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1. Introduction 

Concrete is well-known as one of the main building materials for long-term human settlements. Various types of 

waste from the population, agriculture, and industrialization have been shown in studies to substitute for 

conventional materials in concrete. As sustainable and eco-friendly materials, these types of waste have contributed 

significantly to the principles of sustainability in the built environment. Numerous studies have been conducted to 

investigate the possibility of reducing, recycling, and reusing wastes such as cupola furnace slag (CFS) [1]-[3], coal fly 

ash (CFA) [4]-[6], and rice husk ash (RHA) [7]-[8] for concrete production. However, recycled aggregate concrete [9]-

[13], self-compacting concrete [14]-[16], and geopolymer concrete (GPC) [17]-[24] have all been made from these 

waste materials. These studies revealed the possibility of using these waste materials as long-term substitutes for 

Abstract: Based on the heterogeneity of concrete constituents as well as variability in compressive strength over 

many magnitudes for various types of concrete, predictive methods for evaluating the compressive strength have 

now been given considerable attention. As a result, this research compares the performance of the Artificial Neural 

Network, ANN, in forecasting the compressive strength of geopolymer recycled concrete (GPRC) based on 

selected pozzolans (Coal Fly Ash (CFA) and Rice Husk Ash (RHA)) at ages 7, 28, and 56 days to the traditional 

Multiple Linear Regression, MLR. The compressive strength of GPRC-based CFA and RHA was determined using 

65 concrete samples from eight different mixtures. The developed models were based on the experimental results, 

which used varying material quantities. The ANN and MLR models were built with eight input variables: Ordinary 

Portland cement (OPC), RHA, CFA, Crushed granite (CG), Cupola Furnace Slag (CFS), Alkaline Solution (AS), 

Water-Binder Ratio (WB), and Concrete Age (CA), with compressive strength being the only predicted variable. 

Using MATLAB® code, approximately 75% and 25% of the input data were used for training and testing to 

develop an ANN model for predicting compressive strength, fcu. For ANN and MLR, the input data were trained 

and tested using the feedforward back-proportion and backward elimination approaches, respectively. Based on 

satisfactory performance in terms of means square error MSE, the most likely model architecture containing eight 

input layers, thirteen hidden layers, and one output layer neurons was chosen after several trials. According to the 

MLR results, only three input variables, CFA, CG, and CA, are statistically significant with p-values less than 

0.05. R2 = 0.9972, MSE = 0.4177, RMSE = 1.8201, for ANN and R2 = 0.7410, MSE = 66.6308, RMSE = 

290.4370, for MLR. The predicted results demonstrate the proposed model's dependability and computational 

forecasting capability. The findings of the study have the potential to help a wide range of construction industry in 

predicting the concrete properties and managing scarce resources. 
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traditional building materials like cement and aggregates. 

As a result, despite numerous studies on the GPC, its use as a construction material remains limited. This could be 

because there is currently no standard mix design or sufficient data to predict its performance. Due to the complex and 

imprecise physical processes involved in its production, GPC exhibits a wide range of uncertain behavior. As a result, it 

may result in resource waste, which may contribute to environmental pollution. To avoid repeating experiments and 

wasting scarce resources, simple models based on regression best fit curve have emerged, capable of reproducing the 

properties of concrete [25]-[29]. Because of the nonlinear behavior of concrete and the uncertainties associated with its 

production, these methods cannot adequately predict its correct behavior. 

Surprisingly, applications of Artificial Neural Networks (ANNs) have been discovered to model any nominated 

material properties based on the given input parameters. Furthermore, ANN has grown in popularity and demonstrated 

some success in modeling concrete properties. [25] [26] [30]-[40]. ANNs can model any complex problem with a 

nonlinear relationship between the model parameters and engineering knowledge about the material's (e.g., concrete's) 

properties. MLR analysis, another modeling approach, models the relationship between a response/prediction parameter 

and a collection of independent parameters. It is an extension of the linear regression model [41-43]. As a result, this 

research focuses on the performance of ANN and MLR techniques for modeling and estimating compressive strength, 

fcu of GPC. The methods were also trained, validated, and evaluated in terms of performance.  

