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A R T I C L E  I N F O   

Keywords: 
Supplementary cementitious materials 
Blended cement concrete 
Strength prediction 
Durability prediction 
Regression model 

A B S T R A C T   

Partially replacing ordinary Portland cement (OPC) with low-carbon supplementary cementitious materials 
(SCMs) in blended cement concrete (BCC) is perceived as the most promising route for sustainable concrete 
production. Despite having a lower environmental impact, BCC could exhibit performance inferior to OPC in 
design-governing functional properties. Hence, concrete manufacturers and scientists have been seeking methods 
to predict the performance of BCC mixes in order to reduce the cost and time of experimentally testing all al
ternatives. Machine learning algorithms have been proven in other fields for treating large amounts of data 
drawing meaningful relationships between data accurately. However, the existing prediction models in the 
literature come short in covering a wide range of SCMs and/or functional properties. Considering this, in this 
study, a non-linear multi-layered machine learning regression model was created to predict the performance of a 
BCC mix for slump, strength, and resistance to carbonation and chloride ingress based on any of five prominent 
SCMs: fly ash, ground granulated blast furnace slag, silica fume, lime powder and calcined clay. A database 
from>150 peer-reviewed sources containing>1650 data points was created to train and test the model. The 
statistical performance was found to be comparable to that of existing models (R = 0.94–0.97). For the first time, 
the model, Pre-bcc, was also made available online for users to conduct their own prediction studies.   

1. Introduction 

Concrete production is one of the predominant factors contributing 
to the environmental impacts of the built environment [1]. Ordinary 
Portland cement (OPC) production is the major contributor to the 
environmental impact of concrete. One tonne of OPC production pro
duces approximately 900 kg of CO2, half of which directly results from 
the calcination of the raw materials [2]. Blended cement concrete (BCC) 
is a type of concrete where OPC is partially replaced with various 
pozzolanic materials called supplementary cementitious materials 
(SCMs). The higher the SCM dosage, the more sustainable the concrete 
product is expected to be comparably [3]. In today’s market, cements 
contain, on average, around 20 % of SCMs [4]. Apart from under- 
researched SCMs with minimal commercial presence, such as munic
ipal incinerated bottom ash (MIBA), bauxite residue and glass slag, the 
most used SCMs, which are considered in the scope of this paper, are fly 

ash (FA), which is a by-product of coal combustion, ground granulated 
blast-furnace slag (GGBS), which is a by-product of steel manufacturing, 
silica fume (SF), which is generated from glass manufacturing, finely 
ground limestone which is referred to lime powder (LP) and kaolinitic 
clays calcined (CC) at a temperature between 700 ◦C and 800 ◦C [5]. 
Table 1 provides data related with the available SCM types as well as the 
commercial utilization of those in concrete. 

The impact of replacing OPC with SCMs on the produced concrete, as 
will be explained in the next section, varies widely depending on the 
SCM type, the dosage and the mix design [6]. Hence, optimizing the 
properties of a BCC utilizing one or more SCMs in an attempt to produce 
a sustainable concrete mix is a difficult, time-consuming and only 
possible on an experimental case-by-case basis. This signifies the need to 
predict the properties of a BCC mix and reduce the size of the designed 
experimental campaign. The use of machine learning regression models 
enables the overcoming of this challenge through its ability to treat large 
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(N. Tošić), albert.de.la.fuente@upc.edu (A. de la Fuente).  

Contents lists available at ScienceDirect 

Construction and Building Materials 

journal homepage: www.elsevier.com/locate/conbuildmat 

https://doi.org/10.1016/j.conbuildmat.2022.129019 
Received 14 February 2022; Received in revised form 1 July 2022; Accepted 29 August 2022   

mailto:hisham.hafez@epfl.ch
mailto:ateirelb@digified.io
mailto:rawaz.kurda@tecnico.ulisboa.pt
mailto:nikola.tosic@upc.edu
mailto:albert.de.la.fuente@upc.edu
www.sciencedirect.com/science/journal/09500618
https://www.elsevier.com/locate/conbuildmat
https://doi.org/10.1016/j.conbuildmat.2022.129019
https://doi.org/10.1016/j.conbuildmat.2022.129019
https://doi.org/10.1016/j.conbuildmat.2022.129019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conbuildmat.2022.129019&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Construction and Building Materials 352 (2022) 129019

2

amounts of data and produce useful regressions. Hence, in this paper, a 
non-linear multi-layered machine learning regression model (Pre-bcc) 
was developed to predict the performance of a binary or ternary BCC 
mix based on any of five prominent SCMs: fly ash, ground granulated 
blast furnace slag, silica fume, lime powder and calcined clay. The 
structure of the paper is as follows: Section 2 presents a literature review 
on SCMs and their effects on BCC properties; Section 3 describes the Pre- 
bcc regression model; Section 4, presents and discusses the results ob
tained by using the model; Section 5 contains a description of the model 
validation process; and Section 6 concludes the paper. 

2. Literature review 

2.1. Characterization of SCM 

In a blended cement concrete mix, cement is partially replaced with 
an SCM. An SCM reacts either as a hydraulic, pozzolanic or a filler 
material, which means that its contribution to the binding characteris
tics is governed by a combination of its reaction with water similar to 
cement, its reaction with the chemical phases resulting from cement 

hydration processes or as a chemical catalyst, respectively [8]. Hence, 
the intrinsic factors that influence the performance and the degree of 
reactivity of an SCM are its chemical and physical composition. As 
shown in the ternary graph in Fig. 1, the chemical composition of any 
SCM is mostly a mix of calcium, silicon, and aluminium oxides. 

