2,089 research outputs found

    Let the Tree Bloom: Scalable Opportunistic Routing with ORPL

    Get PDF
    Routing in battery-operated wireless networks is challenging, posing a tradeoff between energy and latency. Previous work has shown that opportunistic routing can achieve low-latency data collection in duty-cycled networks. However, applications are now considered where nodes are not only periodic data sources, but rather addressable end points generating traffic with arbitrary patterns. We present ORPL, an opportunistic routing protocol that supports any-to-any, on-demand traffic. ORPL builds upon RPL, the standard protocol for low-power IPv6 networks. By combining RPL's tree-like topology with opportunistic routing, ORPL forwards data to any destination based on the mere knowledge of the nodes' sub-tree. We use bitmaps and Bloom filters to represent and propagate this information in a space-efficient way, making ORPL scale to large networks of addressable nodes. Our results in a 135-node testbed show that ORPL outperforms a number of state-of-the-art solutions including RPL and CTP, conciliating a sub-second latency and a sub-percent duty cycle. ORPL also increases robustness and scalability, addressing the whole network reliably through a 64-byte Bloom filter, where RPL needs kilobytes of routing tables for the same task

    Mobility in wireless sensor networks : advantages, limitations and effects

    Get PDF
    The primary aim of this thesis is to study the benefits and limitations of using a mobile base station for data gathering in wireless sensor networks. The case of a single mobile base station and mobile relays are considered. A cluster-based algorithm to determine the trajectory of a mobile base station for data gathering within a specified delay time is presented. The proposed algorithm aims for an equal number of sensors in each cluster in order to achieve load balance among the cluster heads. It is shown that there is a tradeoff between data-gathering delay and balancing energy consumption among sensor nodes. An analytical solution to the problem is provided in terms of the speed of the mobile base station. Simulation is performed to evaluate the performance of the proposed algorithm against the static case and to evaluate the distribution of energy consumption among the cluster heads. It is demonstrated that the use of clustering with a mobile base station can improve the network lifetime and that the proposed algorithm balances energy consumption among cluster heads. The effect of the base station velocity on the number of packet losses is studied and highlights the limitation of using a mobile base station for a large-scale network. We consider a scenario where a number of mobile relays roam through the sensing field and have limited energy resources that cannot reach each other directly. A routing scheme based on the multipath protocol is proposed, and explores how the number of paths and spread of neighbour nodes used by the mobile relays to communicate affects the network overhead. We introduce the idea of allowing the source mobile relay to cache multiple routes to the destination through its neighbour nodes in order to provide redundant paths to destination. An analytical model of network overhead is developed and verified by simulation. It is shown that the desirable number of routes is dependent on the velocity of the mobile relays. In most cases the network overhead is minimized when the source mobile relay caches six paths via appropriately distributed neighbours at the destination. A new technique for estimating routing-path hop count is also proposed. An analytical model is provided to estimate the hop count between source-destination pairs in a wireless network with an arbitrary node degree when the network nodes are uniformly distributed in the sensing field. The proposed model is a significant improvement over existing models, which do not correctly address the low-node density situation

    Node localization in underwater sensor networks (UWSN)

    Get PDF
    This dissertation focuses on node localization in underwater wireless sensor networks (UWSNs) where anchor nodes have knowledge of their own locations and communicate with sensor nodes in acoustic or magnetic induction (MI) means. The sensor nodes utilize the communication signals and the locations of anchor nodes to locate themselves and propagate their locations through the network. For UWSN using MI communications, this dissertation proposes two localization methods: rotation matrix (RM)-based method and the distance-based method. Both methods require only two anchor nodes with arbitrarily oriented tri-directional coils to locate one sensor node in the 3-D space, thus having advantages in a sparse network. Simulation studies show that the RM-based method achieves high localization accuracy, while the distance-based method exhibits less computational complexity. For UWSN using acoustic communications, this dissertation proposes a novel multi-hop node localization method in the 2-D and 3-D spaces, respectively. The proposed method estimates Euclidean distances to anchor nodes via multi-hop propagations with the help of angle of arrival (AoA) measurements. Simulation results show that the proposed method achieves better localization accuracy than existing multi-hop methods, with high localization coverage. This dissertation also investigates the hardware implementation of acoustic transmitter and receiver, and conducted field experiments with the hardware to estimate ToA using single pseudo-noise (PN) and dual PN(DPN) sequences. Both simulation and field test results show that the DPN sequences outperform the single PNs in severely dispersive channels and when the carrier frequency offset (CFO) is high --Abstract, page iv

