1,674 research outputs found

    TWINLATIN: Twinning European and Latin-American river basins for research enabling sustainable water resources management. Combined Report D3.1 Hydrological modelling report and D3.2 Evaluation report

    Get PDF
    Water use has almost tripled over the past 50 years and in some regions the water demand already exceeds supply (Vorosmarty et al., 2000). The world is facing a “global water crisis”; in many countries, current levels of water use are unsustainable, with systems vulnerable to collapse from even small changes in water availability. The need for a scientifically-based assessment of the potential impacts on water resources of future changes, as a basis for society to adapt to such changes, is strong for most parts of the world. Although the focus of such assessments has tended to be climate change, socio-economic changes can have as significant an impact on water availability across the four main use sectors i.e. domestic, agricultural, industrial (including energy) and environmental. Withdrawal and consumption of water is expected to continue to grow substantially over the next 20-50 years (Cosgrove & Rijsberman, 2002), and consequent changes in availability may drastically affect society and economies. One of the most needed improvements in Latin American river basin management is a higher level of detail in hydrological modelling and erosion risk assessment, as a basis for identification and analysis of mitigation actions, as well as for analysis of global change scenarios. Flow measurements are too costly to be realised at more than a few locations, which means that modelled data are required for the rest of the basin. Hence, TWINLATIN Work Package 3 “Hydrological modelling and extremes” was formulated to provide methods and tools to be used by other WPs, in particular WP6 on “Pollution pressure and impact analysis” and WP8 on “Change effects and vulnerability assessment”. With an emphasis on high and low flows and their impacts, WP3 was originally called “Hydrological modelling, flooding, erosion, water scarcity and water abstraction”. However, at the TWINLATIN kick-off meeting it was agreed that some of these issues resided more appropriately in WP6 and WP8, and so WP3 was renamed to focus on hydrological modelling and hydrological extremes. The specific objectives of WP3 as set out in the Description of Work are

    Evapotranspiration estimation using Landsat-8 data with a two-layer framework

    Get PDF
    This work was partially supported by the National Natural Science Foundation of China (41401042), National Key Basic Research Program of China (973 Program) (Grant No. 2015CB452701) and National Natural Science Foundation of China (Grant Nos. 41571019 and 41371043).Peer reviewedproo

    Recent trends in vegetation greenness in China significantly altered annual evapotranspiration and water yield

    Get PDF
    There has been growing evidence that vegetation greenness has been increasing in many parts of the northern middle and high latitudes including China during the last three to four decades. However, the effects of increasing vegetation greenness particularly afforestation on the hydrological cycle have been controversial. We used a process-based ecosystem model and a satellite-derived leaf area index (LAI) dataset to examine how the changes in vegetation greenness affected annual evapotranspiration (ET) and water yield for China over the period from 2000 to 2014. Significant trends in vegetation greenness were observed in 26.1% of China\u27s land area. We used two model simulations driven with original and detrended LAI, respectively, to assess the effects of vegetation \u27greening\u27 and \u27browning\u27 on terrestrial ET and water yield. On a per-pixel basis, vegetation greening increased annual ET and decreased water yield, while vegetation browning reduced ET and increased water yield. At the large river basin and national scales, the greening trends also had positive effects on annual ET and had negative effects on water yield. Our results showed that the effects of the changes in vegetation greenness on the hydrological cycle varied with spatial scale. Afforestation efforts perhaps should focus on southern China with larger water supply given the water crisis in northern China and the negative effects of vegetation greening on water yield. Future studies on the effects of the greenness changes on the hydrological cycle are needed to account for the feedbacks to the climate

    Integrating remote sensing information into a distributed hydrological model for improved water budget predictions in large - scale basins through data assimilation

    Get PDF
    This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems

    Evaluation of six satellite-based terrestrial latent heat flux products in the vegetation dominated Haihe river basin of north China

    Get PDF
    In this study, six satellite-based terrestrial latent heat flux (LE) products were evaluated in the vegetation dominated Haihe River basin of North China. These LE products include Global Land Surface Satellite (GLASS) LE product, FLUXCOM LE product, Penman-Monteith-Leuning V2 (PML_V2) LE product, Global Land Evaporation Amsterdam Model datasets (GLEAM) LE product, Breathing Earth System Simulator (BESS) LE product, and Moderate Resolution Imaging Spectroradiometer (MODIS) (MOD16) LE product. Eddy covariance (EC) data collected from six flux tower sites and water balance method derived evapotranspiration (WBET) were used to evaluate these LE products at site and basin scales. The results indicated that all six LE products were able to capture the seasonal cycle of LE in comparison to EC observations. At site scale, GLASS LE product showed the highest coefficients of determination (R2) (0.58, p 2), followed by FLUXCOM and PML products. At basin scale, the LE estimates from GLASS product provided comparable performance (R2 = 0.79, RMSE = 18.8 mm) against WBET, compared with other LE products. Additionally, there was similar spatiotemporal variability of estimated LE from the six LE products. This study provides a vital basis for choosing LE datasets to assess regional water budget

