
Alma Mater Studiorum · University of Bologna

School of Science
Department of Physics and Astronomy

Master Degree in Physics

A Variational Autoencoder Application for
real-time Anomaly Detection at CMS

Supervisor:
Prof. Daniele Bonacorsi

Co-supervisor:
Dr. Luca Anzalone
Dr. Marco Lorusso

Submitted by:
Lorenzo Valente

Academic Year 2021/2022

Contents

Abstract vii

1 The CMS experiment at the LHC 1

1.1 The Large Hadron Collider . 1

1.1.1 The vacuum system . 2

1.1.2 Electromagnets . 3

1.1.3 Radiofrequency Cavities and Luminosity 4

1.2 LHC detectors . 5

1.2.1 ALICE . 6

1.2.2 ATLAS . 6

1.2.3 CMS . 7

1.2.4 LHCb . 7

1.2.5 Other experiments . 7

TOTEM . 7

LHCf . 8

1.3 The Compact Muon Solenoid experiment 8

1.3.1 The detector structure . 8

1.3.2 Inner tracking system . 11

Silicon pixel detectors . 12

Silicon strip detectors . 12

1.3.3 Electromagnetic Calorimeter . 12

Crystal properties . 13

1.3.4 Hadron Calorimeter . 14

1.3.5 Magnetic System . 14

iii

CONTENTS

1.4 The Muon System . 15

1.4.1 Drift tube system . 16

1.4.2 The Cathode Strip Chambers . 18

1.4.3 The Resistive Plates Chambers 19

1.5 Trigger and Data Acquisition . 19

1.5.1 The Level-1 Trigger System . 20

1.5.2 The High-Level Trigger and DAQ 21

2 Machine and Deep Learning 23

2.1 Introduction to Machine Learning . 23

2.1.1 Problem Formulation in Machine Learning 24

2.1.2 Overfitting and Underfitting . 25

2.1.3 Basics of Statistical Learning . 26

2.1.4 Gradient Descent . 28

Adam Optimization Algorithm 29

AdamW Optimization Algorithm 31

2.1.5 Supervised Learning . 31

2.1.6 Unsupervised Learning . 32

2.1.7 Self-Supervised Learning . 33

2.2 Anomaly Detection . 35

2.2.1 General Approach . 35

2.2.2 Various Techniques . 36

2.2.3 Some applications in HEP . 37

2.3 Feed-Forward Deep Neural Networks (DNNs) 38

2.3.1 Neural Networks Basics: Neurons and Architecture 38

2.3.2 The Back-propagation Algorithm 42

2.3.3 Deep Double Descend . 44

2.4 Convolutional Neural Networks (CNNs) 45

2.4.1 Overview of the CNNs structure 45

2.4.2 Normalization Methods . 48

Batch Normalization . 48

Instance Normalization . 48

2.4.3 Regularization Methods . 50

iv

CONTENTS

Weight Decay . 50

Dropout . 50

Early Stopping . 51

Data Augmentation . 51

ReduceLROnPlateau . 52

2.5 Autoencoders (AEs) . 52

2.5.1 AEs Architecture and Operation 53

2.5.2 Variations . 54

2.6 Variational AutoEncoders (VAEs) . 55

2.6.1 VAEs Architecture and Operation 55

2.6.2 Evidence Lower Bound (ELBO) 57

2.6.3 Reparametrization Trick . 58

2.6.4 An Illustrative Example of VAE in HEP 59

2.6.5 A bridge between Physics and Deep Learning 60

2.7 Implementing a Neural Network . 60

2.7.1 TensorFlow . 60

2.7.2 Keras . 61

2.8 Model Compression . 62

2.8.1 Pruning . 62

2.8.2 Post-Training Quantization . 63

2.8.3 Quantization Aware of Training 65

QKeras . 66

2.8.4 Knowledge distillation . 67

2.9 Model Acceleration . 68

2.9.1 Heterogeneous Computing . 68

2.9.2 Introduction to FPGAs . 70

2.9.3 Fast Inference on FPGAs . 73

High Level Synthesis . 74

2.9.4 HLS4ML package . 74

v

CONTENTS

3 Joint Representations in real-time 77

3.1 Introduction . 77

3.2 Data Samples . 78

3.3 Choosing the model . 79

3.3.1 JointVAE Architecture and Operation 80

3.3.2 Reparametrization of Latent Variables 82

3.3.3 Training details . 83

3.3.4 Weight Distributions . 86

Whisker Plots . 87

3.3.5 Visualizing Latent Space . 88

3.3.6 Interpolation . 90

3.3.7 Reconstruction Power . 91

3.4 Anomaly Detection scores . 93

3.5 Compression by Quantization . 96

3.5.1 Encoder Performance at Fixed-Point Precision 98

3.6 FPGA implementation . 100

3.6.1 Hardware Characteristics . 101

3.6.2 Study of the FPGA implementation feasibility 101

3.7 Summary and Outlook . 103

Conclusions 105

Bibliography 107

vi

Abstract

Despite providing invaluable data in the field of High Energy Physics, towards higher
luminosity runs the Large Hadron Collider (LHC) will face challenges in discovering
interesting results through conventional methods used in previous run periods. Among
the proposed approaches, the one we focus on in this thesis work – in collaboration with
CERN teams, involves the use of a joint variational autoencoder (JointVAE) machine
learning model, trained on known physics processes to identify anomalous events that
correspond to previously unidentified physics signatures. By doing so, this method does
not rely on any specific new physics signatures and can detect anomalous events in an
unsupervised manner, complementing the traditional LHC search tactics that rely on
model-dependent hypothesis testing. The algorithm produces a list of anomalous events,
which experimental collaborations will examine and eventually confirm as new physics
phenomena. Furthermore, repetitive event topologies in the dataset can inspire new
physics model building and experimental searches. Implementing this algorithm in the
trigger system of LHC experiments can detect previously unnoticed anomalous events,
thus broadening the discovery potential of the LHC.
This thesis presents a method for implementing the JointVAE model, for real-time anomaly
detection in the Compact Muon Solenoid (CMS) experiment. Among the challenges of
implementing machine learning models in fast applications, such as the trigger system
of the LHC experiments, low latency and reduced resource consumption are essential.
Therefore, the JointVAE model has been studied for its implementation feasibility in
Field-Programmable Gate Arrays (FPGAs), utilizing a tool based on High-Level Synthesis
(HLS) named HLS4ML. The tool, combined with the quantization of neural networks,
will reduce the model size, latency, and energy consumption.

Chapter 1 provides an overview of the experimental apparatus, starting with a detailed
description of the LHC accelerator machine. This is followed by a presentation of the key
features of the CMS detector, which is essential for the analysis.

Chapter 2 is dedicated to introducing Machine and Deep Learning concepts relevant to
the anomaly detection task explored in the following chapters. The chapter focuses on the
architecture of neural networks, specifically those models used in anomaly detection, such
as the variational autoencoder, and covers related concepts, operations and terminology.
The chapter also offers an overview of the implementation of these networks using popular
frameworks widely used in scientific domains, as well as various compression techniques
for hardware optimization of deep learning models for fast inference.

Chapter 3 presents the original outcomes of this project, which includes the development
and design of a JointVAE model optimized for detecting anomalies in image datasets of

vii

CONTENTS

QCD and top jets. The chapter provides a detailed description of the exploration in the
hyperparameter space to build the optimal JointVAE, and the reduction of the model size
by minimizing the parameters in the trade-off between size and final performance, and
final quantization for the FPGA target. In addition, a study is conducted on the feasibility
of implementing the quantized model on an FPGA target, as well as an evaluation of the
estimated resource consumption.

viii

Chapter 1
The CMS experiment at the LHC

The purpose of this chapter is to give a comprehensive understanding of the major char-
acteristics of the Large Hadron Collider (LHC) and the Compact Muon Solenoid (CMS)
experiment, including its subdetectors. This information is crucial as the research analysis
presented in the final chapter of this thesis is conducted within the context of the CMS
experiment.

1.1 The Large Hadron Collider
The Large Hadron Collider (LHC) [1, 2] is the world’s largest and most powerful particle
accelerator. It is located at CERN, the European Organization for Nuclear Research, near
Geneva, Switzerland. The LHC is a collaborative project involving thousands of scientists
from around the world.

The LHC is a circular tunnel that spans over 27 kilometres (17 miles) in circumference
and is buried deep underground. It is designed to accelerate particles up to 14 TeV, to
nearly the speed of light and then collide them together to study the fundamental structure
of matter and the forces that shape the universe.

The LHC operates by accelerating two beams of particles in opposite directions around
the circular tunnel and then bringing them into collision at four points around the circum-
ference where the two rings of the machine intersect; these are in correspondence with
the four particle detectors: ALICE, ATLAS, CMS and LHCb, as it is shown in figure 1.1.
These collisions produce new particles that are detected and analyzed by the experiments
at the LHC. The data collected by these experiments are used to study a wide range of
phenomena, including the Higgs boson, the nature of dark matter, and the fundamental
nature of the universe.

In the LHC ring, beam injection and gradual acceleration of protons take place in
many stages:

1. the process of stripping hydrogen atoms of their orbital electrons produces protons;

1

CHAPTER 1. THE CMS EXPERIMENT AT THE LHC

2. protons begin to accelerate, reaching energies of up to 50 MeV thanks to the LINAC2
linear accelerator;

3. protons are added to the Proton Synchrotron Booster (PSB), where the beam’s
energy reaches around 1.4 GeV;

4. protons are then accelerated to a maximum of 25 GeV in the Proton Synchrotron
(PS);

5. the Super Proton Synchrotron (SPS), where they reach an energy of 450 GeV,
receives the proton beam;

6. finally, protons are transferred into the two neighbouring and parallel beam pipes of
the LHC in a bunch configuration. They then circulate for several hours around the
ring, one beam moving in a clockwise direction and the other in an anticlockwise
one.

Figure 1.1: CERN accelerator complex in schematic form [3].

Table 1.1 lists some of the main technical parameters of the Large Hadron Collider
(LHC).

1.1.1 The vacuum system
The vacuum system [4] of the LHC is a critical component of the accelerator that is used
to evacuate the air and other contaminants from the accelerator ring. This is necessary
because the protons or ions in the beam must travel through a vacuum to achieve the high
energies required for the experiments. The vacuum system also helps to minimize the
amount of energy lost by the beam as it travels through the accelerator. The vacuum is
equivalent to pressure to the order of 10−13atm.

The LHC vacuum system consists of a series of pipes and chambers that are installed
along the length of the accelerator ring. These pipes and chambers are connected to pumps

2

1.1. THE LARGE HADRON COLLIDER

Quantity Value
Circumference (m) 26659
Magnets working temperature (K) 1.9
Number of magnets 9593
Number of principal dipoles 1312
Number of principal quadrupoles 392
Number of radio-frequency cavities per beam 16
Nominal energy, protons (TeV) 6.5
Nominal energy, ions (TeV/nucleon) 2.76
Magnetic field maximum intensity (T) 8.33
Project luminosity (cm−2s−1) 2.06× 1034

Number of proton packages per beam 2808
Number of proton per package (outgoing) 1.1× 1011

Minimum distance between packages (m) ∼7
Number of rotations per second 11 245
Number of collisions per crossing (nominal) ∼20
Number of collisions per second (millions) 600

Table 1.1: The main technical parameters of the Large Hadron Collider.

and other equipment that are used to create and maintain the vacuum. The vacuum system
is divided into several different sections, each of which serves a specific purpose.

One of the main components of the LHC vacuum system is the beam pipe, which is a
tube that runs the entire length of the accelerator ring and encloses the beam of particles.
The beam pipe is made of special materials that can withstand the high temperatures and
radiation levels generated by the beam. The inside of the beam pipe is coated with a
thin layer of metal, which helps to reflect the beam and prevent it from dissipating. The
vacuum system also includes a series of pumping stations that are used to evacuate the
air from the beam pipe and other parts of the accelerator. These pumping stations are
equipped with a variety of pumps, including cryogenic, turbomolecular, and ion pumps.
These pumps operate at different pressures and temperatures and are used to create and
maintain the vacuum.

The LHC vacuum system is monitored and controlled by a sophisticated computer
system that is used to ensure that the vacuum is maintained at the correct level. The system
is also used to detect any problems or issues with the vacuum and to take corrective action
as needed.

1.1.2 Electromagnets
Electromagnets [5] guide and focus the beams of particles as they travel through the
accelerator. These electromagnets are superconducting, meaning that they can conduct
electricity with zero resistance when cooled to very low temperatures. There are two types
of electromagnets used in the LHC: dipole magnets and quadrupole magnets. Dipole
magnets (Figure 1.2) are used to bend the beam of particles, while quadrupole magnets
are used to focus the beam.

Both types of magnets use superconducting coils made of niobium-titanium wire to

3

CHAPTER 1. THE CMS EXPERIMENT AT THE LHC

Figure 1.2: Cross section of LHC dipole [6].

generate the magnetic field. These magnets are arranged in a lattice configuration along
the accelerator ring and are used to control the path of the beam. The magnets are powered
by electrical current and are cooled to a temperature of about 1.9 K (-271.3°C) using liquid
helium. The magnets in the LHC are some of the most powerful electromagnets in the
world, generating a magnetic field of about 8.3 tesla, which is about 100,000 times stronger
than the Earth’s magnetic field. The magnetic field is used to steer the beam of particles
and keep it on course as it travels through the accelerator. The intensity of the magnetic
field required to bend protons in the LHC accelerator can be calculated using the following
equation:

p[TeV] = 0.3×B[T]× r[km], (1.1)

where p is the momentum of the beam particle and r is the radius of the LHC ring.

1.1.3 Radiofrequency Cavities and Luminosity
Radiofrequency (RF) cavities [1, 7] are an essential component of the Large Hadron
Collider accelerator. They are used to accelerate the beams of protons or heavy ions
as they travel through the accelerator. The RF cavities are located along the length of
the accelerator and are powered by high-voltage generators. Each RF cavity consists of
a hollow metal tube that is resonant at a specific frequency. When the RF generator is
turned on, it generates an electromagnetic field inside the cavity. This field oscillates at

4

1.2. LHC DETECTORS

the same frequency as the cavity, causing the particles in the beam to oscillate as well.
As the particles oscillate, they gain energy from the electromagnetic field. This process is
known as "acceleration by resonant coupling."

In the LHC, 16 RF cavities are placed inside four cylindrical refrigerators called
cryomodules. These cryomodules enable the RF cavities to operate in a superconducting
state, which is necessary for their correct functioning. In RF cavities, power is applied
sequentially, with the first cavity providing initial acceleration, followed by subsequent
cavities providing additional acceleration. The RF cavities operate at a frequency of 400
MHz and are capable of accelerating the particles to very high energies. The cavities work
at a temperature of 4.5K and are organized into four cryomodules. When the accelerator is
operating under normal conditions, each proton beam is divided into 2808 bunches, each
containing approximately 1011 protons. These bunches are a few centimetres long and 1
mm wide when they are far from the collision point, but they are compressed down to a
size of 16 nm near the collision point. This increases the probability of a proton-proton
collision. The RF cavities in the LHC are a crucial part of the accelerator and play a
key role in the success of the experiments conducted at the facility. They are carefully
designed and manufactured to meet the demanding requirements of the accelerator, and
they are monitored and controlled by a sophisticated computer system.

One of the main factors that determine the instantaneous luminosity1 The instanta-
neous luminosity is typically measured in inverse femtobarns per second (fb−1s−1). It is
calculated based on the number of protons in each beam, the number of bunches in each
beam, the cross-section of the particles, and the bunch spacing. The LHC uses beams of
protons or heavy ions that have intensities of about 1.1 × 1011 or 3 × 109 particles per
beam, respectively. The beam intensity is limited by the strength of the superconducting
magnets that are used to guide and focus the beams, as well as the RF cavities that are
used to accelerate the particles. Another factor that affects the instantaneous luminosity
of the LHC is the bunch spacing, which is the distance between the bunches of particles
in the beam. The LHC uses a bunch spacing of about 25 ns, which allows the bunches to
pass through the accelerator without colliding with each other. The total amount of data
collected by the Large Hadron Collider over some time is the integrated luminosity. It is
measured in inverse femtobarns (fb−1) and is an important parameter because it deter-
mines the statistical significance of the results. Run 1 (2009-2013) and Run 2 (2015-2018)
delivered 200 fb−1 [8] for the two general purpose experiments, ATLAS and CMS (only
5% of the total integrated luminosity to be collected). The integrated luminosity of the
LHC is constantly increasing as more data is collected.

1.2 LHC detectors
The LHC accelerates beams of protons or heavy ions to very high energies and collides
them at various points along the accelerator ring. The collisions produce a variety of
subatomic particles, which are detected by a series of detectors located around the accel-
erator. Each detector is designed to measure different aspects of particle collisions and
is optimized for studying specific types of particles or phenomena. There are four main

1instantaneous luminosity is a measure of the number of particle collisions that occur per unit of time in
a particle accelerator. It is an important parameter for experiments conducted at the accelerator because it
determines the rate at which data can be collected.

5

CHAPTER 1. THE CMS EXPERIMENT AT THE LHC

detectors at the LHC:

• ALICE (A Large Ion Collider Experiment);

• ATLAS (A Toroidal LHC ApparatuS);

• CMS (Compact Muon Solenoid);

• LHCb (Large Hadron Collider beauty).

In the following sections, the LHC detectors will be briefly introduced, with a particular
focus on the CMS experiment.

1.2.1 ALICE
The ALICE [9] is a detector located at the location of St. Genis-Pouilly, France. It is
designed to study the properties of the quark-gluon plasma, a state of matter that is thought
to have existed shortly after the Big Bang and to study the properties of heavy ions.
ALICE is composed of several subdetectors that are used to measure various aspects of
particle collisions. These include a central barrel detector, which is used to detect charged
particles, and a forward detector, which is used to detect neutrons and photons.

One of the main goals of the ALICE experiment is to study the properties of the quark-
gluon plasma, which is a state of matter that is thought to have existed in the early universe.
The quark-gluon plasma (QGP) is created by colliding heavy ions at very high energies,
and it is believed to be composed of quarks and gluons that are not bound together in the
same way as they are in normal matter.

In addition, to studying the QGP, the ALICE experiment is also used to study the
properties of heavy ions, which are atoms with a large number of protons and neutrons
in their nucleus. By colliding these ions at very high energies, scientists can study the
properties of the nucleus and learn more about the fundamental forces that govern the
behaviour of the particles inside it.

1.2.2 ATLAS
The ATLAS experiment [10] is a detector located at the location of Meyrin, Switzerland.
It is a general-purpose detector that is used to study a wide range of phenomena, including
the Higgs boson, dark matter, and new physics beyond the Standard Model (SM). The
ATLAS experiment is composed of several subdetectors that are used to measure various
aspects of particle collisions. These include a central tracker, which is used to measure the
momentum of charged particles, and a calorimeter, which is used to measure the energy
of particles.

One of the main goals of the ATLAS experiment is to study the Higgs boson, which is
a particle that was predicted by the Standard Model of particle physics and was discovered
at the LHC in 2012. The Higgs boson is believed to be responsible for giving particles
mass, and by studying it, scientists hope to learn more about the fundamental forces that
govern the behaviour of the universe. In addition to studying the Higgs boson, the ATLAS
experiment is also used to search for dark matter, which is a mysterious form of matter that
is thought to make up about 85% of the mass in the universe. By studying the collisions of

6

1.2. LHC DETECTORS

particles at the LHC, scientists hope to find evidence of dark matter and learn more about
its properties.

Finally, the ATLAS experiment is also used to search for new physics beyond the
Standard Model, which is the current theoretical framework that explains the fundamental
forces and particles in the universe. By studying the collisions at the LHC, scientists
hope to find evidence of new particles or phenomena that could help to improve our
understanding of the universe and the laws of nature.

1.2.3 CMS
The CMS experiment [11] is a general-purpose detector located at the location of Cessy,
France. It is built around a large solenoid magnet with a cylindrical shape that is capable
of generating a strong magnetic field. Like the ATLAS experiment, CMS is used to study
a wide range of phenomena, including the Higgs boson, dark matter, and new physics
beyond the Standard Model.

1.2.4 LHCb
The LHCb experiment [12] is a detector located at the location of Ferney-Voltaire, France.
It is optimized for studying the properties of heavy quarks, which are a type of subatomic
particle that is heavier than the up and down quarks that make up protons and neutrons,
and the asymmetry between matter and antimatter. The LHCb experiment is composed of
several subdetectors that are used to measure various aspects of particle collisions. These
include a vertex locator, which is used to measure the tracks of charged particles, and a
calorimeter, which is used to measure the energy of particles.

1.2.5 Other experiments
There are several other experiments at the LHC in addition to ALICE, ATLAS, CMS, and
LHCb. Some examples are described in the following subsections. These are just a few
examples of the many experiments that are conducted at the LHC.

TOTEM

The TOTEM (Total Elastic and Inelastic Scattering Measurement) experiment [13] is
designed to measure the elastic and inelastic scattering of protons at high energies and
is used to study the structure of the proton and the strong force that governs it. It is
composed of several subdetectors that are used to measure various aspects of particle
collisions. These include Roman Pot detectors, which are used to measure the scattering
of protons, and a telescope, which is used to measure the tracks of charged particles.

One of the main goals of the TOTEM experiment is to study the structure of the proton,
which is a subatomic particle that is found in the nucleus of atoms. The proton is made
up of smaller particles called quarks and gluons, and the TOTEM experiment is used to
study the way these particles are arranged within the proton. In addition to studying the
proton, the TOTEM experiment is also used to study the strong force, which is the force
that holds quarks and gluons together within the proton.

7

CHAPTER 1. THE CMS EXPERIMENT AT THE LHC

LHCf

The LHCf (Large Hadron Collider forward) experiment [14] is designed to measure the
production of neutral particles in proton-proton collisions and is used to study cosmic
rays, which are high-energy particles that are thought to be produced by distant objects
in the universe, such as supernovae and active galactic nuclei. The LHCf experiment is
composed of two detectors that are located at opposite ends of the LHC ring, near the
interaction points of the proton beams. These detectors are used to measure the production
of neutral particles, such as photons and neutrons, that are produced in collisions.

1.3 The Compact Muon Solenoid experiment
The CMS (Compact Muon Solenoid) experiment is one of the two large multipurpose
detector experiments at LHC. The CMS experiment is designed to explore the physics
of proton-proton collisions at the TeV scale, with a particular focus on searching for the
Higgs boson. It is also designed to study the properties of heavy quarks, such as the top
quark and beauty quark, and τ physics at low luminosities, as well as to study the physics
of heavy ions, such as in lead ions collisions. It was designed to operate in proton-proton
(Pb-Pb) collisions at a center-of-mass energy of 14 TeV (5.5 TeV) and with luminosities up
to 1034cm−2s−1 It is a collaborative effort involving thousands of scientists from around
the world. The detector, located underground, consists of several different subdetectors,
each designed to measure different aspects of the particles produced in the collisions.
Figure 1.3 shows a picture of the cross-section of the CMS detector.

Figure 1.3: A view of CMS experiment.

1.3.1 The detector structure
The CMS detector gets its name from the fact that:

• given the amount of detector material it includes, it is fairly compact at 15 meters
high and 21 meters long;

8

1.3. THE COMPACT MUON SOLENOID EXPERIMENT

• it is optimised to detect muons precisely;

• it is equipped with the strongest solenoid magnet ever created.

The detector [15] consists of a cylindrical barrel made up of five slices, and two disk-
like endcaps. It measures 21.6 meters in length, 15 meters in diameter, and weighs around
12500 tons. The structure is made up of various layers that are designed to track and
measure the properties and paths of different types of subatomic particles. The detector is
also surrounded by a large solenoid that is based on superconductive technology, operates
at a temperature of 4.4K, and generates a magnetic field of 3.8T.

In CMS [16], a right-handed coordinate system is constructed, with the x-axis pointing
radially inward to the center of the accelerator ring, the y-axis pointing upward, and the
z-axis parallel to the beam pipe as illustrated in Figure 1.4 . This coordinate system is
centred at the nominal collision site.

Figure 1.4: The CMS detector’s cutaway diagram.

Because of the cylindrical structure of the CMS detector, it is often convenient to use
a polar system to describe the four-momentum of particles, as shown in Figure 1.5.

Given the CMS detector’s cylindrical design, it is frequently more convenient to
characterize the four particle momentums using a polar system: measured from the z-axis,
the polar angle θ in a range 0 ≤ θ ≤ π, while the aximuthal angle ϕ is measured in
teh x-y plane from the x-axis in a range 0 ≤ ϕ ≤ 2π. In a collision, the center-of-mass
experiences an increase in momentum along the z-axis as observed from the laboratory
frame. Consequently, the coordinates which are typically used to explain the kinematics
are (pT , y, ϕ, m), where m is the invariant mass, pT the transverse momentum defined as:

pT = p sin θ =
√

p2x + p2y, (1.2)

9

CHAPTER 1. THE CMS EXPERIMENT AT THE LHC

Figure 1.5: CMS coordinate system with the cylindrical detector.

and the rapidity defined as:

y =
1

2
ln

(
E + pz
E − pz

)
. (1.3)

It is possible to define an additional quantity, pseudorapidity is a measure of the angle
of a particle’s motion relative to the beam line. It is defined using the polar angle θ of the
particle’s momentum vector with the beamline and is given by the equation:

η =
1

2
ln

(
|p|+ pz
|p| − pz

)
. (1.4)

Pseudorapidity is useful because it is approximately equal to the particle’s rapidity,
at ultrarelativistic energies. It is also often used because it increases monotonically with
the polar angle for small angles, allowing for easy comparison of the angles of different
particles.

CMS detector consists of several layers that are used to identify and measure the
properties of particles produced in high-energy collisions. There are three main layers of
the CMS detector:

• the innermost layer is the tracker, which is used to measure the trajectories of
charged particles. It is made up of layers of silicon detectors that can accurately
determine the position and momentum of charged particles as they pass through.

• The second layer is the calorimeters, which is used to measure the energy of
particles. It consists of layers of dense material, such as lead or brass, interleaved
with layers of detectors. When a particle passes through the calorimeter, it deposits
some of its energy in the material, and this energy is then detected by the detectors.

• The outermost layer is the muon system, which is used to identify and measure
the properties of muons, which are heavy particles similar to electrons. The muon

10

1.3. THE COMPACT MUON SOLENOID EXPERIMENT

system consists of layers of detectors placed at large radii from the beamline to
detect the muons as they pass through.

1.3.2 Inner tracking system
The tracking system [17] which measures the momentum of particles by their curvature
radius through the magnetic field, is a crucial element in the CMS design. The larger the
curvature radius, the greater the momentum of the particles. The Tracker is an effective
tool for monitoring the paths of muons, electrons, hadrons, and the decay products of
short-lived particles such as beauty quarks. It has a low degree of interference with these
particles and is highly resistant to radiation.

At the luminosity level of the LHC, approximately 1000 charged particles are produced
from proton-proton interactions every 25 nanoseconds. This high particle production rate
necessitates the use of a system with high granularity and radiation resistance to accurately
track and measure these particles. To perform efficient and precise measurements, the inner
tracking system consists of several layers placed around the collision region, including
silicon pixel detectors in its innermost part, silicon strip modules of the different pitch in
its central and external part.

However, this high granularity leads to elevated power consumption and requires
efficient cooling infrastructure to function well at low temperatures (around -10°C) and
prevent radiation damage. To minimize multiple scattering and other interactions, it is
necessary to keep the total amount of material in the tracker as low as possible, so a
compromise in the design had to be made. The detector shown in Figure 1.6 is made
entirely of silicon and covers a pseudorapidity region of up to |η| < 2.5 with a radius
smaller than 1.2m and |z| < 2.7m. This makes it the largest silicon tracker ever built. It
has a total of 9.3 million strip sensors and 66 million pixel sensors.

Figure 1.6: A graphical representation of a tracker slice in the r-z plane is shown, with pixel
modules in red, single-sided strip modules as black thin lines, and strip stereo modules in
blue thick lines [18].

11

CHAPTER 1. THE CMS EXPERIMENT AT THE LHC

Silicon pixel detectors

Silicon pixel detectors are a key component of the tracking system, these detectors are
similar to silicon strip detectors, but with a much finer segmentation of silicon pixels,
whose cell size is of 100×150µm2, placed on a silicon substrate, allowing for more precise
measurement of the particle’s trajectory. Like the strip detectors, the pixel detectors are
arranged in a matrix of columns and rows. As the particle passes through the detector, it
leaves a trail of ionization along its path. This ionization is collected by the detectors and
converted into an electrical signal, which is then used to determine a precise 3D vertex
reconstruction of the particle. The pixel detectors are sensitive to charged particles with
a wide range of energies and can operate in a high-radiation environment. They are an
essential component of the CMS tracking system, allowing for the precise measurement of
the trajectory and momentum of charged particles produced in high-energy proton-proton
and heavy ion collisions.

Silicon strip detectors

The outermost regions of the tracking system are made up of several layers of silicon
microstrip detectors. These layers contain approximately 10 million detector strips, which
are divided into 15200 modules and monitored by 80000 microelectronic chips on a
silicon surface of around 200 square meters. These detectors are capable of detecting the
passage of charged particles produced in proton-proton collisions. The four innermost
barrel layers of the system make up the Tracker Inner Barrel (TIB) system, while the six
outermost layers are called the Tracker Outer Barrel (TOB). The Tracker Inner Disk (TID),
consisting of three layers of disks, is located on each side of the TIB. Finally, a group of
nine disks perpendicular to the beam axis, placed after the TOB and TID, make up the
Tracker End-Cap (TEC). Each module of the tracking system is composed of three parts:
sensors, a support structure, and electronics for data acquisition. The sensors have a high
response rate and excellent spatial resolution, enabling them to detect many particles in a
small space. They detect electrical currents produced by interacting particles and transmit
the collected data.

1.3.3 Electromagnetic Calorimeter
The Electromagnetic Calorimeter (ECAL) [19, 20] (see Figure 1.7) is designed to have
excellent energy resolution and good position resolution of high-energy photons and
electrons produced in the collisions that take place at the CMS experiment collision point,
in addition, accurate measurements of hadronic jets will be carried out in combination with
the Hadron Calorimeter. Electrons and photons are necessary components in at least three
of the Higgs boson decay channels (H → γγ, H → ZZ → 4e±, H → WW → eνeν),
making the performance of the high-resolution CMS ECAL a crucial issue. The design
of the ECAL was driven by the key physics channel of H → γγ. This decay mode is the
most sensitive for a low-mass SM Higgs boson (mH < 150GeV). Despite that, the tracker
is only able to identify charged particles with a precision that is inversely proportional to
their pT , the calorimeters can measure both charged and neutral particles with a resolution
that is proportional to the increase in the particle’s energy. The ECAL design requirements
were:

• the tracker coverage is matched by ECAL excellent energy and position/angle reso-
lution up to |η| < 2.5;

12

1.3. THE COMPACT MUON SOLENOID EXPERIMENT

• the system is sealed off from its environment (hermeticity), is small in size or densely
packed (compactness), and has a high level of detail or resolution (high granularity);

• the system has a fast response time (about 25 ns) and can measure particle identifi-
cation, energy, and isolation at the trigger level;

• the system has a large dynamic range (from 5 GeV to 5 TeV) and excellent linearity
(at the per-mill level);

• the system has a high level of radiation tolerance, having been designed for 14 TeV
and L = 1034 cm−2s−1, with a total luminosity of 500/fb.

The 75,848 calorimeter crystals are arranged in a central barrel section (EB), with
pseudorapidity coverage up to |η| = 1.48, closed by two endcaps (EE), extending coverage
up to |η| = 3.0. Crystals are projective and positioned slightly off-pointing (30) relative to
the interaction point (IP) to avoid cracks aligned with particle trajectories. The calorimeter
has no longitudinal segmentation, and the measurement of the photon angle relies on the
primary vertex reconstruction from the silicon tracker. A pre-shower detector (ES),
consisting of lead absorbers and silicon strip sensors (4,288 sensors, 137,216 strips, with
an x-y view of 1.90 x 61 mm2), is placed in front of the endcaps at 1.65 < |η| < 2.6 to
improve photon-π0 separation. The total thickness of the ES is approximately 3 radiation
lengths.