 

2. Materials and Methods 

2.1 Experimental Setup and Results 

Smooth surface granite with sizes ranging from 10 mm to 19 mm was used as a coarse aggregate. The cupola 

furnace slag (CFS) used as coarse aggregate was obtained in large quantities from the foundry dumpsite [1][7]. CFS 

was stored for an extended period to reduce the absorption effect caused by free oxides, primarily to control swelling. It 

was then pulverized into particles ranging in size from 10 mm to 19 mm. As a fine aggregate, well-graded river sand 

(RS) was used. The maximum grain size of RS that could be used was 4.75 mm. The cement used was 3X ordinary 

Portland cement (OPC) of grade 42.5, as specified by BS 12 [44]. This study used rice husk (RH) and coal fly ash 

(CFA) as geopolymer binders. For mixing, binding, and curing concrete samples, portable water conforming to ASTM 

1602 [45] was used. 

CFA and RHA were used as cement substitutes. Likewise, CFS was used to replace granite. The RS proportion 

was held constant at 100%, and the water-binder ratios were 0.50 and 0.64, respectively. Table 1 shows the input and 

predicted data used in ANN and MLR modeling for training and testing. For all concrete constituents, the maximum 

and minimum bounds were defined as 0% and 100%, respectively, in this study. As an alkaline solution, a mixture of 

NaOH and Na2SiO3 was used. The NaOH/Na2SiO3 ratio was 1:2.5. Concrete cubes with dimensions of 150 x 150 x 150 

mm were made using a mix ratio of 1:2:4 by weight of binders, fine and coarse aggregates, and various water-binder 

ratios. After 24 hours of casting, the hardened samples were removed from the mold and cured in a water tank. The 

concrete cubes were crushed after 7, 14, 28, and 56-d curing periods. 

Table 1 - Input and output data for ANN and MLR modelling 

Input  Minimum Maximum 

OPC (%) 0 100 

RHA (%)  0 25 

CFA (%) 0 20 

CG (%)  0 100 

CFS (%)  0 35 

Alkaline solution ratio (AS), (%)  0 0.4 

Water-binder ratio (WB), (%) 0.50 0.65 

Concrete age (CA), (days) 7 56 

Output 

Compressive strength, fcu, N/mm2   

 

2.2 Artificial Neural Network Architecture 

Because of its versatility in solving multidimensional or unidentifiable problems and being the most prevalent 

network architecture, the Multilayer Perception Levenberg-Marquardt (MLP) principles with feedforward back-

proportion model were adopted [46][47]. In addition, Zuruda [48] discovered that the back-propagation training 

algorithm produces the best compressive strength prediction model compared to other training algorithms. The network 

is made up of nodes, which are also known as neurons. The neurons are divided into three primary nodal layers: input, 
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hidden, and output. However, the input layer is not usually considered a neuron because it does not process any signals. 

Each node, however, was linked to all of the nodes in the adjacent layers. The network received the scaled data at nodes 

in the input layer and distributed it via the hidden transitional layer to the output layer. Weightings are applied to each 

connection/node to change the signal strength. 

The MLP feeds the ANN the training dataset and modifies the weights to reduce or minimize the error function 

between the observed and desired outputs. In other words, a neuron's output is the weighted sum of its inputs plus the 

bias activated by the transfer function, as shown in Equation (1).  

( )
1

n

i i

i

O f f w x b
=

 
= = + 

 
   (1)  

where O is the output (response variable), x1, x2,…,xn are the inputs, wi is the weight vector, b is a bias, and the 

function ( )f   is known as an activation function. The variable   is defined as a scalar product of the weight and 

input vectors in Equation (2). 

 
1 1 2 2

T

n nw x w x w x w x = = + + +  (2) 

where T is the transpose of a matrix. 

Typical modeling of a multilayered neural network is shown in Figure 1. The signal movement from inputs x1, 

x2,…,xn is regarded as one-way, indicated by arrows, as a neuron's output signal flow (O). 

