11,263 research outputs found

    Interannual surface evolution of an Antarctic blue-ice moraine using multi-temporal DEMs

    Get PDF
    Multi-temporal and fine resolution topographic data products are increasingly used to quantify surface elevation change in glacial environments. In this study, we employ 3D digital elevation model (DEM) differencing to quantify the topographic evolution of a blue-ice moraine complex in front of Patriot Hills, Heritage Range, Antarctica. Terrestrial laser scanning (TLS) was used to acquire multiple topographic datasets of the moraine surface at the beginning and end of the austral summer season in 2012/2013 and during a resurvey field campaign in 2014. A complementary topographic dataset was acquired at the end of season 1 through the application of Structure-from-Motion with multi-view stereo (SfM-MVS) photogrammetry to a set of aerial photographs acquired from an unmanned aerial vehicle (UAV).Three-dimensional cloud-to-cloud differencing was undertaken using the Multiscale Model to Model Cloud Comparison (M3C2) algorithm. DEM differencing revealed net uplift and lateral movement of the moraine crests within season 1 (mean uplift ~0.10 m), and surface lowering of a similar magnitude in some inter-moraine depressions and close to the current ice margin, although we are unable to validate the latter. Our results indicate net uplift across the site between seasons 1 and 2 (mean 0.07 m). This research demonstrates that it is possible to detect dynamic surface topographical change across glacial moraines over short (annual to intra-annual) timescales through the acquisition and differencing of fine-resolution topographic datasets. Such data offer new opportunities to understand the process linkages between surface ablation, ice flow, and debris supply within moraine ice

    Quantifying fisher responses to environmental and regulatory dynamics in marine systems

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2017Commercial fisheries are part of an inherently complicated cycle. As fishers have adopted new technologies and larger vessels to compete for resources, fisheries managers have adapted regulatory structures to sustain stocks and to mitigate unintended impacts of fishing (e.g., bycatch). Meanwhile, the ecosystems that are targeted by fishers are affected by a changing climate, which in turn forces fishers to further adapt, and subsequently, will require regulations to be updated. From the management side, one of the great limitations for understanding how changes in fishery environments or regulations impact fishers has been a lack of sufficient data for resolving their behaviors. In some fisheries, observer programs have provided sufficient data for monitoring the dynamics of fishing fleets, but these programs are expensive and often do not cover every trip or vessel. In the last two decades however, vessel monitoring systems (VMS) have begun to provide vessel location data at regular intervals such that fishing effort and behavioral decisions can be resolved across time and space for many fisheries. I demonstrate the utility of such data by examining the responses of two disparate fishing fleets to environmental and regulatory changes. This study was one of "big data" and required the development of nuanced approaches to process and model millions of records from multiple datasets. I thus present the work in three components: (1) How can we extract the information that we need? I present a detailed characterization of the types of data and an algorithm used to derive relevant behavioral aspects of fishing, like the duration and distances traveled during fishing trips; (2) How do fishers' spatial behaviors in the Bering Sea pollock fishery change in response to environmental variability; and (3) How were fisher behaviors and economic performances affected by a series of regulatory changes in the Gulf of Mexico grouper-tilefish longline fishery? I found a high degree of heterogeneity among vessel behaviors within the pollock fishery, underscoring the role that markets and processor-level decisions play in facilitating fisher responses to environmental change. In the Gulf of Mexico, my VMS-based approach estimated unobserved fishing effort with a high degree of accuracy and confirmed that the regulatory shift (e.g., the longline endorsement program and catch share program) yielded the intended impacts of reducing effort and improving both the economic performance and the overall harvest efficiency for the fleet. Overall, this work provides broadly applicable approaches for testing hypotheses regarding the dynamics of spatial behaviors in response to regulatory and environmental changes in a diversity of fisheries around the world.General introduction -- Chapter 1 Using vessel monitoring system data to identify and characterize trips made by fishing vessels in the United States North Pacific -- Chapter 2 Paths to resilience: Alaska pollock fleet uses multiple fishing strategies to buffer against environmental change in the Bering Sea -- Chapter 3 Vessel monitoring systems (VMS) reveal increased fishing efficiency following regulatory change in a bottom longline fishery -- General Conclusions

    Exploring high-end climate change scenarios for flood protection of the Netherlands

    Get PDF
    This international scientific assessment has been carried out at the request of the Dutch Delta Committee. The "Deltacommissie" requested that the assessment explore the high-end climate change scenarios for flood protection of the Netherlands. It is a state-of–the art scientific assessment of the upper bound values and longer term projections (for sea level rise up to 2200) of climate induced sea level rise, changing storm surge conditions and peak discharge of river Rhine. It comprises a review of recent studies, model projections and expert opinions of more than 20 leading climate scientists from different countries around the North Sea, Australia and the US

    The role of brine release and sea ice drift for winter mixing and sea ice formation in the Baltic Sea

