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ABSTRACT

This dissertation focuses on node localization in underwater wireless sensor

networks (UWSNs) where anchor nodes have knowledge of their own locations and

communicate with sensor nodes in acoustic or magnetic induction (MI) means. The

sensor nodes utilize the communication signals and the locations of anchor nodes to

locate themselves and propagate their locations through the network.

For UWSN using MI communications, this dissertation proposes two localiza-

tion methods: rotation matrix (RM)-based method and the distance-based method.

Both methods require only two anchor nodes with arbitrarily oriented tri-directional

coils to locate one sensor node in the 3-D space, thus having advantages in a sparse

network. Simulation studies show that the RM-based method achieves high localiza-

tion accuracy, while the distance-based method exhibits less computational complex-

ity.

For UWSN using acoustic communications, this dissertation proposes a novel

multi-hop node localization method in the 2-D and 3-D spaces, respectively. The

proposed method estimates Euclidean distances to anchor nodes via multi-hop prop-

agations with the help of angle of arrival (AoA) measurements. Simulation results

show that the proposed method achieves better localization accuracy than existing

multi-hop methods, with high localization coverage.

This dissertation also investigates the hardware implementation of acoustic

transmitter and receiver, and conducted field experiments with the hardware to es-

timate ToA using single pseudo-noise (PN) and dual PN(DPN) sequences. Both

simulation and field test results show that the DPN sequences outperform the single

PNs in severely dispersive channels and when the carrier frequency offset (CFO) is

high.
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1. INTRODUCTION

1.1. BACKGROUND

Underwater wireless sensor networks (UWSNs) have found important applica-

tions in ocean exploration, critical structure monitoring, coastal surveillance, motion

tracking, and disaster mitigation [1]. In many applications of UWSNs, the position

knowledge of wireless sensor nodes is desirable; otherwise, the sensing information

collected is useless. The knowledge of geographic locations of nodes in a UWSN is

typically required for mobility tracking, routing, and coordination purposes. There-

fore, localization is a must-do task in many UWSN applications [2]. In UWSNs,

anchor nodes have knowledge of their own locations and communicate with sensor

nodes. The sensor nodes utilize the communication signals and the locations of an-

chor nodes to locate themselves and propagate their locations through the network, as

shown in Fig. 1.1. The ratio of anchor nodes and the node degree of UWSN affect the

localization coverage and accuracy. The recursive localization method is widely used

in a network with relative high density. Conversely, multi-hop localization methods

are feasible in a sparse network.

However, communication underwater is more challenging. Such environments

impose various problems on traditional localization methods based on electromag-

netic (EM) signals. The well-established EM-based global position system (GPS) is

infeasible underwater since the EM signal attenuates dramatically with distance in

water, which significantly limits the achievable communication range. Although peo-

ple can prolong communication range by increasing antenna size or signal power, it

costs more and is infeasible underwater. The widely used underwater localization is

based on acoustic communications and reaches longer communication range. Fig. 1.2
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Ocean surface

Buoy Anchor node Sensor node Located sensor node

Ocean bottom

Figure 1.1. The framework of UWSN.

depicts the hardware of a transceiver node in UWSN based on acoustic communica-

tions, where Fig.1.2(a) shows a transducer that transmits and receives acoustic signals

underwater, and Fig. 1.2(b) shows our designed circuit board that processes received

data, with the dimension of 6 cm × 15 cm. This circuit board is mainly composed of

amplifiers, filters, micro-controller unit (MCU), sensors, and power amplifier.

(a) Transducer (b) Circuit board

Figure 1.2. Hardware on a transceiver node in acoustic communications.
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Although acoustic communication underwater is common, it suffers from multi-

path fading caused by reflections from river bottom, water surface or obstacles, and

Doppler effect caused by water flow or other motions nearby. Magnetic induction

(MI) communication has become attractive in underwater or underground environ-

ments, where the light of sight is lacking and traditional communications encounter

challenges. MI communications utilize magnetic field coupling produced by current

loops in near-field to communicate. MI signal is immune to multi-path fading and

the Doppler effect, and has high penetration. Besides, MI communications are imple-

mented with low-cost and low power consumption. Fig. 1.3 depicts the hardware on

a transceiver node in UWSN based on MI communications, where Fig.1.3(a) shows a

tri-directional coil that couples magnetic field between nodes, and Fig. 1.3(b) shows

our designed circuit board that processes received data, with the diameter of 6 cm.

The input device on this circuit board is a watch-dog receiver chip AS3933 that has

three inputs, each of which is connected to each coil of a tri-directional coil. Other

main components on this board are MCU, sensors, and the transmitter chip ATA5276.

(a) Tri-directional coil (b) Circuit board

Figure 1.3. Hardware on a transceiver node in MI communications.
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1.2. PROBLEM STATEMENT

Localization usually has three phases: distance estimation, position estima-

tion and refinement. Distance estimation is the foundation for a localization process,

which is estimated via communications between nodes. The traditional localization

schemes require at least three (in 2-D) or four (in 3-D) anchor nodes available to

locate a sensor node by the trilateration algorithm. However, in a sparse large-scale

wireless network, due to sensors moving and diffusing after deployment, there are

some isolated nodes that cannot reach enough anchor nodes and thus are incapable

of self-localization [3]. Some schemes have been developed to do localization in this

case. AUV-aided algorithms use traveling AUVs to assist isolated nodes localization

[4]. In a relatively dense network, the recursive localization method reaches high

localization coverage [5]. However, when the network is sparse, the localization cov-

erage decreases significantly because the recursive localization method requires at

least four nodes (in 3-D) with awareness of positions around a to-locate sensor node.

To extend the localization coverage in a sparse network, a category of localization

schemes that are based on multi-hop distance propagation was proposed: DV-Hop,

DV-Distance, and Euclidean method [6]. DV-Hop and DV-Distance methods can only

reach coarse localization and are sensitive to anisotropic topologies. The Euclidean

method achieves higher localization accuracy but much lower localization coverage.

Multi-hop methods forward distance from anchor nodes to sensor nodes hop by hop.

Once a sensor node gets distance estimations from at least four anchor nodes, the

trilateration algorithm is employed to do localization. In recent years, some new

multi-hop algorithms have been proposed to improve localization accuracy. Paper

[7] uses the law of cosine to estimate distances from anchor nodes to sensor nodes.

We call this the Cosine-law method. Paper [8] employs the greedy algorithm to find
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the shortest path as the distance estimation, which is called as the Distance-based

method. Our goal is to find a localization method that improves localization accuracy

and keeps high localization coverage in a large-scale sparse network.

On the other hand, due to the promising features of MI communication over

traditional communication technologies, MI-based localization has attracted a lot of

interests. The major constraint on MI-based localization is the short range because

the coupling of source and sensor coils used for MI communication must take place in

the near-field, where λ/2π >> R (λ is the wavelength and R is the transmission dis-

tance). Paper [9] proposes a method that completes localization only in 2-D coupled

sensor networks. Paper [10] proposed a method that completes localization in the

3-D space, using beacons of low-frequency magnetic field, which requires the source

coils to face the fixed axes exactly, and the sensor coils have to face the source coils

exactly. In practice, it is difficult to fix the orientations of coils and the orientations

might change with water flow. This dissertation proposes two MI-based localization

method that completes localization of nodes with arbitrary position and orientation

after deployment in both 2-D and 3-D spaces.

1.3. SUMMARY OF CONTRIBUTIONS

This dissertation consists of a couple of journal publications and conference

papers listed in the publication list. My contributions that are published or under

review are:

1. For UWSN using MI communications, this dissertation proposes two lo-

calization methods: rotation matrix (RM)-based method and the distance-based

method. Both methods require only two anchor nodes with arbitrarily oriented tri-

directional coils to locate one sensor node in the 3-D space, thus having advantages in



6

a sparse network. Simulation studies show that the RM-based method achieves high

localization accuracy, while the distance-based method exhibits less computational

complexity.

2. For UWSN using acoustic communications, this dissertation proposes a

novel multi-hop node localization method in the 2-D and 3-D spaces, respectively.

The proposed method estimates Euclidean distances to anchor nodes via multi-hop

propagations with the help of angle of arrival (AoA) measurements. A weighted least

square method that adjusts weights based on the number of hops is used to improve

localization accuracy further. Simulation results show that the proposed method

achieves better localization accuracy than existing multi-hop methods. Additionally,

the proposed method still keeps high localization coverage.

3. This dissertation also investigates the hardware implementation of acous-

tic transmitter and receiver, and conducted field experiments with the hardware to

estimate ToA using single pseudo-noise (PN) and dual PN(DPN) sequences. Both

simulation and field test results show that the DPN sequences outperform the single

PNs in severely dispersive channels and when the carrier frequency offset (CFO) is

high in low-cost hardware systems where the atomic clock is unavailable.
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ABSTRACT

This paper proposes two localization methods for wireless sensor nodes that

utilize an arbitrarily oriented tri-directional coils in magnetic induction (MI) transceivers.

Taking advantage of magnetic field measurements of a tri-directional coil antenna in

the near-field, the two localization algorithms use only two anchor nodes to locate a

sensor node in the 3-D space. Assuming each anchor node transmits the communi-

cation signals by three coils sequentially, which are received by the three coils at a

sensor node simultaneously, this paper derives closed-form formulas for estimating the

transmission distance and the polar angles to yield 8 possible location points based on

the signals of each anchor node. Then a rotation matrix (RM)-based method derives

the orientation rotation matrix between the transmitter and receiver to find out two

possible location vectors with the opposite directions in each anchor node. Then,

we use maximum likelihood to estimate the location with two anchor nodes assisted.

Another method called the Distance-based method, taking the locations of the two
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anchor nodes and the two sets of 8 possible location estimates of the sensor node, es-

timates the location by minimizing the distance. The RM-based method can achieve

high localization accuracy while the distance-based method has less computational

complexity. However, the Distance-based method may encounter location ambiguity

when the orientations of the two anchor nodes are the same. Simulations are per-

formed to compare these two algorithms and the existing localization algorithm in this

scenario. The results show that the proposed two localization algorithms and the de-

rived closed-form formula of distance achieve good accuracy under large measurement

errors.

1. INTRODUCTION

Magnetic induction (MI) communication has been developed for wireless com-

munication in challenging environments, such as underwater and underground, where

traditional Radio Frequency (RF) communication technologies encounter formidable

difficulties [1, 2]. The advantages of MI communications are low cost, negligible

propagation delay, no multipath interference, no requirement of line of sight. The

limitations of MI communications include small bandwidth, severe range attenua-

tion, and strong directionality of antenna coils. With short range and low data rate,

MI communication has been applied to underwater or underground wireless sensor

networks (UWSN), which in turn find important applications [3] in underground

structure monitoring, earthquake and landslide prediction, bridge scour monitoring,

river bank monitoring, landscape management, and border patrol and security, etc.

An important task of UWSNs is the localization of sensor nodes in the net-

work because it is often desirable to collect sensing data associated with position

information. The knowledge of geographic positions of nodes is also required for

mobility tracking, routing, and coordination purposes. Indoor robot navigation is
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reported in [4, 5, 6, 7, 8]; underground target localization and tracking are reported

in [7, 9, 10, 11, 12]; and tracking medicine application in human bodies is reported

in [13, 14].

Typically, a node localizes itself by communicating with other nodes around

it. In a wireless sensor network, a node whose absolute location is known to all

nodes is termed as an anchor node whose location is used as a reference in the

global coordinate system (GCS). The other ordinary nodes are called sensor nodes

which have to estimate their own locations. Taking advantage of the knowledge

of anchor nodes and communications between nodes, the locations of sensor nodes

are usually estimated via tri-lateralization or triangularization if the sensor node

can communicate with three or more anchor nodes [15]. In a dense network, if the

percentage of anchor nodes is small, then the recursive position estimation method

[16, 17] is commonly used to cover the whole network of sensor nodes.

On the other hand, in sparse wireless sensor networks where the node degree is

very small due to limitations in communication range, as often the case in MI sensor

networks, the localization of sensor nodes faces many technical challenges because the

number of neighboring nodes is often less than three and the percentage of anchor

nodes can be very small. The directionality of MI coils also causes ambiguity in

range estimation if the orientations of the transmitter and receiver coils are unknown

because the received signal strength indicator is affected by the range as well as the

coil orientations [7, 18, 19, 20, 2]. Besides, a magnetic field is easy to be interfered by

metals nearby and the earth’s geomagnetic field, causing localization errors [21, 22,

23, 24].

Remedies to the challenges of MI sensor localization include: 1) in special

environments such as pipeline systems and indoor environment, coil orientations are

constrained to a fixed known direction [25, 26, 27] and range estimation is obtained

with RSSI measurements; 2) localization is constrained to a 2-D plane [28] by using
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input impedance measurements at several reference nodes; 3) orientation sensors are

used in addition to communication signals to aid the range estimation, as reported

in [29]; 4) large coils are arranged in a 2-D plane to form a magnetic grid, then

the received signals on these large coils are estimated to find the coarse locations of

the transmitter [7]. All these methods suffer from stringent constraints, inflexible

implementation or high localization errors.

In this paper, we propose two novel methods for MI sensor localization in 3-D

space using only two anchor nodes and their communication signals with the sensor

node. All nodes can have arbitrary orientations and positions in the 3-D space, and

they all employ tri-directional coil antennas for MI communication. By taking advan-

tage of the directionality of the three orthogonal transmitting (source) coils at each

of the two anchor nodes, the sensor node, also equipped with a tri-directional coil

that is receiving (sensor) coils, can estimate its transmission distance to the anchor

nodes without ambiguity, and can estimate two possible polar angles for each trans-

mitting coil. This results in two sets of 8 possible location estimates for the sensor

node. Rotation matrix (RM)-based method uses 8 location estimates to compute the

rotation matrix between the transmitting and receiving coils and identify one pair

of diagonal points with the opposite directions in each anchor node, and then uti-

lizes maximum likelihood and gradient ascent algorithm to estimate the sensor node

location. RM-based method yields high localization accuracy under measurement

errors. The distance-based method uses the minimal distance rule to select the best

pair of location estimates from the two sets of 8 points, and determines its location

by Minimum mean-square error (MMSE) estimation. This method has less computa-

tional complexity and is faster but may encounter estimation ambiguity when the two

anchor nodes have the same orientation. This localization ambiguity can be solved

by the RM-based method. Through computer simulations, we verify that the two

methods work well even if large errors exist in measurements.
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2. BACKGROUND

Assume that the anchor nodes and sensor nodes are equipped with tri-directional

coil antennas, as shown in Fig. 1, where the three coils are orthogonal to each other

and their centers are co-located. Let R be the distance between node S and the center

of the coils. The local coordinate system (LCS) of the anchor node is defined with

the x, y, and z axes aligned with the axes of the three coils, respectively. The three

coils are excited sequentially by a current source i(t) = I exp{jωt} with j =
√
−1,

each of which produces an magnetic flux density at the sensor node location S.

Coil 3

Coil 2

Coil 1

x

y

z

θ1

θ3

θ2

R

S

B1

B3

B2

Figure 1. Magnetic field generated by a source tri-directional coil.