In this study, 75% of the input data was used for training to create an ANN model for predicting compressive 

strength, fcu, with MATLAB® code. The eight input variables used for neural network training are OPC, RHA, CFA, 

CG, CFS, AS, WB, and CA. In other words, there are eight neurons in the input layer. Because fcu is the only output, 

the output layer has only one neuron. Because there is no universal method for defining the number of neurons in each 

hidden layer. Before determining the most likely number of hidden layers and neurons that met the Mean Square Error, 

MSE criteria, many trials were conducted. Following that, the network was ready for validation. In other words, after 

completing the training process, the network was given testing data to validate and evaluate the trained network's 

integrity. System error is defined as the difference between observed and predicted (output) values in this study. During 

ANN training, the network error is minimized by changing the weight, and thus the number of nodes in the hidden 

layer is determined by a series of network trial and error methods. 

 

Fig. 1 - Architecture of an artificial neuron and a multilayered neural network 

 

2.3 Multiple Linear Regression Model (MLR) 

Many engineering problems require the interaction of two or more parameters. As a result, MLR is one of the most 

powerful tools for predicting the most likely relationship between response and many independent parameters. In other 

words, MLR modeling seeks to evaluate a statistical function that connects the input parameters to the output model 

parameters using several independent estimations. Regression modeling assumes that a linear combination of input data 

can describe the predicted outcome. As a result, the MLR model was created by using 75% of the dataset for training 

and the remaining 25% to test the model's performance. SPSS Software version 21 was used to run the MLR model for 
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compressive strength, fcu, prediction. The general form of the MLR equation is shown in Equation 3: 

 
1 1 2 2 3 3 n ny x x x x    = + + + + +  (3) 

where y is the predicted model parameter representing compressive strength, fcu, β is the intercept, α1, α2, α3,…,αn 

are regression coefficients, and x1, x2, x3,…,xn are independent parameters referring to basic concrete properties (i.e., the 

input data). 

The hypothetical collinear relationship between independent parameters is one of the MLR properties. The 

variation inflation factor (VIF) is an indicator used to determine collinearity. If there is no linear correlation between 

the independent parameters, the VIF value is unity, and any variation from unity indicates the possibility of collinearity. 

Having more than ten as VIF values for each parameter implies multiple collinearities, leading to computational or 

estimation errors. 

 

2.4 Performance Appraisal 

The performance appraisal of the developed ANN and MLR models was determined using the following major 

statistical indices, which were deemed significant: mean squared error (MSE), the root of the mean squared error 

(RMSE), and multiple coefficients of determination (R2), as shown in Equations 4, 5, and 6.  
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where Ô  is the observed value, O is the predicted value of Ô , and O  is the mean value of the Ô  values. Nd is 

the total number of data. 

R2, as defined by equation 6, is the fraction of total variation in the predicted (response) parameter described by 

various independent parameters. R2 increases as the difference between observed and predicted values decreases. R2 is 

usually between 1 and 0. R2 near 1 indicates how well the regression model fits the observed data, while R2 near 0 

indicates a poorly fit model. 

 

3. Results and Discussion  

3.1 Artificial Neural Network (ANN) 

3.1.1 ANN Training 

The ANN was trained for compressive strength, fcu prediction using eight input parameters. To avoid strenuous 

training processes that result in convergence problems, it is recommended that data be normalized before training a 

neural network [53]. Using Equation 7, one of the simple data normalization methods available was the Min-max 

normalization approach, which was used to bring the data values between 1 and 0. 

 min

max min

ˆ ˆ
ˆ

ˆ ˆi

O O
y

O O

−
=

−
 (7) 

where ˆ
iy , Ô , maxÔ , and minÔ  are the normalized, observed, maximum and minimum values.  

As shown in Figure 2, the most likely ANN architecture that produced the best result after several network 

trainings contains one hidden layer with thirteen neurons (i.e., 8-13-1), with the lowest MSE value compared to other 

trials.  