    Uso de sensores remotos en el seguimiento de la vegetación de dehesa y su influencia en el balance hidrológico a escala de cuenca

    Get PDF
    The Mediterranean region is characterized by hot summers with long dry periods, a situation that may be exacerbated by the progressive global warming. In these water-limited environments where productivity of the ecosystems depends mainly on water availability, the reduction of freshwater resources can have severe consequences. An increase in aridity may lead to low productivity, land degradation and unwanted changes in land use. To reduce the vulnerability of Mediterranean landscapes it is important to improve our knowledge of the hydrological processes conditioning the water exchanges, with evapotranspiration (ET) being a key indicator of the state of ecosystems and playing a crucial role in the basin's water and energy balances. The goal of this dissertation is to improve our understanding of the evapotranspiration dynamics over Mediterranean heterogeneous and complex vegetation covers, with a focus on the dehesa ecosystem. The final aim is to contribute to the conservation of the water resources in these regions in the medium to long term, supporting the decision-making processes with quantitative, distributed, and high-quality information. To reach this goal, in this research the evaluation of remote sensing-based soil water balance (SWB) and surface energy balance (SEB) models was proposed to monitor the water consumption and water stress of typical Mediterranean vegetation at different spatial and temporal scales. In particular, the VI-ETo methodology (SWB) and the ALEXI/DisALEXI approach (SEB) have been adapted and applied. ET modeling using the VI-ETo scheme has been improved through the assessment of the vegetation layers' effective parameters. A data fusion algorithm was applied to the ET maps produced by the SEB model over the dehesa ecosystem, and we analyzed the opportunities that this high-resolution ET product in time and space can provide for water and vegetation resource management. The results have demonstrated the feasibility of both approaches (SWB and SEB models) to accurately monitor ET dynamics over the dehesa landscape, adequately reproducing the annual bimodal behavior and the response of the vegetation in periods of water deficit. The error obtained using the SWB approach (the VI-ETo method) was RMSE = 0.47 mm day-1 over the whole dehesa system (grass + trees) and over an open grassland. The monitoring of water stress for both systems with different canopy structure, using as a proxy the ET/ETo ratio, and the stress coefficient (Ks), was successful. Improvements on the specific spectral properties of oak trees and layer-specific parameters were included into the modeling. We also analyzed the influence of the spectral properties of oak trees and another typical Mediterranean tree canopy, the olive orchard, in the VI-ETo model. We found that the use of appropriate values of the parameter SAVImax (0.51 for oak trees and 0.57 for olive trees) had notable implications in the computation of ET and water stress, in contrast to using a generic value for Mediterranean crops (SAVImax= 0.75). The accuracy of this water balance-based approach was also evaluated over two heterogeneous Mediterranean basins, with a mosaic of holm oaks and grasslands, shrubs, coniferous plantations, and irrigated horticultural crops. The annual discharge flows of both watersheds, which were determined from the modeled ET data and using a simple surface water balance, were very similar to those obtained with the HBV hydrological model, and to the values measured at the outlet of one of the basins, corroborating the usefulness of the VI-ETo methodology on these vegetation types. On the other hand, the resulting ET series (30 m, daily) derived with the SEB approach (ALEXI/DisALEXI method) and the STARFM fusion algorithm provided an RMSE value of 0.67 mm day-1, which was considered an acceptable error for management purposes. This error was slightly lower compared to using simpler interpolation methods, probably due to the high temporal frequency and better spatial representation of the flux tower footprint of the fused time series. The analysis of ET patterns over small heterogeneous vegetated patches that form the dehesa structure revealed the importance of having fine resolution information at field scale to distinguish the water consumed by the different vegetation components, which influences the provision of many ecosystem services. For example, it was key for identifying phenology dates of grasslands, or understanding the hydrological functioning of riverside dense evergreen vegetation with high ET rates during the whole year, in contrast with the herbaceous areas. Accurately modeling these different behaviors of dehesa microclimates is useful to support farmers‘ management and provide recommendations tailored for each structural component and requirements.La región mediterránea se caracteriza por veranos calurosos con largos períodos sin precipitaciones, situación que puede agravarse con el progresivo