376 research outputs found

    ANN modelling approach for predicting SCC properties - Research considering Algerian experience. Part I. Development and analysis of models

    Get PDF
    This paper presents research on the use of artificial neural networks (ANNs) to predict fresh and hardened properties of self compacting concrete (SCC) made with Algerian materials. A multi-layer perceptron network with 5 nodes, 12 inputs, and 5 outputs is trained and optimized using a database of 167 mixtures collected from literature. The inputs for the ANN models are ordinary Portland cement (Cm), polycarboxylate ether superplasticizer (Sp), river sand (RS), crushed sand (CS), dune sand (DS), Gravel 3/8 (G1), Gravel 8/15 (G2), Water (W), Limestone filler (Lim), Marble powder (MP), blast furnace slag (Slag) and natural pozzolan (Pz). Instead, Slump flow (Slump), V-funnel, L-Box, static stability (Pi) and 28 days compressive strength (Rc28) were the outputs of the study. Results indicate that ANN models for data sets collected from literature have a strong potential for predicting 28 days compressive strength. Slump flow, V-funnel time and L-Box ratio could be moderately identified while an acceptable prediction has been obtained for static stability. Results have also confirmed by statistical parameters, Regression plots and residual analysis

    Comprehensive Review of State-of-the-Art Applications of Artificial Neural Networks in Predicting Concrete Compressive Strength

    Get PDF
    Concrete compressive strength prediction is a crucial aspect in civil engineering, with applications ranging from structural design to quality control in construction projects. Traditional methods for predicting concrete compressive strength often rely on empirical formulas or physical testing, which may be limited in accuracy or efficiency. In recent years, Artificial Neural Networks (ANNs) have emerged as powerful tools for predicting concrete compressive strength due to their ability to capture complex nonlinear relationships in data. This paper provides a comprehensive review of the state-of-the-art applications of ANNs in predicting concrete compressive strength. It discusses various architectures, training techniques, input parameters, and datasets used in ANN models, as well as their performance compared to traditional methods. Additionally, challenges and future directions in the field are identified to guide further research efforts

    Utilizing Artificial Neural Network and Multiple Linear Regression to Model the Compressive Strength of Recycled Geopolymer Concrete

    Get PDF
    Based on the heterogeneity nature of concrete constituents and variation in its compressive strength over several orders of magnitude for various types of concrete, predictive methods to evaluate its compressive strength has now been given an appropriate consideration. Therefore, this study investigates, the performance of Artificial Neural Network, ANN in forecasting the compressive strength of hybrid alkali-activated recycled concrete (HAARC) and compared with the traditional Multiple Linear Regression, MLR. The developed models utilized the experimental results where varying material quantities were used. The ANN and MLR models were developed using eight input variables namely; Ordinary Portland cement (OPC), Rice Husk Ash (RHA), Coal Fly Ash (CFA), Crushed granite (CG), Cupola Furnace Slag (CFS), Alkaline Solution (AS), Water-Binder Ratio (WB) and the Concrete Age (CA) while compressive strength was the only response (predicted) variable. The input data were trained, tested and validated using feedforward back-proportion and backward elimination approach for ANN and MLR, respectively. The most probable model architecture containing eight-input layer, thirteen-hidden layer, and one-output layer neurons was selected based on satisfactory performance in terms of means square error MSE, after several trials. MLR results revealed that only three input variables; CFA, CG and CA proves to be statistically significant with p-values below 0.05. Performance evaluations of the developed models using coefficient of determination, R2, Mean Square Error, MSE, Root Mean-Square Error, RMSE and Mean Absolute Percentage Error, MAPE, showed that ANN prediction accuracy is better than that of MLR with R2 = 0.9972, MSE = 0.4177, RMSE = 1.8201, MAPE = 2.2935 for ANN and R2 = 0.7410, MSE = 66.6308, RMSE = 290.4370, MAPE = 385.5221 for MLR

    Pre-bcc: a novel integrated machine learning framework for predicting mechanical and durability properties of blended cement concrete