Let Bk be the magnetic flux density at S generated by the kth transmitting

coil, and θk be the polar angle of S against the x, y, z axis, respectively, where k = 1, 2,

and 3. If the distance R is more than four times of the radius r of the coil, the magnetic

field produced by the current loop is equivalent to that from a magnetic dipole. In

other words, the source and sensor coils can be treated as single points [30]. Hence,

the magnetic flux density Bk at node S only depends on the distance R and the polar

angles θk as

Bk =


Bkr = (Mµ/2πR3) cos(θk)

Bkt = (Mµ/4πR3) sin(θk)

(1)
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where the subscripts r and t denote the radial and tangential components of the

magnetic flux density Bk, respectively, M is the magnitude of magnetic moment M

of the current loop and µ is the magnetic permeability of the medium. The equation

(1) holds for the magnetic field of a coil in the near-field. For more general expression

of a magnetic field induced along a closed curve, please refer to the Biot-Savart law

[21].

The magnetic moment M is calculated by

M = NIA ~F (2)

where N and A are the number of coil turns and the area of the current coil, respec-

tively. Although the excitation current i(t) depends on the carrier frequency ω, the

amplitude of the magnetic field is independent of ω. The unit vector ~F denotes the

axis of the coil which is perpendicular to the coil plane and follows the right-hand

rule. We also note that the spatial phase variation of exp(jR/λ) can be ignored as

long as the coil is in the near-field or quasi-static field that satisfies λ/2π >> R,

where λ is the wavelength. Therefore, the magnitude of the magnetic flux density Bk

is expressed as

Bk =
√
B2
kr +B2

kt
(3)

At the sensor receiver, the magnitude Bk of the magnetic field of the kth

transmitting coil is measured by three receiving coils as

Bk =
√
B2
k1 +B2

k2 +B2
k3

(4)
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where the subscripts 1, 2 and 3 represent three orthogonal coils at the receiver side

[7]. By using (4), the magnitude of magnetic flux density is measured invariant to

the orientation of the sensor coils, which has the advantage that the sensor nodes can

have an arbitrary orientation.

3. THE PROPOSED LOCALIZATION SCHEMES

In this section, we propose two MI-based localization algorithms in the near-

field. We try to locate sensor nodes, based on the measured magnetic flux density, the

known spatial geometry dimensions of the coils, and the prior knowledge of locations

and orientations of two anchor nodes.

3.1. Transmission distance and polar angles. First, we estimate the

transmission distance between source coils and sensor coils. According to (3), the

magnitude Bk satisfies

B2
k = B2

kr +B2
kt

(5)

Substituting (1) into (5) yields

B2
k =

C2
k

R6
cos2 θk +

1

4

C2
k

R6
sin2 θk

=
3

4

C2
k

R6
cos2 θk +

1

4

C2
k

R6

(6)

where Ck = µMk

2π
. Therefore, once Bk is measured, the corresponding polar angle θk

is calculated by

cos2 θk =
4R6B2

k − C2
k

3C2
k

(7)

The three polar angles of the vector S in the local Cartesian coordinate system satisfy

cos2 θ1 + cos2 θ2 + cos2 θ3 = 1 (8)
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Substituting (7) into (8), we have

3∑
k=1

4R6B2
k − C2

k

3C2
k

= 1. (9)

Consequently, the distance R is calculated by

R =

 3

2
∑3

k=1

B2
k

C2
k

 1
6

(10)

Substituting (10) to (7), the polar angle θk is obtained.

When all three transmitting coils have the same magnitude of the magnetic

moment, or Mk = M , then Ck = C. In this case, the computation of the distance R

in (10) is simplified as

R =

(
3C2

2
∑3

k=1B
2
k

) 1
6

(11)

Let Brms =
√∑3

k=1B
2
k, then R is

R =

(
3

2

) 1
6
(

C

Brms

) 1
3

(12)

The polar angles θk can be computed from (7) and (12) and each of them has two

possible solutions

θk = arccos

√
6B2

k −B2
rms

3B2
rms

or θk = π − arccos

√
6B2

k −B2
rms

3B2
rms

(13)

for θk ∈ [0, π]. However, with noise and measurement errors considered, the right

side of equation (7) might be less than 0 or larger than 1, which causes (13) has no

correct solution. In this case, we optimize measured Bk to make the value of (7) be
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within the limits of 0 and 1. Substituting (12) to (7), each Bk must satisfies

1

6
B2
rms ≤ B2

k ≤
2

3
B2
rms

(14)

Once Bk is beyond the range of (14) caused by noise or measurement errors, we

optimize Bk by

minimize ||B̂
2
−B2||2

subject to
1

6
B2
rms ≤ B̂2

k ≤
2

3
B2
rms

(15)

where B̂
2

= [B̂1
2
, B̂2

2
, B̂3

2
]T and B2 = [B2

1 , B
2
2 , B

2
3 ]T . We define a matrix E of

dimension 6× 3 as,

E =

[
1

6
K− I; I− 2

3
K

]
(16)

where K is an all-ones matrix of dimension 3 × 3, I denotes the identity matrix of

dimension 3× 3. The constraint in (15) can be reformulated as

EB̂
2
≤ 0 (17)

By utilizing the logarithmic barrier method in [31], the optimal solution of (15) can

be obtained.

The direction of the position vector, which is termed as bearing versor ν, is

calculated by

ν = [cos θ1, cos θ2, cos θ3]T (18)

Since each cos θk has two possible signs, the bearing versor has 8 possible solutions,

each of which is termed as νln, where l is the anchor node index, and n = 1, · · · , 8.

Hence, there are 8 corresponding location points S′ln in each LCS.

S′ln = Rlνln (19)
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To identify the true location of the sensor node out of the 8 possible points, we

utilize another anchor node A2, which has arbitrary orientation and position, as shown

in Fig. 2. When the tri-directional coil antennas of anchor nodes A1 and A2 have

different orientations, the LCSs x1y1z1 and x2y2z2 are differently oriented. With the

same method as in (11) and (13), another set of 8 possible location points is obtained

in the LCS of A2. The two sets of 8 points are denoted as S′ln = [x′ln, y
′
ln, z

′
ln]T , where

l = 1, 2, marked as the small circles and stars in Fig. 2, where coordinate system XYZ

x1

R1

A1

A2

R2

O

X

Y

y1

z1

x2

y2

z2
S

S’12

S’21

S’13

S’14

S’15

S’16

S17

S’18

S’22

S’23
S’24

S’26

S’27

S’11

S’25

S’28

Z

Figure 2. Localization by two tri-directional coil antennas in 3-D.

is the GCS. The absolute coordinates of the two anchor nodes A1 and A2 in the GCS

are known from GPS or other survey systems, and we assume their orientations can

be measured by inclination sensors and determined by calibration.

With the 16 possible candidate locations of the sensor node, we propose two

schemes to estimate the true location S of the sensor node in Fig. 2.

3.2. Rotation matrix (RM)-based method. The excitation of a source

tri-directional coil and the sensor tri-directional coil output are most conveniently

described in vector notion. Let vector gt is the excitation vector of a source tri-

directional coil and gr be the coupled magnetic field vector of the sensor tri-directional

coil.
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Table 1. Orthogonal rotation matrices

Postion Orientation

Azimuth rotates
X into Y

Qϑ =

 cosϑ sinϑ 0
− sinϑ cosϑ 0

0 0 1

 Qα =

 cosα sinα 0
− sinα cosα 0

0 0 1


Elevation rotates

X into -Z
Qψ =

cosψ 0 − sinψ
0 1 0

sinψ 0 cosψ

 Qβ =

cos β 0 − sin β
0 1 0

sin β 0 cos β


Roll rotates
Y into Z

Qφ =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 Qγ =

1 0 0
0 cos γ sin γ
0 − sin γ cos γ



If the round number, the geometry size and excitation current of the three

transmitting coils are identical and they are excited simultaneously, the excitation

vector of a source tri-directional coil can be expressed as gt = [C,C,C]T , where

C = NIAµ/2π.

Since the three transmitting coils are excited sequentially, only one coil is

active while the other two are inactive at one time. Hence, the source vector gt is

expressed as [C, 0, 0]T when the coil facing to axis x is working, as [0, C, 0]T when

the coil facing to axis y is working, and as [0, 0, C]T when the coil facing to axis z is

working. The three vectors form a source matrix Gt expressed as

Gt = C


1 0 0

0 1 0

0 0 1

 = CI (20)

The three sensor coils are receiving at the same time. For each transmitting coil,

there is a vector output of three resultant magnetic field measurements. Therefore,

we totally have nine output measurements at the sensor node, which form a sensor

matrix Gr expressed by

Gr =


B11 B21 B31

B12 B22 B32

B13 B23 B33

 (21)



18

where each column corresponds to a transmitting coil. According to the coupling of

source and sensor coils presented in paper [30], we have

Gr =
1

R3
ΓPGt =

C

R3
ΓP (22)

where matrix Γ is the rotation matrix between the source tri-directional coil and the

sensor tri-directional coil, and matrix P denotes the position impact. Matrix Γ is

calculated by

Γ = QαQβQγ (23)

where Qα, Qβ, and Qγ are orientation rotation matrices defined in Table 1. Matrix

P is calculated by

P = Q−ψQ−ϑVQϑQψ (24)

where Qψ and Qϑ are position rotation matrices defined in Table 1, and matrix V is

defined as

V =


1 0 0

0 −1
2

0

0 0 −1
2

 (25)

An anchor node provides 8 possible location points, each of which locates in a quad-

rant of the LCS. From (24), the 8 possible locations generate 8 different matrices Pn.

Then, 8 corresponding matrices Γn are calculated by

Γn =
R3

C
GrP

−1
n n = 1, 2...8 (26)

Since matrix Γn is expected to be a rotation matrix, i.e., ΓnΓ
T
n = I. However, the

matrix Pn might not be calculated by the true location of the sensor node S, resulting

in the corresponding matrix Γn might not satisfy the property of a rotation matrix.

Due to the symmetry of the magnetic field, two of the 8 matrices Γn are rotation
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matrices, the two corresponding location points of which are located in two diagonal

quadrants. One of the two points is the true location and the other one is in its

diagonal quadrant with the opposite direction. Therefor, one anchor node provides

a pair of location points with opposite bearing versors. Two anchor nodes provides

two sets of such diagonal points. For example, in Fig. 2, points S ′11 and S ′17, points

S ′23 and S ′25 are the two sets of diagonal points with the opposite directions.

We should pay attention to that with measurement errors or noise considered,

we cannot determine if the matrix Γn is a rotation matrix based on ΓnΓ
T
n = I, because

Γn is not an exact rotation matrix even for the true location point. The matrix Γn of

the true location point is similar to a rotation matrix, but corrupted by measurement

errors or noise. To evaluate the similarity between matrix Γn and an ideal rotation

matrix, we do singular value decomposition (SVD) of matrix Γn as

Γn = UΣV∗ (27)

where U and V∗ are rotation matrices, ()∗ is the conjugate transpose of a matrix,

and Σ is a diagonal matrix with the singular values as the diagonal elements. We

define Hn as

Hn = ‖I−Σ‖2 (28)

The smaller Hn is, the closer the matrix Γn is to an ideal rotation matrix. When Γn

is an exact rotation matrix, Hn = 0. Therefore, we find two matrices Γn with the

least Hn to get the corresponding two possible location points in a LCS.

Once the two sets of two location points with opposite directions in two LCSs

are obtained, we utilize the maximum log-likelihood used in [32] to find out the

location estimation.
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1) Distance likelihood: We assume the estimated distance Rl follows Gaussian

distribution with the estimated value from (12) as the mean value and σR,l as the

standard deviation. Therefore, the distance log-likelihood function of distance is

calculated by

LR(S) = c1 −
2∑
l=1

1

2σ2
R,l

(‖S − Al‖2 −Rl)
2 (29)

where S is the location of the sensor node, Rl is calculated by (12) in each LCS, c1

is a constant that is independent of location S, and Al is the absolute coordinates of

anchor node Al in the GCS.

2) Bearing versor likelihood: According to paper [32], we use Mises-Fisher dis-

tribution to describe the probability density of the bearing versor. The log-likelihood

function of direction of location S is expressed as

LD(S) = c2 +
2∑
l=1

ln cosh

(
χl

(S − Al)T (Sln − Al)
‖S − Al‖2‖Sln − Al‖2

)
(30)

where Sln is the location in GCS of chosen location points according to (28), which is

calculated by (34), χl is the concentration parameter and defined in paper [32], and

c2 is a constant that is independent of location S.

Therefore, the overall join log-likelihood of distance and direction is

L(S) = LR(S) + LD(S) (31)

Our goal is to find the location S that makes (31) to reach the maximum value. The

likelihood achieves the maximum value at location S by gradient ascent. The location

estimation at the mth iteration is calculated by

S(m) = S(m−1) + τ
dL(S)

dS
|S=S(m−1) (32)
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where τ is the step size and dL(S)
dS
|S=S(m−1) is the gradient of L(S) at the m-1 iteration.

The gradient is calculated by

dL(S)

dS
=

2∑
l=1

(‖S − Al‖2 −Rl)(S − Al)
σ2
R,l‖S − Al‖2

+
2∑
l=1

[
χl

(S − AL)T (Sln − Al)
‖S − Al‖2(Sln − Al)

]
× χl

[
1

‖S − Al‖2

I− (S − Al)(S − Al)T

‖S − Al‖3
2

]
×
[

(Sln − Al)
(Sln − Al)

]
(33)

By using Backtracking line search in [31], we control the step size τ and the converge

direction of each iteration to get the optimal solution. However, since the likelihood

L(S) is not convex, it is possible that (32) converges at a location that doesn’t reach

the maximum likelihood. In this case, the localization error would be bigger. To

eliminate this possibility, we need to select the initial values of S, instead of randomly

generated. If the initial value of S is close to the real location S, it is more likely

to converge at the location with the maximum likelihood. Hence, we sequentially set

the initial value equals to S1n, −S1n, S2n′ , and −S2n′ to find the location that has the

maximum likelihood.

3.3. Distance-based method. We transform the 16 coordinates in two

LCSs into the GCS by

Sln = QlS
′
ln + Al n = 1, 2, · · · , 8, l = 1, 2 (34)

where Ql is the rotation matrix between the LCS of node Al and the GCS. The

rotation matrix Ql is determined by the orientation of the LCS which can be measured

by inclination sensors. Once coordinates of the sixteen points in the GCS are obtained,

we are able to calculate the pairwise distance of nodes from two LCSs and find the pair
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of points (S∗1n and S∗2n′) that has the minimal distance between them by brute-force

search in (35).

argmin
n,n′

‖S1n − S2n′‖ (35)

The two points with the minimal distance are considered as the pair of points that

overlap. The estimated location of the sensor node S is obtained via MMSE estima-

tion by

argmin
S

(‖S − S∗1n‖2 + ‖S − S∗2n′‖2) (36)

And (7) can be estimated by

S =
S∗1n + S∗2n′

2
(37)

In (37), we consider the two anchor nodes have the same weight at estimating the

location. However, each anchor node might has different measurement errors, noise,

and location, resulting in different impacts on location estimation. In this paper, we

assign different weight to each anchor nodes according to the transmission distance.