The reactivity of an SCM is determined through the combined effect 
of the percentage of soluble siliceous, aluminosiliceous or calcium alu
minosiliceous contents, which is a chemical characteristic and/or the 
surface area which is physical. The higher both values are, the more 
reactive an SCM is expected to be [9]. A summary of the values of the 
average surface area of the five SCMs understudy is presented in Table 2. 

2.2. Functional properties of BCC 

2.2.1. Workability 
Workability is the ease by which fresh concrete can be cast, com

pacted (with the means available) and finished in the formwork for the 
intended shape. The more workable a concrete mix is, the easier it flows, 
which makes self-compacting concrete (SSC) a special concrete with the 
highest workability, more suitable for use in heavily reinforced elements 
[18]. Workability could be attributed to the available free water in the 
concrete mix, which is dependent on the ratio between the volume of the 
paste and the volume of the aggregates [19]. Workability as a fresh 
property of concrete is universally measured using a standard slump test 

Table 1 
A comparison between the estimated global yearly production and use in con
crete for several SCMs [7].  

SCM Estimated global production 
volume (Mt/year) 

Estimated current use as an 
SCM (Mt/year) 

FA 700–1000 350–400 
GGBS 300–350 350–400 
SF 1–3 1–2 
CC large accessible reserves 2–3 
LP large accessible reserves 250–300 
MIBA 30–60 0 
Bauxite 

residue 
100–150 0 

Waste glass 50–100 0  

Fig. 1. A ternary diagram showing the chemical composition of OPC versus the SCMs under study.  

Table 2 
A review from the literature of the physical characteristics of the SCMs under 
study.   

Shape Reference Surface area (m2/kg) Reference 

FA Spherical [10] 300–500 [15] 
GGBS Angular [11] 350–450 [16] 
SF Spherical [12] 10,000–20,000 [17] 
LP Angular [13] 700–1300 [17] 
CC Angular [14] 15,000–20,000 [9]  
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such as ASTM C143/C143M-00 [20]. Because of the glassy structure of 
GGBS, the particles require less water to be coated, which causes a better 
slump [21]. The spherical shape of the FA particles allows it to cause a 
ball bearing effect reducing the water demand of the concrete mix as 
well [22]. Moreover, the high surface area of LP, while this being 
chemically inert, allows it to act well as a filler and reduce the water 
demand of concrete increasing the slump [17]. While replacing OPC by 
FA at any percentage would increase slump, it is reported to only be the 
case for up to 50 % GGBS and 15 % LP replacement rates. At the same 
time, the large surface area of both SF and CC, acts counter-effectively to 
increase the water demand for BCC concrete mixes and decrease their 
slump. The higher the replacement percentage of both SCMs for OPC, 
the higher the expected drop in slump is [8]. 

2.2.2. Compressive concrete strength 
Compressive concrete strength (fc) is the most representative indi

cator of the mechanical performance of a concrete mix, and other me
chanical properties (i.e., tensile strength, modulus of elasticity) can be 
directly correlated with it for design purposes. A standard test BS EN 
12390–3 to determine fc should be carried out at 28 days [23]. The 
governing mix design parameter in most concrete types responsible for 
determining its strength is the water to binder (w/b) ratio [24]. Hence, 
the use of superplasticizers (SPs) to decrease the w/b ratio at a fixed 
slump class would increase strength [25]. However, in ultra-high 
strength concrete, the quality of the used aggregates become the 
dominant parameter [26]. The governing chemical reaction among 
SCMs when replacing OPC is pozzolanic [27]. The high pH level (>12) 
of the pore solution dissolves the inert anhydrous coating of FA and 
GGBS particle releasing their silicon, calcium and aluminium ions into 
the solution. The latter then reacts with the calcium hydroxide from the 
OPC hydration to form calcium silicate hydrates that occupy a larger 
volume and exhibit higher strength than the calcium hydroxide [28]. 
This latent hydraulic behaviour dictates that BCC containing FA and 
GGBS slow down the initial setting of OPC and hence decrease the early 
age strength of the binder. However, up until 30 % and 70 % replace
ment of OPC respectively, the strength of concrete increases marginally 
(<10 %) at curing age of 28 days and more at 90 days (>30 %) [29]. 
Although the chemical reaction by which SF and CC develop their 
strength-carrying calcium silicate hydrate phases is also pozzolanic, the 
mechanism is different than that of FA and GGBS. Owing to their 
extremely fine particle size, both SCMs are very reactive when replacing 
OPC enabling the densification and thickness reduction of the interfacial 
transitional zone of the binder matrix [30]. This leads to very early 
setting for the resulting BCC and higher early strength than for BCC with 
FA and GGBS. This means that BCC with SF and CC is expected to exhibit 
up to 40 % higher strength at both 28 and 90 days [31]. Regarding LP, 
the very large surface area, larger than FA and GGBS but smaller than 
that of SF and CC, allows for more nucleation and hydration of OPC, 
hence increasing the strength of the resulting BCC. However, due to the 
limited pozzolanic activity of LP as an SCM, its minor increase of 
strength (<15 %) is only limited to when it replaces 10–15 % of OPC [7]. 

