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A B S T R A C T

This paper presents a robust observer based on energy-to-peak filtering in combination with a neural network for
vehicle roll angle estimation. Energy-to-peak filtering estimates the minimised error for any bounded energy
disturbance. The neural network acts as a ‘pseudo-sensor’ to estimate a vehicle ‘pseudo-roll angle’, which is used
as the input for the energy-to-peak-based observer. The advantages of the proposed observer are as follows. 1) It
does not require GPS information to be utilised in various environments. 2) It uses information obtained from
sensors that are installed in current vehicles, such as accelerometers and rate sensors. 3) It reduces computation
time by avoiding the calculation of observer gain at each time sample and utilising a simplified vehicle model. 4)
It considers the uncertainties in parameters of the vehicle model. 5) It reduces the effect of disturbances. Both
simulation and experimental results demonstrate the effectiveness of the proposed observer.

1. Introduction

Currently, rollover accidents account for approximately 33% of all 
motor vehicle deaths [1]. To reduce the occurrence of this type of ac-
cident is one of the main objectives in the design of vehicle control 
systems [2]. Vehicle control systems that aim to improve vehicle roll-
over behaviour are called roll stability control (RSC) systems.

The majority of RSC systems require knowledge of vehicle roll angle 
to calculate lateral load transfer and properly coordinate control sys-
tems. Vehicle roll angle can be directly measured using a GPS dual-
antenna. The disadvantage of this technique is that it is very costly. For 
this reason, vehicle roll angle should be estimated.

However, the estimation of vehicle roll angle must be performed in 
real time using the sensors installed on-board in current vehicles to 
achieve acceptable RSC controller performance [3].

In [4] and [5], GPS information was fused with information ob-
tained from sensors installed in vehicles, such as inertial navigation 
system (INS) sensors, wheel speed sensors, and steering angle sensors.

The problem with using GPS is the difficulty in achieving accurate 
readings because of the limited visibility of satellites in both urban and 
forested driving environments. In [6], vehicle roll angle was estimated 
using information from suspension deflection sensors and a lateral ac-
celerometer. However, this technique does not provide accurate results

[7] and is very costly because the required sensors are typically not 
installed in vehicles.

In [8], a dynamic vehicle roll angle observer that fuses information 
obtained from a lateral accelerometer and gyroscope was designed. 
However, the drawback of this algorithm is that the estimated vehicle 
roll angle transient response contains a crucial error.

A common method used to fuse information from different sensors is 
the Kalman filter. In [7,9–11], a Kalman filter was utilised to estimate 
vehicle roll angle. The drawbacks of using a Kalman filter are as fol-
lows: 1) the model and measurement noises must be known, 2) the 
vehicle model must be precise, and 3) the gain matrix must be calcu-
lated at each time sample. If the first condition is not met, the perfor-
mance of the Kalman filter may be degraded [12]. Additionally, the last 
condition leads to increased computation time.

To handle system uncertainties and varying parameters, a robust 
observer and controller must be designed. In [13–15], robust con-
trollers were proposed to improve the lateral behaviour of a vehicle. 
Robust observers have also been proposed to estimate vehicle sideslip 
angle, [16,17] and vehicle longitudinal velocity [18]. However, there is 
a lack of research on the design of a robust observer related to vehicle 
roll angle.

The majority of previous methods use physical models for the esti-
mation of vehicle states. However, when a model has nonlinear
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The design of our observer is based on the following criteria:

• To facilitate system use in all types of environments, we must not 
use GPS information.

• Utilise information obtained from sensors that are installed in cur-
rent vehicles, such as accelerometers and rate sensors.

• Reduce computation time by avoiding the calculation of observer 
gain at each time sample and utilising a simplified vehicle model.

• The proposed algorithm must be usable in different road conditions.
• We must consider the uncertainties in parameters of the vehicle 
model.

• We must attenuate the effects of external disturbances.

The remainder of this paper is organised as follows. Section 2 de-

scribes the vehicle model used by the proposed observer. Section 3 
introduces the observer architecture that is formed by an ‘NN module’ 
and ‘energy-to-peak filtering module’. In Section 4, simulation and ex-
perimental results are presented to verify the effectiveness of the pro-
posed observer. Finally, our conclusions are summarised in Section 5.

