192 research outputs found

    A Survey on Explainable Anomaly Detection

    Full text link
    In the past two decades, most research on anomaly detection has focused on improving the accuracy of the detection, while largely ignoring the explainability of the corresponding methods and thus leaving the explanation of outcomes to practitioners. As anomaly detection algorithms are increasingly used in safety-critical domains, providing explanations for the high-stakes decisions made in those domains has become an ethical and regulatory requirement. Therefore, this work provides a comprehensive and structured survey on state-of-the-art explainable anomaly detection techniques. We propose a taxonomy based on the main aspects that characterize each explainable anomaly detection technique, aiming to help practitioners and researchers find the explainable anomaly detection method that best suits their needs.Comment: Paper accepted by the ACM Transactions on Knowledge Discovery from Data (TKDD) for publication (preprint version

    多変量時系列データの変分オートエンコーダによるロバストな教示なし異常検知

    Get PDF
    九州工業大学博士学位論文 学位記番号:情工博甲第370号 学位授与年月日:令和4年9月26日1: Introduction|2: Background & Theory|3: Methodology|4: Experiments and Discussion|5: Conclusions九州工業大学令和4年

    Machine Learning for Enhanced Maritime Situation Awareness: Leveraging Historical AIS Data for Ship Trajectory Prediction

    Get PDF
    In this thesis, methods to support high level situation awareness in ship navigators through appropriate automation are investigated. Situation awareness relates to the perception of the environment (level 1), comprehension of the situation (level 2), and projection of future dynamics (level 3). Ship navigators likely conduct mental simulations of future ship traffic (level 3 projections), that facilitate proactive collision avoidance actions. Such actions may include minor speed and/or heading alterations that can prevent future close-encounter situations from arising, enhancing the overall safety of maritime operations. Currently, there is limited automation support for level 3 projections, where the most common approaches utilize linear predictions based on constant speed and course values. Such approaches, however, are not capable of predicting more complex ship behavior. Ship navigators likely facilitate such predictions by developing models for level 3 situation awareness through experience. It is, therefore, suggested in this thesis to develop methods that emulate the development of high level human situation awareness. This is facilitated by leveraging machine learning, where navigational experience is artificially represented by historical AIS data. First, methods are developed to emulate human situation awareness by developing categorization functions. In this manner, historical ship behavior is categorized to reflect distinct patterns. To facilitate this, machine learning is leveraged to generate meaningful representations of historical AIS trajectories, and discover clusters of specific behavior. Second, methods are developed to facilitate pattern matching of an observed trajectory segment to clusters of historical ship behavior. Finally, the research in this thesis presents methods to predict future ship behavior with respect to a given cluster. Such predictions are, furthermore, on a scale intended to support proactive collision avoidance actions. Two main approaches are used to facilitate these functions. The first utilizes eigendecomposition-based approaches via locally extracted AIS trajectory segments. Anomaly detection is also facilitated via this approach in support of the outlined functions. The second utilizes deep learning-based approaches applied to regionally extracted trajectories. Both approaches are found to be successful in discovering clusters of specific ship behavior in relevant data sets, classifying a trajectory segment to a given cluster or clusters, as well as predicting the future behavior. Furthermore, the local ship behavior techniques can be trained to facilitate live predictions. The deep learning-based techniques, however, require significantly more training time. These models will, therefore, need to be pre-trained. Once trained, however, the deep learning models will facilitate almost instantaneous predictions