Figure 1.7: A schematic diagram of the CMS electromagnetic calorimeter is shown.

Crystal properties

The CMS ECAL is a hermetic, homogeneous, fine-grained lead tungstate (PbWO4) crystal
calorimeter. A homogeneous medium was chosen to minimize sampling fluctuations and
improve energy resolution. Dense crystals offer the potential for excellent performance and
compactness. The design of the CMS electromagnetic calorimeter allowed it to be placed
within the volume of the CMS superconducting solenoid magnet. PbWO4 scintillating
crystals have several important features that make them useful for calorimeters. These
include a high density (δ = 8.28g/cm3), a very short radiation length, and a small Molière
radius (X0 = 0.85cm and RM2.19 cm, respectively). These properties allow for the
creation of a compact calorimeter with high granularity. The crystals also produce fast
signals, with 80% of the light emitted within 25 ns, which is important given the high
collision rate of the LHC (40 MHz). The light emission peak is at 420 nm and the
crystals are transparent throughout their scintillation emission spectrum. There are a few

13

CHAPTER 1. THE CMS EXPERIMENT AT THE LHC

drawbacks to using PbWO4 crystals. One is the low light yield (LY), which is only about
100 photons per MeV for a 23 cm long crystal. This requires the use of a photodetector
readout system with internal gain. Another disadvantage is the strong dependence of the
light yield on temperature which requires temperature stability.

The energy, position, and time resolution of arrays of crystals have been thoroughly
studied in beam tests with no magnetic field, no material upstream of the crystals, no
radiation damage, and minimal variation in channel response. The energy resolution
obtained for the central impact of electrons on a 3 x 3 crystal array consists of a stochastic
term, a noise term, and a constant term:

σE

E
=

2.8%√
E

⊕ 0.128GeV

E

⊕
0.3%, (1.5)

where E is measured in GeV. The constant term in the energy resolution is largely
influenced by the non-uniformity of the light collection along the longitudinal axis. Ma-
terial upstream of the ECAL can cause photon conversion and electron Bremsstrahlung,
which can impact all terms in the energy resolution. The goal of the CMS was to achieve
a constant term of below 1% [21].

1.3.4 Hadron Calorimeter
The Hadron Calorimeter (HCAL) [22] and ECAL are used to measure the direction and
energy of hadronic jets as well as calculate the amount of missing transverse energy
(missing ET) for each occurrence. The need for an accurate missing ET measurement
necessitates the creation of a very hermetic system, whose design is limited by the strong
magnetic field and compactness requirements. A sample calorimeter device based on
brass absorber layers interspersed with active plastic scintillators has been constructed
to meet these requirements. With incorporated wavelength-shifting fibres (WLS), the
signal from active scintillators is read out and sent to hybrid photodiodes via clear fibre
waveguides. Brass was chosen as the absorber material due to its low interaction length
(λI) and lack of magnetic properties. Figure 1.8 displays a longitudinal perspective of
the HCAL arrangement. The hadron calorimeter is a sampling calorimeter made of a
copper alloy absorber and plastic scintillators, and it is located behind the tracker and the
electromagnetic calorimeter as seen from the interaction point. The construction of the
barrel hadron calorimeter (HB) is polygonal. It is constructed of two parts, each of which
is made up of 18 wedges. Each wedge measures 20° inches in width and 4.33 meters in
length in the z-direction. Each of the 17 slots, which are spaced at regular radial spacing,
has a negative scintillator. HB can reach up to |η| = 1.3 - 1.4. Between the outside extent
of the electromagnetic calorimeter (R = 1.77 m) and the inner extent of the magnet coil
(R= 2.95 m), HB is radially constrained. This limits how much material may be used to
completely absorb the hadronic shower.

1.3.5 Magnetic System
The CMS magnet system [24] is created to take into account the exact measurements of
momentum of charged particles and identification of the charge of high transverse momen-
tum muons required at the LHC. The CMS magnet system consists of a superconducting
solenoid magnet that generates a strong, uniform magnetic field inside the detector. The

14

1.4. THE MUON SYSTEM

Figure 1.8: View of the CMS detector along its longitudinal axis with some fixed η lines
[23].

solenoid magnet is made up of a cylindrical coil of superconducting wire, surrounded by
a cryostat and various support structures. The magnet is capable of generating a field
strength of about 3.8 T.

The CMS magnet system also includes several other magnets, such as trim coils
and correction coils, which are used to fine-tune the magnetic field and correct for any
distortions. These magnets are powered by a complex system of high-voltage power
supplies and electrical current leads. The CMS magnet system is a critical component of
the CMS experiment, as it helps to steer and focus the trajectories of charged particles as
they pass through the detector. It is constructed of copper-wrapped NbTi cables, cooled
to 4.5 K, and housed inside a 12,000-ton iron yoke that also houses the outside muon
detection equipment. The iron yoke is used for the magnetic return flux. The iron yoke’s
2 T residual field has sufficient bending power to carry out an effective pT -based muon
trigger selection in a region of |η| < 2.4 pseudorapidity.

1.4 The Muon System
Many of the intriguing physical processes anticipated at the LHC will exhibit final states
that will contain large pT muons. To offer accurate muon identification, performed with
the muon system, located outside the superconducting coil (Figure 1.9), high resolution pT
measurements, and a reliable trigger capability, a robust and redundant muon spectrometer
is required. High-energy muons are created in proton-proton collisions and are especially
detected in the Muon System, a distant external set of subdetectors of the CMS experiment,
after crossing both electromagnetic and hadronic calorimeters.

Three different types of gaseous detectors [25], each with a unique design to accom-
modate the radiation environment and magnetic field at various values of η, make up the
experimental muon setup:

• 250 Drift Tube Chambers (DT) are utilized in the barrel region (with |η| < 1.2),
where there is little track occupancy and a weak residual magnetic field;

• to deal with a larger particle flux and an uneven magnetic field, the endcaps (0.8 <

15

CHAPTER 1. THE CMS EXPERIMENT AT THE LHC

|η| < 2.4) are outfitted with 540 Cathode Strip Chambers (CSC) with quicker and
radiation-resistant capabilities;

• due to their quick response, excellent time resolution, and low spatial resolution, 610
Resistive Plate Chambers (RPC) complement the DT and CSC in both regions up to
|η| < 2.1 to ensure redundancy and improve trigger performances. This improves
the precision in the muon trigger on the determination of the bunch crossing (BX)
in which the muon has been created.

Figure 1.9: Layout of the CMS muon system in a longitudinal quarter view [26]. Only
the inner ring of the ME4 chambers has been deployed for the CSC system, and the RPC
system is only capable of |η| < 1.6 in the endcap.

Due to the repeated scattering that occurs when a muon crosses a calorimeter and the
iron yoke of the muon portion, the tracker precision is most important for muons with
pT < 200GeV , although at higher pT the combination of the two systems increases the
overall resolution.

1.4.1 Drift tube system
The drift tube cell [27], scehmatic is shown in Figure 1.10), which measures 42 mm by
13 mm and has a stainless steel anode wire with a diameter of 50 m and a length ranging
from 2 to 3 m, is the basic detector component of the DT muon system. Cells are arranged
in layers between two parallel aluminium planes, which are separated from one another
by "I"-shaped aluminium beams. Cathodes are electrically isolated strips of aluminium
that have been deposited on both faces of each I-beam. The positive and negative voltages
(usually +3600 V and -1200 V, respectively) of the anode wires and cathodes create the

16

1.4. THE MUON SYSTEM

electric field inside the cell volume. To provide additional field shaping and enhance the
space-to-distance linearity over the cell, two additional positively biased (+1800V) strips
are mounted on the aluminium planes on both inner surfaces in the centre of the cell.
This distance of the traversing track to the wire is measured by the drift time of ionization
electrons. A gas mixture of 85% CO2 and 15% Ar is used to fill the tubes, which has
good quenching capabilities. About 55µm/ns is the obtained drift speed. This results in
a maximum drift duration (half-cell drift distance) of ≈380 ns (or 15–16 BXs). The low
predicted rate and the comparatively weak local magnetic field were the driving factors in
the decision to use a drift chamber as the tracking detector in the barrel.

Figure 1.10: (left) a diagram of the DT chamber in the Muon System; (right) a drift tube
cell [28].

Figure 1.11: A cross-section of the CMS DT system. In the figure, station and sector
numbers are displayed.

The DT system is divided into 12 azimuthal sectors (Figure 1.11), each covering 30°,
and 5 wheels along the z-axis, each around 2.5 m wide. Within each wheel, drift tubes
are organized in 4 concentric cylinders, known as stations, spaced variously from the
contact point and interspersed with the iron of the yoke. Except for the outermost station,
MB4, which has top and bottom sectors with two chambers each, each DT station has 12
chambers in each wheel, for a total of 14 chambers in that station. To maximize geometric

17

CHAPTER 1. THE CMS EXPERIMENT AT THE LHC

acceptability, each DT chamber is azimuthally staggered to the preceding inner one. To
create three superlayers (SL), the DT layers inside a chamber are stacked, half-staggered,
in groups of four.

Two of these superlayers (SL) measure the muon location in the bending plane r-ϕ,
while the third super layer measures the position along the z coordinate. The MB4 station’s
outermost chambers, however, only have two phi superlayers installed. This means that
there are 250 DT chambers in the entire CMS detector. While r can be calculated with a
precision of ≈0.5 cm, the location resolution measured with the strips ranges from ≈ 70
mm for the innermost stations to ≈ 150 mm for the outermost ones.

1.4.2 The Cathode Strip Chambers
Drift tube detectors cannot be used to conduct measurements at high η values due to
the high magnetic field and particle rate anticipated in the muon system endcaps. As a
result, a Cathode Strip Chambers (CSC)-based system was chosen [29]. The CSC are
gaseous trapezoidal Multiwire Proportional Chambers (MWPC), which are distinguished
by a brief drift length that facilitates quick signal gathering. Both in the anode wire and
on a collection of thinly divided cathode strips, data are gathered regarding the position of
the arriving particle. Figure 1.12 illustrates the CSC layout. These chambers are set up to
create four disks of concentric rings that are positioned in the space between the endcap
iron yokes.

(a) Layout of the CSC subsystem.
(b) Schematic view of CSC chamber signal
formation.

Figure 1.12: The Cathode Strip Chambers of the CMS endcap muon system.

Each chamber is made up of six layers of 9.5 mm thick anode wire arrays that are
sandwiched between two planes of cathode strips with finely segmented edges to receive
the ionization signal generated by the mixture of 30%/50%/20% Ar/CO2/CF4 gas. The
strips are used to calculate the polar angle, while the wires provide information about the r
coordinate. The anode wire in the first disk, which operates in a high magnetic field area,
is slanted by 20◦ to account for the Lorentz drift effect. While r can be calculated with a
precision of ≈ 0.5 cm, the location resolution measured with the strips ranges from ≈70
µm for the innermost stations to ≈150 µm for the outermost ones.

18

1.5. TRIGGER AND DATA ACQUISITION

1.4.3 The Resistive Plates Chambers
Resistive Plates Chambers are employed in the barrel and endcaps, completing the DT
and CSC systems, to ensure the muon spectrometer’s durability and redundancy. RPC
are gaseous detectors that have a coarse spatial resolution but are nonetheless capable of
performing accurate time measurements that are on par with those offered by scintillators
[30]. The muon trigger mechanism will receive a precise BX identification as a result.

The 90%/10% mixture of freon (C2H2F4) and isobutane (C4H10) is ionized by crossing
particles in double-gap RPC chambers made up of four bakelite planes generating two 2
mm gaps, as shown in Figure 1.13, and the electrons are multiplied in avalanche mode.
The 9.5 kV electrodes are made of a graphite coating, and the centre of the chamber is
fitted with insulated aluminium strips that are utilized to gather the signal produced by the
electronic avalanche brought on by the crossing particles. To boost the signal imparted
to them, the double gap chamber design decision was used. Along the beam axis, the
strips in the barrel are rectangularly segmented (12.1 to 41 cm wide and 80 to 120 cm
long), whilst the endcaps are fitted with trapezoidal-shaped strips that roughly span the
range ∆ϕ = 5 − 6◦, ∆η = 0.1. Except for the restriction imposed by the strip length,
no measurement is feasible in the η coordinate. The detector operates in avalanche mode
rather than the more conventional streamer mode to support greater speeds, but due to the
reduced gas multiplication, improved electronic multiplication is needed.

Figure 1.13: Cross sectional view of a CMS double gap RPC [31].

Two RPC stations are attached to each side of the two innermost DT chambers of a
sector in the barrel region of the system, whereas only one RPC station is attached to the
inner side of the third and fourth DT chambers. The system is laid out according to the
DT segmentation. By detecting even low pT muons before they stop in the iron yoke, this
technique guarantees to increase the low pT range of the trigger mechanism in the barrel.

1.5 Trigger and Data Acquisition
At the LHC, proton bunches collide at a rate of 40 MHz. Considering that, each event in
the two general-purpose experiments ATLAS and CMS is around 1 MB in size, a trigger
system is needed to select the most interesting events for further analysis. To reduce the

19

CHAPTER 1. THE CMS EXPERIMENT AT THE LHC

event rate to a manageable level for the final storage, the trigger must achieve a reduction
rate of 107, allowing for a maximum event rate of ≈1 kHz. The trigger algorithms must be
carefully tuned to be sensitive to a wide range of physical processes, including ones with
a low probability, like: Z → ll and W → lν, but simultaneously rejecting a large number
of backgrounds. Because procedures like QCD have substantially higher cross sections
and might potentially saturate selections based on simple high pT lepton identification,
this presents a particularly difficult problem.

The high frequency of 40 MHz at which the BX occurs requires the development of
a system that can make a selection or rejection decision every 25 ns. A pipelined trigger
architecture with many layers of increasing complexity has been devised since the time
frame is too short to collect and process all the essential data from all the subdetectors in
one go. The CMS trigger system [32] has two levels of event selection to identify those
that may be of potential interest for physics studies:

• the first level (L1T) is implemented in custom hardware and selects events that
contain candidate objects such as muon-like ionization deposits, electron- or photon-
like energy clusters, τ leptons, missing transverse energy, or jets. The scalar sum
of jet transverse momenta (HT) can be used to select events with potentially large
momentum transfers.

• The final event selection for the CMS trigger system is based on a programmable
menu that uses up to 128 algorithms to analyze the candidate objects identified in
the first level of selection. This process, known as the high-level trigger (HLT),
is implemented in software and further refines the purity of the selected objects.
The thresholds of the first level are adjusted during data taking to ensure that the
output rate does not exceed 100 kHz, the upper limit imposed by the CMS readout
electronics. The HLT has an average output rate of 400 Hz for offline storage, which
can be adjusted through the use of prescaling to reduce the number of events that
pass the selection criteria of specific algorithms.

In addition to collecting collision data, the trigger and data acquisition systems also
record information for the monitoring of the detector.

1.5.1 The Level-1 Trigger System
The Level-1 trigger [33] uses uniquely designed programmable hardware, such as field
programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), and
programmable lookup tables (LUTs), to quickly accept or reject events at a rate of 40 MHz.
In a pipeline mode, each processing step must be completed in less than 25 nanoseconds,
with pipeline buffers having a maximum length of 128 BX (3.2 µs). When the signal
propagation time and the latencies of the subdetectors are taken into consideration, the
L1T’s effective decision operation time is, nevertheless, less than 2 µs.

The Muon Trigger, the Calorimeter Trigger, and the Global Trigger are the three
primary subsystems that make up the Level-1 Trigger of the CMS detector. The first
two systems gather data from the calorimeters and muon spectrometers, but they are
not in charge of accepting or rejecting events on their own. The Muon Trigger and
Calorimeter Trigger subsystems identify and prioritize various types of trigger objects,
such as electrons/photons, jets, and muons, and then pass the top four candidates of each

20

1.5. TRIGGER AND DATA ACQUISITION

Figure 1.14: Diagram of the upgraded CMS Level-1 trigger system during Run 2 [34].

type to the Global Trigger. The Global Trigger then makes the final decision on whether
to accept or reject the event, as shown in Figure 1.14.

1.5.2 The High-Level Trigger and DAQ
The L1 Trigger’s event rate must be further decreased to roughly 1 kHz by the CMS High
Level Trigger (HLT) to meet the storage system’s requirements. The HLT uses a farm of
commercial processors to do an analysis akin to offline event reconstruction to achieve
this [35].

The Front End System (FES) first keeps the data produced by the Level-1 Trigger
in a 40 MHz buffer. The Front End Drivers (FEDs) then transfer the data to the Front
End Readout Links (FRLs), which can receive information from two different FEDs. The
event fragments received by the FRLs are assembled into full events by the Event Builder
system, which has two main purposes: to transport the data from underground to the
CMS surface buildings and to initiate the reconstruction phase. After the event has been
assembled, it is transmitted to the event filter, where HLT algorithms and operations for
assessing the quality of the data are carried out. Thereafter, the filtered data are split up
into many online streams, the content of which depends on the trigger setup, and they
are delivered to a local storage system before being forwarded to the CERN mass storage
infrastructure.

21

CHAPTER 1. THE CMS EXPERIMENT AT THE LHC

22

Chapter 2
Machine and Deep Learning

Machine and Deep learning have become increasingly relevant techniques in High Energy
Physics (HEP) research. These methods allow physicists to analyze and interpret large
amounts of data generated by experiments such as CMS and ATLAS at the LHC.

Machine learning involves training algorithms on data to make predictions or decisions.
Deep learning is a type of machine learning that uses neural networks, which are inspired
by the structure and function of the human brain, to recognize patterns and make decisions
based on input data. Algorithms based on deep learning have been successful in a variety
of applications, including image and speech recognition.

Deep learning and machine learning can be used in HEP to analyze and interpret
experimental data, identify elusive or rare particles, forecast the results of upcoming
experiments, or locate patterns that are out-of-the-ordinary or abnormal, such as the
Anomaly Detection task.

This chapter introduces the concepts of machine learning and deep learning and
discusses some of their applications in high energy physics research, with a particular
focus on the Variational Autoencoder model, used extensively in the analysis carried out
in the following chapter.

2.1 Introduction to Machine Learning
Machine Learning (ML) [36] is a branch of artificial intelligence that is focused on
developing algorithms that can learn from data automatically. This allows artificially
intelligent agents to recognize objects and predict the behaviour of their environment
to make informed decisions. ML techniques are typically more focused on making
predictions, rather than estimating values. They are also often used to solve complex,
high-dimensional problems that are beyond the scope of traditional statistical methods.
For example, ML techniques might be used to predict the interference pattern that would
be observed in an interferometry experiment under different conditions, based on data
from previous experiments [37].

23

CHAPTER 2. MACHINE AND DEEP LEARNING

Despite their differences, estimation and prediction problems can be approached using
a similar framework. In both cases, we choose some observable quantity x of the system
under study, such as an interference pattern that is related to some parameters θ, e.g. the
speed of light, and a model p(x|θ) that describes the probability of observing x given θ.
We then perform an experiment and use the data X we collect to fit the model to the data.
This typically involves finding the parameter values that provide the best explanation for
the data. In the case of least squares estimation, the parameters that are chosen maximize
the probability of observing the data (i.e., θ̂ = argmaxθ p(X|θ)). Estimation problems
are concerned with the accuracy of θ̂ these estimated parameter values, while prediction
problems are concerned with the ability of the model to make accurate predictions about
new observations, (i.e. the accuracy of p(x|θ̂)). These goals can sometimes lead to
different approaches to solving the problem.

In the past thirty years, we have seen a significant increase in our ability to collect,
process, and analyze large amounts of data, known as Big Data. This growth has been
fueled by the rapid advancement of technology, particularly the increasing power and
capacity of computers, as described by Moore’s law. Specialized computing systems,
such as those using graphics processing units (GPUs), are making it possible to perform
large-scale computation at lower costs, indicating that the big data revolution is likely to
continue in the future. Along with the advancements in computing power, new methods for
analyzing and extracting insights from large data sets have also emerged. These techniques
often incorporate concepts from various fields, including statistics, neuroscience, computer
science, and physics. In particular, modern ML approaches often prioritize practical, real-
world results and intuition, rather than relying on more formal, theoretical approaches that
are common in disciplines such as statistics, computer science, and mathematics.

Physicists have both the opportunity to benefit from and contribute to the development
of machine learning. Many ML techniques, including Monte Carlo methods, simulated
annealing, and variational methods, have roots in physics. In addition, the concept of
energy-based models [38], which is inspired by statistical physics, is central to many deep
learning methods. As a result, physicists are well-equipped to engage with and contribute
to the field of ML.

2.1.1 Problem Formulation in Machine Learning
In many cases, machine learning problems begin with similar elements. One of the
essential elements is a datasetD = (X, y), whereX denotes an input matrix of independent
variables and y is an output variable vector. The model is denoted as f(x; θ), where
f : x → y is a function that maps input variables to output variables through a set of
parameters θ. In summary, the model is used to predict outputs from a vector of input
variables. To evaluate the performance of the model, a cost or loss function C(y, f(X; θ))
is used. The goal is to find the set of parameters θ that minimizes this cost function,
effectively "fitting" the model to the observations y.

ML involves a structured process for developing models that can effectively predict
outcomes. A key step in this process is the initial partitioning of the dataset D, into
two distinct groups: the training set Dtrain and the test (validation) set Dtest. In most
cases, the data is divided into the training set, which comprises a significant proportion
of the data (e.g. 85%), and the remaining portion is allocated to the test set. The
model is then fitted by using only the training set data to minimize the cost function, so

24

2.1. INTRODUCTION TO MACHINE LEARNING

the minimization expressed as θ̂ = argminθ{C(ytrain, f(Xtrain; θ))}. In the final step,
the model’s performance is evaluated by calculating the cost function using the test set
C(ytest, f(Xtest; θ̂)). The cost function value for the optimal model fit on the training set
is referred to as the in-sample error, represented as Ein = C(ytrain, f(Xtrain; θ)). The
cost function value on the test set, on the other hand, is known as the out-of-sample error,
represented as Eout = C(ytest, f(Xtest; θ)).

An important insight that can be derived from the analysis is that the out-of-sample
error typically exceeds the in-sample error, meaning Eout ≥ Ein. Dividing the data
into mutually exclusive training and test sets offers an unbiased estimate of the model’s
predictive capabilities, a method commonly known as cross-validation in literature. In
numerous applications of classical statistics, the goal is to estimate the value of some
unknown model parameters using a mathematical model that is frequently considered to
be correct. In contrast, problems in ML often involve understanding complex systems
where the precise mathematical model describing the system is unknown. Therefore, it
is common for ML researchers to consider multiple potential models, and compare them
using the out-of-sample error (Eout). The model that minimizes this error is typically
chosen as the optimal model (model selection). It is important to recognize that once the
best model is selected by evaluating its performance on Eout, the actual performance of
the chosen model in real-world scenarios is likely to be slightly poorer as the test data was
used in the training procedure.

2.1.2 Overfitting and Underfitting
One of the main challenges in machine learning is the ability to accurately predict outcomes
for new, unseen data, rather than just for the data that was used to train the model. This
is often referred to as generalization, and the model needs to be able to perform well on a
wide range of inputs. To achieve good generalization, it is necessary to carefully design
and train the model, choosing appropriate algorithms and parameters, and ensuring that
the model has not overfit the training data.

Overfitting occurs when a model is too complex and has learned patterns that are
specific to the training data, but may not generalize to other data. This can happen when
the model has too many parameters, or when the training data is not representative of the
broader population. As a result, the model may perform well on the training data, but
it will not be able to generalize to new, unseen data, and its performance will suffer. If
the model performs well on the training data but poorly on the validation data, it is likely
overfitting. To address overfitting, several approaches can be effective:

• reduces the complexity of the model by using fewer parameters or by using regu-
larization techniques, which constrain the model to prevent it from learning overly
complex patterns;

• increases the size of the training dataset, which can help the model learn more
general patterns.

Underfitting, on the other hand, occurs when a model is too simple and is not able to
capture the underlying patterns in the data. This can happen when the model has too few
parameters, or when the training data is not sufficient to learn the desired patterns. In this
case, the model will perform poorly on both the training data and new, unseen data. To
identify underfitting, it is again useful to evaluate the model’s performance on a validation

25

CHAPTER 2. MACHINE AND DEEP LEARNING

dataset. If the model performs poorly on both the training and validation data, it is likely
underfitting. To address underfitting, several approaches can be effective:

• increases the complexity of the model by using more parameters or by using more
flexible model architectures;

• increases the size of the training dataset, which can provide the model with more
examples to learn from.

2.1.3 Basics of Statistical Learning
This section provides a general overview and explores the concept of learning, specifically
the conditions under which it can be achieved. Let’s consider an unknown function,
represented as y = f(x). To learn this function, we define a set of hypotheses H, which
includes all the functions we are willing to consider. The specific functions included
in this set are based on our understanding and assumptions about the problem at hand.
Our objective is to select the best approximation of f(x) from the hypothesis set H, by
finding a function h that closely matches f in a mathematical sense. If we are successful
in doing this, we can say that we have learned the function f(x). After selecting an error
function E, that is appropriate for the problem at hand, we can evaluate the performance
of a model using two distinct measures: the in-sample error, Ein, and the out-of-sample
or generalization error, Eout (as previously discussed in section 2.1.1). To illustrate some
of the core concepts in statistical learning theory [39] — which have a considerable
influence on how we view and approach machine learning — this section will provide two
schematics.

Figure 2.1: An illustration showing how typical in-sample and out-of-sample error changes
with training set size [37].

The first schematic shown in Figure 2.1 illustrates the typical relationship between
the out-of-sample error Eout, and in-sample error Ein, as the amount of training data
increases. The graph is based on the assumption that the true data is generated from a
complex distribution, making it impossible to exactly learn the function f(x). Therefore,

26

2.1. INTRODUCTION TO MACHINE LEARNING

as the number of data points increases, the in-sample error will rise, as our models cannot
perfectly learn the true function that we are trying to approximate, after a brief initial drop
that is not depicted in the graph. In contrast, as the number of data points increases, the
out-of-sample error will decrease. As the size of the training set grows, the noise generated
by sampling diminishes, and the training set becomes more representative of the true data
distribution. As a result, as the number of data points approaches infinity, the in-sample
and out-of-sample errors will converge to the same value, referred to as the bias of the
model. The bias represents the best that our model can achieve given an infinite amount
of training data to overcome sampling noise. The bias is a characteristic of the type of
functions or model class that we are using to approximate f(x). However, in practice, we
do not have an infinite amount of data. Therefore, to achieve the best predictive power, it
is better to minimize the Eout, rather than the bias. As shown in Figure 2.1, Eout can be
broken down into bias and variance. Bias measures how well we can perform in an ideal
scenario with infinite data, while variance measures the typical errors that arise due to
sampling noise when working with a finite training set. In Figure 2.1, the last value shown
is the gap between the generalization error and the training error. It gauges how closely the
in-sample error approximates the out-of-sample error, and it quantifies how much worse
our model’s performance would be on new data compared to the training data. Therefore,
this difference represents the distinction between fitting the data and making predictions,
it is a measure of overfitting and underfitting.

Figure 2.2: The trade-off between bias and variance. As the complexity of a model
increases, it can more closely match the underlying relation, but there is also a greater risk
of increasing the variance, leading to overfitting. To minimize the total prediction error
(which is the sum of bias and variance), it is necessary to balance the bias and the variance
by considering the trade-off between these two factors [37].

The second diagram in Figure 2.2, illustrates the out-of-sample or test error Eout

as a function of model complexity. In many cases, model complexity is related to the
number of parameters used to approximate the true function f(x). When considering a
fixed-size training dataset, Eout is generally not a monotonically increasing or decreasing
function of model complexity, instead it is minimized for models with an intermediate
complexity. This is because, although using a more complex model always decreases bias,
at a certain point, the model becomes overly complex with the amount of training data,
and the generalization error increases significantly due to high variance. To minimize Eout

and enhance predictive power, it may be more beneficial to use a model with a higher bias

27

CHAPTER 2. MACHINE AND DEEP LEARNING

and lower variance rather than a model with a lower bias but higher variance. This crucial
idea is referred to as the bias-variance trade-off.

2.1.4 Gradient Descent
As it is described so far, most ML tasks begin with similar components: a dataset X , a
model g(θ) which is a function of parameters θ, and a cost function C(ytest, f(Xtest; θ̂))
that measures how well the model g(θ) explains the observations in X . The goal is to find
the values of θ that minimize the cost function, to optimize the performance of the model.

It is now examined the most powerful and widely used methods for minimizing the
cost function - gradient descent and its variants. These methods are based on the principle
of iteratively adjusting the parameters θ in the direction where the gradient of the cost
function is large and negative. This training procedure aims to guide the parameters
towards a local minimum of the cost function. However, in practice, Gradient Descent
(GD) can be challenging and a range of techniques have been developed by the optimization
and machine learning communities to enhance the performance of these algorithms. The
main reason why training a machine learning model is difficult is that the cost functions
used are often complex, rugged, non-convex, high-dimensional functions with multiple
local minima. Additionally, the true function to be minimized is rarely known, instead, it
must be estimated directly from the data. In modern applications, the size of the dataset and
the number of parameters to be fit can be immense (millions of parameters and examples).

The basic idea behind gradient descent is that by moving in the direction of the negative
gradient, the algorithm will be able to reduce the value of the loss function and, therefore,
find better solutions. The algorithm continues this process until it reaches a local minimum
of the cost function, where the gradient is zero. The function E(θ) represents the cost or
error (or loss) of the model. The cost function can typically be written as a sum over all
data points,

E(θ) =
n∑
i=i

ei(xi, θ). (2.1)

and in the gradient descent algorithm, the model’s parameters are updated in the direction
that reduces this cost. Initialize the parameters θ to some value θ0 and iteratively update
the parameters according to the equation

vt = η∇θE(θt),

θt+1 = θt − vt
(2.2)

where ∇θE(θ) is the gradient of E(θ) w.r.t. θ and we have introduced a learning rate
η, that controls how big a step we should take in the direction of the gradient time step
t. It is evident that with a small enough value for the learning rate η, this method will
converge to a local minimum of the cost function in all directions. However, using a small
learning rate η comes with a high computational cost. The smaller the learning rate, the
more steps are needed to reach the local minimum. On the other hand, if the learning
rate is too high, the algorithm may overshoot the minimum and become unstable (it either
oscillates or even moves away from the minimum). This is shown in Figure 2.3.

28

2.1. INTRODUCTION TO MACHINE LEARNING

Figure 2.3: The impact of the learning rate on the convergence of the algorithm can be
observed through its effect on a one-dimensional quadratic potential. By analyzing the
relationship between the learning rate η and the optimal rate ηopt = |∂2

θE(θ)|−1, it has
been shown that GD can exhibit four distinct behaviours depending on the chosen value
of the learning rate. (a) for η < ηopt, GD converges. (b) For η = ηopt, GD converges in a
single step. (c) For ηopt < η < 2ηopt, GD oscillates around the minima. (d) For η > 2ηopt,
GD moves away from the minima [37].

There are different variants of gradient descent algorithms [40], such as batch gradient
descent, stochastic gradient descent, and mini-batch gradient descent. Batch gradient
descent computes the gradient for the entire training dataset at each iteration, which can
be computationally expensive for large datasets. Stochastic gradient descent [41] updates
the parameters after each training sample, which can lead to faster convergence, but also
increase the variance of the parameter updates. Mini-batch gradient descent [42] combines
the advantages of both batch gradient descent and stochastic gradient descent, by updating
the parameters based on a small subset of the training data.

In addition to the traditional gradient descent, several optimization methods perform
better in many cases such as Adam [43], Adagrad [44], Adadelta [45], RMSprop [46]
and so on. These are optimization algorithms that are more robust to the choice of
hyperparameters and have been used in several tasks of deep learning with great results.
In DL, the cost function is typically a complex non-convex function with many local
minima. Therefore, the choice of initial parameters, the learning rate and the optimization
algorithm used are important factors to converge to a good solution.