calentamiento global. En estos ambientes donde la productividad de los ecosistemas depende principalmente de la disponibilidad de agua, la reducción de los recursos hídricos puede tener graves consecuencias. Un aumento de la aridez puede conducir a una baja productividad, degradación de la tierra y cambios no deseados en el uso del suelo. Para reducir la vulnerabilidad de las zonas mediterráneas es importante profundizar en el estudio de los procesos hidrológicos que condicionan los intercambios de agua, siendo la evapotranspiración (ET) un indicador clave del estado de los ecosistemas y jugando un papel crucial en los balances hídricos y energéticos de la cuenca. El objetivo de esta tesis es mejorar nuestro conocimiento sobre la dinámica de la evapotranspiración en cubiertas mediterráneas heterogéneas y complejas, con el foco en el ecosistema de dehesa. El objetivo final es contribuir a la conservación de los recursos hídricos de estas regiones en el medio-largo plazo, apoyando en los procesos de toma de decisiones con información cuantitativa, distribuida y de calidad. Para alcanzar este objetivo, en esta investigación se propuso evaluar modelos de balance de agua en el suelo (SWB) y balance de energía en superficie (SEB) basados en el uso de sensores remotos, para el seguimiento del consumo de agua y el estrés hídrico de la vegetación mediterránea a diferentes escalas espaciales y temporales. En particular, se ha adaptado y aplicado la metodología VI-ETo (SWB) y el enfoque ALEXI/DisALEXI (SEB). Se ha mejorado el modelado de ET utilizando el esquema VI-ETo mediante la evaluación de los parámetros efectivos de las capas de vegetación. Se aplicó un algoritmo de fusión de datos remotos a los mapas de ET generados por el modelo SEB sobre el ecosistema de dehesa, y estudiamos las oportunidades que este producto de ET con alta resolución espacial y temporal puede aportar en la gestión de los recursos hídricos y de los ecosistemas. Los resultados han demostrado la viabilidad de ambos enfoques (modelos SWB y SEB) para monitorear con precisión la dinámica de la ET sobre el ecosistema de dehesa, reproduciendo adecuadamente el comportamiento bimodal anual y la respuesta de la vegetación en períodos de déficit hídrico. El error obtenido usando el enfoque SWB (el método VI-ETo) fue RMSE = 0.47 mm día-1, tanto para el sistema dehesa (pasto + árboles) como para una zona de pastizal. El seguimiento del estrés hídrico para ambos sistemas con diferente estructura de vegetación, utilizando la relación ET/ETo y el coeficiente de estrés (Ks), fue satisfactorio. Se incluyeron en el modelado mejoras sobre las propiedades espectrales específicas de las encinas y los parámetros específicos de los diferentes estratos de vegetación. También analizamos la influencia de las propiedades espectrales de las encinas y otra cubierta mediterránea, el olivar, en el modelo VI-ETo. Encontramos que el uso de valores apropiados del parámetro SAVImax (0,51 para robles y 0,57 para olivos) tuvo un efecto significativo en la determinación del consumo de agua y estrés hídrico, en comparación con usar un valor genérico para cultivos mediterráneos (SAVImax = 0,75). La precisión de este enfoque basado en el balance hídrico también se evaluó en dos cuencas mediterráneas heterogéneas, con un mosaico de encinas y pastizales, arbustos, plantaciones de coníferas y cultivos hortícolas de regadío. Los caudales de descarga anual de ambas cuencas, determinados a partir de los datos de ET modelados y utilizando un balance hídrico superficial muy simple, fueron muy similares a los obtenidos con el modelo hidrológico HBV, y a los valores medidos en la salida de una de las cuencas, corroborando la utilidad de la metodología VI-ETo sobre estas formaciones vegetales. Por otra parte, la serie final de ET (30 m, diaria) derivada del enfoque SEB (método ALEXI/DisALEXI) y del algoritmo de fusión STARFM proporcionó un valor de RMSE de 0,67 mm día-1, considerado un error aceptable para fines de manejo. Este error fue ligeramente inferior a los obtenidos usando métodos de interpolación más simples, debido probablemente a la alta frecuencia temporal y una mejor representación espacial del footprint de la torre de medida de flujos en la serie temporal fusionada. El análisis de los patrones de la ET sobre pequeñas manchas de vegetación heterogéneas, que forman la estructura de la dehesa, reveló la importancia de tener información con alta resolución a escala de campo para distinguir el agua consumida por los diferentes componentes de la vegetación, que tienen influencia en el aprovisionamiento de muchos servicios ecosistémicos. Por ejemplo, fue clave para identificar ciertas fechas fenológicas de los pastizales, o entender el funcionamiento hidrológico de la vegetación densa de hoja perenne en zonas de ribera con altas tasas de ET durante todo el año, en comparación con zonas de especies herbáceas. Modelar con precisión estos comportamientos diferentes de los microclimas de la dehesa es útil para apoyar la gestión de los agricultores y ofrecer recomendaciones adaptadas a cada componente y necesidades estructurales