    End-to-end anomaly detection in stream data

    Get PDF
    Nowadays, huge volumes of data are generated with increasing velocity through various systems, applications, and activities. This increases the demand for stream and time series analysis to react to changing conditions in real-time for enhanced efficiency and quality of service delivery as well as upgraded safety and security in private and public sectors. Despite its very rich history, time series anomaly detection is still one of the vital topics in machine learning research and is receiving increasing attention. Identifying hidden patterns and selecting an appropriate model that fits the observed data well and also carries over to unobserved data is not a trivial task. Due to the increasing diversity of data sources and associated stochastic processes, this pivotal data analysis topic is loaded with various challenges like complex latent patterns, concept drift, and overfitting that may mislead the model and cause a high false alarm rate. Handling these challenges leads the advanced anomaly detection methods to develop sophisticated decision logic, which turns them into mysterious and inexplicable black-boxes. Contrary to this trend, end-users expect transparency and verifiability to trust a model and the outcomes it produces. Also, pointing the users to the most anomalous/malicious areas of time series and causal features could save them time, energy, and money. For the mentioned reasons, this thesis is addressing the crucial challenges in an end-to-end pipeline of stream-based anomaly detection through the three essential phases of behavior prediction, inference, and interpretation. The first step is focused on devising a time series model that leads to high average accuracy as well as small error deviation. On this basis, we propose higher-quality anomaly detection and scoring techniques that utilize the related contexts to reclassify the observations and post-pruning the unjustified events. Last but not least, we make the predictive process transparent and verifiable by providing meaningful reasoning behind its generated results based on the understandable concepts by a human. The provided insight can pinpoint the anomalous regions of time series and explain why the current status of a system has been flagged as anomalous. Stream-based anomaly detection research is a principal area of innovation to support our economy, security, and even the safety and health of societies worldwide. We believe our proposed analysis techniques can contribute to building a situational awareness platform and open new perspectives in a variety of domains like cybersecurity, and health

    Unsupervised Automatic Detection Of Transient Phenomena In InSAR Time-Series using Machine Learning

    Get PDF
    The detection and measurement of transient episodes of crustal deformation from global InSAR datasets are crucial for a wide range of solid earth and natural hazard applications. But the large volumes of unlabelled data captured by satellites preclude manual systematic analysis, and the small signal-to-noise ratio makes the task difficult. In this thesis, I present a state-of-the-art, unsupervised and event-agnostic deep-learning based approach for the automatic identification of transient deformation events in noisy time-series of unwrapped InSAR images. I adopt an anomaly detection framework that learns the ‘normal’ spatio-temporal pattern of noise in the data, and which therefore identifies any transient deformation phenomena that deviate from this pattern as ‘anomalies’. The deep-learning model is built around a bespoke autoencoder that includes convolutional and LSTM layers, as well as a neural network which acts as a bridge between the encoder and decoder. I train our model on real InSAR data from northern Turkey and find it has an overall accuracy and true positive rate of around 85% when trying to detect synthetic deformation signals of length-scale > 350 m and magnitude > 4 cm. Furthermore, I also show the method can detect (1) a real Mw 5.7 earthquake in InSAR data from an entirely different region- SW Turkey, (2) a volcanic deformation in Domuyo, Argentina, (3) a synthetic slow-slip event and (4) an interseismic deformation around NAF in a descending frame in northern Turkey. Overall I show that my method is suitable for automated analysis of large, global InSAR datasets, and for robust detection and separation of deformation signals from nuisance signals in InSAR data

    Application of deep learning methods in materials microscopy for the quality assessment of lithium-ion batteries and sintered NdFeB magnets

