, lateral and vertical directions. Various physical effects must be considered in the case of vehicle dynamics modeling, a lot of these effects are significant only in a specific direction of the vehicle body, which is the main potential of model simplification. The section presents vehicle modeling considerations in all of the three translational directions of the vehicle body

    Driver behavior classification and lateral control for automobile safety systems

    Get PDF
    Advanced driver assistance systems (ADAS) have been developed to help drivers maintain stability, improve road safety, and avoid potential collision. The data acquisition equipment that can be used to measure the state and parameter information of the vehicle may not be available for a standard passenger car due to economical and technical limitations. This work focuses on developing three technologies (longitudinal tire force estimation, driver behavior classification and lateral control) using low-cost sensors that can be utilized in ADAS. For the longitudinal tire force estimation, a low cost 1Hz positioning global system (GPS) and a steering angle sensor are used as the vehicle data acquisition equipment. A nonlinear extended two-wheel vehicle dynamic model is employed. The sideslip angle and the yaw rate are estimated by discrete Kalman Filter. A time independent piecewise optimization scheme is proposed to provide time-continuous estimates of longitude tire force, which can be transferred to the throttle/brake pedal position. The proposed method can be validated by the estimation results. Driver behavior classification systems can detect unsafe driver behavior and avoid potentially dangerous situations. To realize this strategy, a machine learning classification method, Gaussian Mixture model (GMM), is applied to classify driver behavior. In this application, a low cost 1Hz GPS receiver is considered as the vehicle data acquisition equipment instead of other more costly sensors (such as steering angle sensor, throttle/brake position sensor, and etc.). Since the driving information is limited, the nonlinear extended two-wheel vehicle dynamic model is adopted to reconstruct the driver behavior. Firstly, the sideslip angle and the yaw rate are calculated since they are not available from the GPS measurements. Secondly, a piecewise optimization scheme is proposed to reproduce the steering angle and the longitudinal force. Finally, a GMM classifier is trained to identify abnormal driver behavior. The simulation results demonstrated that the proposed scenario can detect the unsafe driver behavior effectively. The lateral control system developed in this study is a look-down reference system which uses a magnetic sensor at the front bumper to measure the front lateral displacement and a GPS to measure the vehicle\u27s heading orientation. Firstly, the steering angles can be estimated by using the data provided by the front magnetic sensor and GPS. The estimation algorithm is an observer for a new extended single-track model, in which the steering angle and its derivative are viewed as two state variables. Secondly, the road curvature is determined based on the linear relationship with respect to the steering angle. Thirdly, an accurate and real-time estimation of the vehicle\u27s lateral displacements can be accomplished according to a state observer. Finally, the closed loop controller is used as a compensator for automated steering. The proposed estimation and control algorithms are validated by simulation results. The results showed that this lateral steering control system achieved a good and robust performance for vehicles following or tracking a reference path

    A robust observer based on H∞ filtering with parameter uncertainties combined with Neural Networks for estimation of vehicle roll angle

    Get PDF
    Nowadays, one of the main objectives in road transport is to decrease the number of accident victims. Rollover accidents caused nearly 33% of all deaths from passenger vehicle crashes. Roll Stability Control (RSC) systems prevent vehicles from untripped rollover accidents. The lateral load transfer is the main parameter which is taken into account in the RSC systems. This parameter is related to the roll angle, which can be directly measured from a dual-antenna GPS. Nevertheless, this is a costly technique. For this reason, roll angle has to be estimated. In this paper, a novel observer based on H∞ filtering in combination with a neural network (NN) for the vehicle roll angle estimation is proposed. The design of this observer is based on four main criteria: to use a simplified vehicle model, to use signals of sensors which are installed onboard in current vehicles, to consider the inaccuracy in the system model and to attenuate the effect of the external disturbances. Experimental results show the effectiveness of the proposed observer.This work is supported by the Spanish Government through the Project TRA2013-48030-C2-1-R, which is gratefully acknowledged

    Actuators for Intelligent Electric Vehicles

    Get PDF
    This book details the advanced actuators for IEVs and the control algorithm design. In the actuator design, the configuration four-wheel independent drive/steering electric vehicles is reviewed. An in-wheel two-speed AMT with selectable one-way clutch is designed for IEV. Considering uncertainties, the optimization design for the planetary gear train of IEV is conducted. An electric power steering system is designed for IEV. In addition, advanced control algorithms are proposed in favour of active safety improvement. A supervision mechanism is applied to the segment drift control of autonomous driving. Double super-resolution network is used to design the intelligent driving algorithm. Torque distribution control technology and four-wheel steering technology are utilized for path tracking and adaptive cruise control. To advance the control accuracy, advanced estimation algorithms are studied in this book. The tyre-road peak friction coefficient under full slip rate range is identified based on the normalized tyre model. The pressure of the electro-hydraulic brake system is estimated based on signal fusion. Besides, a multi-semantic driver behaviour recognition model of autonomous vehicles is designed using confidence fusion mechanism. Moreover, a mono-vision based lateral localization system of low-cost autonomous vehicles is proposed with deep learning curb detection. To sum up, the discussed advanced actuators, control and estimation algorithms are beneficial to the active safety improvement of IEVs

    A robust observer based on energy-to-peak filtering in combination withneural networks for parameter varying systems and its application to vehicleroll angle estimation

    Get PDF
    This paper presents a robust observer based on energy-to-peak filtering in combination with a neural network for vehicle roll angle estimation. Energy-to-peak filtering estimates the minimised error for any bounded energydisturbance. The neural network acts as a 'pseudo-sensor' to estimate a vehicle 'pseudo-roll angle', which is used as the input for the energy-to-peak-based observer. The advantages of the proposed observer are as follows. 1) Itdoes not require GPS information to be utilised in various environments. 2) It uses information obtained from sensors that are installed in current vehicles, such as accelerometers and rate sensors. 3) It reduces computationtime by avoiding the calculation of observer gain at each time sample and utilising a simplified vehicle model. 4) It considers the uncertainties in parameters of the vehicle model. 5) It reduces the effect of disturbances. Bothsimulation and experimental results demonstrate the effectiveness of the proposed observer.This work is supported by the Spanish Government through the Project TRA2013-48030-C2-1-R, which is gratefully acknowledged

    Stability Control of Triple Trailer Vehicles

    Get PDF
    While vehicle stability control is a well-established technology in the passenger car realm, it is still an area of active research for commercial vehicles as indicated by the recent notice of proposed rulemaking on commercial vehicle stability by the National Highway Traffic Safety Administration (NHTSA, 2012). The reasons that commercial vehicle electronic stability control (ESC) development has lagged passenger vehicle ESC include the fact that the industry is generally slow to adopt new technologies and that commercial vehicles are far more complex requiring adaptation of existing technology. From the controller theory perspective, current commercial vehicle stability systems are generally passenger car based ESC systems that have been modified to manage additional brakes (axles). They do not monitor the entire vehicle nor do they manage the entire vehicle as a system
    corecore