2.2.3. Chloride ingress 
Chloride penetration is the primary mechanism for the corrosion of 

steel reinforcement in reinforced concrete. For the corrosion to be 
initiated, which means the compromise of the concrete cover, a 
parameter called the chloride threshold must be quantified [32]. The 
chloride threshold potential of a concrete mix is dependent on a set of 
exposure conditions such as temperature, relative humidity (RH) and 
percentage of free chlorides as well as intrinsic variables such as the 
cement type and w/b ratio [33], which determine the chloride diffusion 
coefficient of the matrix. A standard test to measure the resistance of a 
concrete mix against chloride ingress, which is going to be the test for 
which the data is collected in this paper, is called the Rapid Chloride 
Penetration Test (RCPT) according to ASTM C1202 – 18 [34]. The 
addition of SCMs as a partial replacement of OPC enhances the 

microstructure of the binder matrix when it comes to durability against 
chloride penetration. In the case of LP, the reason is the filler effect 
which causes an increase of the effective water to cement ratio and 
provides a larger space for the formation of hydration products [35]. For 
all other SCMs, the pozzolanic reaction replaces the Portlandite with 
more calcium silicate hydrate phases leading to the formation of dense 
and less permeable microstructure. Both factors lead to less perme
ability, which enhances the durability of concrete to chloride ingress 
[36]. It is reported that SF is the SCM with the lowest permeability as it 
replaces more OPC, followed by CC, FA, GGBS and finally LP [37,38]. 
However, it is important to note that durability of reinforced concrete is 
not only dependant on the permeability of the matrix. It is the coupled 
effect of that and the chloride threshold of the binder, which is the 
chloride concentration at which steel reinforcement corrosion would be 
initiated [39]. Although replacing OPC with CC reduced the perme
ability of concrete significantly, the chloride threshold of BCC with CC is 
0.2 % by mass of binder, whereas for OPC it is 0.4 % and for FA-based 
BCC 0.6 % [37]. 

2.2.4. Carbonation 
Steel reinforcement embedded in reinforced concrete elements is 

protected by the passive cover layer with a high pH (>11). The reaction 
between concrete and the CO2 from the environment to which the 
concrete element is exposed causes Portlandite and other calcium- 
containing chemical phases within concrete to react and form calcium 
carbonates [40]. The durability of a concrete against carbonation- 
induced corrosion of steel reinforcement is hence linked to the resis
tance of the concrete element to such carbonation process [41]. 
Although SCM additions to concrete yield a denser microstructure, there 
is unanimous agreement within the published articles that BCC has a 
lower resistance to carbonation compared with OPC concrete [42]. The 
reason is that the pozzolanic reaction consumes Portlandite in the ma
trix, reducing the pH and increasing the likelihood of carbonation 
occurrence. Hence, regardless of the type, it is expected that FA, GGBS, 
SF, LP and CC would, if replaced OPC in a mix, render the resulting 
reinforced BCC less resistant to carbonation [43]. Accordingly, the use of 
BCC would be of interest in applications where concrete carbonation is 
not critical or coupled with corrosion-resistant reinforcement such as 
Fibre reinforced polymer or synthetic fibres which are also gaining a lot 
of research attention [44–46]. 

2.3. Summary of BCC functional performance 

A summary of the reviewed impacts of utilizing each of the five SCMs 
in BCC with varying percentages of OPC replacement is shown in 

Table 3 
A review of the impact of replacing OPC with FA, GGBS, SF, LP and CC on the 
functional performance of concrete.  

SCM % 
Replacing 
OPC by 
mass 

Predicted effect on the resulting BCC mix sustainability 
parameters compared to OPC concrete 
Functional performance parameter 
Slump 28 day 

compressive 
strength 

Resistance 
to chloride 
ingress 

Resistance to 
carbonation 

FA < 30 % + + / + – 
> 30 % + – + + – – 

GGBS < 70 % + / + – 
< 70 % / – + + – – 

SF < 15 % – – + + – 
> 15 % – – / + + – – 

LP < 15 % + / + – 
> 15 % / – + + – – 

CC < 35 % – – + + – 
> 35 % – – / + + – – 

+ + = significant increase; + = marginal increase; / = no effect; – = marginal 
decrease; – – = significant decrease. 
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Table 3. 

2.4. Prediction modelling 

Whether it being a wide experimental program in a research centre 
or a pre-execution trial testing for a construction project, it is inefficient 
in terms of resources consumption and cost to do all these tests on all 
possible alternatives being compared [47]. While it is relatively 
straightforward to test slump and strength, long term durability testing 
is time-consuming and, frequently, incompatible with time-span of the 
project. Testing the durability of concrete against chloride ingress—for 
example—through the ponding or immersion test such as ASTM C1556 
and ASTM C1543 is expensive [36]. Similarly, testing the natural 
carbonation for concrete samples would take months or even years 
depending on the mix and exposure conditions [40]. Hence, several 
researchers worked in recent years on developing regression models for 
slump, strength, chloride ingress and carbonation of concrete. The 
concrete industry is not swift in adopting technologies such as 
regression-based prediction of the concrete mix properties due to both 
structural safety and contractual reasons [48]. However, an increasing 
number of companies are using in-house datasets to train their regres
sion models meant to partially replace the strength testing as a quality 
control method, but as a first screen to minimize the testing quantities 
[49]. 

Regression is a statistical method used to determine the strength and 

character of the relationship between one dependent variable and a 
series of other variables. In applications such as that of concrete prop
erties, where the relationship is not necessarily known, it is preferred to 
use machine learning (ML) methods to build the regression models [24]. 
ML is an application of artificial intelligence (AI) that provides systems 
with the ability to automatically learn and improve from experience 
without being explicitly programmed. ML techniques have been widely 
used in many engineering fields due to their ability in prioritization, 
optimization, planning, and forecasting. Examples of such techniques 
that have been used for the estimation of concrete performance in
dicators include Artificial Neural Network (ANN), Genetic Programming 
(GP), Support Vector Machine (SVM) and Biogeography-Based Pro
gramming (BBP) [50]. 