From (6), since the transmission distance satisfies Bk ∝ R−6, we define weight on an

anchor node Al as

Wl =
R−6
l∑2

1R
−6
i

(38)

where Ri and Rl are transmission distances calculated by (12). Once weight Wl is

gotten, (37) is modified as

S =
2∑
l=1

WlS
∗
ln (39)

where subscript n is changed corresponding to different l.

The distance-based method has less computational complexity and is faster.

However, it encounters localization ambiguity in the cases shown in Fig. 3, where

the two LCSs have the same orientation. If the line-of-sight of the two anchor nodes

aligns with one of the three axes, there are four pairs of points that are located in a

plane overlap without considering errors or noise. For example, in Fig. 3(a), the line
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of A1A2 aligns with the axis y1 or axis y2. The points S ′11 and S ′24, S ′12 and S ′23, S ′15

and S ′28, S ′16 and S ′27 overlap. In this case, we are incapable of identifying the true

location of the sensor node by finding the minimal distance. In other words, there is

localization ambiguity or the localization error would be large in this case.

Another case of localization ambiguity is that the anchor nodes A1 and A2

are located on a plane that is perpendicular to one of the three axes, as shown in

Fig. 3(b). There are two pairs of points that overlap without considering measurement

errors, such as points S ′11 and S ′23, and points S ′15 and S ′27 in Fig. 3(b). Therefore,

this situation also results in localization ambiguity. On the other hand, the RM-based

method can solve the localization ambiguity, since there are only two possible position

vectors with the opposite bearing versors in each LCS.
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Figure 3. Localization ambiguity in two special cases

Since the absolute coordinates and the orientation of anchor nodes can be

obtained from GPS and inclination sensors, respectively, it is easy to determine if the

scenario of anchor nodes results in localization ambiguity in Fig. 3. We can adopt

the RM-based method in this case.
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Table 2. Parameters used in simulations.

Parameter Value
Space size D 20 m
# of coil turns 50
Excitation current I 1 A
Coil radius r 17.8 cm

4. PERFORMANCE EVALUATION

The performances of the proposed localization methods are evaluated by com-

puter simulations. The anchor nodes and sensor nodes are randomly placed in a

D ×D ×D space. The parameters for simulations are specified in Table 2.

4.1. Transmission distance. In this paper, we derived a closed-form for-

mula of transmission distance based on magnetic flux density. The measurement of

the magnetic flux density is influenced by various factors, such as metals nearby, geo-

magnetic field, and rocks [33]. The errors in paper [34] are modeled by the Gaussian

mixture model. In this paper, we assume the measurement errors of the magnetic

flux density follows the normal distribution, with zeros mean and σB as the standard

deviations. RSSI model is wide used to estimate distance [32]. Fig. 4 depicts the

distance errors of our method and the RSSI-based method, which is normalized by

space size D. In our simulations, we assume the reference distance used in RSSI

model has no error. Our method achieves smaller distance error with various σB.

4.2. Localization accuracy. To verify the two localization algorithms, we

assume no measurement errors or noise in the simulations. The simulation results

of the localization error ε, which is defined as the Euclidean distance between the

estimated and the true locations of sensor nodes. The localization error is normalized

by the space dimension D. We see that the localization errors are small enough to

be considered as round-off errors from simulation software, no measurement errors or

noise considered. Therefore, both of the two localization schemes are valid.
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The two localization methods are based on the measurements of magnetic flux

density, which influence the distance estimation R between source coils and sensor

coils and polar angle estimations. Hence, the measurement error of the magnetic flux

density is a major factor that affects the localization accuracy.

The localization method in paper [32] uses maximum eigenvector to find the

bearing versor, which we call Eigenvector-based method. Once the bearing versor

and distance are obtained, at least two anchor nodes are required to get localization

without ambiguity. Then, Maximum log-likelihood and gradient ascent algorithm

are employed to estimate the location from four possible position vectors. Although

paper [32] implements localization in a network with multiple anchor nodes, in our

simulations only two anchor nodes are used. By simulations, we find that the initial

value of location S in (33) is critical. The Eigenvector-based method with random

initial S is called Eigenvector-based 1. We also apply our selection rule of the initial

value to the Eigenvector-based method, which is called Eigenvector-based 2. The

average localization errors normalized by the space dimension D with various σB are

shown in Fig. 5. From the results, RM-based method outperforms Distance-based
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method and slightly underperforms Eigenvector-based 2 method. Eigenvector-based

1 method has much larger localization error due to the random initial value of location

S.
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Figure 5. Average localization errors with various σB.

Besides the measurement errors of magnetic flux density, there is another

factor that also impacts the localization accuracy. We know the three coils in a tri-

directional coil structure are mutually orthogonal and the set of three polar angles

satisfies equation (8). However, the three coils, in practice, might not be exactly

mutual orthogonal. The term non-orthogonality is used to describe this situation, as

shown in Fig. 6. The solid arrows represent the expected coil axes and the dash arrows

represent the actual coil axes, which are deflected by an angle of ζ. The set of three

polar angles in the coordinates system against the actual coil axes x′, y′, and z′ does

not satisfy (8), causing localization errors. Fig. 7 depicts the localization error with

x

y

z

x

x'

y'

z'
ζ z

ζ x

ζ y

Figure 6. Non-orthogonality of a tri-directional coil.
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non-orthogonality, where ζx = ζy = ζz = 2◦, where F (ε) is the accumulative distribu-

tion function (CDF) of the localization error ε. We can see the non-orthogonality of a

tri-directional coil has significant impact on localization accuracy. RM-based method

is more robust against non-orthogonality than Eigenvector-base 2. Distance-based

method is the most vulnerable to non-orthogonality. In practice, by careful assembly,

non-orthogonality of 2◦ or smaller can be obtained [27]. For the RM-based method,
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Figure 7. CDF of localization errors with non-orthogonality, σB = 0 pT.

to evaluate the capability solving the localization ambiguity, we set a certain number

of anchor nodes that are in the scenario of Fig. 3. The parameter κ denotes the ratio

of the anchor nodes that satisfy the special cases in Fig. 3 to the total anchor node

number. The average localization errors with various κ is shown in Fig. 8. With

increasing percent κ, the average localization errors of Distance-based method in-

crease dramatically while the average localization errors of RM-based method keep

almost unchanged. Therefore, RM-based method is capable to solve the localization

ambiguity effectively.

4.3. Localization with weights for distance-based method localiza-

tion. We investigate the relation between transmission distance R and localization

error ε. We set anchor node A1 and the sensor node S in space 1 with space size D,

and anchor node A2 in space 2 with space size ρD, where ρ is a scalar that scales
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Figure 8. Average localization errors with various percent κ, σB = 2 pT.

up or down space. When ρ is greater than 1, the average transmission distance from

anchor node A2 to the sensor node S is longer than that from anchor node A1. Notice

that no matter what value ρ is, localization errors are still normalized by space size

D. To evaluate the influence of transmission distance, we define sub-error ε̆ as the

Euclidean distance between the sensor node and the chosen location point out of the

8 possible points in a LCS, which is calculated by

ε̆l = ||S − S∗ln|| (40)

Fig. 9 depicts the relation between transmission distance, sub-error, and localization

error, where ρ = 2. We observe that the sub-error ε̆2 from anchor node A2 is much

bigger than sub-error ε̆1 from anchor node A1, which means the longer transmission

distance usually implies larger localization error in the same environment. We also

note the localization error ε is bigger than ε̆1 and smaller than ε̆2. This observation

inspires us that if we consider the reference of anchor node A2 less and that of anchor

node A1 more, the curve of localization error ε will get close to the curve of ε̆1 and far

away from ε̆2 curve. Therefore, we add different weight to each anchor node to improve

localization accuracy, which is calculated by (38). Placing weights to anchor nodes in
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the localization process, the simulation results are shown in Fig. 10. With weights,

the localization error curve is approaching to the curve of ε̆1. In other words, the

localization error with weights is reduced significantly compared with the localization

error without weights. Since the curve of ε with weights is more close to the curve

of ε̆1 in Fig. 10, the curve of ε̆2 is much less important in the process of localization.

However, we cannot get rid of anchor node A2 during the localization.
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With increasing scalar ρ, the space where anchor node A2 is located becomes

bigger and the average transmission distance from anchor node A2 to the sensor node

is getting longer. Although it is possible, in practice, we are incapable of measuring

the magnetic flux density when the transmission distance is too long, we don’t consider

this situation in our simulations as long as it is still in the near-field range. We just

present the relation of the transmission distance and the localization error.

Fig. 11 demonstrates the average localization error with increasing scalar ρ.

With bigger scalar ρ, the localization error without weights is larger than that with

weights. Therefore, we conclude that the localization scheme with weights is especially

effective in the situation where the sensor node is close to one anchor node and far

away from another anchor node.
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Figure 11. Average localization errors with and without weights.

5. CONCLUSION

In this paper, we propose two MI-based localization methods which can be

applied in some challenging environments, such as underground, underwater, inside

of animals, and indoor. These methods are able to locate sensor nodes with arbitrary

orientations and positions in 3-D, only assisted with two anchor nodes. Numerous

simulations are done to verify these two methods and evaluate their performances.
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The RM-based method can reach high localization accuracy with measurement errors

or noise considered. The Distance-based method has less computational complexity

and is faster but may encounter localization ambiguity in some cases. The RM-based

method can be utilized in these cases since it is able to solve the localization ambigu-

ity. Therefore, these two localization methods can be applied to different applications

according to the system requirements. In addition, we derived a closed-form formula

of transmission distance. Simulation results show our distance estimation has higher

accuracy comparing with the wide-used RSSI model.

REFERENCES

[1] I. F. Akyildiz, P. Wang, and Z. Sun, “Realizing underwater communication

through magnetic induction,” IEEE Communications Magazine, vol. 53, no. 11,

pp. 42–48, 2015.

[2] H. P. Tan, R. Diamant, W. K. Seah, and M. Waldmeyer, “A survey of techniques

and challenges in underwater localization,” Ocean Engineering, vol. 38, no. 14,

pp. 1663–1676, 2011.

[3] I. F. Akyildiz and E. P. Stuntebeck, “Wireless underground sensor networks:

Research challenges,” Ad Hoc Networks, vol. 4, no. 6, pp. 669–686, 2006.

[4] B. Gozick, K. P. Subbu, R. Dantu, and T. Maeshiro, “Magnetic maps for indoor

navigation,” IEEE Transactions on Instrumentation and Measurement, vol. 60,

no. 12, pp. 3883–3891, 2011.

[5] J. Haverinen and A. Kemppainen, “Global indoor self-localization based on the

ambient magnetic field,” Elsevier Robotics and Autonomous Systems, vol. 57,

no. 10, pp. 1028–1035, 2009.



32

[6] D. Navarro and B. Gines, “Magnetic map building for mobile robot localization

purpose,” in IEEE Conference on Emerging Technologies Factory Automation,

2009, pp. 1–4.

[7] A. Markham, N. Trigoni, D. W. Macdonald, and S. A. Ellwood, “Underground

localization in 3-D using magneto-inductive tracking,” IEEE Sensors Journal,

vol. 12, no. 6, pp. 1809–1816, 2012.

[8] S. A. Rahok and O. Koichi, “Odometry correction with localization based on

landmarkless magnetic map for navigation system of indoor mobile robot,” in 4th

International Conference Autonomous Robots and Agents, 2009. ICARA 2009.,

pp. 572–577.

[9] C. P. Davis, W. C. Chew, W. W. Tucker, and P. R. Atkins, “A null-field method

for estimating underground position,” IEEE Transactions on Geoscience and

Remote Sensing, vol. 46, no. 11, pp. 3731–3738, 2008.

[10] S. Hashi, M. Toyoda, S. Yabukami, K. Ishiyama, Y. Okazaki, and K. I. Arai,

“Wireless magnetic motion capture system-compensatory tracking of positional

error caused by mutual inductance,” IEEE Transactions on Magnetics, vol. 46,

no. 6, pp. 2364–2366, 2007.

[11] S. Hashi, M. Toyoda, M. Ohya, Y. Okazaki, S. Yabukami, K. Ishiyama, and K. I.

Arai, “Magnetic motion capture system using LC resonant magnetic marker

composed of Ni-Zn ferrite core,” Journal of applied physics, vol. 99, no. 8, 2006.

[12] E. P. A. Plotkin, “3-D magnetic tracking of a single subminiature coil with a

large 2-D array of uniaxial transmitters,” Transactions on Magnetics, vol. 39,

no. 5, pp. 3295–3297, 2003.



33

[13] G. Placidi, D. Franchi, A. Maurizi, and A. Sotgiu, “Review on patents about

magnetic localisation systems for in vivo catheterizations,” Recent Patents on

Biomedical Engineering, vol. 2, no. 1, pp. 58–64, 2009.

[14] A. M. Franz, T. Haidegger, W. Birkfellner, K. Cleary, T. M. Peters, and L. Maier-

Hein, “Electromagnetic tracking in medicine-a review of technology, validation,

and applications,” IEEE transactions on medical imaging, vol. 33, no. 8, pp.

1702–1725, 2014.

[15] H. Huang, Y. R. Zheng, and W. M. Duan, “Pseudo-noise based time of ar-

rival estimation for underwater acoustic sensor localization,” in OCEANS 2016-

Shanghai. IEEE, 2016, pp. 1–5.

[16] Z. Zhou, J.-H. Cui, and S. Zhou, “Efficient localization for large-scale underwater

sensor networks,” Ad Hoc Networks, vol. 8, no. 3, pp. 267–279, 2010.

[17] J. Albowicz, A. Chen, and L. Zhang, “Recursive position estimation in sen-

sor networks,” in Ninth International Conference on Network Protocols, 2001.

IEEE, 2001, pp. 35–41.

[18] M. C. Vuran and I. F. Akyildiz, “Channel model and analysis for wireless under-

ground sensor networks in soil medium,” Physical Communication, vol. 3, no. 4,

pp. 245–254, 2010.

[19] L. E. Emokpae, S. DiBenedetto, B. Potteiger, and M. Younis, “Ureal: underwater

reflection-enabled acoustic-based localization,” IEEE Sensors Journal, vol. 14,

no. 11, pp. 3915–3925, 2014.

[20] L. E. Emokpae and M. Younis, “Throughput analysis for shallow water com-

munication utilizing directional antennas,” IEEE Journal on Selected Areas in

Communications, vol. 30, no. 5, pp. 1006–1018, 2012.



34

[21] R. J. Blakely, Potential Theory in Gravity and Magnetic Applications. Cam-

bridge, U.K: Cambridge Univ, 2001.

[22] M. A. Nixon, B. C. McCallum, W. R. Fright, and N. B. Price, “The effects of

metals and interfering fields on electromagnetic trackers,” Presence, vol. 7, no. 2,

pp. 204–218, 1998.

[23] V. F. Labson, A. Becker, H. F. Morrison, and U. Conti, “Geophysical exploration

with audiofrequency natural magnetic fields,” Geophysics, vol. 50, no. 4, pp. 656–

664, 1985.