Adam Optimization Algorithm

Adam (Adaptive Moment Estimation) is an optimization algorithm used to update the
parameters of a model during training. Adam combines the benefits of the gradient
descent algorithm with the flexibility of adaptive learning rates for different parameters
by keeping a running average of both the first and second moment of the gradient (i.e.
mt = E[gt] and mt = E[g2t]). This allows Adam to adjust the learning rate in a more

29

CHAPTER 2. MACHINE AND DEEP LEARNING

effective way than other optimization algorithms. Additionally, Adam also performs bias
correction to account for the fact that the first two moments of the gradient are being
estimated using a running average. The specific update rule for Adam is given by the
equation

gt = ∇θE(θ)

mt = β1mt−1 + (1− β1)gt

st = β2st−1 + (1− β2)g
2
t

m̂t =
mt

1− βt
1

ŝt =
st

1− βt
2

θt+1 = θt − ηt
m̂t√
ŝt + ϵ

,

(2.3)

where β1, β2 are decay rates for the first and second-moment estimates, typically taken
to be 0.9 and 0.99, and (βj)

t denotes βj to the power t. η is the learning rate typically
chosen to be 10−3, mt and st are the moving averages of the first and second gradients.
m̂t and v̂t are the bias-corrected versions of mt and vt, respectively. ϵ ∼ 10−8 is a small
constant added to prevent division by zero. Adam typically requires less fine-tuning of
the learning rate than the traditional gradient descent algorithm, and it has been used in
various deep learning tasks with great results.

Figure 2.4: Adam and its generalization for Beale’s function. Trajectory from β1 = 0.9
β2 = 0.99.

To better understand the performance of the Adam optimization method being consid-
ered, it can be useful to visualize it using a test function like Beale’s function, the graphical
result of the optimization algorithm is shown in Figure 2.4. The Beale’s function is defined
as:

f(x, y) = (1.5− x+ xy)2 + (2.25− x+ xy2)2 + (2.625− x+ xy3)2. (2.4)

30

2.1. INTRODUCTION TO MACHINE LEARNING

It has a global minimum at (x, y) = (3, 0.5), but its landscape also has a deep and narrow
ravine along y = 1. This makes it difficult to optimize, as it can lead to getting stuck in
local minima. The performance of the optimization method can be visualized by observing
the trajectory of the optimization process on Beale’s function surface. In this case, it has
been observed that the Adam optimization method performs better and faster than other
optimization methods when it comes to converging to the global minimum of Beale’s
function.

AdamW Optimization Algorithm

AdamW [47] is a variation of the Adam optimization algorithm that separates the weight
decay term from the gradient update. To see this, L2 regularization in Adam is usually
implemented with the below modification where λ ∈ R is the rate of the weight decay at
time t:

gt = ∇θE(θ) + λθt, (2.5)

this term pulls the weights towards zero, which helps to regularize the model and
prevent overfitting during training. AdamW adjusts the weight decay term to appear in
the gradient update:

θt+1 = θt − ηt

(
αm̂t√
ŝt + ϵ

+ λθt−1

)
(2.6)

where α typically taken to be 0.001. It has been decoupled weight decay and loss-
based gradient updates in Adam as shown in the update rule 2.6; this gives rise to our
variant of Adam with decoupled weight decay (AdamW). This modification to the typical
implementation of weight decay in AdamW allows for a simpler hyperparameter search by
separating the settings of weight decay and learning rate. Additionally, using this method
has been shown to result in better training loss and generalization error as it regularizes
variables with large gradients more effectively than traditional L2 regularization.

2.1.5 Supervised Learning
Supervised learning is a type of ML where the goal is to learn a mapping from input
variables (or features) to output variables (or labels), based on a labelled training dataset.
In other words, the model is trained on a dataset that contains both the input and the correct
output, so that it can learn to predict the output for new, unseen data.

In general, the training process consists of three main steps:

1. data preprocessing: This step involves cleaning, transforming and preparing the
data for the model.

2. Model training: This step involves using a specific algorithm to find the optimal
parameters of the model that minimize a predefined cost function, based on the
training dataset.

3. Model evaluation: This step involves assessing the performance of the model on a
separate test dataset, to estimate its ability to generalize to new, unseen data.

31

CHAPTER 2. MACHINE AND DEEP LEARNING

There are several types of supervised learning methods, some common ones include:

• linear regression: is used to model the relationship between a continuous output
variable and one or more input variables. It is a linear approach that finds the best
fit line or hyperplane that minimizes the sum of squared errors.

• Logistic regression: Logistic regression is used to model the relationship between
a binary output variable and one or more input variables. It is a generalized linear
model that finds the best fit line that separates the data into two classes and estimates
the probability of an instance belonging to each class.

• Decision trees and Random Forests [48]: Decision Trees are used to model the
relationship between a categorical or continuous output variable and one or more
input variables. It is a non-parametric approach that creates a tree-like model
by recursively partitioning the data into subsets based on the values of the input
variables. Random Forest is an ensemble approach to decision trees which combines
multiple decision trees to improve the overall performance of the model.

• Support Vector Machine [49]: It is a linear model for classification and regression
tasks, it finds the hyperplane in a high- or infinite-dimensional space that maximally
separates the different classes.

• Neural Networks: Neural Networks are a set of algorithms that try to recognize
patterns in data, inspired by the structure and function of the brain. They consist
of layers of interconnected nodes, or artificial neurons, that are trained to learn the
mapping from inputs to outputs.

In High Energy Physics (HEP), supervised learning is used in several tasks such
as classification, regression, and anomaly detection. For example, in particle physics,
supervised learning can be used to classify events based on the signals observed in the
detector. This is important because the signals are often very weak, and separating signals
from the background can be difficult. Supervised learning can also be used to identify
new particles, or to determine the properties of known particles. In such cases, supervised
learning can be used to analyze large amounts of data quickly, and to identify patterns that
are not easily visible to the human eye. Another example is in the detector’s Calibration,
in HEP detectors, the energy and position measurements are affected by various physical
processes, and a correction has to be applied to the measured values to obtain the true
values. Supervised learning can be used to learn the relation between the measured and
true values and to correct the data in real time.

2.1.6 Unsupervised Learning
Unsupervised learning is a type of machine learning where the goal is to find patterns or
features in the input data without any labelled output data. The algorithms learn from the
data itself, without the guidance of a known target or output variable.

There are several types of unsupervised learning, some common ones include:

• Clustering: the goal is to divide the input data into groups or clusters, where each
cluster is defined by some similarity metric. k-means and hierarchical clustering are
popular examples of clustering methods.

32

2.1. INTRODUCTION TO MACHINE LEARNING

• Dimensionality reduction: the goal is to reduce the number of features or dimen-
sions of the input data while preserving as much information as possible. Principal
component analysis (PCA) and t-distributed stochastic neighbour embedding (t-
SNE) are popular examples of dimensionality reduction methods.

• Density estimation: is a method in statistics and machine learning used to estimate
the probability density function of a given random variable. One common technique
for density estimation is Gaussian kernel density estimation, which involves placing
a Gaussian kernel function at each data point and then taking the average of all
the kernels to obtain an estimate of the underlying density. Another technique
is Normalizing flows [50], which is a method of density estimation that involves
transforming a simple base distribution into a more complex target distribution
through a series of invertible and differentiable transformations. It is particularly
useful for modelling complex, high-dimensional distributions.

• Anomaly detection: the goal is to identify data points that deviate significantly
from the rest of the data. One-class SVM [51] and Isolation Forest [52] are popular
examples of anomaly detection methods.

• Autoencoder: is a type of unsupervised neural network which is designed to learn
the feature representation of the data.

• Generative models: the goal is to learn a model that can generate new samples
from the input data distribution, such as Variational Autoencoder (VAE) [53] and
Generative Adversarial Networks (GAN) [54]. An alternative generative model
to GANs is diffusion probabilistic models, based on the idea of approximating a
target density by iteratively applying a series of simple transformations to a simple
base distribution. The model learns to transform the base distribution into the target
distribution by adjusting the parameters of the transformations through optimization.
The diffusion process is typically represented by a normalizing flow, which is a series
of invertible, differentiable transformations that allow for efficient computation of
likelihoods and sampling from the model. Some examples of normalizing flows
used in diffusion models [55] include RealNVP [56], Glow [57], and WaveGlow
[58].

In HEP, unsupervised learning methods are often used to extract useful information
from large, complex datasets, and to identify patterns that are not easily visible to the
human eye. In the case of particle detectors, unsupervised learning can be used in the
calibration. For example, one can use the autoencoder to learn a compact representation
of the detector’s response, so that it can be used to perform the correction in real time.

2.1.7 Self-Supervised Learning
Self-supervised learning is a ML technique in which a model learns from a dataset without
the need for explicit labels or supervision. The model is trained to predict, generate, or
reconstruct some aspect of the input data, using its structure or other learned features as a
guide.

A common example of self-supervised learning is using a model to predict missing
words in a sentence, also known as a language model. Another example is using a model to
predict the next frame in a video, known as a video prediction model. In HEP, one example

33

CHAPTER 2. MACHINE AND DEEP LEARNING

of self-supervised learning is using a deep learning model to identify particle tracks in
detector images. In this case, the model is trained on a dataset of images of detector hits,
to learn to recognize the patterns of hits that correspond to particle tracks. The model is
not given explicit labels indicating which hits belong to a particle track but instead must
learn to identify the tracks by analyzing the patterns in the data. Another example is using
a deep learning model to perform energy regression on calorimeter images. The model
takes images of the calorimeter response and predicts the energy deposit by the particle, in
this scenario labels are not provided to the model, it must learn this relationship through its
structure. Self-supervised learning has the potential to be applied to many other problems
in HEP, such as particle identification, event reconstruction, and anomaly detection [59],
to name a few.

There are several techniques used in self-supervised learning, some of the most com-
mon include [60, 61]:

• Contrastive Learning: In this technique, the model is trained to differentiate
between similar and dissimilar data points. Given two data samples, the model
needs to predict whether they are from the same class or not.

• Predictive Coding: In this technique, the model is trained to predict future data
points given a sequence of past data points. This is used for tasks like forecasting,
where the goal is to predict future values of a time series, or video prediction where
the goal is to predict the next frame of video given the previous frames.

• Self-supervised pretraining: this technique is used to train the model on some task
with labels and then the trained model is used to initialize the weights of the model
that is trained on the task of interest which is performed without any labels.

Along with several methods shared with the unsupervised strategy outlined in the
previous subsection, such as:

• Clustering;

• Autoencoders;

• Generative Models.

These are some of the most common self-supervised learning techniques, but new
methods and variations continue to be developed. Depending on the specific problem and
dataset, one technique may be more suitable than the others.

Self-supervised learning and unsupervised learning are similar in that they both involve
training a model on a dataset without the use of explicit labels. However, there are some
key differences between the two techniques:

1. Task-Specificity: In self-supervised learning, the model is trained to perform a
specific task, such as predicting missing words in a sentence or identifying particle
tracks in detector images, while unsupervised learning techniques focus on discov-
ering structure in the data or identifying patterns in the data, such as clustering.

2. Labels: Self-supervised learning uses the structure of the input data as a form of
supervision, while in unsupervised learning no labels are used, the model solely
relies on the patterns in the data.

34

2.2. ANOMALY DETECTION

3. Inputs: Self-supervised learning requires a specific form of inputs, usually it has
the same input and output, such as a video, a sequence of words, or an image, but
the task is to predict certain aspects of it. Unsupervised learning can be applied
to any kind of input and the model is not trained to predict or reconstruct specific
aspects of it.

4. Pretraining: self-supervised learning can be used as a pretraining step for other
supervised tasks, where the model is fine-tuned with supervised data after self-
supervised pretraining. Unsupervised learning is not used as a pretraining step
because it doesn’t perform any specific task.

5. Evaluation: In self-supervised learning, the model is evaluated based on how well
it performs the specific task it was trained on, while in unsupervised learning,
evaluation is more subjective and may depend on the specific research question or
application.

In summary, self-supervised learning is a form of unsupervised learning that involves
training a model to perform a specific task using the structure of the input data as a form of
supervision, while unsupervised learning is focused on discovering structure or patterns
in the data.

2.2 Anomaly Detection
Anomaly Detection (AD) [62], also known as outlier detection, is the task of identifying
data points that deviate significantly from the rest of the data. These data points often
referred to as anomalies, can be caused by errors in data collection, measurement or
labelling, or can indicate rare or interesting events. Anomaly detection is a fundamental
problem in many fields, including finance, healthcare, and cybersecurity, as well as HEP.

2.2.1 General Approach
Supervised, unsupervised and self-supervised learning approaches can be used for anomaly
detection, depending on the availability of labelled data and the specific characteristics of
the problem.

Supervised learning approaches rely on labelled training data to learn the patterns of
normal events, and to identify events that deviate significantly from the normal patterns.
These approaches are suitable when labelled data is available, but they may be sensitive to
variations in the training data, and they may not be able to detect new types of anomalies.

Unsupervised learning approaches, on the other hand, do not rely on labelled data, and
they aim to identify patterns in the data that are different from what is expected. These
approaches are suitable when labelled data is not available, and they can detect new types
of anomalies.

Self-supervised learning [63] can be used for anomaly detection as well. One common
approach for self-supervised anomaly detection is to use autoencoders. The idea is to
train an autoencoder on a dataset, and then use it to reconstruct new data points. Data
points that are different from the norm will have a higher reconstruction error, indicating
that they are anomalous. Another approach is to use generative models such as GANs or
VAEs and use them to generate new data points. The generated data points are compared

35

CHAPTER 2. MACHINE AND DEEP LEARNING

to the real data points, and any data point that is dissimilar to the generated samples is
considered anomalous. Another approach is to use contrastive learning [64], where the
model is trained to differentiate between similar and dissimilar data points, once the model
is trained the samples that the model is not able to tell that they are similar to other samples
in the training set are considered anomalies. In predictive coding, the model is trained to
predict future data points given a sequence of past data points, then in the test time if the
model fails to predict the next data point or the prediction is far from the true next data
point, it indicates an anomaly. In self-supervised anomaly detection, the model must learn
to identify the normal behaviour from the data without the explicit use of labels. A related
approach is semi-supervised anomaly detection, where only a subset of the data has labels.
This scenario is practical when the background is contaminated by a small percentage of
signal (e.g. < 0.1%), as shown in the reference [65] where QCD jets are analyzed in the
quest for anomalies in jet-substructure.

2.2.2 Various Techniques
There are different approaches to anomaly detection, but some common ones include:

• Statistical-based methods: These methods are based on the assumption that the
normal data follows a certain probability distribution. The most common distribu-
tion used is the Gaussian distribution. The basic idea is to model the normal data as
a Gaussian distribution and then use probability theory to identify any data points
that have low probability according to the estimated distribution.

• Distance-based methods: These methods are based on the assumption that normal
data points are closely grouped together and that outliers are farther away. The basic
idea is to define a distance metric between data points and then identify any data
points that are far away from the others. One of the most popular distance based
methods is the Local Outlier Factor (LOF) which uses the local density of the data
points to identify the outliers.

• Clustering-based methods: These methods are based on the assumption that normal
data points are densely grouped, while outliers are not. The basic idea is to perform
clustering on the data and then identify any data points that do not belong to any
cluster.

• Reconstruction-based methods: These methods are based on the assumption that
normal data can be reconstructed or reconstructed with low error while anomalies
cannot. The basic idea is to reconstruct the normal data using an autoencoder,
and then identify any data points that have high reconstruction errors. Variational
Autoencoder is one of the most popular reconstruction based methods.

• Neural Networks-based methods: These methods are based on the assumption
that the normal data and anomalous data have different representations. Anomaly
detection can be cast as a one-class classification problem, where the goal is to learn
a boundary that separates the normal data from the anomalous data. Autoencoder
based architectures are also used for anomaly detection as well as GANs. One
example of an anomaly detection method that uses GANs is AnoGAN [66]. It is
an unsupervised method that can be used to detect anomalies in data sets. The
basic idea behind AnoGAN is to train a GAN on a given data set, and then use the
generator to create new samples that are similar to the training data. Anomalies

36

2.2. ANOMALY DETECTION

in the data can then be detected by measuring the similarity between the generated
samples and the original data. AnoGAN has been used in various applications such
as image and video anomaly detection, but it has also been used in other areas such
as network intrusion detection and fault detection in industrial systems.

It’s important to note that in anomaly detection, the anomalies to be detected are typically
rare events, and the dataset is highly imbalanced. Because of this, the usual accuracy
metric can be misleading. Other evaluation metrics such as precision, recall, F1-score,
Receiver Operating Characteristic (ROC) curve and Area Under the Curve (AUC) are
more informative in these scenarios.

2.2.3 Some applications in HEP
In High Energy Physics, anomaly detection is important in identifying rare events, such as
new particles or new physics phenomena. These events are often characterized by certain
features that distinguish them from the more common, background events.

In the context of supervised learning, the typical usage is in the search of events
often characterized by certain features that distinguish them from the more common,
background events. In this scenario, one approach would be to train a supervised learning
model on a labelled dataset of known signal and background events. The model would
learn to distinguish between the two types of events based on the input features, such as the
energy, momentum, and spatial distribution of the particles. Once the model is trained, it
can be applied to new, unlabeled data to identify events that are likely to be signal events,
or that deviate significantly from the background distribution. For example, the Higgs
Boson is hard to detect due to its extremely short lifetime and the fact that it decays into
other particles which are difficult to detect as well. The challenge is to separate the Higgs
Boson signal from the vast amount of background events that mimic the Higgs boson’s
decay. In this case, supervised learning can be used to train a classifier on simulated
signal and background events, which are used to mimic real events. Another example is
the search for dark matter, the hypothetical invisible matter that makes up the bulk of the
universe, which weakly interacts with the normal matter, thus it is difficult to detect. One
way to search for dark matter is to look for interactions between dark matter particles and
normal matter particles in detectors. In this case, supervised learning can be used to train
a classifier to differentiate between normal interactions and weakly interacting ones.

In the context of unsupervised learning, anomaly detection can be used to identify
events that deviate significantly from the norm, such as rare events or background contam-
ination. One approach would be to use clustering or dimensionality reduction to identify
regions of the feature space that contain anomalous events. Another example is in the task
of particle identification, where the goal is to classify particles based on their physical
properties. Instead of using labelled training data, unsupervised learning methods can be
used to identify patterns in the input data and learn the mapping from inputs to outputs.
Another example is in tasks such as detecting rare events in collider experiments, where it
is important to identify patterns in high-dimensional data that deviate from the expected
background. The technique AnoGAN and similar methods are effective at identifying rare
events in HEP experiments and have the potential to improve the sensitivity of current
detection methods.

In the context of self-supervised learning, anomaly detection can be used for jet

37

CHAPTER 2. MACHINE AND DEEP LEARNING

tagging, identifying the substructure of jets, which are collimated sprays of particles
produced in high-energy collisions, is an important task. A self-supervised learning
approach to jet tagging is to use an autoencoder to learn a compact representation of the
jet substructure, and then use the reconstruction error to identify jets that are dissimilar
to the norm. Track segment finding: Self-supervised learning techniques can be used to
identify track segments in detector images. One approach is to use autoencoders to learn
a compact representation of the image, and then use reconstruction error as a measure of
anomalousness, also contrastive learning can be applied to this task. Calorimeter energy
regression: Calorimeter images can be used as inputs for a self-supervised deep learning
model for energy regression. The model is trained to predict the energy deposit of a
particle by analyzing patterns in the calorimeter images, without explicit labels indicating
the energy of each image. Time-series Anomaly detection: In detector systems, the
readouts are typically time-series, self-supervised learning can be used to predict future
readouts and comparing the prediction with the true readouts can flag anomalies. Event
classification: Event classification in HEP requires the identification of specific patterns
in the data, and self-supervised learning can be used to identify those patterns and classify
events.

2.3 Feed-Forward Deep Neural Networks (DNNs)
An overview of the operation of feedforward neural networks (FFNNs), or multilayer
perceptrons (MLPs), a key component of contemporary deep learning [67], is given in
this section. An introduction to the architecture is provided, highlighting the important
elements. The training process is then covered, including, as was previously covered in
section 2.1.4, well-known optimization methods such as gradient descent and its variations
as well as the Backpropagation algorithm. A description of various activation functions
and their impact on network performance will be presented as well.

2.3.1 Neural Networks Basics: Neurons and Architecture
An FFNN is a type of artificial neural network in which the information flows in a single
direction, from input to output, without any feedback connections. They consist of an
input layer, one or more hidden layers, and an output layer. Each layer of an FFNN is
made up of a set of neurons, which are simply mathematical functions that take in a set
of inputs, perform a computation, and produce an output. A neural network is composed
of many neurons i stacked into layers, with the output of one layer serving as the input
for the next. The function of each neuron ai(x), that takes as input x, which is a vector
of d input features x = (x1, x2, ..., xd), varies depending on the type of non-linearity,
i.e. activation function, used in the network. However, in most cases, ai(x) can be
broken down into a linear operation that weighs the relative importance of the inputs and
a non-linear transformation σi(z). The linear operation typically takes the form of a dot
product with neuron-specific weights w(i) = (w

(i)
1 , w

(i)
2 , ..., w

(i)
d) and re-centring with a

neuron-specific bias b(i). This process can be represented mathematically as:

ai(x) = σ(z(i)) = σ(w(i) · x+ b(i)) = σ(xT · w(i)), (2.7)

where x = (1,x) and w(i) = (b(i),w(i)), see Figure 2.5.

38

2.3. FEED-FORWARD DEEP NEURAL NETWORKS (DNNS)

Figure 2.5: (A) The fundamental structure of neural networks includes stylized neurons,
which are made up of a linear transformation that assigns a weight to various inputs,
followed by a non-linear activation function. (B) These neurons are organized in layers,
where the output from one layer serves as the input for the next layer [37].

The goal of a feedforward network is to approximate some function f ∗ [67]. An FFNN
defines a mapping y = f(x; θ) and learns the value of the parameters θ that result in the
best function approximation. Feedforward neural networks are named as such due to their
structure of connecting multiple functions. The model is represented by a directed acyclic
graph which describes the composition of these functions. For instance, three functions
f (1), f (2) and f (3) are connected in sequence, creating a chain f(x) = f (3)(f (2)(f (1)(x))).
This chain-like structure is the most typical way neural networks are built. In this case,f (1)

is the first layer, f (2) is the second layer and so on. The term deep learning comes from
the concept of the depth of a neural network, which is determined by the number of layers
in the model. In a feedforward network, the final layer is referred to as the output layer.
The goal during training is to adjust the network’s function, represented as f(x), to match
a desired function f ∗(x). The training data provides approximate examples of f ∗(x) at
different points, each accompanied by a label y ≈ f ∗(x). The training examples dictate
the behaviour of the output layer at each point x, but do not specify the behaviour of the
other layers. It is up to the learning algorithm to decide how to use these layers to produce
the desired output and approximate f ∗ because the training data does not provide output
for these layers, they are referred to as hidden layers.

Neural networks are so named because they take inspiration from the structure and
function of the human brain. Each hidden layer in the network is typically vector-valued,
and the number of elements in the vector determines the width of the model. These
elements can be thought of as playing a role similar to that of a neuron. The layers are

39

CHAPTER 2. MACHINE AND DEEP LEARNING

made up of many units that work in parallel and each unit represents a vector-to-scalar
function and receives input from other units to compute its activation value. The concept
of using multiple layers of vector-valued representation is inspired by neuroscience, and
the functions used to compute these representations are also loosely based on observations
of the functions of biological neurons. However, neural network research is guided by a
variety of mathematical and engineering disciplines, and the goal is not to replicate the
brain perfectly but to use function approximation to achieve statistical generalization and
occasionally draw insights from our understanding of the brain.

The activation functions are a crucial component of neural networks. They are used
to introduce non-linearity in the network, allowing the model to learn complex and non-
linear relationships in the data. Common activation functions, shown in Figure 2.6 used
are sigmoid, ReLU, LeakyReLU, softmax, tanh and ELU.

The sigmoid function is defined as:

f(x) =
1

1 + e−x
. (2.8)

It is a smooth function that maps any input value to a value between 0 and 1. It is often
used in the output layer of a binary classification problem. However, the sigmoid function
has the drawback that it can saturate and cause the gradients to vanish, making it hard for
the network to learn.

The rectified linear unit (ReLU) [68] is defined as:

f(x) = max(0, x). (2.9)

It is a simple and computationally efficient function that maps negative values to zero,
and positive values to themselves. This function is less computationally expensive than
the sigmoid function and does not saturate.

The Leaky ReLU [69] is defined as:

f(x) =

{
αx ifx < 0

x otherwise
(2.10)

Where α is a small positive value, often set to 0.01. It is similar to the ReLU function,
but it avoids the "dying ReLU" problem by allowing a small positive gradient when x < 0.

The Exponential Linear Unit (ELU) [70] activation function is an alternative to the
ReLU activation function, which addresses the issue of dying ReLU by having a non-zero
gradient for negative input values. The ELU activation function is defined mathematically
as:

f(x) =

{
x ifx > 0

α(ex − 1) ifx ≤ 0
(2.11)

where α is a hyperparameter, typically set to 1, that controls the steepness of the
negative slope. The ELU activation function has been shown to improve the performance

40

2.3. FEED-FORWARD DEEP NEURAL NETWORKS (DNNS)

of neural networks in some cases, particularly in image classification tasks. However,
it is important to note that the ELU activation function is not always the best choice of
activation function, and its use depends on the specific problem and dataset.

The softmax function is defined as:

f(xi) =
exi∑n
j=1 e

xj
. (2.12)

It is a generalization of the sigmoid function to multiple classes. It maps the input
values to a probability distribution over the classes, with the property that the sum of the
probabilities is 1. It is often used in the output layer of a multi-class classification problem.
In statistical mechanics, the softmax function is related to the Boltzmann distribution,
which describes the probability of a system being in a particular state based on its energy.
The relationship between the softmax function and the Boltzmann distribution is that both
functions squash a set of values down to a probability distribution. The softmax function
can be viewed as a generalization of the Boltzmann distribution to multiple dimensions.

The tanh function is defined as:

f(x) =
ex − e−x

ex + e−x
(2.13)

It is similar to the sigmoid function but maps the input values to a range between -1
and 1. It is often used in the hidden layers of a neural network. Each of these activation
functions has its advantages and disadvantages, and the choice of which one to use depends
on the specific problem and the architecture of the network.

Figure 2.6: Non-linear activation functions, such as those in the bottom row, are commonly
used in modern DNNs instead of saturating functions (top row) because they do not saturate
for large inputs [37].

The architecture of an FFNN is defined by the number of layers, the number of neurons
in each layer, and the connections between the neurons. The number of layers and neurons
can be adjusted to suit the complexity of the problem at hand. The most common way to
train an FFNN is through the backpropagation algorithm.

41

CHAPTER 2. MACHINE AND DEEP LEARNING

There are multiple variations and architectures such as convolutional neural networks
(next section) and recurrent neural networks (RNNs) that build upon the basic architecture
of an FFNN to address specific types of problems. One important thing to note is that,
with the increase in data size and complexity of the problem, the training of FFNNs can
be computationally expensive and time-consuming. That is the reason why, the use of
more advanced optimization techniques like Adam, Adagrad, and Rmsprop (see section
2.1.4), which adapt the learning rate during training, are commonly used to speed up
the process. In addition, techniques like dropout, weight decay, and batch normalization
are also commonly used to prevent overfitting and improve the generalization of the
model. The FFNNs are widely used in various domains, such as computer vision, natural
language processing, speech recognition, and many others. They have been successful
in tasks such as image classification, speech recognition, language translation and so on.
However, FFNNs also have their limitations, such as the difficulty in modelling temporal
dependencies and the inability to handle missing or inconsistent data. For this reason,
other neural networks architectures like RNNs and LSTMs are more suitable for sequential
data and handling missing data.

2.3.2 The Back-propagation Algorithm
The back-propagation algorithm [67, 71], often called backprop, is a widely used
method for training neural networks. It is used to calculate the gradient of a continuous
function, specifically the gradient of the cost function for the network’s parameters. This
gradient is then used by optimization algorithms such as stochastic gradient descent to
adjust the parameters of the network to minimize the cost. The backpropagation algorithm
is based on the idea of propagating information through the network in two directions:

• forward propagation step, input information flows through the network and produces
an output;

• backward propagation step, the gradient of the cost function concerning the net-
work’s parameters is calculated by flowing the error information backwards through
the network.

The backpropagation algorithm is particularly useful in deep learning, where neural
networks have many layers. It is an efficient method for computing the gradient of the cost
function for the parameters of the network, as it avoids the need for explicit calculation
of the gradient through analytical methods, which can be computationally expensive. It is
important to note that backpropagation is not a learning algorithm on its own, but rather a
method for calculating gradients that are used in conjunction with optimization algorithms
such as gradient descent. Additionally, it is not restricted to multilayer neural networks
and can be applied to compute derivatives for any function. It is a very general technique
that can also be used to compute other derivatives, such as the Jacobian of a function with
multiple outputs.

Backpropagation uses the chain rule of calculus to compute the derivatives of compos-
ite functions, where the derivatives of the individual functions are known. It is based on
the chain rule, which states that the derivative of a composite function can be calculated
by multiplying the derivative of the outer function by the derivative of the inner function.
Let x be a real number, and let f and g both be functions mapping from a real number to a
real number. Suppose that y = g(x) and z = f(g(x)) = f(y). Then the chain rule states

42

2.3. FEED-FORWARD DEEP NEURAL NETWORKS (DNNS)

that

∂z

∂x
=

∂z

∂y

∂y

∂x
. (2.14)

Figure 2.7: A computational graph that results in repeated subexpressions when computing
the gradient [67].

To clarify the above definition of the back-propagation computation, let us consider the
specific graph associated with a fully-connected multi-layer MLP. First shows the forward
propagation, which maps parameters to the supervised lossL(ŷ, y) associated with a single
(input, target) training example (x, y), with ŷ the output of the neural network when x is
provided in the input. Let w ∈ R be the input to the graph. We use the same function
f : R → R as the operation that we apply at every step of a chain: x = f(w), y = f(x),
z = f(y). To compute ∂z/∂w, we apply equation 2.14 and obtain:

∂z

∂w
=

∂z

∂y

∂y

∂x

∂x

∂w

= f ′(y)f ′(x)f ′(w)

= f ′(f(fw)))f ′(f(w))f ′(w)

(2.15)

It is important to note that, the backpropagation algorithm can be affected by local
minima and it’s computationally expensive. That’s why, variants of the backpropagation
algorithm, such as the conjugate gradient method, the Levenberg-Marquardt algorithm,
and the quick prop algorithm have been developed to improve the performance and speed

43

CHAPTER 2. MACHINE AND DEEP LEARNING

of the training process. Additionally, more advanced optimization algorithms like Adam,
Adagrad and Rmsprop, which adapt the learning rate during training, can also be used to
speed up the process.

It’s also important to note that, the backpropagation algorithm requires a large amount
of labelled data and it can be sensitive to noisy data. Therefore, techniques like regular-
ization, early stopping, and dropout are commonly used to prevent overfitting and improve
the generalization of the model.

2.3.3 Deep Double Descend
The double descent phenomenon in deep learning refers to the observation that the gener-
alization error of deep neural networks (DNNs) can exhibit a non-monotonic behaviour as
a function of the model’s capacity. This means that as the model’s capacity increases, the
generalization error can initially decrease, reach a minimum, and then increase again [72].
In the under-parameterized regime, where the model complexity is small compared to the
number of samples, the test error as a function of model complexity follows the U-shaped
behaviour predicted by the traditional bias-variance trade-off (see section 2.1.3). However,
once the model’s complexity is sufficient to interpolate the training data and achieve zero
training error or close, increasing the model’s complexity further only decreases the test
error (Figure 2.8), following the idea that “bigger models are better”. This behaviour is
in contrast to the classical bias-variance trade-off where generalization error is expected
to decrease monotonically as the model’s capacity increases, hence conventional wisdom
in classical statistics is that, once we pass a certain threshold, “larger models are worse”.
Double descent has been observed in a variety of settings, such as the over-parameterized
regime, where the number of parameters in the model is much larger than the number of
training examples, and the interpolation regime, where the model can fit the training data
perfectly. In both cases, the model has more capacity than necessary to fit the training data,
and the additional capacity can lead to improved generalization performance on unseen
data.