Hoang and Pham [51] and Cihan et al. [52] both included a slump 
prediction model using several machine learning algorithms that 
consider the mass per unit volume of coarse aggregates, fine aggregates, 
water, superplasticizers and cement. Although the regression results 
showed good statistical accuracy, the models only included OPC as a 
binder. Chen et al. [53] and Chandawani et al. [19] included FA and 
GGBS to the input variables of their models and utilized parallel hyper- 
cubic gene expression and ANNs, respectively. Although this is consid
ered an improvement respect to the two former models, it fails at 
including the most representative SCMs. Scarcity of models covering the 
utilization of more than one SCM in concrete was also detected con
cerning the prediction of fc,28, resistivity to chloride penetration and 

Table 4 
A review of the number of independent and target variables from concrete prediction models found in the literature.  

Author Year Ref Property variables CEM I SCM CA FA SP Water Strength %CO2 %RH time 
FA GGBS SF 

Chandawani 2014 [19] Slump 6 √ √ – – √ √ √ √ – – – – 
Chen 2014 [53] 7 √ √ √ – √ √ √ √ – – – – 
Cihan 2019 [52] 5 √ – – – – √ √ √ √ – – – 
Hoang and Pham 2016 [51] 5 √ – – – √ √ √ √ – – – – 
Al-Shamiri 2019 [24] Compressive strength 6 √ √ – – √ √ √ √ – – – – 
Golafshani 2020 [50] 7 √ √ √ – √ √ √ √ – – – – 
Naseri 2020 [54] 5 √ – – – √ √ √ √ – – – – 
Yu 2018 [55] 7 √ √ √ – √ √ √ √ – – – – 
Ghafoori 2013 [56] Chloride Ingress 7 √ √ – √ √ √ √ √ – – – – 
Inthata 2013 [57] 6 √ √ – – √ √ √ √ – – – – 
Mohamed 2018 [58] 8 √ √ √ √ √ √ √ √ – – – – 
Najimi 2019 [59] 7 √ √ – √ √ √ √ √ – – – – 
Felix 2019 [60] Carbonation 8 √ √ √ √ – – – – √ √ √ √ 
Kellouche 2019 [61] 6 √ √ – – – – – √ – √ √ √ 
Luo 2014 [62] 4 √ – – – – – – √ – – √ √ 
Taffese 2015 [63] 10 √ √ √ √ √ √ √ √ √ – – √  

Table 5 
A review of the statistical performance of the concrete performance prediction models reviewed from the literature.  

Author Property Training 
points 

Testing 
points 

R Best 
RMSE 

unit MAPE* 
(%) 

Regression model 

Chandawani Slump 395 85  0.98 2.83 mm 1.38 Hybrid GA-Artificial Neural Network (ANN) 
Chen 70 24  – 90 – Parallel hyper-cubic gene expression programming (GEP) 
Cihan 80 35  – 24.7 – Decision Tree, Random Forrest, support vector machine (SVM), 

partial least squares, ANNs, and Fuzzy Logic 
Hoang 76 19  0.97 5.4 3.68 SVM 
Al-Shamiri Compressive 

strength 
246 82  0.99 1.05 MPa 1.54 Extreme learning machine, ANN 

Golafshani 772 258  0.97 4.96 – ANN and Adaptive Neuro-Fuzzy Inference System (ANFIS) 
Naseri 174 58  – 4.58 – Soccer League Competition, Water Cycle Algorithm, Genetic 

Algorithm, SVM, ANN, and Linear Regression 
Yu 1234 527  0.97 10.4 14 Cat swarm optimisation algorithm, SVM 
Ghafoori Chloride ingress 60 12  – – Coulomb 5.35 Comparing linear, non-linear regression with BP-ANN 
Inthata 216 54  0.96 479 12.72 BP-ANN 
Mohamed 50 22  0.95 – 5.61 ANN 
Najimi 50 22  – 176 – ANN based on Forward feed artificial bee colony algorithm 
Felix Carbonation 

Depth 
223 56  0.93 – mm/ 

day0.5 
– BP-ANN 

Kellouche 240 60  0.98 – – BP-ANN 
Luo 30 5  – – 5.04 Particle Swarm Optimization (PSO), BP ANN 
Taffese 23 10  – 0.49 – Neural Network, Decision Tree, Bagging and Boosting ML algorithms 

*MAPE (Mean Absolute Percentage Error). 
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Fig. 2. A flow diagram of the pre-processing algorithm for the multi-layer regression model proposed.  
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natural carbonation. A summary of the input variables, type of predic
tion model and the number of points used to generate it from the studied 
literature could be found in Tables 4 and 5. The models chosen within 
the search scope are those correlating between these four functional 
parameters and BCC mixes containing one or more of the five SCMs 
under study. 

An apparent gap found in the surveyed literature is the absence of 
any model that predicts the performance of lime powder or calcined clay 
among the rest of the SCMs. Besides, existing prediction models for 
chloride penetration and carbonation resulted to provide results with 
significant dispersion. Also, according to Kurda et al. [23], the cement 
grade (42.5 or 52.5) makes the fundamental difference in the strength of 
the resulting concrete mix in which it is used. Hence, it is also required to 
consider the cement grade within the parameters under study in the 
regression models. Finally, the sample sizes of most of the proposed 
models in the literature are small (<30 data points per independent 
variable). 

3. The Pre-bcc regression model 

Due to the complexity of the regression models under study and the 
objective to cover the gaps in the reviewed literature, it was decided to 
explore several machine learning algorithms and optimize their use 
according to each problem. Machine learning, as a data-driven tool, 
focuses on the development of computer programs that can access data 
and use it to auto-learn. Given a sample of observations S =

{(x , y)|x ∈ Rn,y ∈ R}, where x is the vector of independent variables 
and y is the target variable, the regression problem is the search through 
the space of functions (F : Rn→R) for some function f ∈ F that minimizes 
a defined loss function that describes the discrepancy between the pre

diction f
(

x
)

and the observed value y. The loss function used 

throughout the regressors of Pre-bcc is the mean-squared prediction 
error (MSPE), Equation (1). 