2. Vehicle model

In this study, a one degree-of-freedom vehicle model, as shown in
Fig. 1, is used to describe vehicle roll motion. A detailed description of

this model can be found in [7].
A linear parameter varying (LPV) model of the vehicle roll dynamic 

can be represented as:

= + + + +x A A x B B a Hw˙ ( Δ ) ( Δ )0 0 0 0 0 0 ym (1)

= +y C x q ,meas 0 0 (2)

where x0 is the state vector, ϕ ϕ[ , ˙ ] ,T ϕ is the vehicle roll angle, ϕ̇ is the
vehicle roll rate, ymeas is the measurement vector, aym is the lateral
acceleration measured by a sensor at the centre of gravity (COG) of the
vehicle, w is the unknown and bounded external disturbance, q is the
measurement noise, and ΔA0 and ΔB0 represent the system un-
certainties for the matrices A0 and B0, respectively:
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Ixx is the sprung mass moment of inertia with respect to the roll axis, ms

is the sprung mass, hcr is the sprung mass height about the roll axis, CR

represents the total torsional damping, KR is the stiffness coefficient, g is
the acceleration due to gravity, and ΔKR, ΔCR, Δhcr, and Δms are the
maximum uncertainties of KR, CR, hcr, and ms, respectively. C0 is the
output matrix:
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and, finally,

=H I x2 2 (5)

To simply analyse, the following considerations have been taken
into account:
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Then, the uncertainty matrices can be rewritten as:
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3. Vehicle roll angle observer design

In this section, our vehicle roll angle observer is described. Fig. 2Fig. 1. Vehicle roll model.

characteristics and parameters are difficult to determine, as in the case 
of vehicles, one potential solution is the use of artificial intelligence. In 
[19] and [20], vehicle sideslip angle was estimated using a neural
network (NN) and adaptive neural fuzzy inference system (ANFIS). In 
[7], an NN was used for vehicle roll angle estimation. The problem in 
these methods is that sensor noise strongly affects variable estimation. In 
[7] and [21], integration of an ANFIS and NN with a Kalman filter was 
performed for estimating vehicle sideslip angle and vehicle roll angle, 
respectively. In these works, improved results for the ANFIS and NN 
were obtained when a Kalman filter was combined with previous 
methodologies.

Considering the aforementioned disadvantages of the Kalman filter, 
we focus on the development of a robust observer based on energy-to-
peak filtering in combination with an NN for vehicle roll angle esti-
mation. Energy-to-peak filtering estimates the minimised error for any 
bounded energy disturbance.
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illustrates the proposed observer architecture. This architecture is 
formed by two modules. The former module, called the ‘NN module’, 
uses a multilayer perceptron (MLP) NN for data fusion from inertial 
measurement unit (IMU) signals to estimate a vehicle ‘pseudo-roll 
angle’.

The latter module, called the ‘energy-to-peak filtering module’, re-
ceives the ‘pseudo roll angle’ estimated by the NN module and roll rate 
obtained directly from the IMU as inputs. This module is used to reduce 
noise in the inputs and obtain a better estimation of vehicle roll angle. 
In contrast to the Kalman filter, the energy-to-peak filter does not re-
quire knowledge regarding sensor noise. Another advantage of the 
proposed algorithm is that because the output of the NN module only 
depends on inputs and is not time-dependent, analysis of convergence 
in the proposed algorithm (NN + energy-to-peak observer) is reduced 
to analysing only the convergence of the energy-to-peak observer, un-
like the state estimators for NNs proposed in [22] and [23].

The following subsections provide detailed descriptions of these 
modules.

3.1. NN module

The NN module utilises a static artificial NN to calculate a ‘pseudo-
roll angle’ using the signals from an IMU sensor. The NN module then 
acts as a ‘pseudo-sensor’ that provides a measurement of the roll angle. 
The IMU sensor, which is installed at the COG of the vehicle, measures 
longitudinal, lateral, and vertical accelerations, as well as yaw, roll, and 
pitch rates. These signals are referred to the coordinate reference 
system of the IMU. The MLP NN architecture designed for estimation of 
the ‘pseudo-roll angle’ is presented in Fig. 3. The NN is formed by a 
single hidden layer with 15 neurons, four inputs corresponding to the
longitudinal acceleration axm, lateral acceleration aym, yaw rate ψ̇m, and
roll rate ϕ̇m and one output corresponding to the vehicle ‘pseudo-roll
angle’, ϕNN.