    A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration over heterogeneous terrain

    Get PDF
    Evapotranspiration (ET) may be used as an ecological indicator to address the ecosystem complexity. The accurate measurement of ET is of great significance for studying environmental sustainability, global climate changes, and biodiversity. Remote sensing technologies are capable of monitoring both energy and water fluxes on the surface of the Earth. With this advancement, existing models, such as SEBAL, S_SEBI and SEBS, enable us to estimate the regional ET with limited temporal and spatial coverage in the study areas. This paper extends the existing modeling efforts with the inclusion of new components for ET estimation at different temporal and spatial scales under heterogeneous terrain with varying elevations, slopes and aspects. Following a coupled remote sensing and surface energy balance approach, this study emphasizes the structure and function of the Surface Energy Balance with Topography Algorithm (SEBTA). With the aid of the elevation and landscape information, such as slope and aspect parameters derived from the digital elevation model (DEM), and the vegetation cover derived from satellite images, the SEBTA can account for the dynamic impacts of heterogeneous terrain and changing land cover with some varying kinetic parameters (i.e., roughness and zero-plane displacement). Besides, the dry and wet pixels can be recognized automatically and dynamically in image processing thereby making the SEBTA more sensitive to derive the sensible heat flux for ET estimation. To prove the application potential, the SEBTA was carried out to present the robust estimates of 24 h solar radiation over time, which leads to the smooth simulation of the ET over seasons in northern China where the regional climate and vegetation cover in different seasons compound the ET calculations. The SEBTA was validated by the measured data at the ground level. During validation, it shows that the consistency index reached 0.92 and the correlation coefficient was 0.87

    Use of MODIS sensor images combined with reanalysis products to retrieve net radiation in Amazonia

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.In the Amazon region, the estimation of radiation fluxes through remote sensing techniques is hindered by the lack of ground measurements required as input in the models, as well as the difficulty to obtain cloud-free images. Here, we assess an approach to estimate net radiation (Rn) and its components under all-sky conditions for the Amazon region through the Surface Energy Balance Algorithm for Land (SEBAL) model utilizing only remote sensing and reanalysis data. The study period comprised six years, between January 2001-December 2006, and images from MODIS sensor aboard the Terra satellite and GLDAS reanalysis products were utilized. The estimates were evaluated with flux tower measurements within the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) project. Comparison between estimates obtained by the proposed method and observations from LBA towers showed errors between 12.5% and 16.4% and 11.3% and 15.9% for instantaneous and daily Rn, respectively. Our approach was adequate to minimize the problem related to strong cloudiness over the region and allowed to map consistently the spatial distribution of net radiation components in Amazonia. We conclude that the integration of reanalysis products and satellite data, eliminating the need for surface measurements as input model, was a useful proposition for the spatialization of the radiation fluxes in the Amazon region, which may serve as input information needed by algorithms that aim to determine evapotranspiration, the most important component of the Amazon hydrological balance.Gabriel de Oliveira acknowledges the Brazilian Ministry of Science and Technology and Brazilian Ministry of Education for providing research fellowships through the CNPq (Grant No. 52521/2012-7) and CAPES (Grant No. 8210/2014-4) agencies, respectively. Luiz E. O. C. Aragão acknowledges the support of FAPESP (Grant No. 50533-5) and CNPq (Grant No. 304425/2013-3) agencies

    Methods to Evaluate Land-Atmosphere Exchanges in Amazonia Based on Satellite Imagery and Ground Measurements

    Get PDF
    During the last three decades, intensive campaigns and experiments have been conducted for acquiring micrometeorological data in the Amazonian ecosystems, which has increased our understanding of the variation, especially seasonally, of the total energy available for the atmospheric heating process by the surface, evapotranspiration and carbon exchanges. However, the measurements obtained by such experiments generally cover small areas and are not representative of the spatial variability of these processes. This chapter aims to discuss several algorithms developed to estimate surface energy and carbon fluxes combining satellite data and micrometeorological observations, highlighting the potentialities and limitations of such models for applications in the Amazon region. We show that the use of these models presents an important role in understanding the spatial and temporal patterns of biophysical surface parameters in a region where most of the information is local. Data generated may be used as inputs in earth system surface models allowing the evaluation of the impact, both in regional as well as global scales, caused by land-use and land-cover changes
    corecore