MSPE =

∑n
i=1(EXPi − PREi)

2

n
(1) 

The search method through the function space is defined by: (1) the 
regression algorithm or technique and (2) the set of parameters related 
to the search for the learned function f not part of its definition. The 
targeted variables for the regressors are the concrete properties tackled 

within the Pre-bcc framework: slump, fc,28, resistance to chloride ingress- 
induced corrosion through electric resistivity and natural carbonation 
rate. The first distinguished feature of the developed regressor is that it 
includes 10 independent variables: The binder content, w/b ratio, 
cement-to-binder ratio, five different types of SCMs: FA, GGBS, SF, CC 
and LP, coarse aggregate content-to-binder ratio, fine aggregate content- 
to-binder ratio, and finally, superplasticizer dosage-to-binder ratio. 

3.1. Stack generation 

The regression was addressed using ensemble learning methods 
where multiple regression learners are grouped together to provide the 
final prediction [64]. There are multiple ways of grouping learners to 
create an ensemble, the one used here is stacking or stacked general
ization [65]. The first level (L1) is made up of a set of m learners 
hi : x ∈ Rn→y ∈ R, each of which is a result of searching a subset Si⊂S 
rather than the entire space. The output of these different learners is 
then “stacked” together along with the inputs as a vector that is fed into 
the second layer learner: g : z ∈ Rn+m→y ∈ R so that the final output of 
the system is y = g(h1(x ), ...,hm(x ); x ). 

There is a wide range of machine learners that could be used for 
boosting model, some of which were used in previous papers reviewed 
such as Support Vector Machine, Boot Strap Aggregations and Genetic 
Algorithms [19,48,55]. The learners chosen for the Pre-bcc regression 
model were the Random Forrest, Extreme Gradient (XG) Boost, Bayesian 
Ridge and Multi-layer Perceptron, which were implemented using off- 
the-shelf python codes from the scikit library [54]. After several itera
tions, the XGBoost model was used for all L1 learners. The final regressor 
is found by testing all four variants for whichever produces the lowers 
error. 

As seen in Fig. 2, the functional database was randomly divided into 
80 % training and 20 % testing groups. The training data were used to 
develop the model parameters, whereas the test data were used only to 
validate the model. Part of the challenge with this approach was how to 
define outliers when the underlying system being approximated is non- 
linear and multi-dimensional. The approach selected to identify outliers 
consisted in building a regression model and defining outliers as samples 
where the prediction error exceeds the criteria established by Naseri 
et al. [55]. As the L1 regressors hi are built to each cover a subset Si, the 
data ∪m

i=0Si are maintained and if the 
⃒
⃒∪m

i=0Si
⃒
⃒
〉
0.8|S|, then the model was 

considered a candidate and the data was saved. At the end of the pre- 

Fig. 3. The number of times each mix constituent was present in the references (left) and the number of references in each model (right) in the database developed 
for the Pre-bcc regression model generation. 
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processing, the data associated with the candidate that has the lowest 
MSPE was then saved as the input data for the actual model generation 
ensuring that the output data was composed of disjoint subsets each of 
which can be adequately covered by a weak learner. This allowed using 
the same control flow for model generation and pre-processing (outlier 
detection), the difference being that model generation does not actually 
throw away any data. 

3.2. Data collection 

In order to build a statistically sound database for the four functional 
properties understudy, 1,683 data points were collected from published 
papers as shown in the supplementary materials I. The mixes were 
extracted from 153 journal articles published between 1997 and 2020 
[4,8–13,16–18,21,26,29,36–39,53,58–59,67–197]. The composition 
and breakdown of the database is shown in Figs. 3 and 4. Note that the 
total number of the values represented in the pie charts differ from the 
total points surveyed since a SCM could have been tested against more 
than one property. 

The online databases used were EThOS, Google scholar, SCOPUS, 
Science Direct and ResearchGate. The search words were different 

combinations of the names of the SCMs and the functional properties 
under investigation. The inclusion criteria were that: 1) the tests done on 
the concrete mixes were following the ACI, EN or RILEM standards, 2) 
the study is either a dissertation or a peer-reviewed article as a confer
ence proceeding or a journal article and 3) the concrete mixes reported 
in the study include one or more of the SCMs and these were tested 
against one or more of the functional properties. In total, 12 input var
iables constitute the concrete mix. As shown in Fig. 5, for the strength 
model, as per the recommendations from the literature, the cement 
content was sub-divided into two sub-variables which indicate the 
cement strength (CEM I-42.5 and CEM I-52.5). In case the differentiation 
was not made in the original source, cement was assumed to be CEM I- 
42.5. 

It is worth noting that an important feature in the Pre-bcc model is the 
ability to predict the carbonation rate of the BCC mix based on accel
erated or natural carbonation experimental results. In order to convert 
the input data of the accelerated carbonation rate Ka to natural 
carbonation rate Kn, the Equation (2) is used, where CCn is the natural 
carbon concentration, assumed to be 0.03 %, and CCa is the carbon 
concentration inside the testing chamber (%) [64]. 