Figure 2.8: The double descent risk curve illustrates the relationship between the risk and
the model capacity, it encompasses both the U-shaped risk curve that characterizes the
"classical" regime (Figure 2.2) together with the behaviour observed with high capacity
functions classes, the "modern" interpolating regime. The curve is separated by an
interpolation threshold, the predictors on the right side of the threshold have zero training
risk [72].

One possible explanation for double descent is the existence of a phase transition in
the model’s optimization landscape. In the over-parameterized regime, the optimization

44

2.4. CONVOLUTIONAL NEURAL NETWORKS (CNNS)

landscape is relatively smooth and has many good solutions. As the model’s capacity
increases, the optimization landscape becomes more complex with more local minima.
At a certain point, the optimization algorithm can get stuck in poor local minima, leading
to increased generalization error. However, when the number of parameters surpasses a
certain threshold, the optimization algorithm can escape poor local minima and find good
solutions again, leading to improved generalization performance. Another explanation for
double descent is that when the model capacity is increased, it is also able to learn more
complex features, which are more robust to variations in the data, this robustness leads to
better generalization.

It’s important to notice that the double descent is not universal and there are cases
where there is no such behaviour and a monotonic decrease of the generalization error is
found. The double descent phenomenon is a relatively new and active area of research,
and there is still much that is not understood about it. However, the general understanding
is that double descent is a result of the complex and non-convex optimization landscape
of DNNs, which is not well understood yet. It’s an important topic in the field of deep
learning, and it has implications for the design and training of deep neural networks, as
well as the interpretation of generalization performance.

2.4 Convolutional Neural Networks (CNNs)
In this section, it is examined the structure of a Convolutional Neural Network (CNN).
Some specifics of the convolutional layers will be shown, which are responsible for
detecting features in the input data, the pooling layers, which are responsible for reducing
the spatial dimensions of the data, and the fully connected layers, which make the final
predictions. Investigation of the mathematical concepts and operations that define these
layers, and how they work together to form a CNN.

2.4.1 Overview of the CNNs structure
The core principle of physics is that we should take advantage of symmetries and in-
variances when studying physical systems. Properties such as locality and translational
invariance are often built into the physical laws themselves. Our models in statistical
physics often incorporate all that we know about the physical system being studied. This
idea of utilizing the additional structure in our analysis is a fundamental feature of modern
physical theories, ranging from general relativity to gauge theories and critical phenom-
ena. Similarly, many datasets and supervised learning tasks also possess symmetries and
structures. For example, in a supervised learning task where the goal is to label images
as pictures of cats or not, the statistical procedure must first learn features associated with
cats, which are likely to be local, and translation invariance is built into the task. This
example shows that, like physical systems, many machine learning tasks, particularly in
computer vision and image processing, also possess additional structures such as locality
and translational invariance.

A convolutional neural network, or CNN, is a neural network architecture that is
designed to maintain translation invariance while also considering the spatial structure
of the input data. CNNs are widely used in a variety of deep learning applications and
are considered to be a fundamental component of modern deep learning. The building
blocks of a CNN are composed of two types of layers: convolutional layers that perform

45

CHAPTER 2. MACHINE AND DEEP LEARNING

convolution operations on the input with a set of filters, and pooling layers that reduce the
spatial resolution of the input while preserving important spatial information, as illustrated
in Figure 2.9.

Figure 2.9: A Convolutional Neural Network (CNN) is structured in three dimensions:
height (H), width (W), and depth (D). The input layer’s depth corresponds to the number
of channels (3 for RGB images). Neurons in the convolutional layers convolve the image
with a local spatial filter at a given location in the (W ;H)-plane. The depth D of the
convolutional layer represents the number of filters used in that layer. Neurons at the
same depth correspond to the same filter. The convolutional layer mixes inputs at different
depths while maintaining the spatial location. Pooling layers perform a spatial coarse-
graining at each depth, reducing the height and width while retaining the depth. The fully
connected layer and classifier follow the convolutional and pooling layers (not shown)
[37].

In detail, a convolutional layer in a CNN is characterized by its height, width, and
depth. The height and width correspond to the size of the two-dimensional spatial plane in
neurons, while the depth corresponds to the number of filters in that layer. These filters are
applied locally over small spatial patches of the previous layer and are moved across the
entire spatial plane with a specified stride. In this way, the convolution operation computes
the dot product between the filter weights and the input values at each location. The output
of this operation is a feature map that represents the response of the filter to the input
at each location. A 2-dimensional layer is characterized by 3 numbers: the height (Hl),
width (Wl), and depth (Dl) of the layer. The height and width correspond to the spatial
dimensions of the layer (in neurons), and the depth Dl corresponds to the number of filters
in that layer. All neurons associated with a particular filter have the same parameters (i.e.
shared weights and bias). Typically, local spatial filters (referred to as receptive fields) are
used, which take as input a small spatial patch from the previous layer at all depths. To
illustrate how this works, consider the simple example of a 1-dimensional input of depth
1, shown in Fig. 43. In this case, a filter of size F ×1×1 can be represented by a vector of
weights w with length F. The stride (S) indicates how many neurons the filter is translated
by when performing the convolution.

Convolutional layers are typically interleaved with pooling layers that reduce the spatial
resolution of the feature maps by performing a subsampling operation. One common
pooling technique is max pooling, in which a small region of the feature map is replaced
by a single neuron whose output is the maximum value within that region. This reduces the
dimension of the output, for example by halving the height and width of the pooling region
is 2× 2. Pooling is typically performed separately at each depth, so it does not reduce the
depth of the feature maps. An example of max pooling is shown in the figure. In a CNN,
the convolution and max-pooling layers are typically followed by a fully connected layer

46

2.4. CONVOLUTIONAL NEURAL NETWORKS (CNNS)

[73]. This layer connects all the neurons in the previous layer to the next layer, allowing for
the use of a standard backpropagation algorithm for training. From a training perspective,
CNNs are similar to fully connected neural network architectures except for the shared
parameters in the convolutional layers.

The convolutional structure of CNNs not only introduces additional features such as
translational invariance and locality but also has numerous practical and computational
advantages. In a CNN, all neurons in a given layer use the same filter, which can be
represented by a single set of weights and biases. This reduces the number of free
parameters by a factor of H ×W per layer, enabling the training of much larger models
than with fully connected layers. This concept is similar to how in physics, translationally
invariant systems can be represented by specifying only their momentum and functional
form, whereas without translation invariance, more information is required.

To expand on the impact of CNNs, it’s worth noting that their success in computer
vision tasks has led to a wide range of applications in various fields. For example, they
have been used for object detection and recognition, facial recognition, medical image
analysis, autonomous driving, and more.

Moreover, CNNs have also inspired the development of other neural network architec-
tures that have further advanced the field of deep learning. For instance, the concept of
residual connections introduced in ResNet [74] has enabled the training of even deeper net-
works, while attention mechanisms [75] in Transformer models have led to breakthroughs
in natural language processing tasks.

Overall, the importance of CNNs in computer vision cannot be overstated. They have
not only demonstrated their effectiveness in a wide range of applications, but they have
also influenced the development of other neural network architectures that have advanced
the field of deep learning as a whole. Some examples are:

• Object recognition: CNNs have shown remarkable success in identifying objects
within images or videos, even when they are partially occluded or in complex scenes.

• Semantic segmentation: This involves labeling each pixel in an image with its
corresponding class, which is useful for tasks like autonomous driving or medical
image analysis.

• Depth estimation: CNNs can estimate the depth or distance of objects within
an image or video, which is useful for 3D reconstruction or augmented reality
applications.

• Image super-resolution: CNNs can be trained to generate high-resolution images
from low-resolution inputs, which is useful for applications like satellite imagery or
medical imaging.

• Human pose estimation: CNNs can estimate the 2D or 3D positions of human
body joints from an image or video, which is useful for applications like motion
capture or sports analytics.

As well as applications in HEP, CNNs have been used for tasks such as particle
classification and event reconstruction in particle physics experiments like the LHC. For
example, the ATLAS and CMS experiments have used CNNs to identify Higgs boson
events and improve the efficiency and accuracy of particle identification [76].

47

CHAPTER 2. MACHINE AND DEEP LEARNING

2.4.2 Normalization Methods
Normalization layers are commonly used in CNNs to improve the training and general-
ization performance of the model. In particular, normalization layers help to alleviate the
internal covariate shift problem, which is the phenomenon where the distribution of feature
activations changes during the training process. This shift in distribution could happen
because the inputs to each layer depend on the activations of the previous layers, which
change as the model is being trained. As a result, the activations of each layer may have
a different distribution, which can cause the optimization process to slow down or even
prevent the model from converging to a good solution and suboptimal results. Batch Nor-
malization [77] and Instance Normalization [78] are two popular types of normalization
layers used in CNNs for machine vision tasks.

Batch Normalization

Batch Normalization (BN) addresses this problem by normalizing the activations of each
batch during training. Specifically, it computes the mean and variance of the activations
within a batch, and then applies a transformation to center the activations around zero and
scale them by the variance of the batch. This helps to ensure that the activations have a
similar distribution across all batches and can help to reduce the internal covariate shift
problem. The Batch Normalization transformation can be described by the formula:

x̂i =
xi − E[x]√
V[x] + ϵ

,

yi = γx̂i + β;

(2.16)

where x is the input to the BN layer, E[x] and V[x] are the mean and variance of
the batch, x̂i is the normalized activation, γ and β are learnable scaling and shifting
parameters, and ϵ is a small constant added for numerical stability. The first term of the
formula, xi−E[x]√

V[x]+ϵ
, is the normalization step. Here, xi represents the i-th activation in the

batch, E[x] represents the mean activation of the batch, and V[x] represents the variance
of the batch. The term ϵ is added to the variance to prevent division by zero. This step
normalizes each activation so that it has zero mean and unit variance, which helps to
stabilize the optimization process. The second term of the formula, γx̂i+β, is the scaling
and shifting step. Here, γ and β are learnable parameters that allow the model to learn the
optimal scale and shift for each normalized activation. This step helps to reintroduce some
of the original distribution and variability of the activations, which can help to improve
the expressive power of the model.

Instance Normalization

Instance Normalization (IN) is a normalization technique that is similar to BN but normal-
izes the activations of each instance (i.e., channel) in the input rather than the activations
of each batch. This normalization is commonly used in style transfer and image-to-image
translation tasks where the spatial correlations between feature maps are important. This
technique has also been used for anomaly detection in computer vision because it can
help to reduce the variability of the feature maps and make them more consistent across

48

2.4. CONVOLUTIONAL NEURAL NETWORKS (CNNS)

different images. One way to use IN for anomaly detection is to apply it to the feature
maps extracted by a pre-trained CNN, which can help to normalize the feature maps
across channels. Then, a classifier or anomaly detection algorithm can be applied to the
normalized feature maps to detect anomalies. For instance, if a pre-trained CNN is used
to extract features from images, the feature maps can be normalized using IN before being
passed to a classifier or anomaly detection algorithm. By applying IN, the feature maps
are made more consistent across different images, which can help to improve the accuracy
and robustness of the anomaly detection algorithm.

Figure 2.10: Instance Normalization method. This plot shows a feature map tensor, with
N as the batch axis, C as the channel axis, and (H, W) as the spatial axes. The pixels in
blue are normalized by the same mean and variance, computed by aggregating the values
of these pixels [79].

The main difference between BN and IN is that BN normalizes each feature map
across the entire batch, while IN normalizes each feature map across spatial locations,
see figure 2.10. Therefore, IN is more effective in preserving the style and texture of the
input image. It is particularly useful when the input image has a distinct style or texture
that needs to be preserved or transferred to another image. The formula for instance
normalization is similar to that of batch normalization, but it operates on each instance or
channel independently. For a 3D input tensor x, the instance normalization formula can
be written as:

x̂i,j,k =
xi,j,k − E[xi,·,·]√

V[xi,·,·] + ϵ
,

yi,j,k = γix̂i,j,k + βi.

(2.17)

Here, xi,j,k is the activation of the k-th channel at spatial location (i, j) in the input,
E[xi,·,·] and V[xi,·,·] are the mean and variance of the i-th channel, x̂i,j,k is the normalized
activation, γi and βi are learnable scaling and shifting parameters for the i-th channel, and
ϵ is a small constant added for numerical stability.

Overall, normalization layers such as BN and IN can help to improve the training and
generalization performance of CNNs for machine vision tasks by reducing the internal

49

CHAPTER 2. MACHINE AND DEEP LEARNING

covariate shift problem. BN is used to normalize the activations of each batch during
training, while IN is used to normalize the activations of each instance (i.e., channel) in
the input. These normalization techniques have proven to be effective in improving the
convergence rate, accuracy, and robustness of CNNs.

2.4.3 Regularization Methods
This section of the thesis will discuss various regularization techniques commonly used
in convolutional neural networks (CNNs). Regularization methods are employed to pre-
vent overfitting such as weight decay, dropout, early stopping, data augmentation and
ReduceLROnPlateau.

Weight Decay

Weight decay is a form of regularization that penalizes large weights in the model during
training. It is also sometimes referred to as L2 regularization or ridge regression. The
basic idea behind weight decay is to add a regularization term to the loss function that
encourages the model to have small weight values. This is achieved by adding a penalty
term proportional to the square of the magnitude of the weight values. The loss function
with weight decay can be written as:

Lwd = L(x,x′) +
λ

2
||w||22 (2.18)

where L is the original loss function, x is the ground truth label, x′ is the predicted
label, w is the weight vector of the network, and λ is a hyperparameter that controls
the strength of the weight decay penalty. The weight decay penalty term encourages the
model to have small weight values, which in turn can prevent overfitting. This is because
large weights can cause the model to become overly complex and sensitive to noise in the
training data, while small weights are less likely to be influenced by noise.

One practical example of weight decay in CNNs is the use of the Adam optimizer with
weight decay. The Adam optimizer is a popular optimization algorithm that uses both
momentum and adaptive learning rates to speed up convergence. To add weight decay to
the Adam optimizer from equation 2.3, we simply add a penalty term to the update rule
for the weights and in turn we obtain the AdamW, i.e. the equation 2.6.

Dropout

Dropout is a regularization technique that addresses the problem of overfitting in neural
networks. The basic idea behind dropout is to randomly drop out, i.e. set to zero, a
proportion of the neurons in a layer during training. By doing so, the network is forced
to learn more robust and generalizable features, as it cannot rely on any one particular
neuron to always be present. The dropout technique is applied during training by randomly
selecting a subset of neurons to be dropped out in each forward pass. The probability of
dropping out a neuron is a hyperparameter that can be tuned based on the specific task and
network architecture. Dropout can be applied to both input and hidden layers, although it
is typically more effective in hidden layers.

50

2.4. CONVOLUTIONAL NEURAL NETWORKS (CNNS)

A more mathematical description can be expressed considering h be the input to a
dropout layer, and p be the probability of dropping out a neuron. During training, each
neuron i in h is set to zero with probability p, independently of other neurons. The output
y of the dropout layer is then scaled by 1/(1 − p) to ensure that the expected value of y
remains the same during training and testing.

yi =

{
0 with probability p
hi

1−p
otherwise

(2.19)

During testing, all neurons are used, but their activations are scaled by (1 − p) to
account for the fact that more neurons are active than during training. This ensures that
the expected output during testing remains the same as during training. Dropout has been
shown to be an effective regularization technique in a variety of DL tasks, including image
classification and speech recognition. However, it can increase the training time of the
network, as more iterations are needed to converge to the optimal solution. Nonetheless,
the benefits of dropout often outweigh the computational cost, making it a popular choice
for regularization.

Early Stopping

Early stopping is a regularization technique that involves monitoring the performance of
a model during training and stopping the training process when the performance on a
validation set stops improving. The basic idea is that, as the model trains, it begins to
overfit the training data and memorize noise in the data. This causes the performance on
the validation set to start decreasing, even as the performance on the training set continues
to improve. By monitoring the validation set performance and stopping training when it
stops improving, we can prevent the model from overfitting and improve its generalization
performance. We can express the early stopping criterion as follows:

θ̂ = argmin
θ∈Θ

L(θ;Xtrain, Xtrain) + λV(θ;Xval, Xval) (2.20)

where Θ is the space of model parameters, L is the loss function on the training set,
V is the validation loss function, and λ is a regularization parameter that controls the
trade-off between the training loss and the validation loss. During training, we monitor
the validation set performance after each epoch and stop training when the validation loss
has not improved for a certain number of epochs. The value of λ can be determined using
cross-validation. Early stopping is a simple and effective regularization technique that
has been shown to improve the generalization performance of deep learning models. It is
particularly useful when training large and complex models on limited training data.

Data Augmentation

Data augmentation is a regularization technique that artificially increases the size of the
training dataset by generating new training examples from the existing ones. This technique
is particularly useful when the size of the training dataset is limited, as it helps prevent
overfitting by providing the network with more diverse examples to learn from. In the
context of CNNs, data augmentation can be implemented in many ways. Common methods
include rotation, translation, flipping, and scaling of the input images. For example, an

51

CHAPTER 2. MACHINE AND DEEP LEARNING

image of a cat can be rotated by a certain angle to generate a new image, which can be used
to train the CNN. Similarly, an image can be flipped horizontally or vertically, or cropped
to create a new training example. Data augmentation can be represented by a function
T (x) that transforms the input image x into a new image x′, such that T (x) is a stochastic
function that produces different outputs for the same input. The transformed image x′ is
then used as a training example for CNN.

x′ = T (x) (2.21)

The choice of the transformation functions T depends on the specific application and
the characteristics of the input data. For example, for image classification tasks, typical
transformations include random rotations, translations, and flips. Data augmentation is a
powerful technique for improving the performance of CNNs, especially when the size of
the training dataset is limited. By providing the network with more diverse examples to
learn from, data augmentation can help prevent overfitting and improve the generalization
performance of the model.

ReduceLROnPlateau

ReduceLROnPlateau is a regularization technique used in training deep learning models,
including CNNs, to improve their performance. This technique is based on dynamically
reducing the learning rate of the optimizer when a metric, such as validation loss or
accuracy, stops improving. The idea is to prevent the model from getting stuck in a
suboptimal solution by reducing the learning rate and allowing it to explore other areas of
the optimization landscape.

The ReduceLROnPlateau technique is implemented using a callback function in the
training process, which monitors the selected metric and reduces the learning rate when
the metric stops improving. The new learning rate ηnew is calculated as a fraction of the
previous learning rate ηold:

ηnew = ηold × factor (2.22)

where the factor is typically set to a value less than one, such as 0.1 or 0.5, to
reduce the learning rate by a significant amount. The ReduceLROnPlateau technique is
particularly useful when training deep CNNs on large datasets, where the optimization
landscape can be complex and non-convex. By reducing the learning rate, the optimizer
can take smaller steps towards the optimal solution and potentially avoid getting stuck in
local minima.

2.5 Autoencoders (AEs)
Autoencoders are a type of neural network architecture that is used for efficient encoding
in unsupervised learning context [80]. The goal of training an autoencoder is to learn a
compact representation of the input data that can be used for tasks such as dimensionality
reduction, denoising, or generative modelling.

52

2.5. AUTOENCODERS (AES)

2.5.1 AEs Architecture and Operation
Autoencoders [67] are neural networks that are trained to reconstruct their input. The
basic architecture, shown in Figure 2.11, consists of an encoder network, which maps
the input data to a lower-dimensional representation, typically made via the imposition of
a bottleneck in the network structure and a decoder, which maps the lower-dimensional
representation back to the original input space. Compression and reconstruction are
extremely demanding if there is no structure in the data, i.e. no correlation between input
features. However, if some sort of structure exists in the data, it can be learned and applied
when forcing the input through the bottleneck. Encoder and decoder functions are:

• data-specific, so they will only be able to compress data that is similar to what they
trained on;

• lossy, which means that the decompressed outputs will be degraded compared to
the original inputs;

• learned automatically from data examples, it means that it is easy to train spe-
cialised instances of the algorithm, that will perform well on a specific type of
input.

Figure 2.11: Diagram of a basic Autoencoder.

Typically, they are restricted in a way that allows them to copy only approximately and to
copy only input that resembles the training data. By prioritizing which parts of the input to
copy, the model learns useful properties of the data. Traditionally, autoencoders were used
to reduce dimensionality or to learn features. Recently, theoretical connections between
autoencoders and latent variable models have brought autoencoders to the forefront of
generative modelling.

A mathematical description of an AE can be done as follow: considering the input x,
passed through the encoder function f , which maps it to a lower-dimensional feature space
z = f(x). The feature space is then passed through the decoder function g, which maps
it back to the original input space x′ = g(z). The output of the decoder x′ is compared to
the original input x, using a reconstruction loss function L, as it is a check of how well the
input x has been reconstructed from the input. The Learning process is described simply
as minimizing a loss function:

53

CHAPTER 2. MACHINE AND DEEP LEARNING

L(x, g(f(x))), (2.23)

where the loss function L penalizes g(f(x)) for being dissimilar from x, such as the
mean squared error. It is worth noting that autoencoder architecture can be varied to im-
prove performance, such as by adding a bottleneck layer or using a denoising autoencoder.

It is important to note that the above explanation is a basic one, and there are many
variations and extensions of autoencoders, such as denoising autoencoder, variational
autoencoder, and others.

2.5.2 Variations
There are several types of autoencoders based on the dimension of the latent space:

• Undercomplete autoencoders have a bottleneck structure where the dimension of
the latent space is less than the dimension of the input data. This type of autoencoder
is trained to compress the data by learning a lower-dimensional representation of
the input.

• Regular autoencoders have a latent space of the same dimension as the input
data. This type of autoencoder is trained to reconstruct the input data by learning a
representation that is a function of the input.

• Overcomplete autoencoders have a latent space that is larger than the dimension
of the input data. This type of autoencoder is trained to learn a higher-dimensional
representation of the input.

• Convolutional Autoencoder (ConvAE) uses convolutional layers instead of fully
connected layers to learn a compact representation of the input data. The main
advantage of using convolutional layers is that they can take advantage of the
spatially local correlations in the data, which is particularly useful for images and
other grid-like data. In addition to using convolutional layers, a ConvAE also has
a convolutional bottleneck, meaning that the latent space or codings are a three-
dimensional tensor (or four-dimensional if you consider the batch dimension) with
the same spatial dimensions as the input data, i.e. it is of the form H × W × D.
The encoder is typically composed of a series of convolutional layers followed by
pooling layers, which reduce the spatial dimensions of the data while increasing the
depth. The decoder is typically composed of a series of transposed convolutional
layers (also known as upsampling layers) that increase the spatial dimensions of the
data while decreasing the depth.

• Sparse autoencoder (SAE) which is trained to produce sparse representations of its
input data. The sparse constraint is typically imposed by adding a sparsity regular-
ization term to the loss function that the autoencoder is being trained to minimize.
The most common form of sparsity regularization is the L1 regularization, also
known as the Lasso, which encourages the model to produce sparse representations
by adding a term to the loss function that is proportional to the sum of the absolute
values of the activations of the hidden units. The L1 regularization term can be
written as λ

∑n
i=1 |ai|, where ai is the activation of the i-th hidden unit and λ > 0

is a hyperparameter that controls the strength of the regularization measures how
much sparsity we want to enforce.

54

2.6. VARIATIONAL AUTOENCODERS (VAES)

• Denoising Autoencoder (DAE) is a type of autoencoder that is trained to reconstruct
the original input data from a corrupted version of the input. This type of autoencoder
is useful for data cleaning and denoising tasks. The problem of training a DAE is the
optimization problem: minθ L(θ), where θ are the parameters of the autoencoder.

• Contractive autoencoder (CAE) which modifies the objective function to encour-
age the encoder to learn a more robust and compact representation by adding a
penalty term on the L2 norm of the Jacobian of the encoder concerning its inputs,
expressed as λ|J(gθ(xi))|2F , where λ is a hyperparameter, J(g(x)) is the Jacobian
of the encoder function and |.|F is the Frobenius norm of a matrix.

• Variational Autoencoders (VAE) which are a type of variational Bayesian method
that has a similar architecture to basic autoencoders but has distinct goals and a
distinct mathematical formulation. Instead of having a fixed vector, the latent space
in VAEs is composed of a mixture of distributions. This topic will be explored in
more detail in the next section of this thesis.

All these variations of autoencoder have their advantages and disadvantages, and they
are particularly useful in different scenarios.

2.6 Variational AutoEncoders (VAEs)
Variational Autoencoders (VAEs) are a popular generative model that combines the idea
of autoencoders with probabilistic modelling. They learn a compact latent representation
of the input data and can generate new samples from it.

2.6.1 VAEs Architecture and Operation
A standard Variational Autoencoder (VAE) [53] is an artificial neural network architecture
that aims to learn a compact, continuous latent representation of data. The basic idea
behind a VAE is to learn an encoder function qϕ(z|x), that maps the input data x to a latent
representation z and a decoder function pθ(x|z) that maps the latent representation back
to the original data space, schematic is depicted in Figure 2.12.

The encoder is typically modelled as a neural network with parameters ϕ, that maps
the input x to a mean µ and a standard deviation σ of a Gaussian distribution over the
latent space representation z. The encoder can be formulated as:

qϕ(z|x) = N (z|µϕ(x), σϕ(x)), (2.24)

and the decoder function pθ(x|z) is also modeled as a neural network with parameters
θ, that maps the latent representation z back to the original data space. The decoder can
be formulated as:

pθ(x|z) = pθ(x|fθ(z)), (2.25)

where fθ(z) is the output of the encoder neural network. The goal is to learn the
encoder and decoder parameters such that the model can generate new samples from the
learned latent space by sampling from the prior p(z) and passing the samples through the

55

CHAPTER 2. MACHINE AND DEEP LEARNING

Figure 2.12: The variational autoencoder’s basic design. x is provided to the model
as input. It is compressed by the encoder and stored in latent space. The information
collected from the latent space is fed into the decoder, which then outputs x′ that is as
close to x as possible.

decoder. The key difference between a VAE and a traditional autoencoder is the use of
a probabilistic encoder and a prior over the latent space. A traditional autoencoder uses
a deterministic encoder to map the input to a fixed-size latent representation, whereas a
VAE uses a probabilistic encoder that maps the input to a probability distribution over the
latent space.

In general, it is only possible to see an observation x, but we would like to infer the
characteristics of z [81]. In other words, the relationship between the input data and its
latent representation is given by the computation of pθ(z|x), according to Bayes’ theorem:

pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)
, (2.26)

where pθ(z) is the prior, pθ(x|z) is the likelihood and posterior pθ(z|x). From the
point of view of probabilistic modelling, the goal is to maximize the likelihood of the data
x by their chosen parametrized probability distribution pθ = p(x|θ). Let us find pθ(x) via
marginalizing over z.

pθ(x) =

∫
z

pθ(x, z)dz =

∫
z

pθ(x|z)pθ(z)dz, (2.27)

where p(x, z) represents the joint distribution under pθ of input data x and its latent z.
The second inequality is given by the chain rule.

Unfortunately, computing p(x) is quite difficult. This usually turns out to be an
intractable distribution1. However, we can apply variational inference [82] to estimate

1in this context intractability means one of the two things

• the integral has no closed-form solution. This might be when we are modelling some complex,
real-world data and it is so complex that we cannot write down a likelihood (or if we can it takes
forever to evaluate), but we can simulate from the data generating process (e.g. some kind of process

56

2.6. VARIATIONAL AUTOENCODERS (VAES)

this value. Let’s approximate p(z|x) by another distribution q(z|x) which we will de-
fine such that it has a tractable distribution. If it is defined the parameters such that
qϕ(z|x) ≈ pθ(z|x), with ϕ defined as the set of real values that parametrize q. This distri-
bution can be used to perform approximate inference of the intractable distribution. In this
way, the problem is of finding a good probabilistic autoencoder, in which the conditional
likelihood distribution pθ(x|z) is computed by the probabilistic decoder, and the approxi-
mated posterior distribution qϕ(z|x) is computed by the probabilistic encoder. To measure
the difference between two probability distributions we use the Kullback-Leibler (KL)
divergence, also called relative entropy or I-divergence [83], denoted as DKL(P ∥ Q). It
is a type of statistical distance: a measure of how one probability distribution P is different
from a second, reference probability Q of a continuous random variable, defined to be the
integral:

DKL(P ∥ Q) =

∫ ∞

−∞
p(x) log

p(x)

q(x)
dx, (2.28)

where p and q denote the probability densities ofP andQ. KL divergence measures the
amount of information lost when approximating P with Q, always non-negative and also
asymmetric, i.e. DKL(P ∥ Q) ̸= DKL(Q ∥ P). This distance is used in the variational
autoencoder to measure the difference between the approximate posterior and the true
posterior. In VAEs the KL divergence between the approximate posterior and a prior over
the latent variables is added as a regularization term to the standard reconstruction loss,
called the evidence lower bound (ELBO). The ELBO is maximized for the parameters of
the encoder and the decoder network, which results in learning a generative model. The
reparameterization trick is a technique to make the gradients of the KL divergence term
in the ELBO estimable via backpropagation. It transforms the random sampling process
into a differentiable transformation of the parameters of the approximate posterior.

2.6.2 Evidence Lower Bound (ELBO)

The goal is to learn the encoder and decoder parameters ϕ and θ such that the model
can generate new samples from the learned latent space by sampling from the prior p(z)
and passing the samples through the decoder. To achieve this, the model is trained via
a differentiable loss function to update the network weights through backpropagation, to
minimize the reconstruction error between the original data x and the generated data x′.

Thus, to ensure that qϕ(z|x) is similar to pθ(z|x), we could minimize the KL divergence
between the two distributions:

for how certain properties develop over many generations in a population).

• The integral is computationally intractable, i.e. exponential distribution.

57

CHAPTER 2. MACHINE AND DEEP LEARNING

DKL(qϕ(z|x) ∥ pθ(z|x)) = Ez∼q

[
log

qϕ(z|x)
pθ(z|x)

]
= Ez∼q

[
log

qϕ(z|x)pθ(x)
pθ(x, z)

]
= log pθ(x) + Ez∼q

[
qϕ(z|x)
pθ(x, z)

]
.

(2.29)

The ELBO is now defined as follows:

Lθ,ϕ(x) := Ez∼q

[
pθ(x, z)

qϕ(z|x)

]
= log pθ(x)−DKL(qϕ(z|x) ∥ pθ(z|x)). (2.30)

Maximising the ELBO

θ̂, ϕ̂ = argmax
θ,ϕ

Lθ,ϕ(x) (2.31)

is equivalent to maximising the reconstruction error log pθ(x) and minimising the
DKL(qϕ(z|x) ∥ pθ(z|x)). Namely, maximizing the observed data’s log-likelihood and
minimizing the approximate posterior divergence. The ELBO is a lower bound on the
log-likelihood, hence the name ’Evidence Lower Bound’. The objective is to maximize
the ELBO for the parameters of the model, which will in turn maximize the likelihood
of the data. The KL divergence term in the ELBO acts as a regularizer, preventing the
approximate posterior from collapsing to the prior distribution. The training process of
VAE consists of maximizing the ELBO using gradient descent. By maximizing the ELBO,
it is possible to learn the generative and inference models that can generate new samples
from the data distribution and can also provide a compact representation of the data in the
latent space.

2.6.3 Reparametrization Trick
The reparametrization trick is a technique used in Variational Autoencoders to make the
optimization of the lower bound of the likelihood, also known as the Evidence Lower
Bound (ELBO), more stable and efficient. The idea is to introduce a new random variable
that we can sample from, which we will use to parameterize the generative process. This
allows us to use backpropagation to optimize the parameters of the generative model.

The key idea is to reparameterize the latent variable z by introducing a new random
variable ϵ and using it to compute z by:

z = µ+ σ ⊙ ϵ (2.32)

Where µ and σ are the learned parameters of the approximate posterior distribution
and ⊙ denotes element-wise multiplication.