Alabi et al., International Journal of Integrated Engineering Vol. 14 No. 4 (2022) p. 43-56 
 

Published by UTHM Publisher 

http://www.uthm.publisher.edu.my/ojs/ijie 
47 

 
Fig. 2 - Optimum ANN architecture for compressive strength, N/mm2 prediction 

 

3.1.2 ANN Model Validation 

The predicted values were calculated using the most likely ANN model among many ANN model classes (after 

several trials). Using compressive strength data sets, Figure 3 depicts the matching of observed and predicted data 

values and the corresponding error values. The matches are generally satisfactory. There was also found to be a strong 

statistical correlation between the predicted and observed data. This could be due to a minor discrepancy between the 

two sets of data. In other words, the most likely ANN prediction model was chosen was very close to the observed data, 

with a negligible phase shift. This means that, given the input parameters, the model can reproduce the experimental 

data with high prediction accuracy. 

Likewise, the proposed ANN model could comprehend the relationship between various input and output 

parameters. The figure shows that the corresponding percent error values for the predicted fcu are negligible, indicating 

a statistically reliable prediction model. As a result, the proposed ANN model class selected successfully predicts the fcu 

based on the set of observed test data. 

In addition, a new dataset was presented to the model to evaluate its performance and ability to generalize 

prediction beyond the training data. Figure 4 depicts the difference between the concrete samples' predicted and 

observed fcu values for training and testing. The graph also confirms the existence of a strong correlation between 

experimental and predicted values. The ANN model's performance is estimated in Table 2. The calculated values for 

R2, MSE, and RMSE, for test data are 0.9972, 0.4177, and 1.8201, indicating acceptable accuracy. Based on the 

calculated value of R2, it implies that the eight (8) input variables explained 99.72 percent of the variation in 

compressive strength, fcu, with the least amount of error, thereby validating the model. This may also imply that the 

chosen ANN model can predict the outcome of the measured data with a 95% confidence level. 
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Figure 3 - Observed and predicted values of fcu for all data 
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(b) Testing data 

 

Figure 4 - Scatter plot of observed and predicted values of fcu for most probable ANN model (a) training and (b) testing 

Table 2 - Performance indices for optimum ANN model. 

ANN R2 r MSE RMSE MAPE 

Training  0.9992 0.9996 0.0853 0.5724 0.7073 

Testing  0.9972 0.9986 0.4177 1.8201 2.2935 

 

3.2. Multiple Linear Regression (MLR) Model 

3.2.1. Training of MLR Model 

The MLR model for fcu prediction was trained using 75% of the data as previously mentioned, with eight input 

variables. Table 3 summarizes the developed MLR model. The residual (error) values are the differences between the 

observed and predicted values of the fitted regression line. Residual values can be positive or negative; residuals greater 

than zero indicate that the proposed regression model predicted a too-small value than the observed value. Negative 

values indicate that the regression model predicted an incorrect value. As shown in Table 3, 'Min' represents the 

minimum residual value, 'Max' represents the maximum residual value, and 'Median' represents the median value. The 

median residual value of a good model is expected to be near zero, with the minimum and maximum values having 

nearly the same magnitude. The residuals for this model, as shown in the table, deviate slightly from these conditions. 

A graphical representation of the residual values can also be used to diagnose the model for normality and influential 

observations. 

As a result, the residuals are expected to be distributed randomly in the vicinity of the horizontal line representing a 

residual error of zero. In other words, a good model's residual should be in the neighborhood, i.e., not too far away 

from the mean of zero. The residuals for the developed model, as shown in Figure 5, are not too far from the horizontal 

line of zero residual value and are roughly balanced except for a few points. Another plot to evaluate the distribution of 

residuals is the normal probability (or P-P) plot. The points for normally distributed residuals would be plotted to 

follow a straight line in the P-P plot. This model slightly diverges, indicating that the residual distribution is not entirely 

normal. Figure 5 shows that some of the predictors in the regression have little or no effect on predicting the fcu or that 

the predictors chosen are insufficient to explain the data. 

The coefficients of each independent (model parameters) variable are shown in the second column of Table 3. As a 

result, an MLR analysis was used to perform the performance analysis of input factors on fcu, and the model is 

expressed in Equation (8). 

 11.828 0.051 0.076 0.291 4.749 0.352cuf RHA CFA CG WB CA= − − + + − +  (8) 
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The standard statistical error for each of the model parameter coefficients is shown in the third column of Table 3. 