[24] F. H. Raab, “Noise model for low-frequency through-the-earth communication,”

Radio Sci, vol. 45, no. 6, pp. 1–7, 2010.

[25] A. Sheinker, B. Ginzburg, N. Salomonski, L. Frumkis, and B. Z. Kaplan, “Lo-

calization in 2D using beacons of low frequency magnetic field,” IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 6,

no. 2, pp. 1020–1030, 2013.

[26] X. Tan, Z. Sun, and P. Wang, “On localization for magnetic induction-based

wireless sensor networks in pipeline environments,” in 2015 IEEE International

Conference on Communications (ICC). IEEE, 2015, pp. 2780–2785.

[27] A. Sheinker, B. Ginzburg, N. Salomonski, L. Frumkis, and B. Z. Kaplan, “Local-

ization in 3-D using beacons of low frequency magnetic field,” IEEE transactions

on instrumentation and measurement, vol. 62, no. 12, pp. 3194–3201, 2013.

[28] E. Slottke and A. Wittneben, “Accurate localization of passive sensors using

multiple impedance measurements,” in Vehicular Technology Conference (VTC

Spring), 2014 IEEE 79th. IEEE, 2014, pp. 1–5.



35

[29] A. Radchenko, D. Pommerenke, G. Chen, P. Maheshwari, S. Shinde, V. Pilla, and

Y. R. Zheng, “Real time bridge scour monitoring with magneto-inductive field

coupling,” in SPIE Smart Structures and Materials+ Nondestructive Evaluation

and Health Monitoring. International Society for Optics and Photonics, 2013,

pp. 86 922A–86 922A.

[30] F. H. Raab, E. B. Blood, T. O. Steiner, and H. R. Jones, “Magnetic position and

orientation tracking system,” IEEE Transactions on Aerospace and Electronic

systems, no. 5, pp. 709–718, 1979.

[31] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cam-

bridge Univ. Press, 2004.

[32] T. E. Abrudan, Z. Xiao, A. Markham, and N. Trigoni, “Underground incremen-

tally deployed magneto-inductive 3-d positioning network,” IEEE Transactions

on Geoscience and Remote Sensing, vol. 54, no. 8, pp. 4376–4391, 2016.

[33] T. E. Abrudan, O. Kypris, N. Trigoni, and A. Markham, “Impact of rocks and

minerals on underground magneto-inductive communication and localization,”

IEEE Access, vol. 4, pp. 3999–4010, 2016.

[34] Y. Zhang, S. Xing, Y. Zhu, F. Yan, and L. Shen, “Rss-based localization in wsns

using gaussian mixture model via semidefinite relaxation,” IEEE Communica-

tions Letters, 2017.



36

II. NODE LOCALIZATION WITH AOA ASSISTANCE IN
MULTI-HOP UNDERWATER SENSOR NETWORKS

Huai Huang and Yahong Rosa Zheng

Department of Electrical & Computer Engineering

Missouri University of Science and Technology

Rolla, Missouri 65409–0050

Email: {hh6v8, zhengyr}@mst.edu

ABSTRACT

This paper proposes a novel node localization method for underwater wireless

networks (UWSNs) in 2-D and 3-D spaces, respectively, where only a small number

of anchor nodes are available. Our scheme estimates distances from anchor nodes to

sensor nodes via multi-hops with the help of angle of arrival (AoA) measurements. By

forwarding distances hop-by-hop through the wireless network, the distance estima-

tions can be flooded to the whole network even if the network is sparse. Once a sensor

node has its distance estimates to at least three (in 2-D) or four (3-D) anchor nodes,

it can compute its own location. In contrast to existing multi-hop methods, such

as DV-hop, DV-distance, Euclidean method, Cosine-law method, and Distance-based

method, our proposed method uses rotation matrices between neighboring nodes to

estimate distances to anchor nodes, with higher accuracy. Therefore, the proposed

method can improve localization accuracy significantly. In addition, we derived the

formulas of weights added to anchor nodes to improve localization accuracy accord-

ing to AoA measurement errors and the number of hops. Simulation results show

that our proposed method outperforms the existing multi-hop localization schemes
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in terms of localization accuracy and distance estimation. The concept of weights

on anchor nodes improves localization accuracy remarkably when AoA measurement

errors are relatively large.

1. INTRODUCTION

Underwate sensor networks (UWSNs) have found important applications in

ocean exploration, critical structure monitoring, coastal surveillance, motion tracking,

and disaster mitigation [1]. For example, the melting process of the polar ice sheets,

which contributes to the sea level rises, calls for an underwater Ad-Hoc network to

provide the timely sea level monitoring. UWSNs include a large number of randomly

placed wireless nodes with sensors [2, 3]. These nodes are used to collect hydrologic

data such as pressure, salinity, and temperature.

In many applications of UWSNs, the position knowledge of wireless sensor

nodes is desirable otherwise the sensing information collected is meaningless. There-

fore, localization is a must-do task in UWSN applications [4].

The typical UWSN scenario depicted in Fig. 1 has only a small number of

nodes with location-awareness from GPS or surface buoys. This type of nodes is

named anchor nodes. Another type of nodes in a UWSN are equipped with sensors

to collect useful data in water, and are called sensor nodes. Sensor nodes cannot

communicate directly with GPS or buoys, thus have to estimate their own locations

by communicating with anchor nodes around them. The accuracy and coverage of

localizations in an UWSN are the main concerns, especially in a large-scale sparse

network where the number of anchor nodes is a small fraction of the total number

of nodes and the node degree is small. The Global Positioning System (GPS) wide-

used in terresterial sensor networks is not feasible underwater because the radio-

frequency signals utilized by GPS have very limited communication range due to
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Buoy Anchor node Sensor node Located sensor node

Ocean bottom

Figure 1. The framework of underwater sensor networks with multi-hop propagation.

the strong propagation loss in water[5]. Therefore, acoustic signals, optical signals,

and Magnetic-Induction (MI) signals are employed in underwater communication and

localization [6].

The existing localization schemes in underwater wireless sensor networks are

usually classified into two categories: range-based schemes and range-free schemes [7,

8]. Since range-free schemes can only obtain coarse localization, range-based schemes

are widely used. Range-based schemes consist of three phases: distance estimation,

position estimation, and refinement. The distances to anchor nodes are measured by

several schemes: received signal strength indicator (RSSI), time difference of arrival

(TDoA), and time of arrival (ToA) [4]. Most range-based localization schemes in

UWSNs use ToA or TDoA thanks to the slow sound propagation in water (about 1500

m/s), which can achieve better accuracy than the RSSI schemes [7]. Due to the limited

communication range of acoustic signals underwater, only nodes within a certain

range can communicate directly with each other to get range or angle estimations.

The nodes within a communication range are called neighbors.



39

The traditional localization schemes require distance estimates to at least three

(in 2-D space) or four (in 3-D space) anchor nodes to calculate the sensor node’s lo-

cation by the trilateration method. However, in a large-scale sparse wireless network,

due to sensor nodes moving and diffusing after deployed, there are some isolated nodes

that cannot reach enough anchor nodes and thus are incapable of self-localization [9].

It is not feasible to have the beacons emit with large power to cover the whole net-

work due to the high power usage and communication collisions[10]. Some schemes

have been developed to do localization in this case. AUV-aided algorithms use trav-

eling AUV to assist isolated nodes localization[11]. In a relatively dense network,

the recursive localization method reaches high localization coverage [12]. However,

when the network is sparse, the localization coverage is significantly reduced because

the recursive localization method requires at least four nodes (in 3-D space) with

position-awareness around the to-locate sensor node. To extend the localization cov-

erage in a sparse network, several localization schemes have been proposed, utilizing

multi-hop distance propagations: DV-hop, DV-distance, and Euclidean method [10].

These schemes forward distances via intermediate nodes hop by hop to obtain dis-

tance estimates to anchor nodes. Once a sensor node obtains at least four anchor

nodes distance estimations, trilateration algorithm is employed to do localization.

The DV-hop and DV-distance methods can only achieve coarse localization and are

sensitive to anisotropic topologies. The Euclidean method can achieve higher localiza-

tion accuracy but much lower localization coverage than the DV-hop and DV-distance

methods. In recent years, to improve localization accuracy, some other algorithms

based on multi-hop propagation have been proposed. Paper [13] uses the law of co-

sine to estimate distances from anchor nodes to isolated nodes. We call this method

as the Cosine-law method. The Cosine-law method has higher localization accuracy,
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but can be applied only in 2-D space. Paper [14] employs greedy algorithm to find

the shortest path as the distance estimation, which is called as the Distance-based

method in this paper.

In this paper, we aim to improve localization accuracy and keep high local-

ization coverage in a large-scale sparse underwater wireless sensor network based on

multi-hop propagation. Our proposed scheme takes advantage of angle measurements

of incoming signals which are called angle of arrival (AoA) measurements to locate

sensor nodes in 2-D and 3-D spaces, respectively. Recent works in the field [15] have

shown the feasibility of utilizing AoA measurements in underwater networks. The

paper [16] utilizes AoA measurements to provide the 3-D ranging estimation in an

underwater environment. Papers [17, 18] show localization in underwater sensor net-

works based on AoA measurements. The AoA capability is usually achieved by using

directional antennas [19] or antenna array. In this paper, we assume each node in

UWSNs has the capability of measuring the AoA from its neighbors. The simulation

results show that our proposed scheme achieves higher localization and distance ac-

curacy than the existing multi-hop localization schemes, with almost the same high

localization coverage as the DV-hop and DV-distance methods.

2. RELATED WORK

Several existing multi-hop localization methods are introduced in this section.

2.1. DV-hop. The DV-hop scheme counts distances between nodes in hops

[10]. Each node in a network has a hop table and exchange the table with its neigh-

bors. The hop forwarding starts from an anchor node and floods into the sensor

network. When a node receives the hop table from its neighbor, the node updates

its own hop table. Once the hop-forwarding hits another anchor node, it estimates

the average size of one hop based on the absolute locations of the two anchor nodes.

A sensor node computes the distance in meters to the anchor node by the calculated
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average hop size and the hop table. We can see that DV-hop method is simple and

immune to distance measurement errors. However, it can only provide coarse distance

and localization estimations.

2.2. DV-distance. The DV-distance approach is similar to the DV-hop method

in terms of the forwarding procedure [10]. The difference lies in that the forwarded

distance between nodes is in meters, rather than in hops. The distance from an

anchor node to a sensor node is then calculated by accumulating distances hop by

hop. The DV-distance scheme is still coarse because the real distance between a sen-

sor node and an anchor node is the distance of the line-of-sight, not the cumulative

hop-by-hop distance. In addition, both the DV-hop and DV-distance methods are

sensitive to the topology of a network and can be applied in 2-D and 3-D spaces.

2.3. Euclidean method. The Euclidean method calculates the Euclidean

distances from sensor nodes to anchor nodes [10]. Therefore, this method provides

more accurate distance estimation. However, this method requires more neighbors

around a sensor node with distance estimates to an anchor node. This requirement

restricts the localization coverage. The Euclidean method can do localization in 2-D

space.

2.4. Cosine-law method. Paper [13] proposes a multi-hop distance estima-

tion method based on the law of cosines. It assumes each node in a wireless network is

able to measure distances and angles of incoming signals from its neighboring nodes.

Then, the law of cosines is employed to calculate distances and angles for nodes with

more hops to an anchor node. This method can calculate the Euclidean distances to

anchor nodes and improve localization accuracy. However, the Cosine-law method is

sensitive to measurement errors and only feasible in 2-D space.

2.5. Distance-based localization. Paper [14] employs intermediate nodes

as routers between an anchor node and a sensor node to find the shortest distance

between them by the greedy algorithm. It assumes the measured distance in all
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radio runtime based measurement systems is too long and not too short because of

reflections and multipath effects [14]. This method has better localization accuracy

than DV-distance due to the shorter path search and can be used in 2-D and 3-D

localizations.

3. THE PROPOSED SCHEMES

3.1. AoA theory. Each node in a network has axes against which the arrival

angles of incoming signals from neighbors are reported, as shown in Fig. 2. The axes

in each node form a local coordinate system (LCS). After deployment, the axes of a

node or the LCS has an arbitrary direction, which is represented by the bold arrow in

Fig. 2. The term bearing represents the angle measured with respect to a neighbor.

In this paper, bearings at each node with respect to its neighbors provides AoA

measurements. For example, at node N2 in the 2-D space of Fig. 2(a), the bearing

against the axis at node N2 provides the AoA measurements of θ12 and θ32 from two

neighbors N1 and N3, respectively. In 3-D space, the AoA measurement includes

elevation and azimuth angles. In the example of Fig. 2(b), the AoA measurement at

node N2 from node N1 is θ12 and β12.

N1

N3

N2
θ12

θ32

(a) 2-D

N1

N3

N2

θ12

θ32

β12 β32

(b) 3-D

Figure 2. AoA measurements at a node.
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3.2. The proposed localization algorithm. In this section, we propose a

node localization method with multi-hop propagation by taking advantage of AoA

measurements. Our proposed localization method can be applied in both 2-D and

3-D spaces, with higher accuracy.

A simple scenario of UWSNs is depicted in Fig. 3, where circles denote sensor

nodes, the rectangle denotes an anchor node, and the number in each circle and

rectangle denotes the hops from the anchor node. Fig. 3 refers to one anchor node

only, since the multi-hop propagation behaves identically and independently for all

anchor nodes in a UWSN. The node set including all anchor nodes and sensor nodes

in a network is expressed as N={N1,N2,...,NN}. In this example, sensor nodes N2,

N3, and N4 have 1 hop, nodes N5, N6 and N8 have 2 hops, node N7 has 3 hops from

the anchor node N1, and the anchor node has 0 hop. The sensor nodes are divided

into three types according to the number of hops from the anchor node.

0

1

1

1

2

3

2

N2

N3

N4

N6

S5

N7

N1

2

N8

LCS

LCS

Figure 3. A network with multi-hop propagation.
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1) one-hop nodes: Anchor nodes broadcast a message that includes their

ID, coordinates and transmitting time stamp to the neighboring sensor nodes. The

sensor nodes that receive this message can measure the AoA, and the distance from

the anchor node. Therefore, the coordinates of the anchor node in the LCS of a

one-hop sensor node are available.

2) two-hop nodes: All nodes can communicate directly with their neighboring

nodes and measure distances and AoAs between one another. Therefore, the locations

of two-hop nodes in the LCSs of one-hop nodes are available. Since locations of anchor

nodes in the LCSs of one-hop nodes are also available, the distances of nodes with 2

hops to anchor nodes can be estimated.

3) greater-than-two-hop nodes: They can not estimate the distances to an

anchor node like one-hop or two-hop nodes because they are not neighboring with

the anchor node nor with one-hop nodes. Nodes between an anchor node and a

greater-than-two-hop node are used as intermediate routers and the rotation matrix

between two routers is employed to forward coordinates and distances hop by hop.

The intermediate nodes not only send their own node ID to nodes with more hops,

but also the ID, coordinates of anchor nodes.