    Get PDF
    Die Qualitätskontrolle konzentriert sich auf die Erkennung von Produktfehlern und die Überwachung von Aktivitäten, um zu überprüfen, ob die Produkte den gewünschten Qualitätsstandard erfüllen. Viele Ansätze für die Qualitätskontrolle verwenden spezialisierte Bildverarbeitungssoftware, die auf manuell entwickelten Merkmalen basiert, die von Fachleuten entwickelt wurden, um Objekte zu erkennen und Bilder zu analysieren. Diese Modelle sind jedoch mühsam, kostspielig in der Entwicklung und schwer zu pflegen, während die erstellte Lösung oft spröde ist und für leicht unterschiedliche Anwendungsfälle erhebliche Anpassungen erfordert. Aus diesen Gründen wird die Qualitätskontrolle in der Industrie immer noch häufig manuell durchgeführt, was zeitaufwändig und fehleranfällig ist. Daher schlagen wir einen allgemeineren datengesteuerten Ansatz vor, der auf den jüngsten Fortschritten in der Computer-Vision-Technologie basiert und Faltungsneuronale Netze verwendet, um repräsentative Merkmale direkt aus den Daten zu lernen. Während herkömmliche Methoden handgefertigte Merkmale verwenden, um einzelne Objekte zu erkennen, lernen Deep-Learning-Ansätze verallgemeinerbare Merkmale direkt aus den Trainingsproben, um verschiedene Objekte zu erkennen. In dieser Dissertation werden Modelle und Techniken für die automatisierte Erkennung von Defekten in lichtmikroskopischen Bildern von materialografisch präparierten Schnitten entwickelt. Wir entwickeln Modelle zur Defekterkennung, die sich grob in überwachte und unüberwachte Deep-Learning-Techniken einteilen lassen. Insbesondere werden verschiedene überwachte Deep-Learning-Modelle zur Erkennung von Defekten in der Mikrostruktur von Lithium-Ionen-Batterien entwickelt, von binären Klassifizierungsmodellen, die auf einem Sliding-Window-Ansatz mit begrenzten Trainingsdaten basieren, bis hin zu komplexen Defekterkennungs- und Lokalisierungsmodellen, die auf ein- und zweistufigen Detektoren basieren. Unser endgültiges Modell kann mehrere Klassen von Defekten in großen Mikroskopiebildern mit hoher Genauigkeit und nahezu in Echtzeit erkennen und lokalisieren. Das erfolgreiche Trainieren von überwachten Deep-Learning-Modellen erfordert jedoch in der Regel eine ausreichend große Menge an markierten Trainingsbeispielen, die oft nicht ohne weiteres verfügbar sind und deren Beschaffung sehr kostspielig sein kann. Daher schlagen wir zwei Ansätze vor, die auf unbeaufsichtigtem Deep Learning zur Erkennung von Anomalien in der Mikrostruktur von gesinterten NdFeB-Magneten basieren, ohne dass markierte Trainingsdaten benötigt werden. Die Modelle sind in der Lage, Defekte zu erkennen, indem sie aus den Trainingsdaten indikative Merkmale von nur "normalen" Mikrostrukturmustern lernen. Wir zeigen experimentelle Ergebnisse der vorgeschlagenen Fehlererkennungssysteme, indem wir eine Qualitätsbewertung an kommerziellen Proben von Lithium-Ionen-Batterien und gesinterten NdFeB-Magneten durchführen

    A variational autoencoder application for real-time anomaly detection at CMS

    Get PDF
    Despite providing invaluable data in the field of High Energy Physics, towards higher luminosity runs the Large Hadron Collider (LHC) will face challenges in discovering interesting results through conventional methods used in previous run periods. Among the proposed approaches, the one we focus on in this thesis work – in collaboration with CERN teams, involves the use of a joint variational autoencoder (JointVAE) machine learning model, trained on known physics processes to identify anomalous events that correspond to previously unidentified physics signatures. By doing so, this method does not rely on any specific new physics signatures and can detect anomalous events in an unsupervised manner, complementing the traditional LHC search tactics that rely on model-dependent hypothesis testing. The algorithm produces a list of anomalous events, which experimental collaborations will examine and eventually confirm as new physics phenomena. Furthermore, repetitive event topologies in the dataset can inspire new physics model building and experimental searches. Implementing this algorithm in the trigger system of LHC experiments can detect previously unnoticed anomalous events, thus broadening the discovery potential of the LHC. This thesis presents a method for implementing the JointVAE model, for real-time anomaly detection in the Compact Muon Solenoid (CMS) experiment. Among the challenges of implementing machine learning models in fast applications, such as the trigger system of the LHC experiments, low latency and reduced resource consumption are essential. Therefore, the JointVAE model has been studied for its implementation feasibility in Field-Programmable Gate Arrays (FPGAs), utilizing a tool based on High-Level Synthesis (HLS) named HLS4ML. The tool, combined with the quantization of neural networks, will reduce the model size, latency, and energy consumption
    corecore