The standard error for an acceptable model should be at least five to ten times smaller than the corresponding 

coefficient. The statistical standard errors produced by this model were nearly as large as the corresponding coefficients 

of each input variable. Coefficient's significance or p-value, present on fourth column of Table indicates the likelihood 

that the corresponding coefficient is not relevant in the model. The p-values revealed that CG and CA were the only 

statistically significant variables, while other variables were not statistically significant enough to establish significant 

models by MLR. 

The MLR was re-trained using the backward elimination algorithm to determine which predictors should be used 

in developing the model and which should be discarded. Each predictor in the model had its p-value calculated. The 

predictor with the highest p-value is statistically insignificant. In contrast, the p-value equals 0.05 threshold is 

predetermined, below which the predictor has a greater than 95% chance of being meaningful. The predictor with a p-

value greater than the threshold value is removed from the model and recalculated. With three (3) input variables, 

Regression Equation 9 was created. According to the model results in Tables 3 and 4, Equation 9 is more reliable than 

Equation 8. The three variables, CFA, CG, and CA, are statistically significant with p-values less than 0.05 and VIF 

close to 1.   

 21.224 0.138 0.357 0.347cuf CFA CG CA= − + + +  (9) 

Table 3 - Summary of the parameter estimates, residual, standard errors for the linear compressive strength 
model, N/mm2 fitted with 5 predictors 

Input variables Coefficients Estimates Standard Error p-valves VIF 

Constant -11.828 14.330 0.414 - 

RHA -0.051 0.112 0.652 16.537 

CFA 0.076 0.141 0.593 18.787 

CG 0.291 0.139 0.043 49.228 

WB -4.749 3.019 0.124 1.021 

CA 0.352 0.027 0.000 1.028 

Residual 
Min Max Median Standard Deviation 

-3.3799 2.2780 0.0000 1.4121  

Table 4 - The parameter estimates, residual, standard errors for the linear compressive strength, N/mm2 model, 
fitted with 3 predictors 

Input variables Coefficients Estimates Standard Error p-valves VIF 

Constant -21.224 3.840 0.000 - 

CFA 0.138 0.064 0.037 3.835 

CG 0.357 0.039 0.000 3.866 

CA 0.347 0.027 0.000 1.016 

Residual 
Minimum Maximum Median Standard Deviation 

-3.4925 2.2809 0.0000 1.4597 

 

3.2.2 Verification of MLR Model  

After determining the regression equations, the model equations were fitted to the test data to predict fcu. Figures 6 

and 7 show correlation plots for observed fcu values versus expected values for the training and test datasets, 

respectively. The performance of the developed MLR models was evaluated using the obtained values of MSE, RMSE, 

and R2 between measured and predicted values, as shown in Tables 5 and 6. Table 6 shows that R2 and r for Equation 9 

have better and more reliable performance than Equation 8 with 5 input variables. The three input variables (CFA, CG, 

and CA) explained 74.10% of the variation in fcu for Equation 9. 

In contrast, the five input variables explained 73.62% of the variation in fcu for MLR, as presented in Equation 8. 

The correlation coefficient, r, for the MLR model (Equation 9) indicates a stronger linear relationship between the 

observed and predicted values of fcu compared to the r-value for the MLR model in Equation 8. Because R2 and r values 

can provide a skewed estimate of model performance, the MLR models are also compared in terms of MSE, RMSE, 

and MAPE. As shown in Table 7, the MSE, RMSE, and MAPE values for model Equation 9 were lower, indicating that 

the MLR model with three input variables is superior. The regression analysis also revealed that CFA, CG, and CA, as 

concrete constituents, have a greater impact on the fcu of concrete.  
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(a) 

 
(b) 

Fig. 5 - Residual plots (a) scatter plot of standardized regression residua; (b) standard P-P plot of regression standardized 

residual 
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Fig. 6 - The scatter plots of observed and predicted values of fcu for MLR Equation 8 model 

 