Kn = Ka

̅̅̅̅̅̅̅̅̅
CCn

CCa

√

(2)  

3.3. Model generation 

The approach to the process of generating learners hi at L1 as well as 
selecting the subset of samples Si was not an off-the-self implementation. 
The intuition behind the approach is that the data used for Pre-bcc comes 
from different sources with potentially different conditions that may be 
difficult to fit together (especially in the presence of outliers when the 
model generation is used in pre-processing). Moreover, since multiple 
learners exist, each set of learners might be focusing on the data from a 
subset of sources Bk⊂S. However, if sources were randomly grouped, it is 
likely that some of the data subsets might be over or under fit. In line 
with the concept of boosting, where multiple weak learners are created 
in stages similar to the concept of gradient descent steps [198], a sub- 
routine was implemented to develop subsequent learners by removing 
the sources that fit first so that when a learner hi is found by using cross- 
validation grid search and fit on a subset Si, only sources that have any 
elements above a certain error are used for the subsequent learner. If the 
coverage of the current hi is below a certain amount, the model is 
rejected, and the algorithm terminates when the number of elements out 
of coverage is<10 % of the data. The algorithm terminates without 

Fig. 4. The meta-analysis of the sources of the publications (left) and the year of publications in the database developed for the Pre-bcc regression model generation.  

Fig. 5. A flow diagram of the number and name of the input variables for each 
of the models developed to predict each of the functional properties of BCC. 
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Fig. 6. A flow diagram showing the Pre-bcc regression model generation algorithm.  
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convergence if multiple iterations yield inadequate coverage, in which 
case the data is reshuffled, and the algorithm search for a new set of L1 
models. The flow chart in Fig. 6 represents this process. 

4. Results and discussions 

The model selection process described above targets first the opti
mization of the learner type for the second level of the regression model. 
Table 6 shows the optimized learner type for level 2 of each model as 
well as the training/test data sizes and the statistical performance of the 
models. The prediction accuracy was measured using 3 different statis
tical metrics; MSPE as per equation (1), the mean absolute percentage 
error (MAPE) as in equation (3), and the correlation coefficient R which 
is the slope of the linear plot shown in Fig. 7 below. The plot compares 
the actual experimental values of the (testing data set) that was 
randomly separated at the data input stage (20 % of the database) 
against the predicted values using the regression models. 

In Equation (3), n is the number of times the summation iteration 

happens, At is the true value and Ft is the predicted one: 

MAPE =
1
n
∑n

t=1

⃒
⃒
⃒
⃒
At − Ft

At

⃒
⃒
⃒
⃒ (3) 

For each of the four target variables, the evaluation of the perfor
mance and behaviour of the regression models could be summarized as 
follows:  

1. Fig. 7 shows the plot of the predictions vs actual values over the test 
dataset to visualize the goodness of the fits. As it can be seen, the 
models provide a suitable fit from the mix design point of view and 
the design governing variables. As it was expected, the parameters 
with more data present such as slump and strength, result in slightly 
better performing models in terms of accuracy of predictions (R2 =

0.9) compared to chloride and carbonation ones (R2 = 0.88).  
2. In statistics and machine learning, the bias represents the ability of 

the learner to fit the given dataset. The higher the bias, the less 
reliable a prediction model is. An unbiased learner would converge 
to the mean of the dataset, so it would be expected that the residual 
error from the predictions are normally distributed with zero mean. 
Fig. 8 shows the plots of the residual error in each of the In the Pre-bcc 
models vs predictions over the entire set in order to provide a mea
sure of bias. The models show unnoticeable bias since the residuals 
appear as a normal distribution with zero mean throughout the 
different regions of the data set. The slump variable does show bias 
since the residuals are mostly positive in the lower values of the 
prediction and mostly negative in the upper values. The bias is 
believed to be a result of a typical error in the nature of the sampling 
process for the slump data from the experimental database results. In 
a slump cone test, the researcher sometimes resort to the EN 206–01 

Table 6 
The optimized learner type for level 2 of each regression model and its statistical 
performance.  

Variable L2 learner 
type 

Training 
Size 

Test 
Size 

Statistical performance 
MSPE MAPE R 

Slump Random 
Forest 

474 74  20.5 %  12.5 %  0.95 

Strength Bayesian 
Ridge 

1090 212  12.0 %  9.0 %  0.96 

Chloride Random 
Forest 

241 33  18.0 %  14.5 %  0.93 

Carbonation XGB 278 34  18.7 %  15.2 %  0.94  

Fig. 7. Predicted vs actual values of the testing sample for the BCC functional parameters of the Pre-bcc prediction model.  
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slump classes (S1, S2, S3, S4 and S5). While building the model, the 
average values were decided as representatives of these classes (20 
mm, 75 mm, 120 mm, 180 mm and 250 mm) which could lead to the 
results being discrete rather than being a continuous range of values. 

5. Model validation 

5.1. Self –Validation 

In order to validate the Pre-bcc model, a web-based tool was imple
mented at https://bcc-regression.online/login/?next=/predict/ [199]. 
This open-accessed platform hence allows users to test the claimed ca
pabilities and accuracy of the model. After registering, using a valid 
email address, a user is allowed to enter, any BCC mix that follows the 
logical constraint that the summation of the volume of all mix constit
uents in a unit volume of concrete equals to 1.0, can be analysed. The 
volume unity constraint is calculated by the tool through assuming the 
specific gravity values reported in Table 7 for each concrete constituent. 

The user is allowed to enter the mixing proportions either by weight, 
or through choosing the ratios tab, the total value for the binder and the 
ratio of each of the remaining constituents to the binder by weight as 
well. BCC mixes entered by the user should also fulfil the range shown in 
Table 8 for each constituent to remain within the data range found in the 

databases -through which the model was developed. 
A check of the mix can be performed to ensure that the values 

entered, whether by mass or by ratios, are compliant with both con
straints: the unity volume in Table 7 and the preferred range of values 
for each constituent in Table 8. Upon initiating the check of the mix, the 
tool would inform the user whether the mix passes requirements and 
recommendations or an error message would be displayed and the user 
asked to re-enter a compliant mix. 