    Optimal and quasi-optimal energy-efficient storage sharing for opportunistic sensor networks

    Get PDF
    This paper investigates optimum distributed storage techniques for data preservation, and eventual dissemination, in opportunistic heterogeneous wireless sensor networks where data collection is intermittent and exhibits spatio-temporal randomness. The proposed techniques involve optimally sharing the sensor nodes' storage and properly handling the storage traffic such that the buffering capacity of the network approaches its total storage capacity with minimum energy. The paper develops an integer linear programming (ILP) model, analyses the emergence of storage traffic in the network, provides performance bounds, assesses performance sensitivities and develops quasi-optimal decentralized heuristics that can reasonably handle the problem in a practical implementation. These include the Closest Availability (CA) and Storage Gradient (SG) heuristics whose performance is shown to be within only 10% and 6% of the dynamic optimum allocation, respectively

    A cross layer multi hop network architecture for wireless Ad Hoc networks

    Get PDF
    In this paper, a novel decentralized cross-layer multi-hop cooperative network architecture is presented. Our architecture involves the design of a simple yet efficient cooperative flooding scheme,two decentralized opportunistic cooperative forwarding mechanisms as well as the design of Routing Enabled Cooperative Medium Access Control (RECOMAC) protocol that spans and incorporates the physical, medium access control (MAC) and routing layers for improving the performance of multihop communication. The proposed architecture exploits randomized coding at the physical layer to realize cooperative diversity. Randomized coding alleviates relay selection and actuation mechanisms,and therefore reduces the coordination among the relays. The coded packets are forwarded via opportunistically formed cooperative sets within a region, without communication among the relays and without establishing a prior route. In our architecture, routing layer functionality is submerged into the MAC layer to provide seamless cooperative communication while the messaging overhead to set up routes, select and actuate relays is minimized. RECOMAC is shown to provide dramatic performance improvements, such as eight times higher throughput and ten times lower end-to-end delay as well as reduced overhead, as compared to networks based on well-known IEEE 802.11 and Ad hoc On Demand Distance Vector (AODV) protocols

    Localization by decreasing the impact of obstacles in wireless sensor networks

    Get PDF
    In sensor networks ,Localization techniques makes use of small number of reference nodes, whose locations are known in prior, and other nodes estimate their coordinate position from the messages they receive from the anchor nodes. Localization protocol can be divided into two categories: (i) range-based and (ii) range-free protocols. Range-based protocols depend on knowing the distance between the nodes. Where as, range-free protocols consider the contents of message sent from the anchor node to all other sensor node. Previous range-free based localization methods requires at least three anchor nodes ,whose positions already known ,in order to find the position of unknown sensor node and these methods might not guarantee for complete solution and an infeasible case could occur. The convex position estimation method takes the advantage of solving the above problem. Here different approach to solve the localization problem is described. In which it considers a single moving anchor node and each node will have a set of mobile anchor node co-ordinates. Later this algorithm checks for the connectivity between the nodes to formulate the radical constraints and finds the unknown sensor node location. The nodes position obtained using convex position estimation method will have less location error. However, Network with obstacles is most common. Localizing these networks, some nodes may have higher location error. The new method is described to decrease the impact of obstacle, in which nodes near or within the obstacle that fail to get minimum of three anchor node position values get the anchor position set from its neighbor nodes, applies the convex position estimation method and gets localized with better position accuracy. The Convex position estimation method is range-free that solves localization problem when infeasible case occurs and results in better location accuracy
    corecore