The training of the MLP NN is performed using a backpropagation 
algorithm. The training patterns were obtained by using a vehicle si-
mulation model from TruckSim [24], which has been validated using 
real test data. The NN is trained for different types of manoeuvres, 
which allows it to characterise vehicle behaviours, such as lane changes

(LCs), double lane changes (DLCs), and J-turns, for different speeds
(ranging from 30 km/h to 140 km/h) and road friction coefficients (0.3:
ice, 0.5: wet, and 1: dry).

The NN parameters, consisting of synaptic weights (wji and w1j) and
biases (bj and c), have been tuned based on an error signal e and ac-
cording to the generalised delta rule. The error signal is defined as:

= −e ϕ ϕd NN (17)

where ϕd is the desired vehicle roll angle obtained from the TruckSim 
vehicle model and ϕNN is the estimated vehicle roll angle from the NN. 
The training process stops when the synaptic weights and bias levels in 
the network stabilise and the average squared error over the entire 
training set converges to some minimum value. A detailed description 
of the training process for NNs and the results obtained are provided in 
[7].

One of the main advantages of the NN module is that the ‘pseudo-
roll angle’ is obtained directly from sensor signals without performing 
any integration. Therefore, there is no accumulated error in the esti-
mation. Another advantage is that the signals used as inputs for the NN 
module are provided by sensors that are installed in current vehicles 
equipped with ABS and ESP systems.

3.2. Energy-to-peak filtering module

The energy-to-peak filtering module estimates the vehicle roll angle 
using the ‘pseudo-roll angle’ estimated by the previous module and yaw 
rate provided by the IMU sensor as inputs. During energy-to-peak fil-
tering, estimation error is minimised for any bounded energy dis-
turbance.

The system defined in Section 2 depends on the sensor lateral ac-
celeration aym and external disturbance w. In order to reduce the effects 
of both inputs on roll angle estimation, the energy-to-peak performance 
is defined as [13,16,25]:

<
<

∞

∞

τ γ a
τ γ w

,
ym1 2

2 2 (18)

where τ is the output observer (see Eqs. (28) and (44)), γ1 is the per-
formance index, and γ2 is a weighting factor that determines the

Fig. 2. Architecture of the vehicle roll angle observer.

Fig. 3. Observer architecture.
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̂ ̂ ̂= + + −ax A x B L y C x( ),ym meas

.

0 0 0 0 0 0 0 (19)

where ymeas is the sensor or ‘pseudo-sensor’ data. Therefore,

measy C0 0= +x q (see Eq. (2)) and L0 is the observer gain to be calcu-
lated.

The estimation error of a state is defined as:

̂= −e x x0 0 (20)

Therefore, the estimation error dynamic can be calculated as:

̂= −e x x˙ ˙ 0
.

0 (21)

By substituting Eqs. (1) and (19) into Eq. (21) and performing the 
calculations, we obtain:

= − + + + +ae A L C e A x B Hw L q˙ ( ) Δ Δ ym0 0 0 0 0 0 0 (22)

Because matrix H is the identity matrix, the above equation can be
rewritten as:

= − + + + +ae A L C e A x B H w L q˙ ( ) Δ Δ ( )ym 00 0 0 0 0 0 (23)

The term ( +w L q0 ) is bounded if the system is asymptotically
stable because; in this case, L0 exists and is bounded. Therefore, the
external disturbance vector is given by:

′ = +w w L q0 (24)

A new state vector =ξ e x[ , ]T0 is defined as:
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where w′ is an unknown bounded external disturbance vector and:
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By substituting the uncertainty terms into the function for the time-
varying matrix M, we obtain:
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Because the roll angle is the signal to be estimated, the performance
of proposed observer is evaluated based on its error estimation:

=τ ξG , (28)

with =G [1 0 0 0].

3.2.2. Observer 2
The second proposed observer is based on the Luenberger observer 

[26]. In this case, we consider sensor measurements that are con-
taminated by sensor biases. Therefore, the output is filtered as:

= + = + +z Fz y Fz C x q˙ ,meas 0 0 (29)

where F is the filter gain.
Based on the systems described by Eqs. (1) and (29), a new state 

vector [x0, z]T is defined as:
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The new output vector is defined as the filtered output signal:
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Considering the newly defined state vector, the proposed observer
has the following form:
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The estimation error dynamic is expressed as:
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By substituting Eqs. (32) and (34) into Eq. (35) and performing the 
calculation, we get:
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A new state vector = ∼ξ X p x[ , , ]͠ T
0 is defined as follows:

= + +ξ ξ aA B H w˙ ,p p ym p (38)

where

relative importance of the effects of the two external inputs, aym and w, 
on the estimated error in the output ϕ.