The user is expected, after checking the mix, to click “initiate the 
calculation” in order to produce the values for the slump (in mm), 28- 
day compressive strength (in MPa), the resistivity against chloride 
ingress (in Coulombs) and natural carbonation rate (in mm/year− 1). The 
values are presented to the user numerically. The tool can also extract 
the closest mix from the database in terms of mixing proportions and the 
values that were recorded for each of the functional performances to 
allow the user to compare those with the obtained values from Pre-bcc. 

5.2. Comparison against previous models 

Comparing Pre-bcc regression model developed in this paper against 
the average values of the statistical accuracy of the regression models 
reviewed from the literature in Table 4 and 5 shows that although the 
Pre-bcc model was developed using more data points compared to the 

Fig. 8. The residual error across the four functional parameters of the Pre-bcc prediction models.  

Table 7 
The specific gravity of BCC mix constituents.  

Water Cement FA GGBS SF CC LP Coarse Fine SP 

1  3.15  2.25  2.91  2.25  2.41  2.65  2.61  2.71  1.22  

Table 8 
Preferred range for each of the BCC mix constituents relative to the total binder content.   

Binder 
(kg/m3) 

Ratio of constituent to Binder 
Water Cement FA GGBS SF LP CC Coarse Fine SP 

Minimum 200 0.25 0.1 0 0 0 0 0  0.5  0.5 0 
Maximum 600 1 1 0.5 0.9 0.15 0.2 0.5  5.5  5.5 0.02 
Step 25 0.01 0.01 0.01 0.01 0.01 0.01 0.01  0.01  0.01 0.005  
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others, the statistical accuracy is slightly lower as shown in Table 9. 
However, the comparison would be unrepresentative because the 
average from the literature is insufficient for indicating the superior 
performance of a certain model compared to Pre-bcc. More importantly, 
the advantage of the newly developed model is that it combines, for the 
first time, with solid statistical accuracy the four functional properties 
most significant in concrete research for varying percentages of 
replacement of OPC with all five prominent SCMs. 

5.3. Further development of the model 

Similar to any data-sensitive model such as Pre-bcc, it is always 
recommended to increase the input database in order to enhance the 
reliability and statistical accuracy of the predictions. Hence, it is a work 
in progress to create an open-access database to which researchers could 
contribute their empirical experimental findings on any of the BCC 
mixes under study for any of the four properties. Nevertheless, the model 
has, up to date, dealt with SCMs as materials with homogenous chemical 
and physical characterization and accordingly reactivity while in reality 
they could vary widely depending on the source. Accordingly, the next 
stage of the model would be predict the concrete properties based on 
pozzolanic reactivity parameters such as R3 test reactivity or Frattini 
result. 

6. Conclusions 

The extensive literature review carried out highlights the urgent 
need for approaches enabling the prediction the functional performance 
of BCC mixes. The conclusions drawn from the study are as follows:  

1. The newly developed Pre-bcc regression model is the first, to the best 
of the authors’ knowledge, to predict the slump, strength and resis
tance to chloride ingress and carbonation for BCC mixes based on all 
five considered SCMs.  

2. The model includes filters to avoid the biases in selecting data from 
the same source as well as optimizing the selection of the type of 
learner which guarantees a reliable prediction result.  

3. As it stands, the model achieves, for the wide range explained, an 
average statistical accuracy of 0.96 for R value and 5 % for MAPE.  

4. The model guarantees a reliable, highly accurate prediction of the 
mechanical and durability performance of blended cement concrete 
mixes.  

5. The Pre-bcc regression model is the first, to the best of the authors’ 
knowledge to provide the users with an open-access tool to validate 
the model and implement it in their own studies via this link: 
https://bcc-regression.online/login/?next=/predict/ 

Finally, the biggest contribution of the model is its ability to act as a 
screening tool for researchers and concrete producers to optimize the 
size of their experimental campaigns through accurately and reliably 
predicting the performance of BCC mixes in an attempt to reach a sus
tainable concrete alternative. 
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[46] N. Tošić, S. Aidarov, A. de la Fuente, Systematic review on the creep of fiber- 
reinforced concrete, Materials 13 (22) (2020) 5098. 

[47] Q.F. Liu, M.F. Iqbal, J. Yang, X.Y. Lu, P. Zhang, M. Rauf, Prediction of chloride 
diffusivity in concrete using artificial neural network: Modelling and performance 
evaluation, Construction and Building Materials 268 (2021), 121082. 

[48] J. Pinkse, M. Dommisse, Overcoming barriers to sustainability: an explanation of 
residential builders’ reluctance to adopt clean technologies, Business Strategy and 
the Environment 18 (8) (2009) 515–527. 

[49] M. Ozturan, B.I.R.G.Ü.L. Kutlu, T. Ozturan, Comparison of concrete strength 
prediction techniques with artificial neural network approach, Building research 
journal 56 (1) (2008) 23–36. 

[50] E.M. Golafshani, A. Behnood, M. Arashpour, Predicting the compressive strength 
of normal and High-Performance Concretes using ANN and ANFIS hybridized 
with Grey Wolf Optimizer, Construction and Building Materials 232 (2020), 
117266. 

[51] Hoang, N.D. and Pham, A.D., 2016. Estimating Concrete Workability Based on 
Slump Test with Least Squares Support Vector Regression. Journal of Construction 
Engineering, 2016. 

[52] Cihan, M.T., 2019. Prediction of Concrete Compressive Strength and Slump by 
Machine Learning Methods. Advances in Civil Engineering, 2019. 

[53] L. Chen, C.H. Kou, S.W. Ma, Prediction of slump flow of high-performance 
concrete via parallel hyper-cubic gene-expression programming, Engineering 
Applications of Artificial Intelligence 34 (2014) 66–74. 