58

2.6. VARIATIONAL AUTOENCODERS (VAES)

The random variable ϵ is usually chosen to be a standard normal distribution. This
way, the gradients to the parameters of the generative model can be computed by back-
propagation, since the sampling operation is now differentiable. This allows us to optimize
the parameters of the generative model in an end-to-end manner using gradient-based op-
timization. The reparametrization trick makes the optimization of the ELBO more stable
and efficient, because of this, it is now a standard technique used in VAEs. The schematic
representation of the process is shown in Figure 2.13. For the choice of standard normal
p(z) = N (0, I), the KL divergence term has the following analytical form

DKL(µ, σ) = −1

2

n∑
i=1

(log(σ2
i)− σ2

i − µ2
i + 1), (2.33)

where σi and µi are the outputs of the encoder for a given x.

Figure 2.13: The variational autoencoder’s design implements the reparameterization
trick.

2.6.4 An Illustrative Example of VAE in HEP
An example of using a Variational Autoencoder for anomaly detection is in identifying
rare particle interaction [65, 84]. In this scenario, a VAE can be trained on a dataset of
known normal interactions, to learn the underlying distribution of the data. Once the VAE
is trained, it can be used to generate new interactions from the learned distribution, by
sampling from the latent space. The key idea is that the normal interactions should be
consistent with the learned distribution and therefore can be reconstructed by the decoder
with a low error. On the other hand, the anomalous interactions, which don’t conform to
the learned distribution, are likely to have a higher reconstruction error. Therefore, the
VAE can be used to detect anomalous interactions by measuring the reconstruction error
of the new interactions and comparing it to a threshold. Interactions with a reconstruction
error above the threshold are considered anomalous and are likely to be rare particle
interactions. Additionally, the VAE can be used to generate synthetic data to perform
simulations. A common approach is to use VAE to generate synthetic events, which are
used to mimic real events and train classifiers in an unsupervised way. In this case, by
generating simulated events that closely resemble real-world events, the VAE can help to
improve the performance of the classifiers, especially when working with small amounts

59

CHAPTER 2. MACHINE AND DEEP LEARNING

of real data. This is just one example of how a VAE can be used for anomaly detection
in HEP, but it illustrates how this technique can be applied to identify rare events and
improve our understanding of the underlying physical processes.

2.6.5 A bridge between Physics and Deep Learning
The Variational Autoencoder intuition was proposed by Diederik Kingma and Max Welling
in 2013. The key innovation of VAEs is the use of variational inference, a technique from
Bayesian statistics, to learn the latent representation. Variational inference allows the
model to learn a probabilistic distribution over the latent space, rather than a single point
estimate.

Kingma and Welling used concepts from several fields to develop the VAE model. The
idea of using a partition function from statistical mechanics to calculate the probability
distribution over the possible states of a physical system is used in VAE to calculate
the probability distribution over the possible states of the data, represented by the latent
variables. Additionally, the VAE objective function, expressed in equation 2.30, is closely
related to the principle of Maximum Entropy, which states that the probability distribution
that best represents the current state of knowledge is the one with the highest entropy.
The VAE tries to find the probability distribution that maximizes the likelihood of the
data and at the same time maximizes the entropy of the latent variables. Furthermore, the
VAE objective function is also related to the Evidence Lower Bound (ELBO), which is a
measure of the information contained in the data and the Mutual Information (MI), which
is a measure of the amount of information shared between two variables.

VAEs have been applied in various fields, such as image [85] and video [86] generation,
text generation [87], speech synthesis [88], and even drug design [89] and protein folding
[90]. They are also used in fields such as computer vision, natural language processing,
and generative design. Overall, Kingma and Welling used a combination of concepts from
physics, Bayesian statistics, and information theory to develop VAE as a way to improve
the understanding of the representations learned by DNNs and make the models more
flexible and powerful.

2.7 Implementing a Neural Network
This section of the thesis will focus on the implementation of DL models using TensorFlow
and Keras, two popular open-source libraries for building and training neural networks.

2.7.1 TensorFlow
TensorFlow [91] is an open-source software library for dataflow and differentiable pro-
gramming across a range of tasks. It is a powerful tool for building and deploying machine
learning models, particularly deep neural networks. TensorFlow was developed by the
Google Brain team [92] and is now maintained by the TensorFlow team at Google. The
core functionality of TensorFlow is its ability to perform computations on data using a
dataflow graph. A dataflow graph is a directed acyclic graph (DAG) where the nodes
represent mathematical operations and the edges represent the data flowing between the
operations. This allows TensorFlow to perform complex computations in a highly opti-
mized and efficient manner, making it well-suited for large-scale machine learning tasks,

60

2.7. IMPLEMENTING A NEURAL NETWORK

and allows for the parallel execution of computations on large clusters of machines. One of
the key features of TensorFlow is its support for a wide range of data types and platforms.
It can be used to perform computations on a variety of platforms including CPUs, GPUs,
and Tensor Processing Units (TPUs) [93]. TensorFlow also provides a variety of pre-built
models and libraries, such as the TensorFlow Hub and the TensorFlow Model Garden,
which can be used for common ML tasks like image classification, object detection, and
natural language processing. TensorFlow also provides a variety of tools and libraries for
building, training, and deploying machine learning models. TensorFlow is subdivided in
various modules, these include:

• The TensorFlow Core API: this is the low-level API that provides the building
blocks for building models with TensorFlow. This API provides some of the es-
sential tools for building Machine Learning models, which enable us to create and
manipulate tensors (multi-dimensional arrays), perform mathematical operations on
them, and create and train models.

• The Keras API: a high-level API built on top of TensorFlow that allows for fast
prototyping and experimentation with different neural network architectures.

• The Estimator API: another high-level API that simplifies the process of training
and deploying machine learning models. It includes pre-built models for com-
mon machine learning tasks and provides an easy-to-use interface for training and
deploying models on different platforms.

• TensorFlow Serving: this is a flexible, high-performance serving system for deploy-
ing machine learning models designed for production environments. TensorFlow
Serving makes it easy to deploy new algorithms and experiments while keeping the
same server architecture and APIs. TensorFlow Serving provides out-of-the-box
integration with TensorFlow models but can be easily extended to serve other types
of models and data.

TensorFlow also provides a variety of tools for deploying machine learning models in a
production environment, on mobile devices and web browsers, thanks to TensorFlow Lite
and TensorFlow.js respectively. TensorFlow provides support for various areas of artificial
intelligence, such as computer vision, natural language processing, and reinforcement
learning. TensorFlow also has a large and active community, which provides additional
resources such as tutorials, pre-trained models and more.

2.7.2 Keras
Keras2 is an open-source high-level deep learning API library, written in Python, which
runs on top of TensorFlow. It was developed to make it easier to build, train, and test deep
learning models. This package can abstract the complexities of making operations with
TensorFlow and allows developers to work with a more user-friendly API for building and
training models. It is designed to be user-friendly and modular, making it easy to create
complex neural network architectures. Keras is built on top of other lower-level libraries
such as TensorFlow, CNTK , or Theano [94], and it can run on top of those libraries or
use them as a backend. It also supports multiple backends, including TensorFlow, making
it easy to switch between them.

2https://github.com/keras-team/keras

61

https://github.com/keras-team/keras

CHAPTER 2. MACHINE AND DEEP LEARNING

One of the main advantages of Keras is its simplicity and ease of use. The API is
intuitive and easy to understand, making it accessible to both beginners and experts. This
package also has a large and active community, which provides a wealth of resources and
tutorials for building and training models. The library also has a wide range of pre-built
layers, optimizers, and metrics, making it easy to build models with complex architectures.
Additionally, Keras provides support for a wide range of datasets and preprocessing tools,
allowing users to quickly and easily load and prepare their data. Keras is highly extensible
and allows developers to create custom layers, optimizers, and metrics. This makes it easy
to implement new and experimental architectures and adapt existing models to new tasks.
It also has built-in support for distributed training, which allows models to be trained on
multiple GPUs or across multiple machines. This makes it easy to scale up training and
improve performance on large datasets.

2.8 Model Compression
Deep learning models have become increasingly popular in recent years, but their large
size can be a hindrance to their deployment in edge devices with limited computational
resources. To address this issue, model compression techniques have been developed to
reduce the size and computational complexity of these models without compromising their
accuracy. This section, focus on two such techniques: weight pruning, quantization and
knowledge distillation. Both of these techniques are effective in reducing the size of deep
learning models while preserving their accuracy.

2.8.1 Pruning
Weight pruning is a technique used to compress deep learning models via the elimination
of unnecessary values in the weight tensor, by practically setting the parameters’ values
to zero, which means cutting connections between nodes. The pruning is done during the
training process to allow the NN to adapt to the changes. The TensorFlow Sparsity Pruning
API [95] performed this optimization. The algorithm works by removing connections
based on their magnitude during training, a graphical representation of the process can
be seen in Figure 2.14. Therefore, a final target sparsity, i.e. target percentage of weights
equal to zero is specified, along with a schedule to perform the pruning. As training
proceeds, the pruning routing is scheduled to execute, removing the weights with the
lowest magnitude, until the current sparsity target is reached.

There are different ways to implement weight pruning, but a common approach is to use
a magnitude-based pruning criterion, where the magnitude of each weight is computed
and the smallest weights are removed. The pruning threshold can be set manually, or
determined through a heuristic or an optimization process. One way to prune weights
is by using a weight threshold. In this method, a threshold is chosen and all weights
below this threshold are set to zero. Another way is using a percentage threshold, where
a certain percentage of the smallest weights is set to zero. Another approach is iterative
pruning, where the model is trained, then pruned, retrained, and pruned again in a loop
until the desired level of sparsity is reached. Another method is called gradient-based
pruning which involves analyzing the gradients of the weights during the training process.
Weights with small gradients are considered less important and are pruned. The last
method is called structured pruning which involves pruning entire filters or neurons

62

2.8. MODEL COMPRESSION

Figure 2.14: Graphical representation of the weight pruning optimization for FFNNs layer.

instead of individual weights. This method can be more efficient as it reduces the number
of parameters much more than weight pruning.

It is important to note that after pruning, the model’s architecture needs to be modified,
to remove the pruned weights from the layers. Also, pruning may affect the model’s
performance, depending on the pruning method and the dataset. Therefore, it’s important
to evaluate the model’s performance after pruning, and fine-tune or retrain the model
if necessary. Weight pruning is a powerful technique for model compression, as it can
significantly reduce the number of parameters in a model without significantly degrading
its performance. It can also be used in combination with other compression techniques,
such as quantization, to further reduce the model’s size and computational cost.

2.8.2 Post-Training Quantization
Quantization is a process of converting continuous values into a limited set of discrete
values. It refers to the process of convertion of the arithmetic used within the NN from high-
precision floating-points to normalized low-precision integers (fixed-point), is an essential
step for efficient deployment. This is usually done to reduce the memory and computational
cost of a neural network, especially when deploying the network on resource-constrained
devices such as mobile phones and embedded systems. The primary motivation for
quantization is to reduce the memory footprint of a neural network. Floating-point values
require more memory than fixed-point values because they need to store the sign, exponent,
and mantissa. By reducing the number of bits used to represent the weights and activations,
quantization reduces the memory requirements of a neural network, making it possible to
deploy it on devices with limited memory. Another benefit of quantization is that it can
significantly reduce the computational cost of a neural network. Fixed-point operations
are faster than floating-point operations because they are more hardware-friendly, and
can be implemented with simpler circuits. Furthermore, hardware accelerators such as
GPUs and TPUs can perform fixed-point operations more efficiently than floating-point
operations, leading to further reductions in computational cost.

Fixed-point numbers consist of two parts, integer and fractional as shown in Figure

63

CHAPTER 2. MACHINE AND DEEP LEARNING

2.15. Compared to floating-point, fixed-point representation maintains the decimal point
within a fixed position, allowing for a more straightforward arithmetic operations.

Figure 2.15: The representation of numbers with a fixed number of digits to the right
and left of the decimal point is known as fixed-point number representation. In the
hls4ml library (see section 2.9.4), the input, output, and parameters of the neural network
model are associated with a C type called fixed<width, integer> that uses fixed-point
number representation. Here, width represents the total number of bits used to represent
the number, and integer represents the number of bits used to represent the integer part
of the number. The use of fixed-point number representation ensures that the model is
implemented with fixed hardware resources, which can lead to faster and more efficient
execution.

Quantization is used to reduce the precision of weights and activations to a fixed
number of bits. For example, instead of using 32-bit floating-point values to represent the
weights and activations, a network might be quantized to use 8-bit fixed-point values. The
number of bits used for quantization depends on the required accuracy and the memory
constraints of the target deployment platform.

A possible technique widely used is the Post-Training Quantization (PTQ). It is used
to reduce the memory and computational requirements of a machine learning model while
maintaining its accuracy. In post-training quantization, the model’s weights and activations
are quantized, or represented with a smaller number of bits. The most common method
of quantization is to represent the values with 8-bit integers (integer quantization) instead
of 32-bit floating-point numbers. This reduces the memory requirements of the model by
a factor of 4 and can also speed up computations on certain hardware, such as GPUs or
TPUs.

The process of post-training quantization typically involves several steps:

1. Calibration: the model’s weights and activations are passed through representative
data (a subset of the training data) to generate a set of statistics, such as the minimum
and maximum values for each layer. These statistics are used to determine the range
of values that can be represented with the quantized data types.

2. Quantization: the weights and activations are then quantized to the nearest value
within the determined range. This process can be done in different ways, such as
symmetric or asymmetric quantization and per-channel quantization.

3. Fine-tuning: the quantized model is then fine-tuned by retraining on a small subset
of the training data. This step helps to recover some of the accuracies that may be
lost during quantization.

64

2.8. MODEL COMPRESSION

4. Evaluation: the quantized model is evaluated on a validation dataset to ensure that
it has comparable accuracy to the original, non-quantized model.

One of the key benefits of post-training quantization is that it can be applied to
any pre-trained model, regardless of its architecture or the framework it was trained
with. Additionally, post-training quantization can be performed on the TensorFlow model,
TensorFlow Lite model, or on the edge device, depending on the specific use case.

Additional points

• Quantization methods: Different methods of quantization can be used, such as
symmetric or asymmetric quantization, per-channel quantization, or K-means quan-
tization. Symmetric quantization maps the real numbers to integers by dividing
the range of values into equal intervals, while asymmetric quantization maps the
real numbers to integers by dividing the range of values into unequal intervals.
Per-channel quantization is used to quantize the weights of convolutional layers
separately for each channel, rather than globally for the entire layer. K-means quan-
tization is a method that uses the k-means clustering algorithm to determine the
optimal set of discrete values to represent the weights.

• Quantization aware training: It is an alternative to post-training quantization
where the model is trained with the quantization process in mind, so the model
learns to preserve accuracy even after quantization. This approach can lead to better
accuracy compared to post-training quantization, especially for models with a large
number of parameters.

• Quantization granularity: Post-training quantization can also be performed at
different granularities, such as per layer or tensor. Per-layer quantization quantizes
the activations and weights of each layer separately, while per-tensor quantization
quantizes the activations and weights of each tensor in the model. The granularity
of the quantization can be chosen based on the specific use case and the resources
available on the target device.

• Dynamic range: Another important factor to consider when quantizing a model is
the dynamic range of the values being quantized. The dynamic range is the ratio of
the largest value to the smallest non-zero value in the data. A larger dynamic range
requires more bits to represent the values accurately, so it’s important to choose an
appropriate quantization scheme that can represent the dynamic range of the data.

It is important to state that PTQ can lead to a small loss of accuracy compared to the
original, non-quantized model, although recent techniques and research have mitigated this
loss. It is also important to note that post-training quantization is typically only effective
for reducing the memory requirements of the model, and may not have a significant impact
on the performance of the model.

2.8.3 Quantization Aware of Training
Quantization-aware training (QAT) [96] is a method to train deep learning models while
also quantizing the model parameters during training. This can be useful in scenarios
where the model will be deployed on devices with limited computational resources, such
as edge devices or mobile phones.

65

CHAPTER 2. MACHINE AND DEEP LEARNING

The process of QAT can be broken down into two main steps: quantization and fine-
tuning. First, the model weights are quantized to a lower bandwidth, typically 8 bits. This
is done by mapping each weight value to the closest representable value in the quantized
space. After this, the model is fine-tuned using the quantized weights, to minimize the
accuracy loss caused by the quantization. QAT can be performed using different types
of quantization methods, such as uniform quantization or k-means quantization. Uniform
quantization is the most common method, where the range of the weights is divided into
a fixed number of intervals, and each interval is mapped to a discrete value. K-means
quantization, on the other hand, is a more advanced method that clusters the weight values
and maps each cluster to a discrete value. One of the challenges of QAT is dealing with
the quantization errors introduced by the quantization process. To deal with these errors,
Quantization-aware training technique computes the gradients for the quantized weights,
rather than the full-precision weights. This allows the model to adjust its weights to better
fit the quantized space, reducing the error caused by quantization. Another challenge of
QAT is dealing with the increased memory and computation requirements caused by the
fine-tuning step. This can be mitigated by using techniques such as weight pruning and
knowledge distillation.

QKeras

QKeras [97] is a library for quantization-aware training of deep learning models that are
built on top of the Keras (see section 2.7.2) framework. It provides a simple and easy-to-use
interface for adding quantization-aware training to existing Keras models. As it has been
underlined, the main idea behind quantization-aware training is to train a deep learning
model with quantization in mind so that the model can be deployed on low-power and
resource-constrained devices, such as smartphones and IoT devices, without a significant
loss in accuracy. This is achieved by training the model with quantized weights and
activations so that it can adapt to the quantization process and perform well on quantized
hardware.

QKeras provides custom layers that can be used to replace the standard ones in a Keras
model. These layers simulate the quantization process during training by applying quanti-
zation to the model. This allows the model to adapt to the quantization process and perform
well on quantized hardware. Additionally, QKeras supports several different quantization
schemes, including symmetric and asymmetric quantization, as well as different bit widths
for the weights and activations. This allows for fine-tuning the quantization process to best
suit the specific requirements of the model and the target hardware. QKeras also provides
a set of pre-trained models that can be easily fine-tuned for specific tasks. This can greatly
reduce the time and resources required to train a new model from scratch. In addition,
it provides utilities for quantizing and deploying the trained model on different hardware
platforms, such as Tensorflow Lite or TensorRT.

QKeras also uses a quantization-aware training loss function, which is calculated based
on the difference between the quantized weights and activations and the original weights
and activations. By using QKeras, developers can easily add quantization-aware training
to their existing Keras models with minimal changes to their code. This can greatly
simplify the process of deploying deep learning models on resource-constrained devices
and can help to improve the performance and resource efficiency of these models.

66

2.8. MODEL COMPRESSION

2.8.4 Knowledge distillation
Knowledge distillation [98, 99] is a technique used to transfer the knowledge learned by
a complex model, known as the teacher model, to a smaller model, known as the student
model. The goal is to improve the performance of the student model by having it mimic
the behaviour of the teacher model while being more computationally efficient.

The basic idea behind knowledge distillation is to use the teacher model to generate
soft targets (probability distributions over classes) for the training data, rather than using
the one-hot encoded true labels. These soft targets are then used to train the student
model, which tries to replicate the teacher’s predictions. This is done by minimizing the
difference between the student’s predictions and the teacher’s soft targets, typically using
a cross-entropy loss.

The process of knowledge distillation is usually divided into two steps:

• Teacher model training: The teacher model is trained on the dataset using different
problem specific approach;

• Student model training: The student model is trained to replicate the teacher’s
predictions by minimizing the difference between the student’s predictions and the
teacher’s soft targets.

One of the key advantages of knowledge distillation is that it allows transferring
the knowledge of a large and powerful model to a smaller and more efficient model.
Furthermore, it can be used to improve the generalization ability of the model and to make it
more robust to adversarial attacks. There are different variations of knowledge distillation,
such as using different types of teacher models (e.g. ensemble of models, attention-based
models), different types of student models (e.g. shallow, deep) and different ways of
generating the soft targets (e.g. temperature scaling, attention transfer). Temperature
scaling is a popular method to generate soft targets, it involves raising the logits of the
teacher model to a high temperature and then normalizing them to produce a probability
distribution. The attention transfer method is another method, it involves computing an
attention map for the teacher model and using it to weigh the logits of the student model.

Figure 2.16: The standard teacher-student model for knowledge transfer [99].

There are several applications of knowledge distillation in HEP. One of the most
common applications is in the area of particle classification and identification using

67

CHAPTER 2. MACHINE AND DEEP LEARNING

DNNs. For example, in the LHC experiment, particle collisions produce large amounts
of data that need to be analyzed in real-time to detect interesting events. One of the
main challenges is to identify the particles produced in the collision, as different particles
have different physical properties and decay patterns. However, DNNs are typically large
and computationally expensive, which makes them impractical for real-time analysis.
Knowledge distillation can be used to address this issue by training the student model to
mimic the behaviour of a larger and more accurate teacher model. The student model can
then be used in place of the teacher model for real-time particle classification. Another
application is in the area of jet tagging, which is the process of identifying the type of
particle that initiated the jet. Jet tagging is an important task in HEP as it is used to identify
the presence of new particles or to search for specific types of physics beyond the standard
model. Similarly to particle classification, jet tagging can be performed using DNNs, but
these networks can be large and computationally expensive. Knowledge distillation can be
used to train a smaller and more efficient DNN for jet tagging. Additionally, Knowledge
distillation can also be used to improve the performance of deep generative models for
simulating the collider events. The student model can learn the underlying probability
distribution of the simulations from the teacher model and generate events in real-time.

2.9 Model Acceleration
In recent years, there has been a growing interest in using heterogeneous computing
architectures to accelerate machine learning models. One popular approach is to use
Field-Programmable Gate Arrays (FPGAs) to accelerate model inference. FGPAs are a
type of programmable logic device that can be configured to perform a wide range of digital
functions. They have several advantages over traditional CPU and GPU architectures for
machine learning, such as low power consumption and high flexibility. To facilitate the
deployment of machine learning models on FPGAs, we will make use of the hls4ml library.

The goal of this section is to introduce the concept of heterogeneous computing and
the use of FPGAs for model acceleration and to present the hls4ml library as a tool for fast
inference on FPGA.

2.9.1 Heterogeneous Computing
Heterogeneous computing [100] refers to the use of multiple types of processing units
in a single system, to exploit the unique strengths of each unit. In the context of deep
learning, heterogeneous computing refers to the use of multiple types of electronic devices,
such as Central Processing Units (CPUs), Graphics Processing Units (GPUs), and Field-
Programmable Gate Arrays (FPGAs), to perform complex computations required by neural
networks. Industry and High-Performance Computing (HPC) centres are successfully
using heterogeneous computing platforms to achieve higher throughput and better energy
efficiency by matching each job to the most appropriate architecture.

• One common type of processing unit found in heterogeneous systems is the central
processing unit. CPUs are the traditional brains of a computer and are designed to
handle a wide range of tasks, including general-purpose computing, data manipula-
tion, decision-making, model training, and inference. They are typically composed
of multiple cores, which can work in parallel to perform multiple tasks simulta-
neously. However, they are not as efficient as specialized processors like GPUs

68

2.9. MODEL ACCELERATION

or FPGAs in certain types of tasks, such as image and signal processing and may
struggle with the high computational demands of deep learning tasks.

• Another type of processing unit found in heterogeneous systems is the graphics
processing unit. GPUs are specialized processors designed for highly parallel
computations required for rendering graphics, images and video processing. They
have a large number of cores that can perform a large number of calculations
simultaneously, making them well-suited for deep learning tasks. Additionally,
many DL frameworks, such as TensorFlow and PyTorch, have built-in support for
GPU acceleration, making it easy to harness the power of GPUs for deep learning
tasks.

• A third type of electronic device that is becoming increasingly popular in hetero-
geneous systems is the field-programmable gate array. FPGAs are programmable
chips that can be configured to perform specific tasks, such as signal processing
or cryptography. They offer a high degree of flexibility and can be reprogrammed
to adapt to changing workloads, which makes them well-suited for a wide range
of applications, including edge computing, internet of things (IoT) devices, and
data centres. They can be highly customized and optimized for specific tasks, such
as image and signal processing, making them well-suited for deep learning tasks
that require high levels of performance and low power consumption. Additionally,
FPGAs can be reprogrammed to adapt to new tasks, making them a flexible option
for deep learning applications.

In a heterogeneous computing system, different types of processing units can be
used together to perform different tasks, depending on the specific requirements of the
application. For example, a system might use a CPU to handle general-purpose computing
tasks, while using a GPU to handle computationally-intensive tasks such as deep learning
or image processing. Similarly, an FPGA might be used to perform specific tasks such
as signal processing or cryptography, while the CPU and GPU handle other tasks. Each
type of processing unit has its advantages and disadvantages, and the specific choice of
processing unit will depend on the requirements of the application. For example, CPUs
offer a high degree of flexibility and are well-suited for general-purpose computing tasks,
while GPUs offer high performance for computationally-intensive tasks such as deep
learning. FPGAs offer a high degree of flexibility and can be reprogrammed to adapt to
changing workloads, making them well-suited for a wide range of applications.

In the context of HEP, such as the CMS experiment, heterogeneous computing is
used to process and analyze the large amounts of data generated by the detectors [101].
This data is typically processed in stages, with different algorithms running on different
types of hardware. For example, the initial trigger and data filtering may be performed on
custom ASICs(application-specific integrated circuits) and FPGAs, while the final analysis
may be performed on CPUs and GPUs. One of the challenges in using heterogeneous
computing in HEP experiments is the need to efficiently transfer data between different
types of devices and coordinate the execution of different algorithms. This is typically
accomplished using a combination of specialized software frameworks and libraries, such
as the CERN ROOT data analysis framework and the CUDA library for GPU computing.
Deep learning algorithms, such as CNNs and RNNs, are increasingly being used in HEP
experiments to improve the performance of data analysis algorithms. These algorithms
are computationally intensive and require large amounts of memory, making GPUs well-

69

CHAPTER 2. MACHINE AND DEEP LEARNING

suited to parallel processing capabilities and or high-throughput data processing. In
addition to GPUs, the CMS experiment also makes use of FPGAs for specific tasks such
as trigger and data acquisition. They are well-suited for tasks such as data reduction and
event reconstruction, as they can perform many calculations in parallel. This allows for
a significant increase in processing speed compared to using only CPUs. In addition to
GPUs, the CMS experiment also makes use of FPGAs for specific tasks such as trigger and
data acquisition. FPGAs are reconfigurable devices that can be programmed to perform a
specific set of tasks, making them well-suited for real-time data processing. They are also
highly energy-efficient, which is important for large-scale data processing. FPGAs are also
used in the context of the CMS experiment, to increase the speed of the data processing,
filtering and compressing of the data (such as using AEs and VAEs) from the detectors,
reducing the amount of data that needs to be transferred over the network and stored on
disk. The CMS experiment also relies on a distributed computing infrastructure, where
data is processed and analyzed on a network of distributed computing resources, including
both CPU and GPU-based systems. These resources are connected through high-speed
networks and can share data and processing tasks to perform complex data analysis tasks.
Heterogeneous computing plays a critical role in the data processing and analysis of high
energy physics experiments, allowing for the efficient processing of large amounts of data
and the use of advanced machine learning algorithms.

2.9.2 Introduction to FPGAs
In the computer and electronics industry, there are two types of hardware used for per-
forming computations: multipurpose hardware, such as consumer CPUs, which can
be programmed to perform a wide range of tasks, and specialized hardware, such as
Application-Specific Integrated Circuits (ASICs), which are designed and fabricated to
perform a specific task and are highly optimized for that task. ASICs are permanently
configured to perform only one application and require a multimillion-dollar design and
fabrication effort. Computer software provides flexibility in changing applications and per-
forming a wide range of tasks, but it is orders of magnitude worse in terms of performance,
silicon area efficiency, and power usage compared to ASIC implementations.

Field Programmable Gate Arrays are devices that combine the benefits of both hardware
and software, this makes them a popular choice for high-performance computing (HPC),
digital signal processing, and other applications where flexibility is important. They
implement circuits like hardware, providing huge power, area, and performance benefits
over software, yet they can be reprogrammed cheaply and easily to implement a wide
range of tasks. FPGAs implement computations spatially by simultaneously computing
millions of operations in resources distributed across a silicon chip. Such systems can be
hundreds of times faster than microprocessor-based designs. However, unlike in ASICs,
these computations are programmed into the chip and not permanently frozen by the
manufacturing process. This means that an FPGA-based system can be programmed and
reprogrammed many times. But this flexibility comes at a cost: when producing an ASIC,
the main expense is the building of the master with a much cheaper production line after
development, while FPGAs have a much higher cost per chip than ASICs. Furthermore,
an FPGA programmed to accomplish a specific task will perform worse than an ASIC
designed with the same objective in mind. FPGAs are made up of replicated units of
digital electronic circuits called logic blocks, embedded in a general routing structure,
hence the gate and array in the name of this type of device. The logic blocks contain

70

2.9. MODEL ACCELERATION

processing elements for performing simple combinational logic, as well as flip-flops
for implementing sequential logic. Any Boolean combinational function of five or six
inputs can be implemented in each logic block. The general routing structure allows
arbitrary wiring, so the logical elements can be connected in the desired manner. Modern
FPGAs can compute functions on the order of millions of basic gates, working with
clock frequencies in the hundreds of Megahertz. To boost speed and capacity, several
FPGAs have additional ad-hoc elements embedded into the array, such as large memories,
multipliers, and even microprocessors. With these predefined, fixed-logic units, FPGAs
can implement complete systems in a single programmable device by configuring the
connections between these units to perform complex algorithms.

Figure 2.17: FPGA architecture with Configurable Logic Block (CLB) is shown in figure
[102].

The FPGAs electronic architecture [102], shown in Figure 2.17 contains a large number
of configurable logic blocks (CLBs) and programmable interconnects, which can be used
to create complex logic circuits. The CLBs in an FPGA, shown in Figure 2.18, can be
configured to perform a variety of logic functions, such as simple gates, complex digital
logic functions, and memory elements. Each Configurable Logic Block consist of 2 slices.
Those slices are further divided in 2 logic elements. Logic elements consist of:

• 4 input lookup Table (LUT);

• Full Adder and Mux logic;

• FlipFlop;

which can be used to implement any Boolean function of the inputs to the block. The 4
input Lookup table LUT is used to implement one of the following functionality:

• Combinational Logic design;

• Distributed RAM;

• Shift Register.

71

CHAPTER 2. MACHINE AND DEEP LEARNING

Also there are various dedicated circuits are present inside FPGA, such as

• Digital Clock Manager (DCM) is used to perform Clock Phase shift, De skew, Clock
divider and frequency synthesis.

• Multiplier Block implement dedicated 18×18 multiplier with Signed and unsigned
operation.

• Block RAM is a dedicated memory implement dual port 16kb memory.

Figure 2.18: Configurable Logic Block [102].

The programmable interconnects are used to connect the CLBs together to create the
desired logic circuit. They consist of a matrix of wires that can be programmed to connect
any input or output of a CLB to any other input or output of a CLB. This flexibility
allows for the creation of complex logic circuits with a high degree of customization and
configurability. In recent years, FPGAs have become increasingly popular in the field
of deep learning due to their high computational power and flexibility. They are well-
suited for accelerating the inference of deep neural networks, such as CNNs and RNNs,
using specialized hardware accelerators, such as digital signal processors (DSPs) and
memory blocks. This allows for high-speed and low-latency processing of DL algorithms.
One popular approach to using FPGAs for deep learning is to accelerate the matrix
multiplications that are commonly used in deep learning. These multiplications can be
implemented in parallel on the FPGA and GPU, resulting in a significant speedup compared
to a CPU implementation. FPGAs can also be used to implement custom architectures
for deep learning, such as custom layers or activation functions. This can further improve
the performance of algorithms, as the custom architecture can be tailored to the specific
requirements of the application. Additionally, FPGAs can be used to implement low-
power and highly parallel deep learning architectures, and they can be used to offload

72

2.9. MODEL ACCELERATION

computation from the main CPU in embedded systems and edge devices where power
and thermal constraints are a concern. Finally, FPGAs allow for easy scalability and
reconfigurability, which is beneficial for deep learning applications that require frequent
updates or changes in the network architecture.