The energy-to-peak performance will be verified by two different 
observers. The same variables are defined for both observers in order to 
use the equations provided in Section 3.2.3.

3.2.1. Observer 1
The first observer is utilised to prove that the energy-to-peak per-

formance is given by Zhang et al. [16]:
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Next, we substitute the uncertainty terms into the function for the
time-varying matrix M:
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Because the vehicle roll angle is the signal to be estimated, the
performance of the proposed observer is evaluated based on its esti-
mation error:

=τ ξG , (44)

where

=G [1 0 1 0 0 0 0 0] (45)

3.2.3. Energy-to-peak performance and stability
The systems defined in (19) and (34) are asymptotically stable and 

the output τ satisfies the predefined energy-to-peak performance level 
defined by Eq. (18). For a given γ1 and γ2, if there exist two matrices P 
and Q such that =P PT , P >0,  Q = QT , and Q > 0, then the following 
inequalities are satisfied [16]:
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The difficulty in solving the above inequalities is that the matrices
Ap and Bp depend on the time-varying variable N(t). If we consider that
the matrix P is defined as:
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By continuing calculation, we get:
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If there are real matrices =Ω ΩT , L and H with compatible di-
mensions and N(t) satisfies |N(t)| ≤ 1, then [27,28]:
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For inequality (52), we consider that:
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=

P A LC A LC P 0 B
P A A P B B

I

L
P E
P E
0

H 0 F 0

Ω
( ) ( ) Δ

* ( Δ )
* *

[ ]

A

T

T

A

A

A

A A

1 1

1

2 0 0 2 0 0

2

(55)

Then, inequality (52) is transformed into:

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

−

+ −
+ +

−
−

−

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

<

P A LC

A LC P

0 B P E 0

P A A P B B P E F
I 0 0

I 0
I

( )

( )

Δ

* ( Δ ) (ɛ )
* *
* * * ɛ
* * * * ɛ

0

T

x A

T
A A A

T

A

A

1

1

16 2

2 0 0 2 0 0 2

(56)

Eq. (56)can be rewritten as:

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

−

+ −
+

−
−

−

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

<

P A LC

A LC P

0 0 P E 0

P A A P B P E F
I 0 0

I 0
I

E
E
0
0
0

M 0 0 F 0 0

0
0
F
0
0

M E E 0 0 0

( )

( )
* (ɛ )
* *
* * * ɛ
* * * * ɛ

[ ] ( ) [( ) ( ) ] 0

T

A

T
A A A

T

A

A

B

B
B B

T
B
T

B
T

1

1

1

B B

2 0 0 2 0 2

(57)

Applying inequality (54) to eliminate the time-varying matrix MB, 
we get:
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⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

−

+ −
+

−
−

−
−

−

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

<

P A LC

A LC P

0 0 P E 0 E 0

P A A P B P E F E 0
I 0 0 0 F

I 0 0 0
I 0 0

I 0
I

( )

( )
* (ɛ )
* * (ɛ )
* * * ɛ
* * * * ɛ
* * * * * ɛ
* * * * * * ɛ

0

T

A B

T
A A A

T
B

B B
T

A

A x

B

B

1

1

1

2 0 0 2 0 2

2 2

(58)

To solve inequality (48), the matrix Q is defined as:

= ⎡
⎣⎢

⎤
⎦⎥
>Q

P 0
Q* 01

2 (59)

Therefore, inequality (48) becomes:

⎡

⎣

⎢
⎢
⎢
⎢

− + − +

+

+ +
−

⎤

⎦

⎥
⎥
⎥
⎥

<

P A LC A LC P P E M F P E M F H

Q A E M F

A E M F Q

I

I

( ) ( ) ( )

* ( )

( )
* *

0

T
A A A A

T

A A

A A
T

1 1 1 A 1 A

A

A

2 0

0 2

(60)

Following the same steps as those for inequality (51), inequality
(60) becomes:

⎡

⎣

⎢
⎢
⎢
⎢
⎢

− + −
+

−
−

−

⎤

⎦

⎥
⎥
⎥
⎥
⎥

<

P A LC A LC P 0 H P E 0
Q A A Q I Q E F

I 0 0
I 0

I

( ) ( )
* (ɛ )
* *
* * * ɛ
* * * * ɛ

0

T
A

T
A C A

T

C

C

1 1 1

2 0 0 2 2

(61)

Furthermore, by applying:

(62)=K P1 ,L

the inequalities (58) and (61) can be rewritten as:

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

−

+ −
+

−
−

−
−

−

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

<

P A KC

P A KC

0 0 P E 0 E 0

P A A P B P E F E 0
I 0 0 0 F

I 0 0 0
I 0 0

I 0
I

( )

( )
* (ɛ )
* * (ɛ )
* * * ɛ
* * * * ɛ
* * * * * ɛ
* * * * * * ɛ

0

T
A B

T
A A A

T
B

B B
T

A

A

B

B

1

1

1

2 0 0 2 0 2

(63)

⎡

⎣

⎢
⎢
⎢
⎢
⎢

− + −
+

−
−

−

⎤

⎦

⎥
⎥
⎥
⎥
⎥

<

P A KC P A KC 0 H P E 0
Q A A Q I Q E F

I 0 0
I 0

I

( ) ( )
* (ɛ )
* *
* * * ɛ
* * * * ɛ

0

T
A

T
A C A

T

C

C

1 1 1

2 0 0 2 2

(64)

Additionally, all the eigenvalues of the closed-loop systems defined 
in (19) and (34) should be constrained to a disk (k, c) with radius k and 
centre location (−c, 0) on the complex plane in order to achieve an 
acceptable transient response with relatively less control energy 
[17,29]. This condition is satisfied if there exists a positive-definite and 
symmetric matrix P1 such that the following inequality holds true:

⎡
⎣⎢
− − +

−
⎤
⎦⎥
<c k

c
P P A KC P

P
( )

*
01 1 1

1 (65)

To simplify the problem, the energy-to-peak performance index γ2 is
given and the minimum energy-to-peak performance index γ1 is ob-
tained by solving the following minimisation problem:

minγ ,1
2 (66)

Which is subject to Eqs. (47), (49), (50), (59), (63), (64), and (65).
P1, P2, Q2, K, ϵA, ϵB, ϵC, and γ1 can be obtained by solving the above 

linear matrix inequality problem. Then, the observer gain L can be 
calculated by applying Eq. (62).

4. Results and discussion

Table 1
Vehicle parameters and their uncertainties.

Symbol Value Unit

CR 53,071 Nms/rad
ms 1700 kg
hcr 0.25 m
Ixx 1700 kgm2

KR 55,314 Nms/rad
ΔCR 20,000 Nms/rad
Δms 800 kg
Δhcr 0.1 m
ΔKR 20,000 Nm/rad

To prove the effectiveness of the proposed vehicle roll angle ob-
server, both simulations and experimental tests are performed. Table 1 
lists the nominal parameters for the vehicle model described in 
Section 2 with their maximum uncertainties taken into account.

By solving the minimisation problem in (66) for the observers de-
fined by Eqs. (19) and (34) for a value of the energy-to-peak perfor-
mance index γ2 equal to 1 and a constrained disk (100,100), the ob-
tained observer gains are listed in Table 2. For observer 2, two filter 
gains are taken into account: F= 5 and F= 10. We observed that the 
values of the energy-to-peak performance index obtained for both ob-
servers were very similar.

In the following sections, the simulation and experimental results 
obtained for both observers are described for different manoeuvres.

4.1. Simulation results

The simulation tests were conducted using a vehicle simulation 
model from TruckSim, which has been validated using real test data

Table 2
Energy-to-peak performance indexes and observer gains for observer 1 and observer 2.

Contraint disk Filter gain Observer gain
(k,c) F γ1 L

Observer 1 (100,100) – 0.05 [199.9971 1.1834
−73.6383 37.4894]
[199.7189 24.0120
−73.6383 18.7519

(100,100) 10 0.0501 210.7189 37.5028
0.0000 18.5493
0.0000 0.4928
0.0000 0.8994]

Observer 2
[199.0945 −3721.3
−73.6381 3687.4

(100,100) 5 0.0504 205.0946 −112.4065
0.0000 92.8065
0.0000 4.2153
0.0000 12.2064]

6



• Vehicle roll angle estimation obtained directly from the NN ϕNN

without filtering.