Once receiving a message from a neighbor, a sensor node which is considered

as the current node, updates its hops and builds an entry of the information table

shown in Fig. 4 through some computations. We assume the current sensor node is

Nj and it is receiving signals from its neighboring node Ni. The first seven terms

in the table refer to the neighboring node Ni that might not be an anchor node,

which include: (1) ID1: the neighboring node’s identifier from the incoming signal;(2)

AoA: angle of arrival from the neighboring node with ID1; (3)ToA: time of arrival

from the neighboring node with ID1; (4) Hop: the hop number of the neighboring

node Ni pluses one; (5) Coordinate1: once ToA and AoA from the neighboring node

are obtained, the coordinates of the neighboring node Ni in the LCS of the current
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node Nj are calculated as cij which is sent back to the neighboring node Ni; (6)

Coordinate2: similarly, the coordinate cji is the coordinates of the current node Nj

in the LCS of the neighboring node Ni and sent by node Ni; (7) Coordinate3: the

coordinates of the anchor node that node Ni has coordinates estimate to in the LCS

of node Ni. The last two terms in the table refer to the anchor node, which include:

(8) ID2: the anchor node’s ID; (9) Coordinate4: the absolute coordinates of the

anchor node. If the neighboring node is an anchor node, ID1 and ID2 are identical

and Coordinate3 is null. If the neighboring node Ni has no coordinates estimation of

an anchor node, the terms of Coordinate3, ID2, and Coordinate4 are null.

ID1 AoA ToA Coordinates1 ID2 Coordinates4Hop Coordinates2 Coordinates3

Figure 4. Information table structure.

The first step of the proposed localization method is to estimate distances of

the current node to an anchor node. Since one-hop nodes can directly communicate

with anchor nodes, the distances between these sensor nodes and anchor nodes, such

as distance R12 in Fig. 3, are measurable. However, the distances of nodes with more

than 2 hops to an anchor node, like distances R15 and R17 cannot be obtained by

direct communications.

All nodes, equipped with multi-modal directional piezoelectric underwater

transducers, are capable of measuring both azimuth and elevation angles [16]. The

AoA measurement at a sensor node Nj of the incoming signal form a neighboring

sensor node Ni is denoted as {θij, βij}, where βij is the elevation angle, and θij is the

azimuth angle.

According to the transformation of Spherical Coordinate System (SCS) (3-D)

to Cartesian Coordinate System (CCS) (3-D), the coordinates of node Ni in the LCS

of node Nj are defined as

cij = [xij, yij, zij]
T (1)
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where []T represents transpose of a matrix and xij, yij and zij are calculated by

xij =Rij cos βij cos θij

yij =Rij cos βij sin θij

zij =Rij sin βij

(2)

where Rij is the distance from node Ni to node Nj. Once the coordinates of two nodes

Ni and Ni′ in the LCS of node Nj are obtained, the distance Rii′ between nodes Ni

and Ni′ is calculated by

Rii′ = ‖cij − ci′j‖ i 6= i′ (3)

where ‖ · ‖ denotes the vector norm 2. If node Ni′ is an anchor node and node Nj is

one-hop, the distance estimation of two-hop node Ni to the anchor node is available

by (3). For example, in the scenario of Fig. 3, the two-hop node N5 estimates its

distance to the anchor node N1 via the one-hop node N2 as an intermediate router.

In a large-scale network, to improve localization coverage, it is desirable to

obtain distance estimations of nodes with more than 2 hops to an anchor node.

However, Eq (3) is only applied to two-hop nodes. In this section, we propose an

algorithm that estimates distances of greater-than-two-hop nodes to anchor nodes,

such as distance R17 in Fig. 3. Since node N7 is a neighbor of node N5, the distance

R17 can be computed by (3) if the coordinates of anchor node N1 in the LCS of node

N5 is available, i.e., the term of Coordinate3 in the information table of node N7 is

the key point. In the example of Fig. 3, for node N7, the term of Coordinate1 is c57

, the term of Coordinate2 is c75, and the term of Coordinate3 is c15. We know the

coordinates of node N1 in the LCS of node N2 is computable since node N2 only has

1 hop, and the coordinates of node N2 in the LCS of node N5 is computable since

node N2 is a neighbor of node N5. If we can find the rotation matrix between the
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two LCSs of nodes N2 and N5, the the coordinates of anchor node N1 in the LCS of

node N5 is available. Therefore, the key point is to find the rotation matrix between

two neighboring LCSs.

Assume nodes Ni and Nj are neighbors, and we want to figure out the rotation

matrix Qij between their LCSs. If the two nodes have at least one common neighbor

Nk additionally, which means node Nk can communicate directly with both nodes Ni

and Nj, then the rotation matrix Qij satisfies the following equations


Qijcji = −cij

Qijcki = ckj − cij

QT
ij ∗Qij = I

(4)

where I is a identity matrix of size 3×3, and the third equation in (4) is the property

a rotation matrix must satisfy. Note that it is possible there are several common

neighboring nodes between nodes Ni and Nj after the deployment, then k has multiple

values which results in multiple equations with the same similar expression of the

second equation in (4). We define two matrices X and Y of size 3× (M + 1), where

M is the number of common neighboring nodes between nodes Ni and Nj. Matrix

X = [cji, cki], and matrix Y = [−cij, ckj−cij]. Therefore, the more general expression

of (4) is 
QijX = Y

QT
ijQij = I

(5)

Without noise or measurement errors considered, K = 1 is enough to solve (5) in

3-D space, i.e. at least one common neighbor between nodes Ni and Nj is required

to calculate the matrix Qij. When noise or measurement errors are considered, more

common neighbor nodes result in the better estimation of the matrix Qij. We use
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the method in [20] to solve matrix Qij in (5). We optimize

arg min
Qij

M+1∑
m=1

‖QijXm −Ym‖2 (6)

where Xm is the mth column of the matrix X, and Ym is the mth column of the

matrix Y. We define a matrix S of size 3×3 and S = XYT . Matrix S is decomposed

by singular value decomposition (SVD) as

S = UΣVT (7)

where Σ is a diagonal matrix with singular values on diagonal entries, matrices U and

V are unitary matrices, with left-singular vectors and right-singular vectors of matrix

S as columns, respectively. According to [20], the rotation matrix Qij is calculate by

Qij = V


1 0 0

0 1 0

0 0 det(VUT )

UT (8)

The diagonal matrix in (8) includes the det(VUT ) to guarantee the calculated matrix

Qij is a rotation instead of a reflection [20].

Once the matrix Qij is obtained, the coordinates of the anchor node Ni′ in

node Nj is calculable by

ci′j = Qijci′i + cij (9)

where cij is considered as the original point offset and we assume the coordinates

ci′i is known. For example, in Fig. 3, the coordinates of anchor node N1 in LCS of

node N5 are calculated by c15 = Q25c12 + c25, and the matrix Q25 is calculated by

(8). Therefore, the coordinates of an anchor node at the LCS of an two-hop node is

available. The distance Ri′i′′ of node Ni′′ that has 3 hops from the anchor node Ni′
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and is also a neighbor of node Nj is computed by

Ri′i′′ = ‖ci′j − ci′′j‖ (10)

For example, in Fig. 3, the distance R17 with 3 hops is computed by R17 = ‖c15−c75‖,

where j = 5, i′ = 1, and i′′ = 7. By the same way, the distance estimation can be

flooded into nodes with more than 3 hops.

In a network, the distance of a sensor node to an anchor node might be es-

timated via different intermediate node routers to form different routes. For ex-

ample, for node N7, one route is N1 → N2 → N5 → N7 and another route is

N1 → N3 → N6 → N7. Both of the routes have 3 hops. In Fig. 3, there is an-

other route for node N7: N1 → N2 → N8 → N5 → N7. However, this route has one

more hop than the other two routes. Due to measurement errors and noise, each hop

unavoidable brings estimation errors. Hence, we want to keep a route as fewer hops as

possible. Then the routes with more hops are discarded. Considering noise and mea-

surement errors, multiple routes with different intermediate nodes generate different

intermediate rotation matrices and coordinate estimations. For example, in Fig. 3, we

have different c16 estimations via routes N1 → N3 → N6 and N1 → N4 → N6. Our

proposed method averages all coordinate estimations from multiple routes at each

sensor node to reduce the impact of the noise and measurement errors.

Additionally, for each sensor node, different routes also generate different dis-

tance estimations to anchor nodes with noise considered. We average all distance

estimations at each sensor node to get the final distance estimation.

This method is also feasible in 2-D space, and the AoA only has one angle

measurement shown in Fig2. the coordinates of node Ni in the LCS of node Nj are

defined as

cij = [xij, yij]
T (11)
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where xij, yij are calculated as

xij =Rij cos θij

yij =Rij sin θij

(12)

One thing we should point out is that common neighboring nodes are not

prerequisite to calculate the rotation matrix between two LCSs in 2-D space, although

at least one common neighboring node is required in 3-D space. In other words, the

rotation matrix can be completely determined without the second equation in (5)

when noise or measurement errors are not considered. This property results higher

localization coverage in 2-D space than in 3-D space.

3.3. Weighted least squares. Once a sensor node obtains distances to at

least four (in 3-D) or three (in 2-D) anchor nodes, its position can be computed by

trilateration algorithm, like the located sensor node in Fig 1. Least Squares (LS)

method is usually used to estimate the location with more anchor nodes available

[21]. Let (Xt, Yt, Zt) be the coordinates of the tth anchor node in the global coordinate

system (GCS) for t = 1, · · · , n. The coordinates and the estimated distance (Rt) from

the tth anchor satisfy the following set of equations:


(X1 −X)2 + (Y1 − Y )2 + (Z1 − Z)2

...

(Xn −X)2 + (Yn − Y )2 + (Zn − Z)2

 =


R2

1

...

R2
n

 (13)

where (X, Y, Z) is the coordinates of the to-locate sensor node in the GCS. By sub-

tracting the nth equation from each other equation in (13), a general matrix form is

written by

HC = B (14)
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where

H = 2


X1 −Xn Y1 − Yn Z1 − Zn

...
. . .

...

Xn−1 −Xn Yn−1 − Yn Zn−1 − Zn

 (15)

C =

[
X Y Z

]T
(16)

B =


X2

1 −X2
n + Y 2

1 − Y 2
n +R2

n −R2
1

...

X2
n−1 −X2

n + Y 2
n−1 − Y 2

n +R2
n −R2

n−1

 (17)

In this paper, we employ the weighted LS to improve localization accuracy, i.e.,

we assign a weight to each anchor node to indicate how significant the anchor node

is during the localization. In a network, a sensor node might have different numbers

of hops to its available anchor nodes, which is called as mix-hop as shown in Fig6,

where the dash lines denote routes with multi-hop via intermediate nodes. Since each

hop unavoidably brings some errors due to measurement means, noise [22], and rota-

tion matrix estimations, it is reasonable to assume that more hops cause more errors.

Therefore, we choose routes with as fewer hops as possible and assign weights as a

function of the number of hops that a sensor node has from an anchor node. Besides

the number of hops, other factors also impact the weights, such as communication

range, measurement errors. Since the estimated localization error is a complicated

nonlinear function of the number of hops and other factors, we do numerous simula-

tions and use regression analysis to find the functions that fit the numerical simulated

results. Our extensive simulations found that the localization errors are related to

many factors: communication range, distance measurement errors, AoA measurement

errors, and the number of hops. For the sake of simplicity, we consider only two major

factors that affect most: AoA measurement errors and the number of hops, which
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Table 1. Lookup table for parameters a, b and c

2-D 3-D
a b c a b c

σA : [0◦, 2.5◦) 0.946 0.991 1.873 2.588 0.578 0.738
σA : [2.5◦, 7.5◦) 1.132 1.361 1.926 1.981 1.171 1.315
σA : [7.5◦, 12.5◦) 2.240 1.395 0.331 9.1 1.107 -6.487
σA : [12.5◦, 17.5◦) 3.454 3.107 1.620 -0.750 1.203 -11.04

can give us a rough formula of weights. We define a parameter ρ as

ρ =

∑
l∈L
‖Ĉl −Cl‖2

L

(18)

where Ĉl and Cl are the estimated and true locations of the sensor node Nl in the

GCS, respectively, L is the set of sensor nodes with the same number of hops h (h ≥ 1)

in a network.

Fig. 5 depicts the simulated results of ρ with various hops and AoA measure-

ment errors in 2-D and 3-D spaces, respectively. We assume the AoA measurement

errors follow Normal distribution with zero mean and σA as the standard deviation.

The fitting curves in Fig. 5 match the simulation results well. We express the fitting

curves by a power formula

ρ̂(h, σA) = ahb + c (19)

where ρ̂ is the estimated ρ by (19), and parameters a, b and c are related to each σA.

According to the results in Fig. 5, we generate a lookup table for parameters a, b and

c in Table 1. Although the parameter ρ varies with each σA, Table 1 only gives rough

values of a, b and c with sever ranges of σA according to the fitting curves in Fig5.

For example, we use the fitting curve of σA = 10◦ in Fig5 to generate parameters a,

b and c with σA in the range of 7.5◦ to 12.5◦



53

1 2 3 4 5 6 7 8

0

20

40

60

80

100

120

140

160

h

ρ

 

 

fitting curve, σ
A
=20°

simulated, σ
A
=20°

fitting curve, σ
A
=15°

simulated, σ
A
=15°

fitting curve, σ
A
=10°

simulated, σ
A
=10°

fitting curve, σ
A
=5°

simulated, σ
A
=5°

fitting curve, σ
A
=0°

simulated, σ
A
=0°

(a) 2-D

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

h

ρ

 

 

fitting curve, σ
A
=20°

simulated, σ
A
=20°

fitting curve, σ
A
=15°

simulated, σ
A
=15°

fitting curve, σ
A
=10°

simulated, σ
A
=10°

fitting curve, σ
A
=5°

simulated, σ
A
=15°

fitting curve, σ
A
=0°

simulated, σ
A
=0°

(b) 3-D

Figure 5. Estimation errors ρ with increasing hops and their fitting curves.

We define weight on the tth referred anchor node from which the sensor node

has ht hops as

wt =
1

ρ̂t(ht, σA)
(20)

In the example of Fig. 6, the sensor node has 5 anchor nodes available, each of which

Sensor node

Anchor node1

Anchor node2

Anchor node3

Anchor node4

Anchor node5

h1 h2 h3

h4

h5

w1

w2

w3

w4

w5

Figure 6. Localization with mix-hop anchor nodes.

responses different number of hops, resulting in different weights. Note that an anchor

node might has different weights with respect to different sensor nodes. The general
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form of weighed LS is given by [23]

c = (HTWH)−1HTWB (21)

where W is the weighting matrix that is diagonal with diagonal elements [W]tt = wt.

4. SIMULATION RESULTS

In this section, we evaluate the proposed localization method and compare its

performance with existing multi-hop localization methods by numerous simulations.

In our simulations, 200 nodes are randomly distributed in a 100 × 100 m2

region (2-D) or a 100 × 100 × 100 m3 region (3-D). The anchor node ratio is 10%.

We assume the errors of AoA and distance measurements between neighboring nodes

follow Normal distributions with zero mean and σA and σd as the standard deviations

for distance and angle measurements, respectively. σA is a certain value of angle and

σd is a percentage of the real distance. Besides our methods, we also simulated DV-

hop, DV-distance, the Euclidean method, the Cosine-law method, the Distance-based

method for comparisons.