2.9.3 Fast Inference on FPGAs

Fast inference for deep learning models on FPGAs [103] is a technique that allows for
real-time processing of large amounts of data by leveraging the high-performance and
low-power consumption characteristics of FPGA devices. This can be achieved through
a process known as "compilation" or "synthesis," which converts a deep learning model,
typically trained in software using frameworks such as TensorFlow or PyTorch, into a
hardware implementation that can be run on an FPGA.

One way to achieve fast inference on FPGAs is by using High-Level Synthesis (HLS)
tools such as HLS4ML, which can automatically generate VHDL or Verilog code for the
FPGA based on a pre-trained machine learning model. This process can take advantage
of the parallelism and regularity of deep learning operations, such as convolution and
pooling, to map them onto the parallel processing elements of the FPGA. HLS tools can
also optimize the memory accesses, data flow and parallelism of the design, by using
techniques such as loop unrolling, pipelining and partitioning, which can improve the
performance of the FPGA implementation.

Another way to achieve fast inference is through the use of pre-designed IP (Intellectual
Property) blocks such as DSP (Digital Signal Processing) blocks, memory controllers,
and high-speed transceivers that can be integrated into the FPGA. These IP blocks can
be customized to the specific requirements of a deep learning model and can help to
optimize the performance of the hardware implementation. DSP blocks can be used to
accelerate the computation of convolution, matrix multiplication and activation functions,
while memory controllers can be used to optimize the data transfer between the FPGA and
memory. High-speed transceivers can be used to interface the FPGA with other devices
such as cameras, sensors, and other FPGA or processors. In addition, FPGA-based deep
learning acceleration can be improved by using specialized libraries and frameworks such
as OpenCL, CUDA, or OpenVX. These tools allow the developer to program the FPGA
in a high-level programming language such as C or C++, which can be easier and more
efficient than working with low-level languages such as VHDL or Verilog. These libraries
and frameworks can provide pre-designed functions and modules that can be used to
accelerate the computation of the deep learning model and can also provide a higher-level
abstraction of the FPGA architecture, which can simplify the design process. Finally,
another technique to improve inference is through the use of quantization, which can
reduce the precision of the model’s weights and activations, thus reducing the memory
and computation resources required by the model while maintaining its accuracy. A
combination of these techniques can be used to achieve fast inference for deep learning
models on FPGAs, such as using HLS tools, e.g. HLS4ML, pre-designed IP blocks,
specialized libraries and frameworks, and quantization, to optimize the performance and
efficiency of the hardware implementation.

73

CHAPTER 2. MACHINE AND DEEP LEARNING

High Level Synthesis

High-level synthesis (HLS) is a design process used to create digital circuits from high-level
descriptions written in software programming languages, such as C, C++, or SystemC.
The goal of HLS is to allow designers to focus on the algorithmic and architectural aspects
of the design, rather than the low-level details of the hardware implementation. In this way,
HLS enables designers to generate complex hardware designs faster and more efficiently
than with traditional hardware description languages (HDLs), such as Verilog or VHDL.
One of the key features of HLS is its ability to perform automatic optimizations. These
optimizations include resource sharing, pipelining, loop unrolling, and many others. By
automating these optimizations, HLS can create hardware designs that are much more
efficient and faster than those designed manually. This is especially important in the
context of modern digital circuits, which can have millions of gates and require complex
optimization strategies to achieve high performance.

HLS is typically implemented as a toolchain that takes high-level code as input and
generates a hardware description as output. The process consists of several stages, includ-
ing parsing, high-level synthesis, scheduling, allocation, and verification. Each stage of
the toolchain performs specific transformations on the input code to generate an optimized
hardware description. One of the most popular HLS tools is the Vivado HLS from Xil-
inx. Vivado HLS allows designers to write C, C++, or SystemC code and generate RTL
(register transfer level) code for FPGAs or ASICs. Vivado HLS supports a wide range of
optimizations, including pipelining, loop unrolling, and memory optimization. It also pro-
vides advanced features, such as interface synthesis and hierarchical design. Vivado HLS
is widely used in industry and academia for a variety of applications, including image and
video processing, wireless communication, and deep learning. Another popular HLS tool
is the LegUp HLS from the University of Toronto. LegUp HLS allows designers to write
C code and generate FPGA hardware using LLVM (Low-Level Virtual Machine) compiler
technology. LegUp HLS supports many optimizations, including resource sharing, loop
pipelining, and automatic RTL generation. It also provides advanced features, such as
interface generation and memory hierarchy management. LegUp HLS is widely used in
research and education for a variety of applications, including scientific computing, signal
processing, and computer vision.

2.9.4 HLS4ML package
HLS4ML (High-Level Synthesis for Machine Learning) [104] is an open-source tool that
allows developers to translate neural networks [103] and boosted decision trees [105] into
FPGA or ASICs firmware. The goal of hls4ml is to make it easy for developers to deploy
machine learning models on embedded devices, such as drones, robots, and IoT devices,
where power and computational resources may be limited.

The tool is implemented in Python and can be used with popular machine learning
frameworks such as TensorFlow and Keras. It takes a pre-trained model and generates
hardware-specific code, such as Verilog or VHDL, that can be used to program an FPGA
or ASIC. The generated code can also be simulated using a software simulator to verify
its functionality before it is deployed on the hardware. HLS4ML also includes several
optimizations to improve the performance of the generated code, such as loop unrolling
and pipelining. It also allows developers to specify constraints on the generated code,
such as maximum clock frequency or resource utilization. One of the main benefits of

74

2.9. MODEL ACCELERATION

hls4ml is that it allows developers to take advantage of the high-performance and low-
power characteristics of FPGAs and ASICs, while still being able to use the same machine
learning models and frameworks they are familiar with.

Figure 2.19: A typical workflow to translate a model into an FPGA implementation using
hls4ml.

Members of the High Energy Physics community have developed hls4ml to translate
ML algorithms into HLS code, enabling firmware development times to be drastically
reduced. Figure 2.19 shows a schematic workflow. The goal of the hls4ml package is
to empower a HEP physicist to accelerate ML algorithms using FPGAs, thanks to their
tools for conversion. Indeed, hls4ml translates Python objects into HLS, and its synthesis
automatic workflow, allows fast deployment times also for those who know how to write
software or are not yet experts on FPGAs. Hardware used for real-time inference usually
has limited computational capacity due to size constraints, and incorporating resource-
intensive models without a loss in performance poses a challenge. One way to reduce a
model’s size is through post-training quantization, where model parameters are translated
into lower precision equivalents. This process, by definition, is lossy and sacrifices model
performance. With its interface to QKeras, hls4ml supports quantization-aware training
[106], which makes it possible to drastically reduce the FPGA resource consumption
while preserving accuracy. Through the use of this relatively new technique, hls4ml
can integrate resource-intensive models without sacrificing performance and resulting in
efficient interference. In this case, a fixed numerical representation is employed for the
entire model, and the model is trained with this constraint during weight optimization.
Using hls4ml we can compress neural networks to fit the limited resources of an FPGA.

In the context of the CMS experiment, hls4ml was used in the High-Level Trigger
system to improve the event selection rate. A fully on-chip implementation of the machine
learning model is used to stay within the 1µs latency budget imposed by a typical L1T
system. Since there are several L1T algorithms deployed per FPGA, each of them should
use much less than the available resources. Compared to the previous software-based
version, the ML algorithm hardware implementation was able to process data way faster.
This allowed for a higher event selection rate and improved overall performance of the
HLT system. The use of hls4ml at CMS demonstrates the potential of the tool to accelerate
machine learning applications in high-energy physics. The ability to convert pre-trained

75

CHAPTER 2. MACHINE AND DEEP LEARNING

models into hardware implementations on FPGAs can also open up new possibilities for
other scientific fields such as astronomy and bioinformatics.

76

Chapter 3
Joint Representations in real-time

In the spirit of anomaly searches, the analysis carried out in this chapter focuses on
the investigation of unsupervised learning of QCD and top jets using a neural network
structure that is only trained on QCD jets. The aim is to examine the capability of the joint
variational autoencoder model to encode class-related information in the latent space and
how a more structured latent space geometry can enhance unsupervised classification.

3.1 Introduction
If new physics does exist at the scales investigated by the Large Hadron Collider, it is more
elusive than expected [65, 107, 108]. Finding interesting results may be challenging using
conventional methods, usually based on model-dependent hypothesis testing, without
substantially increasing the number of analyses. Thus, standard signal-driven search
strategies could fail in reaching new results, and unsupervised machine learning techniques
could fill this critical gap. Such applications, running in the trigger system of the LHC
experiments, could spot anomalous events that would otherwise go unnoticed, enhancing
the LHC’s scientific capabilities.

The most basic unsupervised machine learning technique is an autoencoder with a
bottleneck [109]. It is constructed using a network that translates a high-dimensional data
representation onto itself to create an average or typical entity. Standard autoencoders are
recommended for unsupervised jet classification, but they are known to have problems
in more general applications. The AE learns to compress and rebuild the training data
very well, but when new, untrained data is run through the trained AE, it will produce a
considerable loss or reconstruction error. By using the AE, it is possible to search for data
that differs significantly from training data or even training data that is a small subclass of
anomalous instances. In addition, the AE fails if the anomalous data is structurally simpler
than the dominant class because the AE can encode simpler data with fewer features more
efficiently. It is possible to overcome the disadvantages of AE by substituting a different
classification measure for the reconstruction error. A possible alternative approach to the
reconstruction error in the case of Variational Autoencoders [53] is to derive a metric from

77

CHAPTER 3. JOINT REPRESENTATIONS IN REAL-TIME

the latent space embedding.

The analysis held in this final chapter of this thesis consists of implementing a JointVAE
model [110], which is a variant of VAE for better latent representations, targeted at
FPGA hardware architecture to determine the best latency and resource consumption
without sacrificing model accuracy. Models will be optimized for classification between
anomalous jets and QCD jets images, in an unsupervised setting by training solely on
the QCD background. A comparison will be made between the reconstruction error
and a latent space metric to determine the best anomaly detection score that enhances
the separation of the two classes. The goal of the model is to reconstruct the input data
information as accurately as possible. Additionally, because of the design of the JointVAEs
architecture, the high-dimensional data representation is transformed into a compressed
lower-dimensional latent distribution, both in continuous and discrete latent space, during
the encoding stage. Subsequently, the decoder learns stochastic modelling and aims to
generate input-like data by sampling from the latent distribution. The information about
each dataset instance hidden in the high-dimensional input representation should be present
in the latent space after training and the model can return the shape parameters describing
the probability the density function of each input quantity given a point in the compressed
space. With this application at the LHC, it could ideally be possible to classify the jets
and even find anomalies using this latent space representation.

A companion tool based on High-Level Synthesis (HLS) named HLS4ML [104] will
implement deep learning models in FPGAs, thanks also to the recent developments of
the library [111] it has been possible to implement CNNs architectures for the machine
vision task analysed in the following sections. Furthermore, compression by quantization
of neural networks will reduce the model size, latency, and energy consumption [106].
We expect VAEs will find many uses in science, outperforming classical or standard deep
learning baselines and even being able to solve challenges for physics beyond the Standard
Model (BSM) that were previously unsolvable. Ideally applicable in a wide spectrum of
signal background discrimination through anomaly detection, this application is expected
to produce excellent results in a variety of fields.

3.2 Data Samples
In this chapter has been utilized the QCD and top jet samples generated for the top-tagging
challenge described in Reference [112] for the following analysis, using the same jet image
representation used in a previous AE study [65]. The jets are generated using Pythia8
[113] with a centre-of-mass energy of 14 TeV, without considering pile-up and multi-
parton interactions. A fast detector simulation is performed using Delphes [114]. The jets
are defined using the anti-kT algorithm [115, 116] in FastJet [117] with a radius ofR = 0.8.
In each event, only the leading jet with pT ranging from 550 to 650 GeV and |η| < 2 is
kept, and the top jets are required to be matched to a parton-level top within the jet radius
and all parton-level decay products to be within the jet radius. The jet constituents are
defined using the Delphes energy flow algorithm and the top 200 constituents from each
jet are used for analysis. The empty entries are zero-padded. We do not include particle ID
or tracking information in our analysis. For pre-processing, we follow a similar procedure
as described in References [65, 118]. The pre-processing is done at the constituent level
before pixelization. The jet is first centred using the kT -weighted centroid, such that the
major principal axis points upwards. Then, the image is flipped in both axes so that the

78

3.3. CHOOSING THE MODEL

majority of pT is located in the lower left quadrant. Next, the image is pixelized into a
40× 40 array, where the intensity is defined by the sum of pT of the constituents per pixel.
The pixel sizes are [∆η,∆ϕ] = [0.029, 0.035] and the image is cropped during pixelization
to reduce the sparsity of information. Figure 3.1 shows the average of 10k QCD and top
jet images after pre-processing. Our data consists of 200K QCD jets and 200K top jets,
and for each analysis, the maximum number of jets possible is used. If equal numbers of
QCD and top jets are required, 200K of each are used, and if the QCD jets are treated as
the background, the full 200K QCD jets are kept and the number of top jets is varied. All
results presented in this thesis use a 75/25 split of the data for training and testing. The
data samples are shuffled and the testing data is selected randomly for each run.

Figure 3.1: The mean of 200k pre-processed QCD and top jet images. (Left) Averaged on
Calorimeter QCD jets and (Right) on Calorimeter tops tagged.

3.3 Choosing the model

This section it is described the specifics of the model implemented for the AD analysis
and its training performance. Particular attention has been given to the Joint Variational
Autoencoder (JointVAE) [110], which is a deep generative model that combines the
strengths of Variational Autoencoders and discrete latent variable models. JointVAE
models can handle both continuous and discrete data variables, which is a key advantage
over traditional VAEs that are limited to only continuous latent variables. The JointVAE
model consists of two main components: an encoder and a decoder. The encoder maps
the input data to a latent space representation and the decoder maps the latent space
representation back to the original input data. The encoder outputs the parameters of
two different distributions: one for continuous latent variables and one for discrete latent
variables. The reparameterization trick is used to sample values from these distributions.
The discrete variables are modelled using a discrete distribution, such as the Gumbel-
Softmax [119], while the continuous variables are modelled using a Gaussian distribution.
The JointVAE model is trained by maximizing the likelihood of the input data given the
latent representation. This is done by minimizing the difference between the generated
data from the decoder and the original input data.

79

CHAPTER 3. JOINT REPRESENTATIONS IN REAL-TIME

Figure 3.2: The JointVAE architecture takes input x and encodes it into parameters for
latent distributions using the encoder qϕ. Samples are generated from these distributions
using the reparameterization trick, as shown by the dashed arrows in the diagram. The
generated samples are concatenated and then decoded through the decoder pθ [110].

3.3.1 JointVAE Architecture and Operation
For the analysis, it is used a modification of the standard VAE framework, as described
in section 2.6, allows us to model a joint distribution of the discrete latent variables in
addition to the continuous ones pursued with the standard VAE. Letting z denote a set of
continuous latent variables and c denote a set of categorical or discrete latent variables,
we define a joint posterior qϕ(z, c|x), prior pθ(z, c) and likelihood pθ(x|z, c). Assuming
the latent distribution is jointly continuous and discrete, and latent variables conditionally
independent, we can rewrite the KL divergence term in the VAE loss equation 2.30 as:

DKL(qϕ(z, c|x) ∥ pθ(z, c)) = Eqϕ(z,c|x)

[
log

qϕ(z, c|x)
pθ(z, c)

]
= Eqϕ(z|x)Eqϕ(c|x)

[
log

qϕ(z|x)qϕ(c|x)
pθ(z)pθ(c)

]
= Eqϕ(z|x)Eqϕ(c|x)

[
log

qϕ(z|x)
pθ(z)

]
+ Eqϕ(z|x)Eqϕ(c|x)

[
log

qϕ(c|x)
pθ(c)

]
= Eqϕ(z|x)

[
log

qϕ(z|x)
pθ(z)

]
+ Eqϕ(c|x)

[
log

qϕ(c|x)
pθ(c)

]
= DKL(qϕ(z|x) ∥ pθ(z)) +DKL(qϕ(c|x) ∥ pθ(c)),

(3.1)

i.e. we can separate the discrete and continuous KL divergence terms. Under this
assumption, the JointVAE loss finally becomes

80

3.3. CHOOSING THE MODEL

Lθ,ϕ(x) = Eqϕ(z,c|x)[logpθ(x|z, c)]− βDKL(qϕ(z|x) ∥ pθ(z))− βDKL(qϕ(c|x) ∥ pθ(c)),
(3.2)

where β is a positive constant. When β > 1 it is theorized that the combination of
the increased force exerted by the posterior qϕ(z|x) aligns with the prior pθ(z), combined
with maximizing the likelihood term, leads to efficient and well-separated representations
of the data [120].

(a) Encoder qϕ.

(b) Decoder pθ.

Figure 3.3: The neural network architecture. The figure only shows the encoder and
decoder models without the intermediate Dense layers used to compute the mean, variance
(32-dimensional), and categorical (20-dimensional). These layers receive input from the
Flatten layer illustrated in Figure 3.3a. The output of these layers is then fed into the
custom layer joint sampling, which performs the parametrization trick on continuous
and discrete latent vectors. The latter vector is subsequently used as input to the decoder
model, shown in Figure 3.3b.

The JointVAE model’s final architecture is depicted in Figure 3.2. The encoder

81

CHAPTER 3. JOINT REPRESENTATIONS IN REAL-TIME

implemented in the following analysis is depicted in Figure 3.3 It has been designed
to output the parameters for both the continuous distribution, mean µ and variance σ2,
and the discrete distributions α(i). Sampling from these distributions is achieved using
the reparameterization trick, discussed in detail in the following subsection, and involves
drawing a sample from the normal distribution z ∼ N (µi, σ

2
i) and the discrete distribution

ci ∼ g(αi). These samples, along with the continuous and discrete variables, are then
combined and concatenated into a single latent vector, which serves as the input to the
decoder, represented in Figure 3.3b.

3.3.2 Reparametrization of Latent Variables
In line with the traditional VAE setup, we parametrize qϕ(z|x) as a factorized Gaussian
(see section 2.6.3), meaning qϕ(z|x) =

∏
i qϕ(zi|x) where qϕ(zi|x) = N (µi, σ

2
i), and

set the prior distribution as a standard Gaussian pθ(z) = N (0, I). Both µ and σ2 are
represented by neural networks.

The parameterization of qϕ(c|x) is more challenging. To make it differentiable from
its parameters, a direct parametrization using categorical distributions is not possible.
Some studies [119, 121] have proposed a differentiable solution using the Gumbel-Max
trick. If c is a categorical variable with the class of categorical distribution α1, ..., αk,
then we can sample from a continuous approximation of the categorical distribution by
sampling g1, ..., gk i.i.d. samples drawn from the continuous distribution Gumbel(0, 1).
This enables the use of backpropagation in training models that have discrete outputs, such
as categorical distributions. We use the softmax function as a continuous, differentiable
approximation of gradient descent, and generate k-dimensional sample vectors

yi =
exp(log(αi) + gi)/τ)∑k

j=1 exp((log(αj) + gj)/τ)
for i = 1, ..., k, (3.3)

where τ is a temperature parameter which controls the amount of randomness in
the samples and it can be decreased during training to make the approximation close to
the true categorical distribution. As τ → 0 the softmax becomes an argmax and the
Gumbel-Softmax distribution becomes the categorical distribution. During training, we
let τ > 0 to allow gradients past the sample, then gradually anneal the temperature τ , but
not completely to 0, as the gradients would blow up. The Gumbel-Softmax is a powerful
tool for variational inference and generative models, as it enables the use of the reinforced
gradient estimator for training models with discrete latent variables. The function is
differentiable for the inputs, making it suitable for use in backpropagation, and it can
be used as a continuous approximation of the argmax function in discrete optimization
problems. Additionally, the Gumbel-Softmax can be interpreted as a continuous relaxation
of the one-hot encoding representation, enabling efficient and accurate optimization of
models with discrete latent variables. We can model qϕ(z|x) by a combination of separate
Gumbel-Softmax distributions, represented as qϕ(c|x) =

∏
i qϕ(ci|x) where qϕ(ci|x) =

g(α(i)) is a Gumbel-Softmax distribution with class probabilities α(i). The prior pθ(c), is
set to be an ensemble of uniform Gumbel-Softmax distributions, enabling the utilization
of the reparametrization technique [53] and efficient training of the discrete model.

The KL divergence between the Gumbel-Softmax and the categorical distribution is
given by:

82

3.3. CHOOSING THE MODEL

DKL(qϕ(c|x) ∥ pθ(c)) =
J∑

j=1

Kj∑
k=1

qϕ(cj = k|x) log qϕ(cj = k|x)
pθ(cj = k) + ϵ

(3.4)

where J is the number of discrete latent variables, Kj is the number of categories
for the j-th latent variable, qθ(zj = k|x) is the Gumbel-Softmax approximation of the
posterior probability of the k-th category of the j-th latent variable given the input x, and
p(cj = k) is the prior probability of the k-th category of the j-th latent variable. ϵ is
a small constant (e.g. 1e-8) added to p(cj = k) to avoid dividing by zero. This helps
to prevent numerical instability during training, which can lead to nan values and other
optimization problems.

3.3.3 Training details
For the anomaly detection task using a JointVAE, it is important to carefully tune the
hyperparameters to maximize performance. This is because the model needs to be able to
effectively distinguish between normal and anomalous data points to accurately identify
anomalies. However, at the same time, it is also important to avoid overfitting the model
to the training data. Overfitting occurs when a model becomes too complex and starts
to fit the noise in the training data rather than the underlying patterns, which can result
in poor performance on new data, see section 2.1.2. To strike a balance between model
performance and generalization, those hyperparameters were chosen for the JointVAE
model:

• Latent distribution: The latent space is 32-dimensional for the continuous and one
20-dimensional discrete part.

• Optimizer: The model is trained using the AdamW optimizer [47] (see the subsec-
tion 2.1.4), which is a variant of the popular Adam [43] optimizer that adds weight
decay to the parameter updates. The optimizer is configured with a decay rate λ =
1e-3, which controls the amount of regularization applied to the model parameters.
Additionally, the ReduceLROnPlateau method is implemented to adjust the learning
rate when the validation total loss plateaus. Specifically, the learning rate is reduced
by a factor of 0.5 if no improvement in the validation loss is observed after 3 epochs.

• Batch size: The model is trained using a batch size of 128. This means that the
model updates its parameters after processing 128 samples from the training data
at a time. This choice of batch size balances the trade-off between the efficiency of
computation and the quality of the parameter updates.

• Epochs: The model is trained for 8 epochs, where each epoch corresponds to a
full pass through the training data. This choice of epoch number is based on a
trade-off between maximizing the model’s performance and avoiding overfitting in
the latent space. Early stopping is used if there is no improvement in the validation
loss observed after four epochs.

• β: This is a hyperparameter used in the model’s objective function eq. 3.2, which
balances the reconstruction loss and the KL divergence terms. Specifically, β is set
to 3e3, which indicates a preference for high-quality reconstructions with a moderate
amount of compression in the latent space.

83

CHAPTER 3. JOINT REPRESENTATIONS IN REAL-TIME

• τ : The temperature, in the Gumbel-Softmax distribution, is an important parameter
for the JointVAE model as it affects the sampling of the discrete latent space. Tuning
this parameter is crucial for generating quality samples and detecting anomalies. Our
model performed best with a temperature of 50, determined through a systematic
search over a range of values. This parameter appears in the equation 3.3.

• ϵ: The epsilon term is typically added to the KL divergence in the formula 3.4
between the Gumbel-Softmax distribution and a categorical distribution to ensure
numerical stability during optimization. In the implementation, we chose the value
of ϵ =1e-7.

In a JointVAE, the choice of the latent dimension for both the continuous and discrete
latent space is a critical hyperparameter that can greatly affect the model’s performance.
Generally, larger latent dimensions provide the model with more flexibility to capture
complex structures in the data, but can also increase the risk of overfitting, especially when
the training data is limited. The selection of the latent dimension is generally done through
trial and error, by training the model with different values and evaluating its performance
on a validation set. In the case of the continuous latent space, a latent dimension that is
too small may result in the loss of relevant information, while a dimension that is too large
may lead to overfitting. A commonly used rule of thumb is to set the latent dimension to be
smaller than the input dimension, but large enough to capture the essential information in
the data. In the case of the discrete latent space, the choice of the dimension can be more
challenging, as there are typically a limited number of discrete variables that can be used
to represent the data. One approach is to use a smaller latent dimension and a richer set
of discrete variables to compensate for the reduced expressive power. Another approach
is to use a larger latent dimension and enforce sparsity constraints to avoid overfitting. In
this analysis, we choose the first approach as it has reached better performance in the AD
task. To avoid overfitting it is crucial to evaluate the model’s performance on a validation
set and avoid selecting the dimension based solely on the performance on the training set.

Figure 3.4: The model’s performance is evaluated over the epochs using different metrics.

To provide a quantitative measure of how well the model can generate realistic samples
that match the real data, while also ensuring that the learned latent distribution matches the

84

3.3. CHOOSING THE MODEL

prior one, some metrics are commonly used. By monitoring these metrics during training,
we can ensure that the model is learning the underlying data distribution and generating
high-quality samples that are useful for anomaly detection. The metrics used to evaluate
the training performance are:

1. Total Loss: is the sum of the reconstruction loss and the Kullback-Leibler diver-
gence, which measures how well the generated samples match the real data and how
well the latent distribution matches a prior distribution, respectively. The total loss
is used to balance the trade-off between reconstruction accuracy and the encoding
capacity of the model.

2. Reconstruction Loss: is a metric used to evaluate the quality of generated samples
in a generative model. It measures the difference between the generated samples and
the real data on a pixel-by-pixel basis, typically using a loss function such as binary
cross-entropy (BCE), as used for the training here. In contrast to mean squared
error (MSE), BCE is preferred when the pixel values are normalized between 0
and 1, as is often the case in image generation tasks. BCE is also less sensitive to
outliers, making it a more robust choice for reconstruction loss in many scenarios.
By using BCE as our reconstruction loss, we can ensure that our generative model is
producing high-quality samples that closely resemble the real data. This is because
BCE penalizes the model for discrepancies between the generated samples and the
real data at the pixel level, effectively encouraging the model to learn accurate pixel
distributions. Additionally, by avoiding the use of MSE, we can avoid potential
issues with outliers or other anomalies in the data that may adversely affect the
training process.

3. KL Divergence (Continuous and Discrete): The KL divergence is a metric used
in VAE models to measure the difference between the learned latent and prior
distributions. In JointVAE models, which utilize both continuous and discrete
latent variables, there are two sources of KL divergence. The total KL divergence is
the sum of the KL divergences for each type of variable, as shown in equation 3.1.
Lower KL divergence values indicate a better match between the learned distribution
and the prior. However, it is important to note that a perfect match (i.e., KL = 0) is
a failure case for VAE models, as they require a structured latent space that differs
from the prior distribution at some points to perform effective data generation. A
nonzero KL divergence indicates that the model has learned meaningful structure
in its latent space. In the case of JointVAE, the KL divergence plays a crucial role
in balancing the contributions of the continuous and discrete latent variables. By
minimizing the KL divergence, the model can effectively learn the relationships
between the different components of the latent space, resulting in high-quality data
generation.

For the continuous KL function, we implemented the formula 2.33. The discrete
KL function implemented in our code computes the KL divergence between the
Gumbel-Softmax distribution and a categorical distribution for the discrete latent
variables in the JointVAE model. The categorical codes are first converted into
probabilities using the softmax function. The KL divergence is then calculated
using the formula:

85

CHAPTER 3. JOINT REPRESENTATIONS IN REAL-TIME

DKL(qϕ(c|x) ∥ pθ(c)) =
1

N

N∑
i=1

K∑
j=1

qϕ(ci,j|x) log
qϕ(ci,j|x)
pθ(cj)

(3.5)

where qθ(ci,j|x) is the probability of the j-th category for the i-th sample given the
input x, p(cj) is the prior probability of the j-th category, and N is the number
of samples. To calculate the KL divergence efficiently, the entropy of the logits is
first computed using h1 = qp · log(qp + ϵ), where qp is the probability distribution
obtained from the softmax function and ϵ is a small constant for numerical stability.
The cross-entropy with the categorical distribution is then calculated using h2 =
qp · log(1/K + ϵ), where K is the number of categories. Finally, the KL divergence
is obtained by taking the difference between h1 and h2, summing over the categories,
and taking the mean over the samples. The resulting KL divergence is multiplied
by a hyperparameter β and averaged over the batch to obtain the final loss.

4. Peak Signal-to-Noise Ratio (PSNR): measures the quality of the generated images
by computing the ratio between the maximum possible pixel value and the mean
squared error (MSE) between the generated and real images. Higher PSNR indicates
better quality of generated images.

5. Structural Similarity Index (SSIM): this metric measures the similarity between
the generated and real images in terms of luminance, contrast, and structure. Higher
SSIM indicates better quality of generated images.

6. Mean Squared Error (MSE): This measures the average squared difference be-
tween the generated and real images. Lower MSE indicates better quality of gener-
ated images.

LOSS BCE KL-cont KL-disc MSE PSNR SSIM
Train 6.053 6.051 4.240e-04 2.827e-04 0.190 40.374 0.942
Validation 6.061 6.060 4.470e-04 4.470e-04 0.188 40.427 0.942

Table 3.1: Final results after 8 epochs of the evaluation metrics for training performance.

The training performance is depicted in Figure 3.4 and in Table 3.1 are shown the
final results of the metrics used to evaluate the performance of the model’s training for
both the train and validation subset of QCD datasets images. The model is trained on
NVIDIA-SMI T4 GPU, provided for free by Google Colab [122].

3.3.4 Weight Distributions
In DL models, the weights are the parameters that are learned during the training process.
These weights are responsible for making predictions on unseen data. Initializing the
weights with a specific distribution is an important factor in determining the performance
of the model. In the implemented JointVAE model, he_normal is used to initialize the
weights. He normal [123] is a variation of the popularly used Xavier normal1 [124]

1It is named after its creator, Xavier Glorot, and is designed to ensure that the variance of the outputs
from each layer in a network is approximately equal to the variance of its inputs. This helps prevent the
variance from exploding or vanishing as it propagates through the network during training. In Xavier’s
normal initialization, the weights of each layer are randomly initialized from a normal distribution with

86

3.3. CHOOSING THE MODEL

initialization, with a slight modification to better suit the initialization of deep networks
with ReLU [68] and Leaky ReLU activation [69].

(a) Encoder weights. (b) Decoder weights.

Figure 3.5: The weights per layer for the encoder and the decoder at Floating-point
precision.

He normal initialization is a Gaussian distribution with a mean of 0 and a standard
deviation of

√
2
n
, where n is the number of input neurons for a given layer. The AdamW

is used as a method to prevent overfitting by adding a penalty term to the loss function.
The penalty term encourages the model to have smaller weights, reducing the complexity
of the model and avoiding overfitting. In the JointVAE model, a weight decay of 0.001 is
used. The penalty term is equal to 0.001 times the sum of the squares of all weights in the
model, which is added to the loss function. By using He normal initialization and weight
decay, the JointVAE model can have a better chance of finding a good solution during the
training process, while avoiding overfitting on the training data. The choice of initializing
the weights and using weight decay is problem-specific and may require some tuning to
obtain the best results. In Figure 3.5 are visible the gaussian shape caused by he normal
initialization and the small magnitude values of weights due to the weights decay.

Whisker Plots

A whisker plot [125] is a type of box plot that is often used to visualize the distribution
of a set of data. It consists of a box that represents the interquartile range (IQR), which
covers the middle 50% of the data and two whiskers that extend from either side of the
box to represent the range of the remaining data. Outliers are plotted as individual points
beyond the whiskers. Whisker plots are particularly useful in comparing the distribution
of different sets of data, such as the comparison of the layer weights of a JointVAE with
normal layers and a JointVAE with quantized layers. By comparing the box and whiskers
of the two plots, we can see if the distribution of layer weights in the quantized model is
significantly different from the distribution of layer weights in the normal model. In the
case of a JointVAE with quantized layers, we would expect to see a shift in the distribution

mean 0 and variance 1
N , where N is the number of inputs to the layer. This helps ensure that the weights

are initially set to reasonable values and that the output variance is not too large or too small.