• Vehicle roll angle estimation considering a ‘pseudo-roll angle’ ob-
tained from the NN module ϕNN, where the roll rate signal ϕ̇ is
provided by the IMU, in combination with energy-to-peak filtering.
In this case:

= ϕ ϕy [ ˙ ]meas NN
T

(67)

= ⎡
⎣⎢

⎤
⎦⎥

C 1 0
0 10

(68)

• Vehicle roll angle estimation using energy-to-peak filtering and
considering that only the roll rate signal ϕ̇ is available. In this case:

= ϕy [ ˙ ]meas
T

(69)

=C 0 1[ ]0 (70)

In Figs. 4 and 5, the results for a slalom manoeuvre with a vehicle 
speed defined by a ramp function profile on pavement with a friction 
coefficient of 0.85 and sine sweep manoeuvre at 40 km/h on pavement 
with a friction coefficient of 0.5 are presented, respectively. In both 
figures, one can see that the roll angle obtained directly from the NN 
module is strongly affected by signal noise (red colour). The use of 
energy-to-peak observers in combination with the NN module reduces 
this effect. Additionally, the estimation of vehicle roll angle is not ac-
curate if it only considers the measurement from the yaw rate sensor 
(light blue colour). In order to quantify the accuracy of the proposed 
algorithms, norm and maximum errors were calculated. The equation 
used to calculate the norm error as a function of time is [30]:

=E
σ
ɛ ,t
t

t (71)

where

∫
∫

= −

= −

ϕ ϕ dt

σ ϕ μ dt

ɛ ( )

( )

t
T

est

t
T

2
0 exp

2

2
0 exp exp

2
(72)

ϕexp represents the real vehicle roll angle, ϕest represents the vehicle
roll angle obtained from the observer, and μexp is the mean value of the
real vehicle roll angle obtained during the period T.

Tables 3 and 4 list the norm and maximum errors values for a slalom

manoeuvre with vehicle speed defined by a ramp function profile and
sine sweep manoeuvre at 40 km/h, respectively, on road surfaces with
friction coefficients of 0.5 (wet) and 0.85 (dry). It should be noted that if
only the signal of the yaw rate sensor is considered (case 3), the esti-
mation of vehicle roll angle is not very accurate. The use of the NN

Fig. 4. Simulation results for a slalom manoeuvre with a vehicle speed defined by a ramp
function profile on pavement with a friction coefficient of 0.85. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 5. Simulation results for a sine sweep manoeuvre at 40 km/h on pavement with a
friction coefficient of 0.5. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 3
Norm and maximum errors for slalom manoeuvre with a vehicle speed defined by a ramp
function profile.

CASE Friction coefficient

0.5 0.85

Norm error Max. error Norm error Max. error
Et Emax (deg) Et Emax (deg)

1: NN 0.305 2.868° 0.254 2.372°
2: NN + observer 1 0.294 2.547° 0.241 1.727°
3: observer 1 1.048 5.609° 1.064 3.583°
4: NN + observer 2 0.283 2.511° 0.228 1.636°
with F = 5
5: NN + observer 2 0.306 2.456° 0.256 1.856°
with F = 10

obtained from a real vehicle [7]. The use of a vehicle model allowed us 
to perform different vehicle manoeuvres under different road condi-
tions without putting human lives at stake. Additionally, simulation 
models guarantee test reproducibility. In order to simulate the in-
formation provided by an IMU sensor, a sensor was defined at the COG 
of the vehicle simulation model.

To analyse the effect that sensor measurement noises have on the es-
timation of vehicle roll angle, Gaussian noises with zero mean and var-
iances of 0.01 g’s, 0.01 g’s, 0.01 deg/s, and 0.01 0.01 deg/s were added to 
the values of ax (longitudinal acceleration), ay (lateral acceleration), r (yaw 
rate), and ϕ̇ (roll rate), respectively, obtained from TruckSim.

The proposed vehicle roll angle observers were evaluated using a 
slalom manoeuvre with a vehicle speed defined by a ramp function 
profile (from 10 km/h to 120 km/h in 120 s) and sine sweep manoeuvre 
at 40 km/h. Both tests were performed on road surfaces with friction 
coefficients of 0.5 (wet) and 0.85 (dry).