[54] https://scikit-learn.org/stable/index.html. 
[55] H. Naseri, H. Jahanbakhsh, P. Hosseini, F.M. Nejad, Designing sustainable 

concrete mixture by developing a new machine learning technique, Journal of 
Cleaner Production 258 (2020), 120578. 

[56] Y. Yu, W. Li, J. Li, T.N. Nguyen, A novel optimised self-learning method for 
compressive strength prediction of high performance concrete, Construction and 
Building Materials 184 (2018) 229–247. 

[57] N. Ghafoori, M. Najimi, J. Sobhani, M.A. Aqel, Predicting rapid chloride 
permeability of self-consolidating concrete: a comparative study on statistical and 
neural network models, Construction and Building Materials 44 (2013) 381–390. 

[58] S. Inthata, W. Kowtanapanich, R. Cheerarot, Prediction of chloride permeability 
of concretes containing ground pozzolans by artificial neural networks, Materials 
and structures 46 (10) (2013) 1707–1721. 

[59] O.A. Mohamed, M. Ati, W. Al Hawat, Implementation of Artificial Neural 
Networks for Prediction of Chloride Penetration in Concrete. International Journal 
of, Engineering & Technology 7 (2.28) (2018) 47–52. 

[60] M. Najimi, N. Ghafoori, M. Nikoo, Modeling chloride penetration in self- 
consolidating concrete using artificial neural network combined with artificial 
bee colony algorithm, Journal of Building Engineering 22 (2019) 216–226. 

[61] E.F. Felix, E. Possan, R. Carrazedo, Analysis of training parameters in the ANN 
learning process to mapping the concrete carbonation depth, Journal of Building 
Pathology and Rehabilitation 4 (1) (2019) 1–13. 

[62] Y. Kellouche, B. Boukhatem, M. Ghrici, A. Tagnit-Hamou, Exploring the major 
factors affecting fly-ash concrete carbonation using artificial neural network, 
Neural Computing and Applications 31 (2) (2019) 969–988. 

[63] D. Luo, D. Niu, Z. Dong, Application of neural network for concrete carbonation 
depth prediction, Purdue University, International conference on durability of 
concrete, 2014. 

[64] W.Z. Taffese, E. Sistonen, J. Puttonen, CaPrM: Carbonation prediction model for 
reinforced concrete using machine learning methods, Construction and Building 
Materials 100 (2015) 70–82. 

[65] J. Mendes-Moreira, C. Soares, A.M. Jorge, J.F.D. Sousa, Ensemble approaches for 
regression: A survey, Acm computing surveys (csur) 45 (1) (2012) 1–40. 

[67] P. Van den Heede, M. De Keersmaecker, A. Elia, A. Adriaens, N. De Belie, Service 
life and global warming potential of chloride exposed concrete with high volumes 
of fly ash, Cement and Concrete Composites 80 (2017) 210–223. 

[68] Adam, A.A., Molyneaux, T.C.K., Patnaikuni, I. and Law, D.W., 2009. Strength, 
sorptivity and carbonation in blended OPC-GGBS, alkali activated slag, and fly 
ash based geopolymer concrete. 

[69] U.z. Zaman, Development of Sustainable and Low Carbon Concretes for the Gulf 
Environment.PhD dissertation, University of Bath, 2014. 

[70] O.S.B. Al-Amoudi, W.A. Al-Kutti, S. Ahmad, M. Maslehuddin, Correlation 
between compressive strength and certain durability indices of plain and blended 
cement concretes, Cement and Concrete Composites 31 (9) (2009) 672–676. 

[71] Y. Alhassan, Y. Ballim, An Experimental Study On Carbonation Of Plain And 
Blended Cement Concrete, International Journal of Scientific & Technology 
Research 6 (2017) 436–443. 

[72] E.O. Amankwah, M. Bediako, C.K. Kankam, Influence of calcined clay pozzolana 
on strength characteristics of Portland cement concrete, International Journal of 
Material Science Applications 3 (2014) 410. 

[73] D.E. Angulo-Ramirez, R.M. de Gutiérrez, W.G. Valencia-Saavedra, M.H.F. De 
Medeiros, J. Hoppe-Filho, Carbonation of hybrid concrete with high blast furnace 
slag content and its impact on structural steel corrosion, Materiales de 
Construcción 69 (333) (2019) 182. 

[74] V.V. Arora, B. Singh, V. Patel, Durability and corrosion studies in prestressed 
concrete made with blended cement, Journal of Asian Concrete Federation 5 (1) 
(2019) 15–24. 
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[102] M. Gesoğlu, E. Güneyisi, E. Özbay, Properties of self-compacting concretes made 
with binary, ternary, and quaternary cementitious blends of fly ash, blast furnace 
slag, and silica fume, Construction and Building Materials 23 (5) (2009) 
1847–1854. 

[103] R. Gettu, R.G. Pillai, M. Santhanam, A.S. Basavaraj, S. Rathnarajan, B.S. Dhanya, 
Sustainability-based decision support framework for choosing concrete mixture 
proportions, Materials and structures 51 (6) (2018) 1–16. 

[104] G.L. Golewski, Green concrete composite incorporating fly ash with high strength 
and fracture toughness, Journal of cleaner production 172 (2018) 218–226. 
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[137] P.F. Marques, C. Chastre, Â. Nunes, Carbonation service life modelling of RC 
structures for concrete with Portland and blended cements, Cement and Concrete 
Composites 37 (2013) 171–184. 

[138] V. Mary, C.H. Kishore, Experimental investigation on strength and durability 
characteristics of high performance concrete using ggbs and msand, ARPN 
Journal of Engineering and Applied Sciences 10 (11) (2015) 4852–4856. 

[139] P.R. Matos, R.D. Sakata, L.R. Prudêncio Jr, Eco-efficient low binder high- 
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