    Get PDF
    Partially replacing ordinary Portland cement (OPC) with low-carbon supplementary cementitious materials (SCMs) in blended cement concrete (BCC) is perceived as the most promising route for sustainable concrete production. Despite having a lower environmental impact, BCC could exhibit performance inferior to OPC in design-governing functional properties. Hence, concrete manufacturers and scientists have been seeking methods to predict the performance of BCC mixes in order to reduce the cost and time of experimentally testing all alternatives. Machine learning algorithms have been proven in other fields for treating large amounts of data drawing meaningful relationships between data accurately. However, the existing prediction models in the literature come short in covering a wide range of SCMs and/or functional properties. Considering this, in this study, a non-linear multi-layered machine learning regression model was created to predict the performance of a BCC mix for slump, strength, and resistance to carbonation and chloride ingress based on any of five prominent SCMs: fly ash, ground granulated blast furnace slag, silica fume, lime powder and calcined clay. A database from>150 peer-reviewed sources containing>1650 data points was created to train and test the model. The statistical performance was found to be comparable to that of existing models (R = 0.94–0.97). For the first time, the model, Pre-bcc, was also made available online for users to conduct their own prediction studies.Peer ReviewedPostprint (published version

    A comparative study of concrete strength prediction using artificial neural network, multigene programming and model tree

    Get PDF
    In the current study 28 day strength of Recycled Aggregate Concrete (RAC) and Fly ash (class F) based concrete is predicted using Artificial Neural Network (ANN), Multigene Genetic Programming (MGGP) and Model Tree (MT). Four sets of models were designed for per cubic proportions of materials, Properties of materials and non-dimensional parameters as input parameters. The study shows that the predicted 28 day strength is in good agreement with the observed data and also generalize well to untrained data. ANN outperforms MGGP and MT in terms of model performance. Output of the developed models can be presented in terms of trained weights and biases in ANN, equations in MGGP and in the form of series of equations in MT. ANN, MGGP and MT can grasp the influence of input parameters which can be seen through Hinton diagrams in ANN, input frequency distribution in MGGP and coefficients of input parameters in MT. The study shows that these data driven techniques can be used for developing model/s to predict strength of concrete with an acceptable performance

    Compressive Strength of Fiber Reinforced Fly- Ash Concrete using Regression Model

    Get PDF
    In construction industry, strength is a primary criterion in selecting a concrete for a particular application. Concrete used for construction gains strength over a long period of time after pouring the concrete. The characteristic strength of concrete is defined as the compressive strength of a sample that has been aged for 28 days. Neither waiting 28 days for such a test would not serve the rapidity of construction, nor would neglecting it serve the quality control process on concrete in large construction sites. Therefore, rapid and reliable prediction of the strength of concrete would be of great significance. On this backdrop, the method is proposed to establish a predictive relationship between properties and proportions of ingredients of concrete, compaction factor, weight of concrete cubes and strength of concrete whereby the strength of concrete can be predicted at early age. A mathematical model for the prediction of compressive strength of fiber reinforced concrete containing fly ash was performed using statistical analysis for the concrete data obtained from the experimental work done in this study. The multiple linear regression model yielded fairly good correlation coefficient for the prediction of compressive strength for 3 days curing

    Prediction of Compressive Strength of Self-Compacting Concrete (SCC) with Silica Fume Using Neural Networks Models

    Get PDF
    Self-Compacting Concrete (SCC) is a relatively new type of concrete with high workability, high volume of paste and containing cement replacement materials such as slag, natural pozzolana and silica fume. Cement replacement materials provide a wide variety of benefits such as lower cost, reduced consumption of natural resources, reduced carbon dioxide emissions and improved fresh and hardened properties. SCC is used in many applications such as sections with congested reinforcement and high rise shear walls and there is a need for the prediction of the performance of SCC used. Artificial Neural networks (ANN) are widely used in civil engineering for the prediction of the performance of some engineering materials such as compressive strength and durability. However, currently, studies on SCC containing silica fume are very rare. In this paper, an artificial neural networks (ANN) model is developed to predict the compressive strength of SCC with silica fume using the Levenberg-Marquardt back propagation algorithm based on a database from 366 experimental studies. The model developed was correlated with a nonlinear relationship between the constituents (input) and the compressive strength of SCC (output). To evaluate the predictive ability and generalize the developed model, other researchers’ experimental results were compared with the model prediction and good agreements are found. A parametric study was conducted to study the sensitivity of the ANN proposed model to some parameters such as water/binder ratio and superplasticizer content. The model developed in this study can potentially be used for SCC compressive strength prediction with very acceptable results and a high correlation coefficient R2=0.93. The developed model is practical, easy to use and user friendly. Doi: 10.28991/cej-2021-03091642 Full Text: PD