To demonstrate the necessity of the integration of an NN with en-
ergy-to-peak filtering for vehicle roll angle estimation, different cases 
are analysed:
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module to estimate vehicle roll angle is a better solution. However, as 
indicated previously, the NN module is strongly affected by sensor noise. 
The use of an energy-to-peak-based observer reduces the effect of noise 
(cases 2, 4, and 5). The observers with the best performance are those 
that combine the NN with observers 1 and 2, with a gain filter of 5.

4.2. Experimental results

Experimental tests were performed using a Mercedes Benz Sprinter 
van. This real van was equipped with a VBOX 3i dual-antenna data 
logger, two GPS dual-antennas and an IMU sensor (Fig. 6). The two GPS 
antennas were mounted on vehicle to measure the real vehicle roll 
angle. Therefore, this value is used as the ground truth. The ground 
truth is used to prove the effectiveness of the proposed algorithm.

The real test was performed on dry pavement at a speed of 40 km/h 
for a combination of severe J-turn and slalom manoeuvres. Fig. 7 pre-
sents a comparison of the values of vehicle roll angle obtained directly 
from the GPS dual-antenna (black color), NN module (green color), 
combination of NN + observer 1 (red color), and observer 1 con-
sidering only the yaw rate signal (purple color). Fig. 8 presents a 
comparison of the results obtained directly from the GPS dual-antenna 
(black color), NN module (green color), combination of NN + observer 
2 with a filter gain value of 5 (red color), and combination of NN
+observer 2 with a filter gain value of 10 (blue color). In Table 5, the 
norm and maximum errors are listed for the different proposed ob-
servers. The results indicate that it is necessary to estimate the ‘pseudo-
roll angle’ from the NN module in order to improve vehicle roll angle 
estimation. From experimental results, the observer system achieves the 
best performance when combining the NN with observer 1. However, 
the reduction in measurement noise is less significant in observer 1 
because various disturbances, such as road irregularities, can strongly 
affect sensor signals.

5. Conclusion

In this paper, we present a novel observer system based on a com-
bination of an NN and energy-to-peak-based observer. The NN esti-
mates a ‘pseudo-roll angle’ from sensor signals that can be obtained in
current vehicles. The NN acts a ‘pseudo-sensor’ whose estimates are

CASE Friction coefficient

0.5 0.85

Norm error Max. error Norm error Max. error
Et Emax (deg) Et Emax (deg)

1: NN 0.179 0.728° 0.188 0.728°
2: NN + observer 1 0.109 0.563° 0.119 0.563°
3: observer 1 0.796 1.362° 0.812 1.370°
4: NN + observer 2 0.109 0.580° 0.113 0.580°
with F = 5
5: NN + observer 2 0.115 0.601° 0.125 0.601°
with F = 10

Fig. 6. Real vehicle used for experiments.

Fig. 7. Comparison of experimental results for NN+observer 1: results from GPS dual-
antenna (black color), results from NN module (green color), results from the combina-
tion of NN+observer 1 (red color), and results from observer 1 considering only the yaw
rate signal (purple color). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 8. Comparison of experimental results for NN + observer 2: results from GPS dual-
antenna (black color), results from NN module (green color), results from the combina-
tion of NN + observer 2 with a filter gain value of 5 (red color), and results from the
combination of NN + observer 2 with a filter gain value of 10 (blue color). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 5
Norm and maximum errors for the real test.

CASE Norm error Maximum error

Et Emax (rad, deg)

1: NN 1.052 0.096°
2: NN + observer 1 1.051 0.095°
3: observer 1 1.531 0.149°
4: NN + observer 2 with F = 5 1.102 0.101°
5: NN + observer 2 with F = 10 1.128 0.099°

Table 4
Norm and maximum errors for a sine sweep manoeuvre at 40 km/h.
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introduced as measurements in the energy-to-peak-based observer.
Both simulation and experimental results demonstrate that it is 

necessary to utilise the ‘pseudo-roll angle’ estimated by the NN module 
in order to obtain good performance at estimating vehicle roll angle.

The results prove that it is possible to design an observer that 
guarantees convergence and system stability using only measurements 
provided by the sensors installed in current vehicles, without requiring 
GPS information or any knowledge of system or sensor noise.
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