Three performance metrics are considered in this paper: distance error, localiz

-ation error and localization coverage. The distance estimation error is defined as

the difference of the estimated distance and the true distance between an anchor node

to a sensor node. The distance estimation affects the localization accuracy. Local-

ization error is defined as the Euclidean distance of the real position and estimated

position of a sensor node. The localization coverage is the ratio of the number of

localizable sensor nodes to the total number of sensor nodes in a network.

4.1. Distance error. Fig. 7 plots the average distance errors of the multi-

hop localization methods with communication range of 15 m in 2-D space and 30m in

3-D space, respectively. Since DV-hop[10], DV-distance[10] , Euclidean method[10],
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and the Distance-based method [14] do not use AoA measurements, they are immune

to AoA measurement errors and σA has no impact on them. On the other hand, our

proposed method and the Cosine-law method[13] rely on AoA measurements. There-

fore, multiple curves with different σA are shown in Fig. 7(b). We can observe that

our method has lower distance error than DV-hop, DV-distance, and the Distance-

based method with σA less than a certain value of angle. The Euclidean method has

the similar performance with our proposed method when σA = 0◦ . Fig. 7(b) shows

distance errors with various σA for our proposed method and the Cosine-law method.

Our proposed method always has lower distance errors than the Consine-law method,

especially When σA and σd are relatively large. In other words, our proposed method

is more robust than the Consine-law method.
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Figure 7. Average distance errors of several in 2-D space.

The average distance errors in 3-D space for DV-hop, DV-distance, the Distance-

based method, and our proposed method are depicted in Fig. 8. Our proposed method

reaches much lower distance errors than the others. Even when σA = 12◦, the dis-

tance error of our proposed method is only almost half of that of the Distance-based

method.
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Figure 8. Average distance errors in 3-D space.

4.2. Localization error. Fig. 9 and Fig. 10 depicts average localization er-

rors of these multi-hop localization methods in 2-D and 3-D spaces with various σd

and σA. The communication ranges are 15 m in 2-D space and 30 m in 3-D space.

We can observe that our proposed method outperforms all other methods in terms

of localization errors. Note that below some point of σd, if σA is relative large, the

Euclidean method has better performance than our method. For example in Fig. 9,

when σA = 12◦, the Euclidean method has lower localization error with σd less than

0.03. However, the average localization error of the Euclidean method grows dra-

matically with increasing σd although the growth rate of its distance error is much

slower. This is reasonable since the localization accuracy not only relies on distance

estimations but also on the available number of anchor nodes that a sensor node

has distance estimations to. The Euclidean method require more neighbors around a

sensor node to estimate the distance to an anchor node, which results in fewer anchor

nodes available to a sensor node to be located. The fewer available anchor nodes a

sensor node has, the larger the localization error is. We also note that our method

always has smaller localization errors than the Cosine method no matter what σA or

σd is. The localization performances in 3-D space for the DV-hop, DV-distance, the
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Figure 9. Average localization errors in 2-D.

Distance-based methods, and our proposed method are depicted in Fig. 10. Like in

2-D space, our proposed method has the best performance in terms of localization

accuracy.
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Figure 10. Average localization errors in 3-D.

Our proposed method added weights on anchor nodes to improve localization

accuracy based on Table 1. The localization errors with and without weights are

shown in Fig. 11. We observe that when the AoA measurement error is small, adding

weights dose not make big difference. However when σA is relatively large, the lo-
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calization accuracy is improved remarkably by adding weights on anchor nodes. For

example, in 3-D space, the localization error with weights is about 20% lower than

that without weights when σA = 12◦.
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Figure 11. Average localization errors with and without weights.

4.3. Localization coverage. Fig. 12 shows the performances of these multi-

hop localization methods in terms of localization coverage in 2-D and 3-D spaces,

respectively. The communication range varies from 6 m to 12 m in 2-D space and

from 12 m to 22 m in 3-D space. All localization coverages increase monotonically

with the increasing communication range. We observe that the localization coverages

of the DV-hop, DV-distance, the Distance-based method, the Cosine-law method and

our proposed method almost overlap in 2-D space and are much higher than that

of the Euclidean method. It is reasonable since any node which can be located by

the DV-hop, DV-distance, the Distance-based method, and the Cosine-law method

can also be located by our proposed method in 2-D space. However, the Euclidean

method requires more neighboring nodes around a sensor node to be located, which

results in lower localization coverage. When the communication ranges of DV-hop,

DV-distance, the Distance-based method, the Cosine-law method and our proposed

method are relatively large, the localization coverages reach a relatively large value
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and the growth rate becomes slower after that. For example, in Fig. 12(a), the

localization coverages reach 80% when the communication range is 9 m and the

localization coverages do not increase that fast after that.

We also observe that the localization coverage of our proposed method in 3-D

space is lower than that of DV-hop, DV-distance, and the Distance-based method,

as shown in Fig. 12(b) . In 3-D space, our method requires at least one additional

common neighboring node around the to-locate sensor node to estimate the rotation

matrix between two LCSs. In other words, some sensor nodes that can be located by

DV-hop, DV-distance, and the Distance-based method could not be located by the

proposed method in 3-D space, which results in lower localization coverage. However,

this sacrifice is worthy since our proposed method can improve the distance and

localization accuracy remarkably, as shown in Fig. 8 and Fig. 10.
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Figure 12. Localization coverage with various communication ranges.

5. CONCLUSION

In this paper, we proposed a node localization method for underwater wireless

sensor network in 2-D and 3-D spaces, where only a small number of anchor nodes

are available. To localization sensor nodes in UWSNs, distances from sensor nodes to
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anchor nodes are estimated. The whole localization process consists of two phases:

distance estimations by multi-hop propagation and tri-lateration localization. We

also derived the formulas of weights which are added on anchor nodes according to

AoA measurement errors and the number of hops to improve localization accuracy.

Numerous simulations are done to verify and compare our proposed method with the

existing multi-hop localization methods. Simulation results show that our method can

achieve high distance and localization accuracy. Besides, our methods can reach the

same high localization coverage as DV-hop, DV-distance, the Distanc-base method,

and the Consine-law method in 2-D space, even though the localization coverage gets

relatively lower in 3-D space. And the proposed method of calculating weights are

proved to be effective, especially when measurement errors are large.
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ABSTRACT

In this paper, We propose angle of arrival (AoA) assisted localization scheme

for underwater Ad-Hoc sensor networks in 2-D and 3-D. This scheme estimates dis-

tances from sensor nodes to anchor nodes via multi-hops with the help of AoA mea-

surements. By forwarding distance at each node hop-by-hop, the distance estimations

can be flooded to the whole network. Once a sensor node got distance estimations

from at least three (in 2-D) or four (3-D) anchor nodes, the location of the sensor node

is calculated. Comparing to the existing localization schemes in Ad-Hoc networks:

DV-distance, DV-hop, and Euclidean propagation, the simulation results show that

our proposed method improves localization accuracy significantly while keeping high

localization coverage.

1. INTRODUCTION

Underwater Ad-Hoc sensor networks (UWASNET) have found important ap-

plications in ocean exploration, critical structure monitoring, coastal surveillance,

and disaster mitigation. For example, the melting process of the polar ice sheets,
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which contributes to the sea level rise, calls for an underwater Ad-Hoc network to

provide the timely sea level monitoring. Many Ad-Hoc network applications typically

require the knowledge of geographic positions of nodes in the network for mobility

tracking, routing and coordination purposes. The accuracy and coverage of localiza-

tion in an UWASNET are our main concerns. The widely used positioning system is

the Globe Positioning System (GPS) which is not feasible in underwater because the

radio-frequency signals utilized by GPS have very limited communication ranges due

to the strong propagation loss in water[1].

The main feature of an Ad-Hoc network is infrastructure-less and a large

number of randomly placed nodes with varying capability [2]. The typical UWASNET

scenario, which is depicted in Fig. 1, only has a small fraction of nodes with fixed

locations, named anchor node. Anchor nodes know their absolute positions from GPS

or surface buoys. Other nodes called sensor node can estimate their own location

by communicating with other nodes in their communication range. The nodes in the

communication neighborhood of a node are called neighbors of this node.

Sensor node

Anchor node

Located node

Buoy/GPS

Figure 1. The framework of Underwater Ad-Hoc sensor networks.
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The exiting localization schemes in underwater wireless sensor networks are

usually classified into two categories: range-based schemes and range-free schemes [3].

Since range-free schemes can only obtain coarse localization, range-based schemes are

widely used. Range-based schemes [3], which consist of three phases: distance estima-

tion, position estimation and refinement. Since the communication range is limited in

large scale UWASNET, only nodes within a communication neighborhood can obtain

distance estimations between each other by communicating directly with neighbors.

Therefore, the localization coverage is related to node density of the network. In a

dense network, the recursive localization method reaches high localization coverage

[4]. However, when the network is sparse, the localization coverage is getting down

significantly because recursive localization method requires at least four nodes (in

3-D) with known locations within the communication range of the sensor node that

needs to be located. To extend the localization coverage in a sparse network, one

option is to forward distance estimation to anchor nodes hop by hop between sensor

nodes. This distance information starts at the anchor nodes and is flooded to the

whole network.

The paper [5] summarizes three popular algorithms via mulit-hops to estimate

distance in Ad-Hoc networks: DV -hop, DV -distance, and Euclidean propagation

methods. The DV-hop method employs a classical distance vector (DV) exchange

so that sensor nodes in a network estimate distance to anchor nodes in hops. DV-

distance is similar to DV-hop with the difference that distance between neighbors

is propagated in meters rather than in hops. These two schemes just get coarse

localization. Euclidean scheme calculates Euclidean distances between sensor nodes

and anchor nodes, with higher accuracy of distance estimations. Therefore, Euclidean

scheme achieves more accurate localization while with limited localization coverage
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when the ratio of anchor nodes is small[5]. This paper aims to increase the accuracy

of localization while keeping relative high localization coverage in UWASNET. We

propose an angle of arrival (AoA) assisted localization scheme for UWASNET.

Recent work in the field [6] has shown the feasibility of utilizing AoA measure-

ments in underwater networks. The paper [7] utilizes AoA measurements to provide

the 3-D ranging estimation in underwater environment. Papers [8, 9] show localiza-

tion in underwater sensor networks based on AoA. AoA capability is usually achieved

by using directional antennas [10] or antenna array. In this paper, we assume each

nodes in UWASNET is able to measure the AoA from its neighbors. The simulation

results show our proposed scheme can achieve better localization accuracy comparing

to DV-hop and DV-distance schemes, with almost the same high localization coverage

as these two schemes.

2. EXISTING WORK

2.1. DV-hop. The DV-hop scheme counts distances between nodes in hops.

Each node in a network has a hop table {hi} and exchange the table with its neighbors.

The hop forwarding starts from a anchor node and floods into the sensor network.

When a node receives the hop table from its neighbor, the node updates its own hop

table. Once the hop-forwarding hits another anchor node, it estimates the average

size of one hop based on the knowledge of the two anchor nodes’ absolute locations. A

sensor node uses the average size of one hop and its hop table to estimate its distance

to anchor nodes in meters. We can see the DV-hop method is simple and is immune

to measurement errors. However, it can only provide coarse distance estimations.

2.2. DV−distance. The DV-distance approach is similar to the DV-hop

method in terms of the forwarding procedure. The difference lies in that the for-

warded distance between nodes is in meters, rather than in hops. The distance from

a anchor node to a sensor node is then calculated by summing up the hop-by-hop
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distances. The DV-distance scheme is still coarse because the real distance between

a sensor node and a anchor node should be the distance of the line-of-sight, not the

cumulative hop-by-hop distance. For example, in Fig. 4, the distance from node N
[1]
0

to node N3 estimated by DV-distance is the sum of distances between nodes N
[1]
0 and

N1, between nodes N1 and N2, and between nodes N2 and N3.

2.3. Euclidean propagation. The Euclidean method calculates the Euclidean

distances from sensor nodes to anchor nodes. Therefore, this method provides more

accurate distance estimation. However, the Euclidean distance algorithm requires at

least two neighbors that has the known distances to a anchor nodes. This requirement

restricts the localization coverage.

2.4. AoA theory. Each node in the network has an axis against which the

arrival angles from neighbors are reported. After deployment, the axis of a node

has arbitrary direction, which is represented by the bold arrow in Fig. 2. The term

bearing represents the angle measured with respect to a neighbor. In this paper,

bearings of each node with respect to neighbors provides AoA estimations. In Fig. 2,

for node N2, the bearing against the axis provides the AoA measurements of n̂1n2

and n̂3n2 from two neighbors of N1 and N3, respectively. With AoAs measured, the

included angle at the node can be estimated.

N1

N3

N2
n1n2

n3n2

Figure 2. AoAs at a node.
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3. THE PROPOSED SCHEME

3.1. AoA assisted localization in 3-D. Without loss of generality, a sim-

ple scenario of UWASNET in 3-D is shown in Fig. 3, where nodes of N1, N2 and

N3 are sensor nodes. N
(k)
0 (k ⊆ [1, K]) denotes the k-th anchor node in the network,

where K is the number of the anchor nodes in the network. So N
(1)
0 is the first anchor

node in the network. Only node N1 is within the communication range of the first

anchor node. Nodes N2 and N3 are too far to communicate with node N
[1]
0 directly.

And node N2 is a neighbor of nodes N1 and N3. Node N3 can only reach node N2.

We call each communication range as one hop. In other words, there are three hops

between anchor node N
[1]
0 and node N3. Let the hop-count of anchor node equal to 0

and the hop-counts of node N1, N2 and N3 be 1, 2, and 3, respectively. We assume

the neighbors in a communication range have the capability of distance measuring

between each other by time of arrival (ToA) or time difference of arrival (TDoA) or

received signal strength indicator (RSSI). r
(1)
01 in Fig. 3 denotes the distance mea-

sured from anchor node N
(1)
0 to the sensor node N1. r12 is the distance measurement

between sensor nodes of N1 and N2.

All nodes, equipped with multi-modal directional piezoelectric underwater

transducers, can be configured to measure both azimuth and elevation angles [7].

In 3-D, each sensor node has its own local coordinate system with arbitrary orienta-

tion and with the sensor node as the origin of the local coordinate system. The AoA

of node Ni in the 3-D coordinate system of the node Nj is represent by a vector

vij =[θij, φij] i, j ⊆ [1, N ] (1)

where θij denotes elevation angle and φij represents azimuth angle in the local coor-

dinate system of node j, and N is the number of the sensor nodes in the network.

The AoA vector of anchor node N
(1)
0 at node N1 is v

(1)
01 = [θ

(1)
01 , φ

(1)
01 ], and the AoA
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vector at node N1 from node N2 are v21 =[θ21, φ21]. The AoA vectors of sensor nodes

N3 and node N1 at node N2 are v32 = [θ32, φ32] and v12 = [θ12, φ12], which are shown

in in Fig. 3.