87

CHAPTER 3. JOINT REPRESENTATIONS IN REAL-TIME

of layer weights, as quantization can introduce quantization errors and cause the weights
to differ from their original values.

(a) Encoder layer weights. (b) Decoder layer weights.

Figure 3.6: Layer weight numerical values for the floating-point model for a subset of the
test data.

However, if the quantization bits are chosen appropriately, the shift in the distribution
should not be significant, and the quantized model should perform similarly to the normal
model. In general, it is important to carefully choose the number of bits used for quan-
tization, as this affects the trade-off between the accuracy of the model and the amount
of computation required. By understanding the potential impact of quantization on the
distribution of layer weights, we can make informed decisions about the trade-off between
computation and accuracy in deep learning models.

3.3.5 Visualizing Latent Space
Dimension reduction is a crucial technique in data science for both visualisation and
machine learning pre-processing. There are two main categories of dimension reduction
algorithms: those that preserve pairwise distance structure and those that favour local
distances over global distance. Examples of the former include PCA, MDS, and Sammon
mapping, while the latter includes t-SNE, Isomap, LargeVis, Laplacian eigenmaps, and
diffusion maps.

Latent space visualization plays a crucial role in comprehending the structure of the
data that a Variational Autoencoder has learned. PCA (Principal Component Analysis)
[126] is a popular technique for dimensionality reduction, however, it can fail to capture
the non-linear structure of the data, especially in the case of JointVAE. This is because
the JointVAE model is specifically designed to capture both the continuous and discrete
aspects of the data, and PCA is not equipped to handle such complex data structures
effectively. PCA works by finding a set of linearly uncorrelated principal components
that capture the maximum amount of variance in the data, which can result in a good
representation of the continuous data but does not effectively capture the discrete aspects.

In contrast, techniques like t-SNE (t-Distributed Stochastic Neighbor Embedding)
[127] and UMAP (Uniform Manifold Approximation and Projection) [128, 129] are well-

88

3.3. CHOOSING THE MODEL

(a) t-SNE, Continuous. (b) t-SNE, Discrete.

(c) UMAP, Continuous. (d) UMAP, Discrete.

Figure 3.7: Representation of the latent space of the JointVAE model for a subset of the
test data. Notice in Figure 3.7b and 3.7d the 20 clusters are visible, which correspond to
the categories of the discrete latent space.

suited for visualizing the latent space representation of JointVAE models.

• t-SNE maps data points into a lower-dimensional space while preserving pair-
wise similarities. t-SNE is based on the idea that similar data points should be
mapped close together in the lower-dimensional space, while dissimilar data points
should be mapped far apart. It achieves this by minimizing the divergence be-
tween two probability distributions: one that measures pairwise similarities in the
high-dimensional space, and another that measures pairwise similarities in the low-
dimensional space. The algorithm iteratively adjusts the positions of the data points
in the lower-dimensional space until the two distributions match as closely as pos-
sible.

• On the other hand, UMAP builds upon mathematical foundations related to Lapla-
cian eigenmaps. It addresses the issue of uniform data distributions on manifolds
through a combination of Riemannian geometry and category theoretic approaches.

89

CHAPTER 3. JOINT REPRESENTATIONS IN REAL-TIME

UMAP is competitive with t-SNE in visualization quality while preserving a more
global structure with superior run-time performance. It can also scale to signifi-
cantly larger data set sizes and has no computational restrictions on the embedding
dimensions, making it a viable general-purpose dimension reduction technique for
machine learning.

Both t-SNE and UMAP are non-linear dimensionality reduction techniques that pre-
serve the local structure of the data. This crucial aspect can be applied to the latent
space of the JointVAE model, where the discrete and continuous latent variables are often
interdependent. These algorithms preserve this interdependence in the lower-dimensional
embeddings, resulting in a better representation of the latent space compared to PCA.
However, UMAP and t-SNE use different approaches to reduce the dimensionality of data
and have specific advantages and limitations.

In general, UMAP is considered better than t-SNE when it comes to capturing the
structure of the dataset in a lower-dimensional space. This is because UMAP uses a
combination of clustering techniques and analysis of local structure in the data to preserve
information about the proximity of the original data in a lower dimension. In this way,
UMAP can better preserve the global structure of the dataset while reducing its dimen-
sionality. On the other hand, t-SNE is known for its ability to visualize complex structures
in a two-dimensional space, but it may not be able to capture the global structure of the
dataset. Regarding the JointVAE model, a dimensionality reduction model such as UMAP
can be advantageous as it can better capture the structure of the dataset while keeping the
dimensionality reduced. This can help to better identify clusters of similar samples in the
latent space. Additionally, UMAP is generally faster than t-SNE, making it a good choice
for analyzing large amounts of data.

In the resulting plots shown in Figure 3.7, it can be observed, using UMAP and t-SNE
techniques, how the latent space of the JointVAE clusters the dataset in proportion to the
categories, or patterns in the discrete latent space representation (Figures 3.7b and 3.7d),
while smooth gradients or continuous curves are present in the continuous latent space
representation (Figures 3.7a and 3.7c). Additionally, the colour of each data point in
the plot can indicate its class labels, such as QCD or the top signal in the dataset under
analysis.

3.3.6 Interpolation
Interpolation in VAE and JointVAE is a technique used to explore the latent space of
a generative model. In interpolation, the idea is to generate new data points that are
intermediate between two existing points in the latent space. This is done by computing
the linear interpolation between two latent vectors and decoding the resulting intermediate
vectors into the data space. By visualizing the interpolated data points, we can gain
insight into the structure of the latent space and how it corresponds to the data space. In a
JointVAE, the interpolation is performed in the joint latent space of two data domains. This
is useful when working with multi-modal data, as it allows us to explore the relationships
between the different domains in the latent space. Interpolation is an important tool
for exploring generative models, as it provides a way to visualize the smooth transitions
between different data points and gain a better understanding of the relationships between
the data and the latent space. Additionally, interpolation can also be used to generate
new data points, which can be useful for data augmentation and increasing the size of the

90

3.3. CHOOSING THE MODEL

training set. Figure 3.8 represents a set of 10 images plotted using the interpolation of the
JointVAE latent space. In the code, the encoder part is used to encode a set of images
into a latent space, which is a lower-dimensional representation of the images. The code
first selects 10 random images from the latent space and calculates the Euclidean distance
between each pair of selected images. The maximum distance between the selected images
in the latent space is then computed, which represents the maximum dissimilarity between
the selected images in the lower-dimensional representation. Next, the code performs a
linear interpolation between two randomly selected images in the latent space according
to the formula:

zinterp = z1 · α + z2 · (1− α) (3.6)

where z1 and z2 are vectors in the latent space that represent two different images and α
is a coefficient that varies from 0 to 1. In this case, α is calculated as α = i ·interp step,
where interp step is a step that is calculated as interp step = max distance/9.0
and max distance is the maximum distance between the selected images in the latent
space, which in this case is 10.5244. This expression allows us to generate intermediate
points in the latent space that represents an interpolation between two images. This means
that it generates 10 intermediate points between the two selected images in the latent space.
The decoder part of the VAE is then used to decode these intermediate points back into
the original image space. Please note that to the human eye, there is no difference between
this series of images. This result is likely to be beyond human perception and it is very
challenging for our eyes to distinguish differences in some of the generated images.

Figure 3.8: The plot shows the 10 decoded images, which represent the interpolation
between the two selected images in the original image space. These plots allow us
to visualize how changes in the latent space can result in meaningful changes in the
original image space, demonstrating the ability of JointVAE models to capture meaningful
relationships between images.

3.3.7 Reconstruction Power
Unlike traditional autoencoders that map the input data to a lower-dimensional repre-
sentation and then reconstruct the original data from that representation, VAEs use a
probabilistic approach to reconstruct the input data by sampling the encoded representa-
tion from a learned probabilistic distribution. However, this probabilistic approach can
sometimes lead to blurry reconstructions and loss of information. To overcome this lim-
itation, the JointVAE architecture disentangles the continuous and discrete latent space
data representation, allowing the model to better capture the joint distribution of the input
data and its reconstructed output. This joint architecture enables the model to capture both
local and global dependencies in the data, leading to improved reconstruction quality. The
improved reconstructions from JointVAE can be useful for anomaly detection, which in-
volves identifying data points that deviate from the underlying distribution. By measuring
the reconstruction error, the JointVAE can effectively identify these deviations, making

91

CHAPTER 3. JOINT REPRESENTATIONS IN REAL-TIME

it useful for applications like fraud detection, medical diagnosis, and signal detection in
HEP.

AEs and VAEs, such as JointVAE, have a crucial role in the field of HEP as they are
used to detect new physics signals that may indicate the presence of unknown particles
or phenomena. For instance, in our application, we employed JointVAE to differentiate
known QCD from Top quarks jets. However, due to the vast amount of data generated by
particle accelerators and detectors, it can be challenging to identify these signals against the
background noise. Advanced (V)AEs architectures are designed to accurately capture the
distribution of the data, which enables them to identify unknown particles or phenomena
that could lead to a significant breakthrough in the field.

(a) QCD reconstruction. (b) QCD reconstruction means value.

(c) Top reconstruction. (d) Top reconstruction means value.

Figure 3.9: Reconstruction performance of the model at floating point precision.

Figures 3.9 show the ability of the model to recognize and reconstruct the test images
from both the QCD and top jets datasets. The model was trained only on QCD images
to use it to recognize the background and so to recognize new signal images that deviate
from those. What can be noticed from the plots 3.9a and 3.9b is that the JointVAE
can reconstruct QCD images with high fidelity, indicating that the model can capture
the important features of the data. However, when it comes to the top quark jet images
3.9c and 3.9d the JointVAE struggles to distinguish them from QCD images, resulting in
reconstructions that were very similar to those of QCD images. This result has important
implications for anomaly detection, as it suggests that the JointVAE may not be able to
reliably distinguish between QCD and top quark jet images. However, it also highlights
the potential for using the JointVAE as a tool for discovering new physics in the data, as
any significant deviation from the expected reconstruction could indicate the presence of
a new signal. In this case, such a deviation in the reconstruction of top quark jet images
could potentially point to the presence of new physics phenomena related to top quark
production.

92

3.4. ANOMALY DETECTION SCORES

3.4 Anomaly Detection scores
As it has been discussed in the section 2.2, anomaly detection is a process of identifying
instances in a dataset that deviate significantly from the majority of the data. In the context
of JointVAE, several metrics can be used to evaluate the performance of the model in
detecting anomalies. These metrics include:

• Energy Difference: The energy difference between the reconstructed x′ and original
data x can be calculated as follows:

Ediff =∥ x− x′ ∥2 . (3.7)

The smaller the energy difference, the better the quality of the reconstruction.

• BCE (Binary Cross-Entropy): The binary cross-entropy loss between the recon-
structed (x′) and original data (x) can be calculated as follows:

BCE = − 1

N

∑
i

xi log(x
′
i) + (1− xi) log(1− x′

i). (3.8)

This loss measures the dissimilarity between the two distributions.

• DICE Loss: The DICE loss [130] measures the overlap between the reconstructed
(x′) and original data (x) and is defined as follows:

DICE =
2
∑N

i xix
′
i∑N

i xi +
∑N

i x′
i

. (3.9)

This loss is commonly used in AD tasks and can be used as an additional evaluation
metric.

• Total Loss: The total loss can be calculated as the sum of BCE and DICE losses:

TotalLoss = BCE +DICE. (3.10)

• KL Continuous: The KL divergence between the estimated continuous distribution
qϕ(z|x) and the prior distribution pθ(z) can be calculated as follows:

DKL,cont =

∫
z∈Z

qϕ(z|x) log
qϕ(z|x)
pθ(z)

dz. (3.11)

This metric is particularly useful for evaluating the performance of the model in
capturing the continuous structure of the data.

• KL Discrete: similarly, the divergence between the estimated discrete distribution
qϕ(c|x) and the prior distribution pθ(c) can be calculated as follows:

DKL,disc =
∑
c∈C

qϕ(c|x) log
qϕ(c|x)
pθ(c)

. (3.12)

This metric is particularly useful for evaluating the performance of the model in
capturing the discrete structure of the data.

93

CHAPTER 3. JOINT REPRESENTATIONS IN REAL-TIME

(a) Energy difference score.

(b) BCE score.

(c) Total Loss score. over the

Figure 3.10: AD scores. Notice for the total loss we have an improvement over the base
BCE.

• KL Total: The total KL divergence is the sum of the KL discrete and KL continuous
divergences:

DKL,tot = DKL,disc +DKL,cont. (3.13)
This metric is a measure of the overall dissimilarity between the estimated and prior
distributions.

In general, these metrics are used in conjunction to evaluate the performance of the
reconstruction and encoding capabilities of the JointVAE model in detecting anomalies.

94

3.4. ANOMALY DETECTION SCORES

(a) Continuous KL divergence score

(b) Discrete KL divergence score

(c) Total KL divergence score

Figure 3.11: AD scores. Notice for the total KL divergence there is an improvement over
the only continuous KL divergence.

When anomalies are present in the data, they will often result in higher KL divergences,
larger energy differences, and larger BCE values. Specifically, these metrics are calculated
by comparing the original data to the reconstructed data using both continuous and discrete
latent space representations.

In Figure 3.10, we can observe the images for AD results using these metrics. These
results show that the JointVAE model can effectively identify instances that deviate signif-
icantly from the majority of the data, highlighting its effectiveness for anomaly detection

95

CHAPTER 3. JOINT REPRESENTATIONS IN REAL-TIME

tasks. Moreover, Figure 3.11 shows the three KL divergences computed in the analysis.
The total KL divergence DKL,tot, which considers both the continuous and discrete latent
spaces, shows an improvement over the single KL divergence. This improvement demon-
strates that the inclusion of the discrete latent space in the JointVAE model allows it to
capture not only continuous latent space characteristics but also discrete ones. This ability
to capture both types of latent space characteristics is not present in the standard VAE
model, which can only capture the continuous latent space characteristics, as shown in
Figure 3.11a. In conclusion, the addition of the discrete latent space in the JointVAE model
has led to an improvement in the performance of the model for anomaly detection tasks.
The results presented in Figure 3.11c support this conclusion and show the efficacy of the
JointVAE model in capturing both continuous and discrete latent space characteristics.

These metrics can be used to identify instances that deviate significantly from the
majority of the data, and thus are candidates for anomaly detection. In Figure 3.10 are
shown the images for AD results using the metrics that require both the encoding and
the reconstruction capability. In Figure 3.11 we can observe the three KL divergences
computed in the analysis mentioned above and it is evident the improvement of the total KL
DKL,tot over the single one. This demonstrates the better performance of the JointVAE over
the standard VAE which is able only to capture the continuous latent space characteristics,
visible in Figure 3.11a. So, adding the discrete latent space has led effectively to an
improvement in the performances on the anomaly detection tasks.

Notice also, that is not uncommon for the KL loss in training to be small, as can be
seen in the Tab 3.1 in which it has been achieved an order of magnitude of 10−4, even
though using KL both continuous, and discrete, and the sum of the score suggests is still
effective for anomaly detection. The KL loss is a measure of the discrepancy between the
learned latent distribution and a prior distribution. During training, the model learns to
approximate the posterior of the latent variables given the observed data. If the model is
successful in learning an accurate representation of the data distribution, the KL loss will
naturally become small. However, the effectiveness of the KL loss for anomaly detection
is not solely determined by the KL loss values during training. Anomaly detection using
KL divergence can be based on differences between the learned distribution and the test
data, rather than the training data. Additionally, anomaly detection may also rely on the
relationship between the latent representations learned by the JointVAE for the background
(QCD jet) and the anomalous events. Another possibility is that the JointVAE has learned
to identify anomalies by exploiting features that are not captured by the KL loss during the
training. For example, the model may have learned to identify anomalies based on higher-
order statistics, correlations, or other non-linear relationships between the input variables
that are not reflected in the KL loss. Therefore, even if the KL loss is small during training,
the KL divergence may still be an effective measure for detecting anomalies in the dataset.

3.5 Compression by Quantization
This section discusses the process of reducing the model footprint to optimize for com-
putational efficiency, specifically when deploying the model on an FPGA. To achieve
this, the encoder described previously is drastically reduced in size and complexity by
reducing both the length and the number of filters, and an additional convolutional layer
(conv_fin) was added without calling the activation function to preserve the linearity so
far, to help reduce the number of parameters. After this, the final flatten layer was applied,

96

3.5. COMPRESSION BY QUANTIZATION

followed by the output of three dense layers for mean, variance, and categorical values,
which correspond to the latent vectors. The table 3.2 presents a summary of the energy
consumption, output shape, and model parameters. However, we omitted the instance
normalization layers and activation functions in the table since their impact on energy
consumption can be negligible.

Layer (Type) Output Shape Energy [nJ]
dconv_b0 (Conv2D) (20, 20, 16) 87.9

conv1_b0_0 (Conv2D) (20, 20, 16) 1382.4
conv2_b0_0 (Conv2D) (20, 20, 16) 1382.4
dconv_b1 (Conv2D) (10, 10, 20) 432.0

conv1_b1_0 (Conv2D) (10, 10, 20) 540.0
conv2_b1_0 (Conv2D) (10, 10, 20) 540.0
conv1_b1_1 (Conv2D) (10, 10, 20) 540.0
conv2_b1_1 (Conv2D) (10, 10, 20) 540.0
dconv_b2 (Conv2D) (5, 5, 4) 27.0

conv1_b2_0 (Conv2D) (5, 5, 4) 5.4
conv2_b2_0 (Conv2D) (5, 5, 4) 5.4

conv_fin (Conv2D) (5, 5, 2) 2.7
z_categorical (Dense) (20) 1.5

z_mean (Dense) (32) 2.4
z_var (Dense) (32) 2.4

Table 3.2: The Res-Encoder Layers’ parameters are displayed. The energy consumption
is estimated assuming a 45 nm process [131] using QTOOLS.

In addition, the customized layers used in the previous sections of this chapter,
which consisted of a Conv2D layer with instance normalization and an activation
function, were disassembled and applied separately using native layers defined by the
Keras and QKeras libraries. This is done to facilitate the subsequent conversion with
hls4ml. To optimize the model for deployment on an FPGA, the numerical precision
of the model weights was reduced using a process called quantization (see sec. 2.8.2).
During training, single- or double-precision floating-point arithmetic is typically used,
but when deploying a deep neural network on an FPGA, reduced precision fixed-point
arithmetic is often utilized to minimize resource consumption and latency. This process
is called Quantization-Aware Training (QAT) and studies have shown that deep neural
networks suffer only minor accuracy loss even with binary quantization of weights [132].

The section also describes the model results, after quantization of all its weights, biases,
and activation functions are transformed to fixed-point precision before deployment. The
selected precision is a new adjustable hyperparameter. With the hls4ml library, users can
specify various numerical precisions for different components of the network (referred to
as heterogeneous quantization). However, severe PTQ of the activation functions usually
leads to greater accuracy reduction than severe PTQ of the weights. By default, hls4ml
presumes 16 total bits for every layer, with 6 of them designated to the integer part. We
focus on network quantization and explore the use of the QAT approach. By employing
QAT, it is possible to maintain high accuracy even with a precision as low as <16, 6>,
for some layers. Therefore, QAT is the preferred solution for model quantization before
deployment with hls4ml.

97

CHAPTER 3. JOINT REPRESENTATIONS IN REAL-TIME

To ensure that the network can be synthesized with Vivado HLS and run on an FPGA,
the number of filters in the network has to be reduced. Taking in mind that Vivado HLS
imposes a constraint on the parameter size for synthesis, which is limited to 1024 per layer.
Despite the reduction, the network is still able to detect anomalies with high accuracy.
The section also notes that, given the limited space available on the FPGA, the decision
is made to only synthesize the encoder model and exclude the decoder. However, during
the training phase, the output of the decoder is crucial for properly training the network
weights, as it is responsible for reconstructing the input data used to calculate the loss
during training. By excluding the decoder during synthesis, the team was limited to using
only the KL divergence metric for anomaly detection, which is effective in calculating
AD scores. Despite this limitation, the synthesized model was still able to achieve good
performance in detecting anomalies. The next sections describe the synthesis process in
detail, including the optimization techniques used to achieve the best possible performance,
and also discuss the results of the evaluation on the hardware platform, comparing them
to the software implementation.

(a) Reduced Encoder weights. (b) Reduced Encoder whisker plot.

Figure 3.12: Weights distribution for the reduced encoder at floating point precision.

3.5.1 Encoder Performance at Fixed-Point Precision
The description carried on at the beginning of the chapter showed our JointVAE model for
anomaly detection performance using the standard Keras library at floating point precision.
Now it is discussed the results after quantizing the model with the QAT technique. In
particular, it has been imposed a precision of <16,6> to all the convolutional, activation
functions and the last final dense layers. We also anticipate that the quantized model will
have lower latency and consume fewer resources compared to the floating-point precision
model. Furthermore, we expect the quantized model to maintain a high level of accuracy
in detecting anomalies. To evaluate the performance of the quantized model, we will use
the same dataset and metrics in both the quantized and non-quantized models. Finally, we
expect that the synthesized model will have a similar accuracy in detecting anomalies as
the software implementation. However, we expect also that the FPGA hardware will be
able to process the data at a much faster rate with lower resource consumption due to the

98

3.5. COMPRESSION BY QUANTIZATION

hardware acceleration. We anticipate that these techniques will result in a faster and more
resource-efficient implementation of the model on the FPGA.

(a) Reduced Quantized Encoder weights. (b) Reduced Quantized Encoder whisker.

Figure 3.13: Weights distribution for the reduced and quantized encoder.

As we can see comparing the weights distributions in Figures 3.12a and 3.13a and
whisker plots in Figures 3.12b and 3.13b, the quantization bits are chosen appropriately
since the shift in the distribution is not significant, and in this case, the quantized model
should perform similarly to the normal model.

Model AD Scores TPR@FPR 10−1 [%] AUC [%]
Reduced KL Discrete 31.46 68.29
Encoder KL Continuous 63.48 84.52

KL Total 63.63 84.64
Quantized KL Discrete 51.67 77.38
Encoder KL Continuous 59.79 80.88

KL Total 60.03 81.17

Table 3.3: Performance assessment of the floating-point precision and quantized JointVAE,
for different AD scores.

Table 3.3 presents the final AD performance for both the reduced encoder model and
the quantized version. Although there is a slight decrease in the performance in the total
KL AD scores compared to the complete model, as shown in figures 3.11, this can be
attributed to the significant reduction in the model size, as explained earlier. Furthermore,
the quantization resulted in a reduction in the total KL AD performance, but an increase
in the KL discrete performance. Nevertheless, a performance of approximately 81.2% for
the AUC of the total KL AD score can still be considered satisfactory for our intended
purposes. The ROC curves depict the relationship between the true positive rate (TPR) and
the false positive rate (FPR) by adjusting the lower threshold for various anomaly scores.
To assess the performance of AD, we measure the area under the ROC curve (AUC) and
the TPR at an FPR of 10−1 (refer to Table). Looking at the obtained performance we can
conclude that three KL divergences can be used as an anomaly metric for the rest of this
work.

99

CHAPTER 3. JOINT REPRESENTATIONS IN REAL-TIME

Model Total Energy [µJ]
Reduced Encoder 5.4957
Quantized Encoder 3.3434

Table 3.4: The energy consumption is estimated assuming a 45 nm process using QTOOLS.
The quantized model has successfully achieved a reduction in energy consumption.

Table 3.4 indicates that the quantized model has achieved a reduction in total energy
consumption by 39.2%. As a result, we anticipate that deploying the JointVAE model for
anomaly detection, which has been quantized and implemented on an FPGA, will result
in a highly accurate, fast, and efficient implementation. We will present these results in
the next section.

3.6 FPGA implementation

In this section of the thesis, we focused on implementing a hardware version of the
quantized mode described so far. We first started with a quantized version of the JointVAE
model that we aimed to implement in hardware using the HLS4ML tool. However, due
to the constraint of the FPGA’s size, we had to select only the encoder model that could
fit effectively within the available hardware resources. After evaluating various encoder
architectures, we chose to use a reduced model size encoder that only included the resulting
outputs of the mean µ, variance σ2, and categorical distribution α. This approach aims to
facilitate the computation of discrete, continuous, and overall KL divergence in real-time
while conserving energy and ensuring rapid inference for the Anomaly Detection task,
which was the intended objective.

However, we encountered a problem when we discovered that the Instance Normaliza-
tion layer (see section 2.4.2), which is critical for the functioning of our network model,
was not implemented in HLS4ML. To address this issue, we proceeded to implement
the layer manually and contribute to the open-source repository [104]. To achieve this,
we first registered the Instance Normalization layer included in the TensorflowAddons
framework by defining a custom layer in the hls4ml’s internal representation (IR) model.
This custom layer was inherited from the Layer base class and contained the necessary
methods for initializing the layer and for computing the forward pass. Next, we gen-
erated the corresponding header file in HLS, which contained the HLS implementation
of our custom Instance Normalization layer and the effective implementation of the core
equation 2.17 used by this layer to achieve the normalization of the sample. The result-
ing header file contained the HLS implementation of our custom Instance Normalization
layer, which is now ready for use in the HLS4ML tool. Finally, we were able to use
the model.converters.keras_to_hls(config) function from the module hls4ml,
to specify the target FPGA board, the precision of the inputs and outputs, and the imple-
mentation settings.

By manually implementing the layer and contributing to the open-source repository,
we not only solved the problem of the missing Instance Normalization layer, but we also
helped improve the usability and functionality of the HLS4ML tool for other researchers
and practitioners in the field.

100

3.6. FPGA IMPLEMENTATION

3.6.1 Hardware Characteristics
The Alveo U250 [133] data center accelerator card is an ideal candidate hardware plat-
form for implementing the JointVAE model for anomaly detection in the context of the
CMS experiment. The card’s high-performance FPGA technology provides up to 90×
higher performance than CPUs for key workloads, which results in a significant advantage
for accelerating the computational-intensive tasks associated with running the JointVAE
model. The Alveo U250 card offers a high level of flexibility, allowing users to program
the FPGA with their custom hardware accelerators or to use pre-built IP blocks from
Xilinx, which makes this hardware ideal for various purposes including machine learning
inference, video transcoding, and database search & analytics. These accelerator cards
are adaptable to changing acceleration requirements and algorithm standards, capable of
accelerating any workload without changing hardware and reducing the overall cost of
ownership. Because of this flexibility, the JointVAE model can be optimized for the use
case previously described.

The Alveo U250 card also offers high-performance floating-point and integer process-
ing capabilities, which are essential for machine learning and anomaly detection tasks.
In particular, the card’s peak INT8 performance of up to 33.3 tera operations per sec-
ond (TOPs) makes it well-suited for implementing the JointVAE model, which requires
significant computational resources.

3.6.2 Study of the FPGA implementation feasibility
Results obtained from the implementation feasibility study of the quantized JointVAE
encoder model on an FPGA are presented in this subsection. The study focuses on the
performance of the model when trained on data from the QCD and top jets datasets.
During the conversion of the QKeras model to an HLS project, the model’s quantization
configuration is passed to hls4ml and enforced on the FPGA firmware. The firmware
is designed to use specific arbitrary precision based on the quantization configuration to
ensure that the same precision is maintained during inference. The precision of the model
parameters is critical in preserving the accuracy of the JointVAE model. This procedure
ensures that the use of specific arbitrary precision in the QKeras model is maintained
during the inference [106].

To improve the implementation of the JointVAE encoder model, various strategies
such as modifying the reuse factor and testing resource or latency strategies were inves-
tigated using hls4ml. However, despite these efforts, the model still proves too complex
for low-level implementation. This can be attributed to the computational intensity of
the model’s multidimensional convolutional layers, which cannot be easily simplified for
implementation in hardware algorithms. Nevertheless, the addition of the instance nor-
malization layer could prove useful in increasing the variety of networks translatable with
hls4ml, although they may not be as complex as the one tested. The primary challenge
with high-dimensional inputs, such as images, remains difficult to address. The neural
network architecture model used for synthesis required significant computing resources on
the development machine used to compile the firmware. For example, to test the accuracy
of the model described in the HLS code, a C-simulation was run and it took 31 hours and
53 minutes to process the ∼50000 test images. This highlights the challenges associated
with using such models.

101

CHAPTER 3. JOINT REPRESENTATIONS IN REAL-TIME

Table 3.5 provides a comprehensive overview of the expected resource of the FPGA
needed to implement the different layers in the quantized JointVAE encoder model. To
examine the resource utilization of the model in detail, we split the blocks and analyzed
the resource usage for each layer. Specifically, for each dconv block, we considered
a QConv2D, an instance normalization and QActivation. For instance, conv2_b1_1
represents the first QConv2D layer, instance normalization layer, and activation block
with an input and output shape of (10,10,20) and (5,5,4) respectively. A block similar
to the previous one named conv2_b2, but ingesting an image with dimensions (5,5,4)
and generating an output with the same. Moreover, the final block in the quantized
JointVAE encoder model comprises conv_fin, which is a QConv2D layer with instance
normalization but no activation, and three vectors of QDense, which provide the final
output of the encoder and the vector defining the latent space of the JointVAE.

The quantized JointVAE encoder is a complex neural network that requires careful
optimization for efficient implementation. To this end, resource utilization metrics play a
critical role in evaluating the performance of the model and optimizing its implementation.
In particular, the number of DSPs, LUTs, FFs, and BRAM used by each layer in the model
provides valuable insights into the resource requirements of the model and helps identify
potential performance bottlenecks that need to be addressed. It is worth noting that in the
actual model intended to be implemented on the FPGA, the blocks present in 3.5 are present
multiple times with different and bigger inputs and outputs. This architectural choice is
made for better encoding computation, as described in the chapter and it is possible to
look at the layer names presented in Table 3.2 made for a floating-point precision of
the model for a comparison of the layer names. However, it is important to note that
the first conv2_b0_0 layer in the table, which takes an input of (20,20,16) and has an
output shape of (10,10,20), was impossible to simulate with Vivado HLS due to its large
shape in convolutional computation. Assuming that the resource consumption would scale
proportionally with the input size, the resource usage of this layer was estimated based on
a linear relationship with a factor computed according to:

ρ(a, b) =
(ha

in/s)× (wa
in/s)× dain × daout

(hb
in/s)× (wb

in/s)× dbin × dbin
(3.14)

where a and b represent two convolutional layers, h is the height, w is the width and d
the depth for both the input (in) and output (out). The s represents the stride of the layer
which in our case is fixed at 2. The equation 3.14 is estimated according to the estimate
of the computational complexity of the convolutional layer as described in the Reference
[134]. However, it should be noted that this estimate is only an approximation and may not
precisely reflect the actual resource demands of the layer. As we can notice, for the layer
conv2_b0_0 we have LUT consumption of 6189696, which exceeds more than three times
the total resource available on the FPGA target, which demonstrates the impossibility of
the implementation in this configuration.

Overall, the resource utilization metrics and analyses presented in this thesis demon-
strate that the quantized JointVAE encoder model is too large for efficient implementation
on the FPGA. Further research and optimization efforts are needed to compress and
optimize the model for efficient FPGA implementation.

102

3.7. SUMMARY AND OUTLOOK

Layer Name hin, win, din, dout DSP(%) LUT(%) FF (%) BRAM(%)
conv2_b0_0 20,20,16,10 752(6) 6189696(358) 229536(∼7) 288(5)
conv2_b1_1 10,10,20,5 47(∼0) 386856(22) 14346(∼0) 18(∼0)
dconv_b2 5, 5, 4,4 15(∼0) 309544(17) 9352(∼0) 4(∼0)
final block 5, 5, 4,2 851(6) 91763(5) 28074(∼0) 377(7)

Table 3.5: Resource utilization estimates and latency for some of the quantized JointVAE
encoder layers. Resources are based on the Vivado estimates from Vivado HLS 2020.1
for a target clock period of 5 ns on the Alveo U250. The second column represents the
variables used for each layer to estimate resource usage. The percentage was computed
against the total available resource on the FPGA target board.