    Sustainable design of self-consolidating green concrete with partial replacements for cement through neural-network and fuzzy technique

    Get PDF
    In order to achieve a sustainable mix design, this paper evaluates self-consolidating green concrete (SCGC) properties by experimental tests and then examines the design parameters with an artificial intelligence technique. In this regard, cement was partially replaced in different contents with granulated blast furnace slag (GBFS) powder, volcanic powder, fly ash, and micro-silica. Moreover, fresh and hardened properties tests were performed on the specimens. Finally, an adaptive neuro-fuzzy inference system (ANFIS) was developed to identify the influencing parameters on the compressive strength of the specimens. For this purpose, seven ANFIS models evaluated the input parameters separately, and in terms of optimization, twenty-one models were assigned to different combinations of inputs. Experimental results were reported and discussed completely, where furnace slag represented the most effect on the hardened properties in binary mixes, and volcanic powder played an effective role in slump retention among other cement replacements. However, the combination of micro-silica and volcanic powder as a ternary mix design successfully achieved the most improvement compared to other mix designs. Furthermore, ANFIS results showed that binder content has the highest governing parameters in terms of the strength of SCGC. Finally, when compared with other additive powders, the combination of micro-silica with volcanic powder provided the most strength, which has also been verified and reported by the test results

    Deep Neural Network Regression with Advanced Training Algorithms for Estimating the Compressive Strength of Manufactured-Sand Concrete

    Get PDF
    Manufactured sand has high potential for replacing natural sand and reducing the negative impact of the construction industry on the environment. This paper aims at developing a novel deep learning-based approach for estimating the compressive strength of manufactured-sand concrete. The deep neural networks are trained by  the advanced optimizers of Root Mean Squared Propagation, Adaptive Moment Estimation, and Adaptive Moment Estimation with Nesterov momentum (Nadam). In addition, the activation functions of logistic sigmoid, hyperbolic tangent sigmoid, and rectified linear unit activation are employed. A dataset including 132 samples has been used to train and verify the deep neural networks. Stone powder content, sand ratio, quantity of cement, quantity of water, quantity of coarse aggregate, quantity of water-reducer, quantity of manufactured sand, concrete slump, unit weight of concrete, and curing age are  utilized as predictor variables. Based on experiments, the Nadam-optimized model used with the sigmoid activation function has achieved the most desired performance with root mean square error (RMSE) = 1.95, mean absolute percentage error (MAPE) = 3.04%, and coefficient of determination (R2) = 0.97. Thus, this neural computing model is recommended for practical purposes because it can help to mitigate the time and cost dedicated to laboratory work

    A Novel Artificial Neural Network to Predict Compressive Strength of Recycled Aggregate Concrete

    Get PDF
    Most regulations only allow the use of the coarse fraction of recycled concrete aggregate (RCA) for the manufacture of new concrete, although the heterogeneity of RCA makes it difficult to predict the compressive strength of concrete, which is an obstacle to the incorporation of RCA in concrete production. The compressive strength of recycled aggregate concrete is closely related to the dosage of its constituents. This article proposes a novel artificial neural network (ANN) model to predict the 28-day compressive strength of recycled aggregate concrete. The ANN used in this work has 11 neurons in the input layer: the mass of cement, fly ash, water, superplasticizer, fine natural aggregate, coarse natural or recycled aggregate, and their properties, such as: sand fineness modulus of sand, water absorption capacity, saturated surface dry density of the coarse aggregate mix and the maximum particle size. Two training methods were used for the ANN combining 15 and 20 hidden layers: Levenberg–Marquardt (LM) and Bayesian Regularization (BR). A database with 177 mixes selected from 15 studies incorporating RCA were selected, with the aim of having an underlying set of data heterogeneous enough to demonstrate the efficiency of the proposed approach, even when data are heterogeneous and noisy, which is the main finding of this work
    corecore