N0
(1)

N1

N2

N3

θ01
(1)
θ21

φ21

θ12

φ12

θ32

φ32

X1

Y1

Z1

X2

Y2
Z2

X3 Y3

Z3

r01
(1)

r21/r12 r32

X1'

Y1'

Z1'

φ01
(1)

L02

L03

Figure 3. AoA assisted distance estimation in 3-D network with multiple nodes.

According to the transform of Spherical Coordinate System (SCS) to Rect-

angular Coordinate System (RCS), the rectangular coordinates of anchor node N
(1)
0

(A
(1)
01 ) in the local RCS X1Y1Z1 is defined as

A
(1)
01 = [x

(1)
01 , y

(1)
01 , z

(1)
01 ]T (2)

where []T represents transpose of a matrix and x
(1)
01 , y

(1)
01 , z

(1)
01 are calculated as

x
(1)
01 =r

(1)
01 sin θ

(1)
01 cosφ

(1)
01

y
(1)
01 =r

(1)
01 sin θ

(1)
01 sinφ

(1)
01

z
(1)
01 =r

(1)
01 cos θ

(1)
01

(3)

For the same reason, the rectangular coordinates A21 of node N2 in the RCS X1Y1Z1

is expressed as

A21 = [x21, y21, z21]T (4)
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where yL11, zL11 are calculated as

x21 =r21 sin θ21 cosφ21

y21 =r21 sin θ21 sinφ21

z21 =r21 cos θ21

(5)

Once the the rectangular coordinates of anchor node N
(1)
0 and node N2 are

gotten in the RCS X1Y1Z1, the distance between these two nodes L
(1)
02 is calculated

by

L
(1)
02 = ‖A21 −A

(1)
01 ‖ (6)

where ‖ · ‖ denotes the vector norm. Substituting equations (2)-(5) into equation (6),

node N2 with 2 hops gets its distance estimation from anchor node N
(1)
0 .

The next step is to estimate the distances of nodes with hop-count more than

2 to anchor nodes, like the distance from node N3 to anchor node N
(1)
0 L

(1)
03 . The

main idea is to find the rectangular coordinates of the sensor node and the anchor

node with respect to the same RCS of another node. For example, the distance L
(1)
03

is obtainable once the coordinates of node N3 and nchor node N
(1)
0 are found in the

local N2 RCS. The coordinates of node N3 A32 in the N2 RCS is easy to calculate

because node N3 is a neighbor of node N2. However, the coordinates of the landmark

N
(1)
0 A

(1)
02 in N2 RCS cannot be calculated by communicating directly between these

two nodes because they are not located within a neighborhood. To get coordinate

A
(1)
02 , we first calculate the coordinates of node N1 in N2 RCS, denoted as A12. Since
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node N1 can communicate directly with node N2, the coordinates A12 is expressed as

x12 =r12 sin θ12 cosφ12

y12 =r12 sin θ12 sinφ12

z12 =r12 cos θ12

(7)

If we parallel shift the origin of the RCS X1Y1Z1 to node N2, as shown by the thick

dash lines in Fig. 3, then, the RCS X
′
2Y
′

2Z
′
2 has the same orientation of the RCS

X1Y1Z1 while having node N2 as the origin. Therefore, the coordinates of node N1

in RCS X
′
2Y
′

2Z
′
2, denoted as A

′

12, satisfies

A
′

12 =-A21 (8)

It is noticed that RCS X
′
2Y
′

2Z
′
2 is a rotation of RCS X2Y2Z2 with the same

origin. Let R12 be the rotation matrix of these two RCSs in node N2 with 3 × 3

dimensions.

A12 = R12A
′

12
(9)

Therefore, the rotation matrix can then be determined by

R12 = A12(A
′T
12A

′

12)−1A
′T
12

(10)

The coordinates of a node in RCS X1Y1Z1 can be transformed into coordinates in

RCS X2Y2Z2 with considering the origin difference and rotation matrix between these

two RCS. The coordinate of anchor node N
(1)
0 in RCS X2Y2Z2 A

(1)
02 is expressed as

A
(1)
02 = R12A

(1)
01 + (−A12) (11)
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where −A12 is considered as the original point offset. Substituting equation (8) and

(10) into equation (11), coordinates A
(1)
02 is calculated. The distance between anchor

node N
(1)
0 and node N3 is then shown below

L
(1)
03 = ‖A(1)

02 −A32‖ (12)

With the same method, the distance estimation can be flooded to more nodes

with higher hop-count in the whole network. Once a sensor node obtain distances

to more than 4 anchor nodes (in 3-D ) or 3 anchor nodes (in 2-D ), its position is

calculated by using trilateration algorithm, like the located node in Fig. 1. With

more anchor nodes available, Least Squares method is usually used to optimize the

location estimation [11].

3.2. AoA assisted localization in 2-D. Sometimes, we just need local-

ization in 2-D in underwater because the depth can be obtained by using pressure

sensors. Localization procedure in 2-D is Just like the localization algorithm in 3-D,

with the parameter θij = π/2. We also should note that the rotation matrix is 2× 2

dimensions, instead of 3× 3 dimensions in 3-D.

We introduce another straightforward scheme to localization in 2-D in this

section. This method is based on the law of cosines to calculate distances rather than

coordinates transformation in different RCS used in 3-D localization.

A node, from which the hop-count of a neighbor node is derived, is called prior

node of the neighbor node. In turn, the node whose hop-count is derived is termed

as posterior node. For example, for node N2, nodes N1 and N3 are the prior and

posterior nodes.

Any node that has two communication neighbors is able to obtain its included

angle between these two neighbors by using AoA measurements [2]. For example, the

include angle at node N2 with respect to nodes N1 and N3 is obtainable as long as
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Figure 4. Basic principle of AoA assisted distance estimation in 2-D.

node N2 receives the AoAs from nodes N1 and N3. This included angle at a node

between the prior node and posterior node is termed as mearsued-angle of this node.

For example, the measured-angle of node N2 in Fig. 4 is 6 N2m. The distance between

nodes N2 and N
[1]
0 is inferred according to the law of cosines, with the angle 6 N1m

and distances of L
[1]
01 and L12, which is shown in equation (13).

L
[1]
02 =

√
{L[1]2

01 + L2
12 − 2L

[1]
01L12 cos(6 N1m)} (13)

Therefore, the node N2 with the hop-count of 2 obtains its distance estimation to

the anchor node. Once L
[1]
02 is calculated, the angle 6 N2e in Fig. 4, which is called

estimated-angle at node N2, is acquirable based on the law of cosines.

6 N2e=arccos

{
L

[1]2
02 + L2

12 − L
[1]2
01

L
[1]
02L12

}
(14)

For node N3, the distance L
[1]
03 is calculated based on the knowledge of L

[1]
02, L23, 6 N2e

and 6 N2m.

L
[1]
03 =

√
L

[1]2
02 + L2

23 − 2L
[1]
02L23 cos(6 N2m ± 6 N2e) (15)

With the same method, nodes with higher hop-counts can get the distance estimations

from anchor nodes.
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4. SIMULATION RESULTS

In this section, we simulate the proposed propagation method, DV-hop, and

DV-distance and compare their performances.

In our simulation, 100 sensor nodes are randomly distributed in a 20×20 Km2

region. The anchor node ratio is 5%. The node degree is defined as the expected

number of nodes in a communication neighborhood. The node degree is controlled by

changing the communication range R. The errors of AoA and distance measurements

in a neighborhood follow normal distributions, with zero as mean values and standard

deviations σ to be some percents of the real angles and distances.

Three performance metrics are considered in this paper: distance estimation

error, localization error and localization coverage. The distance estimation error is

defined as the difference between the real distance and the estimated distance of a

sensor node to anchor nodes, which affects the localization accuracy. Localization

error is defined as the average distance of the real positions and estimated positions

of nodes. The localization coverage is the ratio of number of located nodes to the

total number of sensor nodes in the network.

The cumulative distribution of estimated distance errors is demonstrated in

Fig. 5 with σ of 0.1, 0.05, and 0.01, respectively. The communication range is set as

R = 5Km. The distance errors are normalized by the communication range.

We notice from Fig. 5 that our proposed scheme has smaller estimated dis-

tance errors than DV-hop and DV-distance methods. For example, for σ = 0.05,

90% of the trails of our proposed algorithm have distance errors within 7.6% of the

communication range. In contrast, the distance errors for DV-hop and DV-distance

reach to 23% and 27% of the communication range for 90% of the trails. However,

our proposed method and DV-distance method corrupt with increasing measure error

of distances and angles. DV-hop method is immune to measure error.
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Figure 5. Cumulative estimation of distance errors to anchor nodes with different σ.

Fig. 6 shows the distance error distribution with different communication rang

R or different node degrees. The standard deviation of measurement σ=0.05. The per-

formance of our propose algorithm is still the best, and get worse with the decreased

communication range R. The DV-distance method suffers more from the decreasing

R. The performance of DV-distance even becomes worse than DV-hop method when

R is getting smaller.

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

estimated distance error of sensor nodes

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n 

of
 d

is
ta

nc
e 

er
ro

rs

Empirical CDF

 

 

proposed scheme with R=6

DV−distance with R=6

DV−hop with R=6

DV−hop with R=5

DV−distance with R=5

proposed scheme with R=5

proposed scheme with R=4

DV−hop with R=4

DV−distance with R=4

Figure 6. Cumulative estimation of distance errors to landmarks with different R.



77

The localization coverage of DV-hop, DV-distance and the proposed scheme

is depicted in Fig. 7, where the three curves almost overlap. Therefore, the proposed

algorithm achieves as high coverage as DV-hop and DV-distance.
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Fig. 8 plots the localization error versus communication range R. The σ is set

to be 0.05. It is observed that our proposed method has much smaller localization

errors comparing to DV-hop and DV-distance methods. When the communication

range increases, the location error is getting smaller. The significant improvement of

location accuracy is the main advantage of our propose method.

5. CONCLUSION

In this paper, this paper proposed an AoA assisted localization scheme for

underwater Ad-Hoc networks in 2-D and 3-D, where only a small fraction of anchor

nodes are available. To localization sensor nodes in UWANET, distances from sensor

nodes to anchor nodes are estimated. Comparing with DV-hop and DV-distance al-

gorithms, our proposed scheme can improve the accuracy of localization significantly.

What’s more, the localization coverage of our scheme keep as high as DV-hop and

DV-distance algorithms.
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ABSTRACT

This paper compares the performance of single pseudo-noise (PN) and dual PN

(DPN) sequences for time of arrival (ToA) estimation in underwater acoustic (UWA)

localization. The single PN scheme uses the correlation of a local PN sequence and

the received PN signal to estimate the ToA. The DPN scheme utilizes the cross

correlation of the two received PN segments in one signal frame to calculate the ToA.

Both simulation and field test results show that the DPN design outperforms the

single PN scheme, as the DPN scheme is robust to the severe underwater acoustic

channel dispersion and the high carrier frequency offset (CFO) in low-cost hardware

systems where the atomic clock is unavailable.

1. INTRODUCTION

Underwater wireless sensor networks (UWSN) have found important appli-

cations in ocean exploration, critical structure monitoring, coastal surveillance, and

disaster mitigation. In these applications, sensing information is often tagged with

time and locations that can be used for tracking nodes and coordinating motion [1].
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For example, bridge scour monitoring is made possible with “smart rocks” that are

equipped with acoustic transceivers and sensors, and anchor nodes near the river

banks utilize the acoustic communication signals to locate the sensor nodes in water

[2].

The exiting localization schemes in underwater wireless sensor networks are

usually classified into two categories: range-based schemes and range-free schemes [3].

Since range-free schemes can only obtain coarse localization, range-based schemes are

widely used. In the range-based approaches, the distance is measured by several

schemes: received signal strength indicator (RSSI), time difference of arrival (TDoA)

and time of arrival (ToA) [4]. Most range-based localization schemes use ToA or

TDoA due to the slow sound propagation in underwater ( 1500 m/s) and the ToA

and TDoA schemes can achieve better accuracy than the RSSI schemes [3]. In this

paper, we investigate low cost ToA estimation methods using pseudo noise (PN)

sequences. We identify two challenges when these PN based ToA estimation methods

are applied in practical underwater localization system.

First, the ToA estimation is sensitive to the dispersion in underwater acous-

tic (UWA) channels. Typically, UWA channels exhibit severe multipath fading and

Doppler spread that arises from nodes or water motion [5]. For example, the mul-

tipath delay in the shallow water channel is typically at the level of several tens

milliseconds. Moreover, the direct path may not exhibit the strongest energy, which

results in the ambiguity for the arrival time estimation. The experimental results in

[2] have shown that ToA estimations fluctuated due to the severe multipath spread

in the UWA channels.

Second, the high carrier frequency offset (CFO) in the low cost hardware

system may greatly lower the accuracy of PN based ToA estimation. The single PN

based design was initially implemented on a DSP platform with high performance

piezo-electrical crystal oscillator [2]. To further lower the hardware cost and power
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consumption, we investigate a new PN based localization system with cheap and low

power consumption MCU (Micro-controller Unit) and oscillator. We identify a major

challenge in the low cost ToA estimation design: the cheap oscillator in the low cost

design has unstable carrier frequency, which results in high carrier frequency offset

(CFO), up to 1800 PPM (Parts Per Million). Through simulation and field test, we

find that the high CFO greatly degrades the accuracy of the traditional PN based

ToA estimation.

We evaluate two PN based schemes for the ToA estimation under these two

challenges: dual PN (DPN) scheme and single PN scheme. The DPN signal frame

consists of two identical PN sequences separated by some gaps. We calculate the

cross correlation of the two PN segments in the received DPN frame, rather than the

correlation of the received single PN and a local PN, which is used in the single PN

scheme. Therefore, the dual PN based approach has two advantages over the single

PN method. First, the cross correlation operation in the dual PN method could focus

the multipath signal, which is capable of combatting the multipath effect in the UWA

channels. Second, since the cross correlation is operated with two segments of the

received PN signals, the high CFO has no influence on the ToA estimation accuracy in

the low cost transceiver system where cheap system clocks are used. Both simulation

and field test show that the dual PN based localization scheme is robust in the low

cost localization design and in UWA channels.

2. PN BASED TOA ESTIMATION SCHEME

We consider two PN based approaches in ToA estimation: single PN scheme

and DPN scheme. Both single PN and DPN schemes estimate the ToA by detecting

the peak index of the correlation output. In this section, we briefly review these two

PN based ToA estimation methods.
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2.1. Single PN scheme. The transmitted signal in the single PN scheme

is depicted in Fig. 1. A PN sequence of length NS1 is added before the message

payload as a preamble, which is used for ToA estimation. Besides, a length NS2

guard interval is inserted between the the preamble and the payload to prevent the

Inter-Block Interference (IBI).

PN Guard Payload

NS1 NS2 NS3

NS

Figure 1. Transmitted signal frame in the single PN scheme.