    Get PDF

    Algal photophysiology drives darkening and melt of the Greenland Ice Sheet

    Get PDF
    Blooms of Zygnematophycean “glacier algae” lower the bare ice albedo of the Greenland Ice Sheet (GrIS), amplifying summer energy absorption at the ice surface and enhancing meltwater runoff from the largest cryospheric contributor to contemporary sea-level rise. Here, we provide a step change in current understanding of algal-driven ice sheet darkening through quantification of the photophysiological mechanisms that allow glacier algae to thrive on and darken the bare ice surface. Significant secondary phenolic pigmentation (11 times the cellular content of chlorophyll a) enables glacier algae to tolerate extreme irradiance (up to ∌4,000 ”mol photons⋅m−2⋅s−1) while simultaneously repurposing captured ultraviolet and short-wave radiation for melt generation. Total cellular energy absorption is increased 50-fold by phenolic pigmentation, while glacier algal chloroplasts positioned beneath shading pigments remain low-light–adapted (Ek ∌46 ”mol photons⋅m−2⋅s−1) and dependent upon typical nonphotochemical quenching mechanisms for photoregulation. On the GrIS, glacier algae direct only ∌1 to 2.4% of incident energy to photochemistry versus 48 to 65% to ice surface melting, contributing an additional ∌1.86 cm water equivalent surface melt per day in patches of high algal abundance (∌104 cells⋅mL−1). At the regional scale, surface darkening is driven by the direct and indirect impacts of glacier algae on ice albedo, with a significant negative relationship between broadband albedo (Moderate Resolution Imaging Spectroradiometer [MODIS]) and glacier algal biomass (R2 = 0.75, n = 149), indicating that up to 75% of the variability in albedo across the southwestern GrIS may be attributable to the presence of glacier algae

    Hyperspectral Imaging for Fine to Medium Scale Applications in Environmental Sciences

    Get PDF
    The aim of the Special Issue “Hyperspectral Imaging for Fine to Medium Scale Applications in Environmental Sciences” was to present a selection of innovative studies using hyperspectral imaging (HSI) in different thematic fields. This intention reflects the technical developments in the last three decades, which have brought the capacity of HSI to provide spectrally, spatially and temporally detailed data, favoured by e.g., hyperspectral snapshot technologies, miniaturized hyperspectral sensors and hyperspectral microscopy imaging. The present book comprises a suite of papers in various fields of environmental sciences—geology/mineral exploration, digital soil mapping, mapping and characterization of vegetation, and sensing of water bodies (including under-ice and underwater applications). In addition, there are two rather methodically/technically-oriented contributions dealing with the optimized processing of UAV data and on the design and test of a multi-channel optical receiver for ground-based applications. All in all, this compilation documents that HSI is a multi-faceted research topic and will remain so in the future

    Literature review of the remote sensing of natural resources

    Get PDF
    Abstracts of 596 documents related to remote sensors or the remote sensing of natural resources by satellite, aircraft, or ground-based stations are presented. Topics covered include general theory, geology and hydrology, agriculture and forestry, marine sciences, urban land use, and instrumentation. Recent documents not yet cited in any of the seven information sources used for the compilation are summarized. An author/key word index is provided

    Hierarchical Estimation of Oceanic Surface Velocity Fields From Satellite Imagery.

    Get PDF
    Oceanic surface velocity fields are objectively estimated from time-sequential satellite images of sea-surface temperature from the Advanced Very High Resolution Radiometey on board the National Oceanic and Atmospheric Administration\u27s polar orbiters. The hierarchical technique uses the concept of image pyramids and multi-resolution grids for increased computational efficiency. Images are Gaussian filtered and sub-sampled from fine to coarse grid scales. The number of pyramid levels is selected such that the maximum expected velocity in the image results in a displacement of less than one pixel at the coarsest spatial scale. Maximum Cross-Correlation at the sub-pixel level with orthogonal polynomial approximation is used to compute a velocity field at each level of the pyramid which is then iterated assuming a locally linear velocity field. The first image at the next finer level of the pyramid is warped towards the second image by the calculated velocity field. At each succeeding finer grid scale, the velocity field is updated and the process repeated. The final result is an estimated velocity at each pixel at the finest resolution of the imagery. There are no free parameters as used in some gradient-based approaches and the only assumption is that the velocity field is locally linear. Test cases are shown using both simulated and real images with numerically simulated velocity fields which demonstrate the accuracy of the technique. Results are compared to gradient-based techniques using concepts of optical flow and projection onto convex sets and to the standard Maximum Cross-Correlation technique. The hierarchical computations for a real satellite image numerically advected by a rotational sheared flow recover the original field with a rms speed error of 12.6% and direction error of 4.9\sp\circ. Hierarchically-estimated velocity fields from real image pairs are compared to ground-truth estimates of the velocity from satellite-tracked drifters in the eastern Gulf of Mexico. Results indicate the technique underestimates daily mean buoy vector speeds, but with reasonably good direction. The problems of ground truth relations to hierarchically computed flows are discussed with regard to mismatches of time and space scales of measurement

    Characterization and evolution of the sediments of a Mediterranean coastal lagoon located next to a former mining area

    Get PDF
    Coastal lagoons are ecosystems that are relatively enclosed water bodies under the influence of both the terrestrial and themarine environment, being vulnerable to human impacts. Human activities, such asmining extraction, are significant anthropogenic coastal stressors that can negatively affect ecosystems and communities. In light of the above, the objective of this research is to examine the influence ofmetal mining activities on the composition of sediments of a Mediterranean coastal lagoon, named Mar Menor. This paper presents a comprehensive characterization for grain size, mineralogy, geochemistry and organic matter of sediments of this coastal lagoon, investigating their variation along space and time. Sedimentation dynamics are ruling clearly the grain size predominant in each area of the MarMenor coastal lagoon, determining the existence of entrainment, transport and sedimentation areas. Forminerals, elements and organic matter, sedimentation dynamics are also determining their distribution.The authors would like to thank Fundación Séneca for funding the project 12038/PI/09. In addition, they want to acknowledge the cooperation of J.M. Peñas, R. Baños, J. Saura, M. Saura and B. Villaescusa who helped us to improve this research and to Mr. and Mrs. Purves for their English grammar supervision
    • 

    corecore