3.3 Comparison between ANN and MLR Models 

The regression analysis of the experimental (observed) data revealed that nearly two-thirds of the input variables 

(OPC, RHA, CFS, AS, and WB) did not contribute to the MLR's performance. This could be attributed to a nonlinear 

relationship or a very low correlation between these variables and fcu. The chosen most likely ANN model, on the other 

hand, demonstrates a thorough understanding of the hidden relationships between these variables and the corresponding 

fcu. As a result, the increased ability of ANN to predict nonlinear behavior is noteworthy. The results of the 

performance indices of the developed MLR and ANN models, as shown in Table 7, show that ANN provides a more 

reliable estimate of compressive strength, fcu, than MLR. The higher R2 of 0.9972 and lower error estimates of ANN 

than those obtained by the MLR models supported previous studies conducted by Ni and Wang [37], demonstrating 

that ANN is a better predictive tool for solving concrete technology problems than traditional linear regression. 
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Fig. 7 - The scatter plots of observed and predicted values of fcu for MLR Equation 9 model 

Table 5 - Performance indices of the MLR model (Training) 

MLR Equations 
Training 

R2 r MSE RMSE MAPE 

8  0.9101 0.9540 1.9504 13.0834 15.2448 

9  0.9167 0.9574 1.9702 13.2168 14.9806 

Table 6 - Performance indices of the MLR model (Testing) 

MLR Equations 
Testing 

R2 r MSE RMSE MAPE 

8  0.7362 0.8580 71.5741 311.9841 413.5358 

9  0.7410 0.8608 66.6308 290.4370 385.5221 
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Table 7 - Performance evaluation of MLR and ANN models 

Model 
Testing 

R2 r MSE RMSE MAPE 

MLR Equation 8  0.7362 0.8580 71.5741 311.9841 413.5358 

MLR Equation 9  0.7410 0.8608 66.6308 290.4370 385.5221 

ANN 0.9972 0.996 0.4177 1.8201 2.2935 

 

4. Conclusions 

This study reports the performance of the Artificial Neural Network, ANN, and the traditional Multiple Linear 

Regression, MLR in reproducing and predicting the fcu of GPRC using a data set from the laboratory tests to obtain the 

appropriate value of compressive strength, fcu of GPRC within a short time frame. Variable significant factors such as 

Ordinary Portland cement (OPC), Rice Husk Ash (RHA), Coal Fly Ash (CFA), Crushed granite (CG), Cupola Furnace 

Slag (CFS), Alkaline Solution (AS), Water-Binder Ratio (WB), and Concrete Age (CA) were used as input within the 

back-propagation ANN training process and backward elimination algorithm for MRL in the developed models. The 

MSE, RMSE, MAPE, and R2 values were used to compare the observed and predicted compressive strength values. 

Based on satisfactory MSE, the most likely model architecture with eight input layers, thirteen hidden layers, and one 

output layer neurons was chosen after several trials. According to the MLR results, only three input variables, CFA, 

CG, and CA, are statistically significant with p-values less than 0.05. R2 = 0.9972, MSE = 0.4177, RMSE = 1.8201, 

MAPE = 2.2935 for ANN and R2 = 0.7410, MSE = 66.6308, RMSE = 290.4370, MAPE = 385.5221 for MLR. 

Furthermore, the developed ANN and MLR models can strongly predict the observed, tested fcu of GPRC with minor 

discrepancies. 

Furthermore, this implies a good fit between the ANN and MLR prediction models and the observed results. As a 

result, within the constraints of the concrete ingredients used, these models can predict the fcu of concrete. Based on 

the analysis and results, the following conclusions are reached: 1) the correlation and p-value results revealed that only 

three input variables (CFA, CG, and CA) are statistically significant in the development of the MLR model, and the 

others are reductants; 2) in the development of the ANN model, it was revealed that all (eight) input variables used 

were all significant; and 3) based on the statistical indices (R2, MSE, etc.), ANN model shows to be the most reliable 

predictive model and has strong ability to predict nonlinear behavior when compared with MLR. Finally, the proposed 

ANNs and MLR methods provide a powerful tool to study the prediction of fcu of concrete in a general situation.  
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