We calculate the cross-correlation of the received single PN signal and the local

PN sequence to obtain the ToA estimation. Let xsb(t) be the baseband PN of the

transmitted signal with pulse shaping. The transmitted passband signal is expressed

as

xsp(t)=Re{xb(t)ej2πfct} (1)

where j =
√
−1, fc is the carrier frequency at the transmitter, and Re{} is the real

part of a complex variable. Let the bansband channel be hb(t), which includes an

unknown fraction phase delay, and the passband channel is then

hp(t)=Re{hb(t)ej2πfct} (2)

At the receive side, the received signal

ysp(t)=xsp(t)⊗ hp(t) + ηp(t) (3a)

=Re{xb(t)ej2πfct} ⊗ hp(t) + ηp(t) (3b)

=Re{xb(t)⊗ hb(t)ej2π∆fctej2πf
′
ct}+ ηp(t) (3c)
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where ηp(t) is the additive Guassian noise, the operator ⊗ represents the convo-

lution operation, ∆fc = fc − f
′
c is the carrier frequency offset caused by the low-

cost localization system, f
′
c is the coherent carrier frequency at the receiver, and let

x̃b(t) = xb(t)⊗hb(t)ej2π∆fct+ηb(t) be the received complex baseband equivalent signal,

where ηb(t) is the baseband noise.

The passband local single PN signal with the coherent carrier frequency is

xsl(t)=Re{xb(t)ej2πf
′
ct} (4)

The correlation of the local PN signal and the received PN signal is calculated

as

Rs(t)=xsl(t)� ysp(t) (5a)

=Re{[xb(t)� x̃b(t)] · [ej2πf
′
ct � ej2πf

′
ct]} (5b)

=Re{RS
xx̃(t) ·Rc′c′ (t)} (5c)

where the operator � represents the correlation operation, the operator · represents

the multiplication, RS
xx̃(t) = xb(t)� x̃b(t) is the cross-correlation of the local PN and

the transmitted single PN signal with frequency offset and multipath channel, and

Rc′c′ (t) = ej2πf
′
ct � ej2πf

′
ct is the auto-correlation of the carrier wave. Note that the

CFO and channel effects are included in RS
xx̃(t).

2.2. DPN scheme. The data structure of DPN scheme is described in Fig. 2.

The DPN frame has two identical PN sequences, instead of one PN sequence, as the

frame preamble. A guard interval of ND2 is inserted between two PN segments to

prevent IBI. These two PN segments in the preamble are used to estimate the arrival

time of a frame by calculating their cross-correlation.



85

PN ZP PN Guard PayloadGuard

ND1 ND2 ND1 ND3 ND4

ND

Figure 2. Transmitted signal frame of the DPN scheme.

The passband transmitted signal is expressed as

xDp(t) = Re{[xD1(t) + xD1(t− t2)]ej2πfct}. (6)

where t2 =(ND1 +ND2)T0 (T0 is the symbol duration), and xD1(t) represents the first

PN sequence with pulse shaping. The received signal at passband is

yDp(t)=xDp(t)⊗hp(t)+ηp(t)

=Re
{
[xD1(t)+xD1(t−t2)]⊗hb(t)ej2πfct

}
+ηp(t) (7)

The received signal is saved in memory and the first segment is delayed by

t1. Assuming the channel experienced by the two segments is the same, then the

correlation between the two PN segments is calculated as

RD(t)=[Re{xD1(t− t1)⊗ hb(t)ej2πfct}+ ηp(t)]

� [Re{xD1(t− t2)⊗ hb(t)ej2πfct}+ ηp(t)] (8a)

=Re{RD
xx(t)⊗Rhh(t) ·Rcc(t)}+Rη(t) (8b)

where Rη(t) is the correlation related to the noise signal, RD
xx(t) = xD1(t − t1) �

xD1(t− t2) with t1 = t2 is the cross-correlation of the two baseband PN segments of

the transmitted single, Rhh(t) = hb(t)� hb(t) is the auto-correlation of the baseband

channel. Note Rcc(t) = ej2πfct � ej2πfct.
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From equation (8b), we find that the cross-correlation of the two PN segments

in the received signal actually focuses the multipath signal energy into a smaller num-

ber of taps, which increases the reliability of the ToA estimation in UWA channels.

Moreover, the CFO would has no influence on the correlation because both segments

experience the same CFO.

3. SIMULATION RESULTS

In this section, we use simulation to evaluate the performances of single PN

and DPN schemes for ToA estimation under CFO and UWA multipath delay. The

PN sequences were generated using maximal linear feedback shift registers (MLS),

termed as m-sequence. For length-m registers, it produces a sequence of (2m−1) bits.

We added one bit of zero at the end of the m-sequence so that the PN length is 2m

bits.

3.1. The method of evaluate correlation property. Since the ToA is

measured through detecting the peak time index of the cross-correlations of PN se-

quences, we propose a method to measure the correlation performance of both the

single PN and DPN schemes. If the correlation is conducted without signal distor-

tions, we consider it as the reference correlation C0 and its peak time index as the

reference peak index PT . We set a window centered at time index PT for correlation

observation. The window size WS should be large enough to include the main lobe of

the reference correlation curve so that the main energy of the correlation is contained

in this window. Fig. 3 gives a correlation output of two PN sequences with a window

centered at PT . Besides, the section of a correlation curve occupying the window is

termed as CW . We calculate the energy of CW as

PCW =

PT+WS/2∑
k=PT−WS/2

R2
y[k] (9)
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Where Ry[k] is the correlation after sampling. The total energy of the correlation

output is expressed as

PC =
∑
k⊆K

R2
y[k] (10)

where K represent the whole set of time indexes of the correlation curve. The corre-

lation performance metric SC is measured by

SC =
PCW
PC

(11)

where SC is the ratio of the energy in the window over the whole energy of the

correlation output. And let SC0 represents the reference correlation C0 performance,

over which other SC will be evaluated. The correlation performance relative to the

reference correlation is expressed as

RC =
SC
SC0

(12)

When the correlation performance gets worse, the main lobe spreads or the peak

index drifts from PT , which lower PCW and RC . Note that the RC value will vary with

different WS. When we evaluate the correlation performance in different situations,

WS should keep being identical. In our simulations, we set WS equals to two bit

duration, which contains and only contains the main lobe of the reference correlation

curve. If only one distinct peak can be observed in a correlation curve, we consider it

as reliable for ToA estimation. According to this criterion We can set a threshold value

of RC to evaluate the reliability of the correlation for accurate ToA estimation. Any

correlation output with RC larger than the threshold is considered as good enough

to estimate ToA.
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3.2. Carrier frequency offset (CFO) effect. Fig. 4 shows the correlation

performance of two single PNs with different CFOs. The multipath channel and noise

are not considered in this simulation. The case number represents different cases.

Case1: NS1 = 32 bits; case2: NS1 = 64, case3: NS1 = 1284; case4: NS1 = 256 bits.

Note that RC is ’1’ when there is no CFO and decreases with increasing CFO. We

set the threshold RC = 0.2 by analyzing the correlation outputs in our simulations.

For example, the correlation outputs with CFO=1800 PPM are not reliable because

it’s RC is smaller than 0.2. Besides, from Fig. 4 we find the longer PN sequences are

more sensitive to CFO.
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Figure 3. Correlation of single PN scheme with CFO=200 PPM, PN length=64 bits.

The correlation performance of DPN scheme with CFO is demonstrated in

Fig. 5. The cases presented in Fig. 5 has the same PN lengths as the cases in Fig. 4,

and the guard length is set as 200 bits for all cases. Obviously, the DPN correlations

almost do not change with different levels of CFOs, almost stay at the value of ’1’.

Therefore, we conclude that the CFO would not affect the correlation output in the

DPN scheme.



89

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Case number

R
C

 

 

CFO=0 PPM

CFO=200 PPM

CFO=400 PPM

CFO=1800 PPM

Figure 4. Correlation performance of single PN scheme with CFO.

3.3. Multipath channel effect. To evaluate the multipath effect on the PN

based ToA estimation, we adopted an estimated channel from field experiment shown

in Fig. 6 in our simulation. This channel is very tough for ToA estimation, as it ex-

hibits severe multipath effect and the first path is not with the strongest energy. Note

in the following simulation, both CFO and noise are not considered. Fig. 7 depicts

the correlation performance of single PN with multipath delay. Compared with the

correlation output without multipath channel, the reliability of the correlation RC

under multipath channel decreases to be below 0.2. Therefore, the multipath delay

has significantly influence on the correlation performance of single PN scheme.

The correlation performance of DPN scheme under multipath channel is shown

in Fig. 8. Note that although RC is reduced with multipath channel comparing with

the RC without channel, it is still good enough to get the accurate ToA estimation,
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Figure 5. Correlation performance of DPN scheme with CFO.

because all the RC is higher than the threshold we set. Thus, the ToA estimation

based on the DPN signal can efficiently combat the multipath delay effect in the UWA

channels.

4. EXPERIMENT RESULTS

A hardware test-bed was designed to verify the PN based localization schemes.

The circuit board serves as a transceiver in the acoustic communication, forming a

node in UWSN. To reduce the cost of the test-bed, We chose the low power dissipation

and cheap MCU, Texas Instrument MSP430F5529, which contains a 12-bit analog to

digital converter (ADC12) module. The conversion results of the ADC12 are restored

in the SRAM of MCU. A cheap crystal oscillator CSTCR4M00G15L99 is used as the

source of the main clock in MCU, termed as MCLK. Its price is US $0.7 per unit,
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Figure 6. Estimated channel impulse response with to-sampling, from TX3 to RX1.

which is extremely cheap comparing with the atomic clock that is commonly used in

underwater localization. Even the oversize oscillator used in [2] is US $3.5 per unit.

Meanwhile, the low-cost design has some disadvantages. First, The SRAM in the

MCU is limited. Thus, We set the ADC output to be left aligned. That is we only

save the higher 8 bits of out the 12-bit ADC results and throw the lower 4 bits away,

reducing the result resolution while doubling the available memory in MCU. Second,

the oscillator CSTCR4M00G15L99 has high frequency offset up to 1800 PPM. The

main draw back of the hardware test-bed is the high CFO.

We conducted a field experiment to test the PN based ToA estimation schemes

on the low-cost test-bed. The experiment field was at the Pine Lake, Rolla, MO, in

November 2015. The lake and area are shown in Fig. 9, where the wooden bridge
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Figure 7. Correlation performance of single PNs with multipath channel.
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Figure 8. Correlation performance of DPN scheme with multipath channel.

runs across the island and the side of the lake. We placed four receivers RX1 to RX5

around the wooden bridge and four transmitters TX1 to TX4 on the bridge, which are

shown in Fig. 9.
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Figure 9. Experiment spot for the field test at Pine Lake, Rolla, MO.

Fig. 10 shows the correlation performance of the the local PN and received

single PN signal with NS1 = 128 bits, at RX1, TX3, at the 10th second. As there

is no distinct peak observed in Fig. 10, We are unable to detect the correct peak

location. Note that the ToA estimation in Fig. 10 should the difference of a possible

distinct peak index in this curve and the index of 5000. At the same time slot and

location, the correlation output of the DPN scheme shown in Fig. 11 has only one

distinct peak. And the ToA estimation in this figure is the peak index. Therefore,

the accurate ToA estimation is achieved with the DPN based scheme.
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Figure 10. Cross-correlation of local PN and received single PN.
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Figure 11. Cross-correlation of two PNs in the DPN frame.

5. CONCLUSION

This paper compares two PN based localization schemes on a low-cost hard-

ware system for ToA estimation in UWA localization. The simulation and field ex-

periment results show single PN approach is sensitive to the UWA channel multipath
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delay, and also requires higher frequency precise of the system clock. In contrast,

the DPN scheme can effectively combat the severe multipath effect in UWA chan-

nel. Moreover, CFO in our low-cost hardware test-bed has no influence to the DPN

scheme. Therefore, the DPN scheme is more promising for the low cost localization

system in severe UWA environments.
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SECTION

2. SUMMARY AND CONCLUSIONS

This dissertation proposes two novel magnetic induction (MI)-based localiza-

tion methods in wireless sensor networks, which can be applied in some challenging

environments such as underground, underwater, inside of animals, and indoor. A

close-form formula of the transmission distance is derived in this dissertation. Taking

advantage of magnetic field measurements of the tri-directional coil at each node,

this method is able to locate sensor nodes with arbitrary orientations and positions

in the 3-D space, only assisted with two anchor nodes. Assuming each anchor node

sequentially transmits the communication signal by the three orthogonal Tx coils

in a tri-directional structure, and the sensor node receives the signals at the three

orthogonal Rx coils simultaneously, the communication distance and the polar an-

gles of transmission are estimated in a local coordinate system of the anchor node.

These estimates from the two anchor nodes yield two sets of 8 possible locations of

the sensor node. Then, a rotation matrix (RM) between the transmitter and re-

ceiver is derived to narrow down to two possible location vectors with the opposite

directions in each anchor node. Finally, we use the maximum likelihood method to

estimate the accurate location from the two sets of two location vectors. Another is

distance-based method that finds the minimum distance between nodes in two local

coordinates system. The pair of nodes with minimum distance are used to locate the

sensor node. Numerous simulations show the proposed RM-based method can reach

high localization accuracy under large measurement errors. Simulation results also
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prove the RM-based method has higher accuracy in terms of transmission distance

estimation than the wide-used RSSI model. On the other hand, the distance-based

method xhibits less computational complexity and is faster.

This dissertation also proposes a novel node localization method based on

acoustic communications for underwater wireless networks (UWSNs) in 2-D and 3-D

spaces, respectively, where only a small number of anchor nodes are available. The

proposed scheme estimates distances from anchor nodes to sensor nodes via multi-hop

propagations with the help of angle of arrival (AoA) measurements. By forwarding

distances hop-by-hop through the wireless network, the distance estimations can be

flooded to the whole network even if the network is sparse. Once a sensor node obtains

distance estimates from at least three (in 2-D) or four (3-D) anchor nodes, it can

compute its own location by the trilateration algorithm. In contrast to existing multi-

hop methods such as DV-hop, DV-distance, Euclidean method, Cosine-law method,

and Distance-based method, our proposed method uses rotation matrices between

neighboring nodes to estimate Euclidean distances to anchor nodes. Therefore, the

proposed method can improve localization accuracy significantly. Simulation results

show that our method can achieve high distance and localization accuracy. Besides,

our methods can reach the same high localization coverage as DV-hop, DV-distance,

the Distance-base method, and the Consine-law method in the 2-D space, even though

the localization coverage gets relatively lower in the 3-D space.

This dissertation investigates the performances of single pseudo-noise (PN) and

dual PN (DPN) sequences for time of arrival (ToA) estimation in underwater acoustic

(UWA) localization. ToA is widely used to estimate distance in UWA localization.

The accuracy of ToA estimates is crucial to localization accuracy. The single PN

scheme calculates the correlation of a local PN sequence and the received PN signal

to estimate the ToA. The DPN scheme calculates the cross correlation of the two

received PN segments in one signal frame to estimate the ToA. The simulation and
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field experiment results show that the single PN approach is sensitive to the UWA

channel multipath delay and also requires higher frequency precise of the system

clock. In contrast, the DPN scheme can effectively combat the severe multipath

effect in UWA channel. Moreover, CFO in our low-cost hardware test-bed has no

influence to the DPN scheme. Therefore, the DPN scheme is more promising for the

low-cost localization system in severe UWA environments.
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