3.7 Summary and Outlook
Conventional methods for detecting new physics at the scales investigated by the LHC may
be insufficient in finding interesting results. This creates a critical gap that could be filled
by unsupervised machine learning techniques, which could spot anomalous events that
would otherwise go unnoticed. To this end, we implement a JointVAE model, a variant of
VAE, that learns jointly continuous and discrete variables for better latent representations,
targeted at FPGA hardware architecture. The goal was to determine the best latency
and resource consumption without sacrificing model accuracy, optimizing the model for
classification between anomalous jets and QCD jets images. By training solely on the QCD
background, we compared the reconstruction error and a latent space metric to determine
the best anomaly detection score that enhances the separation of the two classes. The
high-dimensional data representation is transformed into a compressed lower-dimensional
latent distribution during the encoding stage. With this application at the LHC, we could
ideally classify the jets and even find anomalies using this latent space representation.

After conducting a thorough search for the best model architecture and exploring the
hyperparameter space to find the optimal solution, we analyzed several anomaly detection
metrics to further optimize the model for FPGA hardware architecture. We utilized a
tool called HLS4ML, which enables the implementation of machine learning models on
FPGAs. To reduce the model size and energy consumption, we applied the Quantization-
Aware of Training technique to the neural networks, achieving a reduction of almost
40% in energy consumption. This process involves mapping the original floating-point
values of the model parameters to a fixed-point representation that can be efficiently
implemented on the FPGA. It is important to use fixed-point representation instead of
floating-point arithmetic because FPGAs have limited resources, and using floating-point
arithmetic would result in high resource usage and longer latencies. However, the FPGA
implementation results were more challenging than anticipated, and we had to split the
block of layers separately to see the performance and make some predictions on the
total energy consumption. After analyzing the results, we concluded that the current
implementation of the model is not feasible for the FPGA in its current condition, and more
efforts are required to compress and optimize the model for efficient FPGA implementation.

To this end, future work can explore the use of pruning, this technique has been
shown to improve the performance and reduce the computational complexity of deep
neural networks. By removing the weights that have a negligible impact on the network’s
output, the number of computations required during inference can be significantly reduced,

103

CHAPTER 3. JOINT REPRESENTATIONS IN REAL-TIME

which can improve the speed and energy efficiency of the model. Another area of future
research can be the exploration of knowledge distillation for improving the quality of the
implementation of the JointVAE model on FPGA architecture. Knowledge distillation is a
technique where a large, complex model is used to train a smaller, simpler model to achieve
similar performance. This technique can be particularly useful in reducing the model size
and energy consumption on FPGA while maintaining high accuracy. By leveraging the
knowledge of the large, complex model, the simpler model can learn to generalize better
and make more accurate predictions. With the use of knowledge distillation, it may
be possible to further compress and optimize the JointVAE model for efficient FPGA
implementation, enabling the detection of anomalies in real-time with minimal resource
usage.

To bring machine learning applications to constrained computing environments, such
as detectors in particle colliders, it is necessary to optimize pre-trained models for hard-
ware implementation. This process is challenging because of the limitations of such
environments in terms of latency and size. The proposed workflow streamlines this
process, resulting in improved physics data collection quality. This research represents
a significant contribution to the fields of machine learning and hardware acceleration.
The solution proposed for real-time anomaly detection in large datasets in the context of
Anomaly Detection in HEP can enhance the performance of machine learning algorithms
in physics beyond the Standard Model (BSM). The proposed approach using a joint varia-
tional autoencoder is expected to outperform standard deep learning methods and enable
the resolution of previously unsolved challenges.

104

Conclusions

We propose the use of convolutional neural network joint variational autoencoders (Joint-
VAE) trained on a reference standard model (SM) sample to identify top decay jets, but
the same technique can be used for potential beyond standard model (BSM) events at the
LHC. This approach can detect recurrent anomalies that may be missed by traditional trig-
ger selection, and it can be applied in general-purpose LHC experiments. Our algorithm
has the potential to select datasets enriched with events from challenging BSM models,
in a similar approach as demonstrated for top jets samples. Furthermore, the algorithm
can be trained directly on data with little performance loss, enhanced robustness against
systematic uncertainties, and simplified training and deployment procedures.

We discussed a strategy for detecting potential anomalies, including using a JointVAE
for anomaly detection (AD) by projecting the input’s representation in the latent space.
The final outcome of this application is a list of anomalous scores that experimental
collaborations could scrutinize further. The purpose of this application is not to enhance
the signal selection efficiency for BSM models but to provide a high-purity sample of
potentially interesting events. Repeated patterns in these events could motivate new
scenarios beyond the standard model physics and inspire new searches to be performed on
future data with traditional supervised approaches. Our proposed approach is general and
not sensitive to a particular BSM scenario. While supervised algorithms could give better
discrimination capability for a given BSM hypothesis, they would not generalize to other
BSM scenarios. The JointVAE, on the other hand, comes with little model dependence
and therefore generalizes to unforeseen BSM models. As typical of autoencoders used for
AD, our JointVAE model is trained to learn the SM background, but there is no guarantee
that the best SM-learning model will be the best anomaly detection algorithm.

During our discussion, we also explored methods to enhance the detection of new
physics at the LHC by utilizing the model within the L1T infrastructure of the experiments.
We proposed deploying a JointVAE on a field-programmable gate array (FPGA) using
the hls4ml library. By quantizing the model, we achieved a low latency and minimal
resource utilization. It is important to note that the model quantization configuration plays
a significant role in ensuring the accuracy of the inference results. This is a crucial aspect
since the FPGA has limited resources, and using floating-point arithmetic would result
in high resource usage and longer latencies. Our proposed approach can help extend
the physics reach of the current and next stages of the CERN LHC, and the strategy
demonstrated for the data stream coming from a CMS L1 selection can be generalized
to any other data stream from any L1 selection, allowing scrutiny of the full 100 Hz rate
entering the HLT system of ATLAS or CMS.

105

CHAPTER 3. JOINT REPRESENTATIONS IN REAL-TIME

While our implementation of the JointVAE model is a novel advancement in the field, there
are still further upgrades that need to be made. We found that the computational cost of this
large network is significant and requires substantial resources, making it difficult to fully
implement. One possible solution could be to employ knowledge distillation, whereby a
smaller student network learns from the larger one by minimizing the differences between
their outputs. Additionally, we observed that in an FPGA environment where multiple
algorithms are running, it may not be feasible for the JointVAE to utilize all available
resources for optimal performance. Nonetheless, the JointVAE has the potential to be
a valuable tool in L1 trigger systems, enabling more efficient and accurate detection of
anomalous signals that could signify new physics signatures.

The work presented in this thesis has been accepted as an oral presentation at the
forthcoming "International Symposium on Grids & Clouds 2023" (ISGC 2023) in Taipei
(Taiwan), 19-31 March 2023, in the conference track on "Physics and Engineering Appli-
cations".

106

Bibliography

[1] Lyndon Evans and Philip Bryant. “LHC machine”. In: Journal of instrumentation
3.08 (2008), S08001.

[2] CERN Website. Accessed on December 31, 2022. url: https://home.web.
cern.ch/.

[3] Y Nie et al. “Numerical simulations of energy deposition caused by 50 MeV-50 TeV
proton beams in copper and graphite targets”. In: Physical Review Accelerators
and Beams 20.8 (2017), p. 081001.

[4] A vacuum as empty as interstellar space. Accessed on December 31, 2022.
url: https : / / home . cern / science / engineering / vacuum - empty -
interstellar-space.

[5] Pulling together: Superconducting electromagnets. Accessed on December 31,
2022. url: https : / / home . cern / science / engineering / pulling -
together-superconducting-electromagnets.

[6] Serge Dailler. Cross section of LHC dipole. Dipole LHC: coupe transversale.
Accessed on December 31, 2022. url: https://cds.cern.ch/record/
842530.

[7] Accelerating: Radiofrequency cavities. Accessed on December 31, 2022.
url: https : / / home . cern / science / engineering / accelerating -
radiofrequency-cavities.

[8] Burkhard Schmidt. “The High-Luminosity upgrade of the LHC: Physics and
Technology Challenges for the Accelerator and the Experiments”. In: Journal
of Physics: Conference Series. Vol. 706. 2. IOP Publishing. 2016, p. 022002.

[9] ALICE. Accessed on January 2, 2023. url: https://home.web.cern.ch/
science/experiments/alice.

[10] ATLAS. Accessed on January 2, 2023. url: https://home.web.cern.ch/
science/experiments/atlas.

[11] CMS. Accessed on January 2, 2023. url: https://home.web.cern.ch/
science/experiments/cms.

[12] LHCb. Accessed on January 2, 2023. url: https://home.web.cern.ch/
science/experiments/lhcb.

[13] TOTEM. Accessed on January 2, 2023. url: https://home.web.cern.ch/
science/experiments/totem.

107

https://home.web.cern.ch/
https://home.web.cern.ch/
https://home.cern/science/engineering/vacuum-empty-interstellar-space
https://home.cern/science/engineering/vacuum-empty-interstellar-space
https://home.cern/science/engineering/pulling-together-superconducting-electromagnets
https://home.cern/science/engineering/pulling-together-superconducting-electromagnets
https://cds.cern.ch/record/842530
https://cds.cern.ch/record/842530
https://home.cern/science/engineering/accelerating-radiofrequency-cavities
https://home.cern/science/engineering/accelerating-radiofrequency-cavities
https://home.web.cern.ch/science/experiments/alice
https://home.web.cern.ch/science/experiments/alice
https://home.web.cern.ch/science/experiments/atlas
https://home.web.cern.ch/science/experiments/atlas
https://home.web.cern.ch/science/experiments/cms
https://home.web.cern.ch/science/experiments/cms
https://home.web.cern.ch/science/experiments/lhcb
https://home.web.cern.ch/science/experiments/lhcb
https://home.web.cern.ch/science/experiments/totem
https://home.web.cern.ch/science/experiments/totem

BIBLIOGRAPHY

[14] LHCf. Accessed on January 2, 2023. url: https://home.web.cern.ch/
science/experiments/lhcf.

[15] GL Bayatian et al. CMS Physics: Technical Design Report Volume 1: Detector
Performance and Software. Tech. rep. CMS-TDR-008-1, 2006.

[16] CMS Collaboration et al. “The CMS experiment at the CERN LHC”. In: JInst 3
(2008), S08004.

[17] CMS collaboration et al. The CMS tracker: addendum to the Technical Design
Report. Tech. rep. CERN-LHCC-2000-016, 2000.

[18] Lorenzo Viliani, CMS Collaboration, et al. “CMS tracker performance and readi-
ness for LHC Run II”. In: Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 824
(2016), pp. 67–69.

[19] Cms Collaboration et al. “The CMS electromagnetic calorimeter project: technical
design report”. In: Technical Design Report CMS. CERN, Geneva 47 (1997).

[20] Cristina Biino. “The CMS Electromagnetic Calorimeter: overview, lessons learned
during Run 1 and future projections”. In: Journal of Physics: Conference Series.
Vol. 587. 1. IOP Publishing. 2015, p. 012001.

[21] CMS collaboration et al. “Energy calibration and resolution of the CMS elec-
tromagnetic calorimeter in pp collisions at

√
s= 7 TeV”. In: arXiv preprint

arXiv:1306.2016 (2013).
[22] HCAL TDR. “HCAL Technical Design Report”. In: ().
[23] Bannaje Sripathi Acharya et al. The CMS outer hadron calorimeter. Tech. rep.

CERN-CMS-NOTE-2006-127, 2006.
[24] V. Klyukhin. CMS Magnetic System Model. Encyclopedia. Accessed on January

6, 2023. url: https://encyclopedia.pub/entry/10857.
[25] CMS collaboration, CMS Collaboration, et al. “The CMS muon project: technical

design report”. In: Technical Design Report CMS. CERN, Geneva 51 (1997).
[26] Florian Bechtel. “The underlying event in proton-proton collisions”. In: (2009).
[27] M Aguilar-Benıtez et al. “Construction and test of the final CMS Barrel Drift

Tube Muon Chamber prototype”. In: Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment 480.2-3 (2002), pp. 658–669.

[28] MUON DRIFT TUBES. Accessed on January 6, 2023. url: https://cms.cern/
detector/detecting-muons/muon-drift-tubes.

[29] Jay Hauser, CMS Collaboration, et al. “Cathode strip chambers for the CMS end-
cap muon system”. In: Nuclear Instruments and Methods in Physics Research Sec-
tion A: Accelerators, Spectrometers, Detectors and Associated Equipment 384.1
(1996), pp. 207–210.

[30] M Abbrescia et al. “The RPC system for the CMS experiment at the LHC”. In:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 508.1-2 (2003), pp. 137–141.

[31] Seong-Kwan Park et al. “CMS endcap RPC gas gap production for upgrade”. In:
Journal of Instrumentation 7.11 (2012), P11013.

108

https://home.web.cern.ch/science/experiments/lhcf
https://home.web.cern.ch/science/experiments/lhcf
https://encyclopedia.pub/entry/10857
https://cms.cern/detector/detecting-muons/muon-drift-tubes
https://cms.cern/detector/detecting-muons/muon-drift-tubes

BIBLIOGRAPHY

[32] CMS collaboration et al. “The CMS trigger system”. In: arXiv preprint
arXiv:1609.02366 (2016).

[33] CMS collaboration et al. “CMS technical design report for the level-1 trigger
upgrade”. In: CMS Technical Design Report CERN-LHCC-2013-011. CMS-TDR-
12 (2013).

[34] CMS collaboration et al. “Performance of the CMS Level-1 trigger in proton-
proton collisions at

√
s = 13 TeV”. In: arXiv preprint arXiv:2006.10165 (2020).

[35] Attila Rácz and Paris Sphicas. CMS The TriDAS Project: Technical Design Report,
Volume 2: Data Acquisition and High-Level Trigger. Tech. rep. CMS-TDR-006,
2002.

[36] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine
learning. Vol. 4. 4. Springer, 2006.

[37] Pankaj Mehta et al. “A high-bias, low-variance introduction to machine learning
for physicists”. In: Physics reports 810 (2019), pp. 1–124.

[38] Yann LeCun et al. “A tutorial on energy-based learning”. In: Predicting structured
data 1.0 (2006).

[39] Vladimir Vapnik. The nature of statistical learning theory. Springer science &
business media, 1999.

[40] Sebastian Ruder. “An overview of gradient descent optimization algorithms”. In:
arXiv preprint arXiv:1609.04747 (2016).

[41] Léon Bottou. “Stochastic gradient descent tricks”. In: Neural networks: Tricks of
the trade. Springer, 2012, pp. 421–436.

[42] Sarit Khirirat, Hamid Reza Feyzmahdavian, and Mikael Johansson. “Mini-batch
gradient descent: Faster convergence under data sparsity”. In: 2017 IEEE 56th
Annual Conference on Decision and Control (CDC). IEEE. 2017, pp. 2880–2887.

[43] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[44] Agnes Lydia and Sagayaraj Francis. “Adagrad—an optimizer for stochastic gradi-
ent descent”. In: Int. J. Inf. Comput. Sci 6.5 (2019), pp. 566–568.

[45] Matthew D Zeiler. “Adadelta: an adaptive learning rate method”. In: arXiv preprint
arXiv:1212.5701 (2012).

[46] Thomas Kurbiel and Shahrzad Khaleghian. “Training of deep neural networks
based on distance measures using RMSProp”. In: arXiv preprint arXiv:1708.01911
(2017).

[47] Ilya Loshchilov and Frank Hutter. “Decoupled weight decay regularization”. In:
arXiv preprint arXiv:1711.05101 (2017).

[48] Leo Breiman. “Random forests”. In: Machine learning 45 (2001), pp. 5–32.
[49] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Machine

learning 20 (1995), pp. 273–297.
[50] Danilo Rezende and Shakir Mohamed. “Variational inference with normalizing

flows”. In: International conference on machine learning. PMLR. 2015, pp. 1530–
1538.

109

BIBLIOGRAPHY

[51] Bernhard Schölkopf et al. “Support vector method for novelty detection”. In:
Advances in neural information processing systems 12 (1999).

[52] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. “Isolation-based anomaly de-
tection”. In: ACM Transactions on Knowledge Discovery from Data (TKDD) 6.1
(2012), pp. 1–39.

[53] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In:
arXiv preprint arXiv:1312.6114 (2013).

[54] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised representa-
tion learning with deep convolutional generative adversarial networks”. In: arXiv
preprint arXiv:1511.06434 (2015).

[55] Florinel-Alin Croitoru et al. “Diffusion models in vision: A survey”. In: arXiv
preprint arXiv:2209.04747 (2022).

[56] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density estimation using
real nvp”. In: arXiv preprint arXiv:1605.08803 (2016).

[57] Durk P Kingma and Prafulla Dhariwal. “Glow: Generative flow with invertible 1x1
convolutions”. In: Advances in neural information processing systems 31 (2018).

[58] Wei Ping et al. “Waveflow: A compact flow-based model for raw audio”. In:
International Conference on Machine Learning. PMLR. 2020, pp. 7706–7716.

[59] Barry M Dillon, Radha Mastandrea, and Benjamin Nachman. “Self-supervised
anomaly detection for new physics”. In: Physical Review D 106.5 (2022),
p. 056005.

[60] Ting Chen et al. “A simple framework for contrastive learning of visual representa-
tions”. In: International conference on machine learning. PMLR. 2020, pp. 1597–
1607.

[61] Priya Goyal et al. “Self-supervised pretraining of visual features in the wild”. In:
arXiv preprint arXiv:2103.01988 (2021).

[62] Raghavendra Chalapathy and Sanjay Chawla. “Deep learning for anomaly detec-
tion: A survey”. In: arXiv preprint arXiv:1901.03407 (2019).

[63] Chun-Liang Li et al. “Cutpaste: Self-supervised learning for anomaly detection
and localization”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2021, pp. 9664–9674.

[64] Barry M Dillon et al. “Symmetries, safety, and self-supervision”. In: SciPost
Physics 12.6 (2022), p. 188.

[65] Theo Heimel et al. “QCD or What?” In: SciPost Physics 6.3 (2019), p. 030.
[66] Thomas Schlegl et al. “Unsupervised anomaly detection with generative adversar-

ial networks to guide marker discovery”. In: International conference on informa-
tion processing in medical imaging. Springer. 2017, pp. 146–157.

[67] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[68] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier neural
networks”. In: Proceedings of the fourteenth international conference on artificial
intelligence and statistics. JMLR Workshop and Conference Proceedings. 2011,
pp. 315–323.

110

http://www.deeplearningbook.org
http://www.deeplearningbook.org

BIBLIOGRAPHY

[69] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. “Rectifier nonlinearities
improve neural network acoustic models”. In: Proc. icml. Vol. 30. 1. Atlanta,
Georgia, USA. 2013, p. 3.

[70] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. “Fast and accu-
rate deep network learning by exponential linear units (elus)”. In: arXiv preprint
arXiv:1511.07289 (2015).

[71] David E Rumelhart and David Zipser. “Feature discovery by competitive learning”.
In: Parallel distributed processing: explorations in the microstructure of cognition,
vol. 1: foundations. 1986, pp. 151–193.

[72] Mikhail Belkin et al. “Reconciling modern machine learning practice and the
bias-variance trade-off”. In: arXiv preprint arXiv:1812.11118 (2018).

[73] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification
with deep convolutional neural networks”. In: Communications of the ACM 60.6
(2017), pp. 84–90.

[74] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–
778.

[75] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural informa-
tion processing systems 30 (2017).

[76] Y-L Chung, S-C Hsu, and Benjamin Nachman. “Disentangling boosted Higgs
boson production modes with machine learning”. In: Journal of Instrumentation
16.07 (2021), P07002.

[77] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: International conference
on machine learning. pmlr. 2015, pp. 448–456.

[78] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. “Instance normalization:
The missing ingredient for fast stylization”. In: arXiv preprint arXiv:1607.08022
(2016).

[79] Yuxin Wu and Kaiming He. “Group normalization”. In: Proceedings of the Euro-
pean conference on computer vision (ECCV). 2018, pp. 3–19.

[80] Mark A Kramer. “Nonlinear principal component analysis using autoassociative
neural networks”. In: AIChE journal 37.2 (1991), pp. 233–243.

[81] Jeremy Jordan. Variational autoencoders. Accessed on January 24, 2023. 2018.
url: https://www.jeremyjordan.me/variational-autoencoders/.

[82] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. “Variational inference:
A review for statisticians”. In: Journal of the American statistical Association
112.518 (2017), pp. 859–877.

[83] Imre Csiszár. “I-divergence geometry of probability distributions and minimiza-
tion problems”. In: The annals of probability (1975), pp. 146–158.

[84] Olmo Cerri et al. “Variational autoencoders for new physics mining at the large
hadron collider”. In: Journal of High Energy Physics 2019.5 (2019), pp. 1–29.

[85] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. “Generating diverse high-
fidelity images with vq-vae-2”. In: Advances in neural information processing
systems 32 (2019).

111

https://www.jeremyjordan.me/variational-autoencoders/

BIBLIOGRAPHY

[86] Junting Pan et al. “Video generation from single semantic label map”. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2019, pp. 3733–3742.

[87] Samuel R Bowman et al. “Generating sentences from a continuous space”. In:
arXiv preprint arXiv:1511.06349 (2015).

[88] Wei-Ning Hsu, Yu Zhang, and James Glass. “Unsupervised learning of disen-
tangled and interpretable representations from sequential data”. In: Advances in
neural information processing systems 30 (2017).

[89] Gerhard Hessler and Karl-Heinz Baringhaus. “Artificial intelligence in drug de-
sign”. In: Molecules 23.10 (2018), p. 2520.

[90] Joe G Greener, Lewis Moffat, and David T Jones. “Design of metalloproteins
and novel protein folds using variational autoencoders”. In: Scientific reports 8.1
(2018), p. 16189.

[91] TensorFlow - TensorFlow by Google. Accessed on January 25, 2023. url: https:
//www.tensorflow.org/.

[92] Brain Team - Google Research. Accessed on January 25, 2023. url: https:
//research.google/teams/brain/.

[93] Cloud Tensor Processing Units (TPUs). Accessed on January 25, 2023. url:
https://cloud.google.com/tpu/docs/tpus.

[94] James Bergstra et al. “Theano: Deep learning on gpus with python”. In: NIPS
2011, BigLearning Workshop, Granada, Spain. Vol. 3. 0. Citeseer. 2011.

[95] TensorFlow Model Optimization Toolkit — Pruning API. Accessed on January
26, 2023. url: https://blog.tensorflow.org/2019/05/tf- model-
optimization-toolkit-pruning-API.html.

[96] Amir Gholami et al. “A survey of quantization methods for efficient neural network
inference”. In: arXiv preprint arXiv:2103.13630 (2021).

[97] Google. QKeras. https://github.com/google/qkeras. 2021.
[98] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in a

neural network”. In: arXiv preprint arXiv:1503.02531 (2015).
[99] Jianping Gou et al. “Knowledge distillation: A survey”. In: International Journal

of Computer Vision 129 (2021), pp. 1789–1819.
[100] Andre R Brodtkorb et al. “State-of-the-art in heterogeneous computing”. In: Sci-

entific Programming 18.1 (2010), pp. 1–33.
[101] Andrea Bocci et al. “Heterogeneous reconstruction of tracks and primary vertices

with the CMS pixel tracker”. In: Frontiers in big Data 3 (2020), p. 601728.
[102] INVENT LOGICS. FPGA Architecture. Accessed on February 21, 2023. 2014.

url: https://allaboutfpga.com/fpga-architecture/.
[103] Javier Duarte et al. “Fast inference of deep neural networks in FPGAs for particle

physics”. In: Journal of Instrumentation 13.07 (2018), P07027.
[104] FastML Team. fastmachinelearning/hls4ml. 2021. doi: 10 . 5281 / zenodo .

1201549. url: https://github.com/fastmachinelearning/hls4ml.

112

https://www.tensorflow.org/
https://www.tensorflow.org/
https://research.google/teams/brain/
https://research.google/teams/brain/
https://cloud.google.com/tpu/docs/tpus
https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html
https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html
https://github.com/google/qkeras
https://allaboutfpga.com/fpga-architecture/
https://doi.org/10.5281/zenodo.1201549
https://doi.org/10.5281/zenodo.1201549
https://github.com/fastmachinelearning/hls4ml

BIBLIOGRAPHY

[105] Sioni Summers et al. “Fast inference of boosted decision trees in FPGAs for
particle physics”. In: Journal of Instrumentation 15.05 (2020), P05026.

[106] Claudionor N Coelho Jr et al. “Automatic heterogeneous quantization of deep
neural networks for low-latency inference on the edge for particle detectors”. In:
Nature Machine Intelligence 3.8 (2021), pp. 675–686.

[107] Barry Dillon et al. “Better latent spaces for better autoencoders”. In: SciPost
Physics 11.3 (2021), p. 061.

[108] Ekaterina Govorkova et al. “Autoencoders on field-programmable gate arrays for
real-time, unsupervised new physics detection at 40 MHz at the Large Hadron
Collider”. In: Nature Machine Intelligence 4.2 (2022), pp. 154–161.

[109] Thorben Finke et al. “Autoencoders for unsupervised anomaly detection in high
energy physics”. In: Journal of High Energy Physics 2021.6 (2021), pp. 1–32.

[110] Emilien Dupont. “Learning disentangled joint continuous and discrete represen-
tations”. In: Advances in Neural Information Processing Systems 31 (2018).

[111] Thea Aarrestad et al. “Fast convolutional neural networks on FPGAs with hls4ml”.
In: Machine Learning: Science and Technology 2.4 (2021), p. 045015.

[112] Gregor Kasieczka et al. “The machine learning landscape of top taggers”. In:
SciPost Physics 7.1 (2019), p. 014.

[113] Torbjörn Sjöstrand et al. “An introduction to PYTHIA 8.2”. In: Computer physics
communications 191 (2015), pp. 159–177.

[114] J De Favereau et al. “DELPHES 3: a modular framework for fast simulation of a
generic collider experiment”. In: Journal of High Energy Physics 2014.2 (2014),
pp. 1–26.

[115] Matteo Cacciari and Gavin P Salam. “Dispelling the N3 myth for the kt jet-finder”.
In: Physics Letters B 641.1 (2006), pp. 57–61.

[116] Matteo Cacciari, Gavin P Salam, and Gregory Soyez. “The anti-kt jet clustering
algorithm”. In: Journal of High Energy Physics 2008.04 (2008), p. 063.

[117] Matteo Cacciari, Gavin P Salam, and Gregory Soyez. “FastJet user manual: (for
version 3.0. 2)”. In: The European Physical Journal C 72 (2012), pp. 1–54.

[118] Sebastian Macaluso and David Shih. “Pulling out all the tops with computer vision
and deep learning”. In: Journal of High Energy Physics 2018.10 (2018), pp. 1–27.

[119] Eric Jang, Shixiang Gu, and Ben Poole. “Categorical reparameterization with
gumbel-softmax”. In: arXiv preprint arXiv:1611.01144 (2016).

[120] Irina Higgins et al. “beta-vae: Learning basic visual concepts with a constrained
variational framework”. In: International conference on learning representations.
2017.

[121] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. “The concrete distribu-
tion: A continuous relaxation of discrete random variables”. In: arXiv preprint
arXiv:1611.00712 (2016).

[122] Google Colaboratory. https://colab.research.google.com/. Accessed
February 20, 2023.

113

https://colab.research.google.com/

BIBLIOGRAPHY

[123] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification”. In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 1026–1034.

[124] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep
feedforward neural networks”. In: Proceedings of the thirteenth international con-
ference on artificial intelligence and statistics. JMLR Workshop and Conference
Proceedings. 2010, pp. 249–256.

[125] Russell D Larsen. “Box-and-whisker plots”. In: Journal of Chemical Education
62.4 (1985), p. 302.

[126] Ian T Jolliffe and Jorge Cadima. “Principal component analysis: a review and
recent developments”. In: Philosophical transactions of the royal society A: Math-
ematical, Physical and Engineering Sciences 374.2065 (2016), p. 20150202.

[127] Laurens Van der Maaten and Geoffrey Hinton. “Visualizing data using t-SNE.”
In: Journal of machine learning research 9.11 (2008).

[128] Leland McInnes et al. “UMAP: Uniform Manifold Approximation and Projection”.
In: The Journal of Open Source Software 3.29 (2018), p. 861.

[129] L. McInnes, J. Healy, and J. Melville. “UMAP: Uniform Manifold Approximation
and Projection for Dimension Reduction”. In: ArXiv e-prints (Feb. 2018). arXiv:
1802.03426 [stat.ML].

[130] Ruoxi Deng et al. “Learning to predict crisp boundaries”. In: Proceedings of the
European Conference on Computer Vision (ECCV). 2018, pp. 562–578.

[131] Mark Horowitz. “Computing’s energy problem (and what we can do about it).
In 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC)”. In: IEEE, feb. 2014.

[132] Itay Hubara et al. “Quantized Neural Networks: Training Neural Networks
with Low Precision Weights and Activations.(2016)”. In: arXiv preprint
arXiv:1609.07061 (2016).

[133] Xilinx. AMD Xilinx Website. Accessed on March 7, 2023. url: https://www.
xilinx.com/products/boards-and-kits/alveo/u250.html.

[134] Mark Sandler et al. “Mobilenetv2: Inverted residuals and linear bottlenecks”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 4510–4520.

114

https://arxiv.org/abs/1802.03426
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html

	Abstract
	The CMS experiment at the LHC
	The Large Hadron Collider
	The vacuum system
	Electromagnets
	Radiofrequency Cavities and Luminosity

	LHC detectors
	ALICE
	ATLAS
	CMS
	LHCb
	Other experiments
	TOTEM
	LHCf

	The Compact Muon Solenoid experiment
	The detector structure
	Inner tracking system
	Silicon pixel detectors
	Silicon strip detectors

	Electromagnetic Calorimeter
	Crystal properties

	Hadron Calorimeter
	Magnetic System

	The Muon System
	Drift tube system
	The Cathode Strip Chambers
	The Resistive Plates Chambers

	Trigger and Data Acquisition
	The Level-1 Trigger System
	The High-Level Trigger and DAQ

	Machine and Deep Learning
	Introduction to Machine Learning
	Problem Formulation in Machine Learning
	Overfitting and Underfitting
	Basics of Statistical Learning
	Gradient Descent
	Adam Optimization Algorithm
	AdamW Optimization Algorithm

	Supervised Learning
	Unsupervised Learning
	Self-Supervised Learning

	Anomaly Detection
	General Approach
	Various Techniques
	Some applications in HEP

	Feed-Forward Deep Neural Networks (DNNs)
	Neural Networks Basics: Neurons and Architecture
	The Back-propagation Algorithm
	Deep Double Descend

	Convolutional Neural Networks (CNNs)
	Overview of the CNNs structure
	Normalization Methods
	Batch Normalization
	Instance Normalization

	Regularization Methods
	Weight Decay
	Dropout
	Early Stopping
	Data Augmentation
	ReduceLROnPlateau

	Autoencoders (AEs)
	AEs Architecture and Operation
	Variations

	Variational AutoEncoders (VAEs)
	VAEs Architecture and Operation
	Evidence Lower Bound (ELBO)
	Reparametrization Trick
	An Illustrative Example of VAE in HEP
	A bridge between Physics and Deep Learning

	Implementing a Neural Network
	TensorFlow
	Keras

	Model Compression
	Pruning
	Post-Training Quantization
	Quantization Aware of Training
	QKeras

	Knowledge distillation

	Model Acceleration
	Heterogeneous Computing
	Introduction to FPGAs
	Fast Inference on FPGAs
	High Level Synthesis

	HLS4ML package

	Joint Representations in real-time
	Introduction
	Data Samples
	Choosing the model
	JointVAE Architecture and Operation
	Reparametrization of Latent Variables
	Training details
	Weight Distributions
	Whisker Plots

	Visualizing Latent Space
	Interpolation
	Reconstruction Power

	Anomaly Detection scores
	Compression by Quantization
	Encoder Performance at Fixed-Point Precision

	FPGA implementation
	Hardware Characteristics
	Study of the FPGA implementation feasibility

	Summary and Outlook

	Conclusions
	Bibliography

