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A B S T R A C T 

In the current study 28 day strength of Recycled Aggregate Concrete (RAC) and Fly 
ash (class F) based concrete is predicted using Artificial Neural Network (ANN), Mul-

tigene Genetic Programming (MGGP) and Model Tree (MT). Four sets of models were 

designed for per cubic proportions of materials, Properties of materials and non-di-

mensional parameters as input parameters. The study shows that the predicted 28 

day strength is in good agreement with the observed data and also generalize well to 

untrained data. ANN outperforms MGGP and MT in terms of model performance. Out-
put of the developed models can be presented in terms of trained weights and biases 

in ANN, equations in MGGP and in the form of series of equations in MT. ANN, MGGP 

and MT can grasp the influence of input parameters which can be seen through Hinton 

diagrams in ANN, input frequency distribution in MGGP and coefficients of input pa-

rameters in MT. The study shows that these data driven techniques can be used for 

developing model/s to predict strength of concrete with an acceptable performance. 
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1. Introduction 

Recycled Aggregates and fly ash are the alternative 
materials used in concrete which can be termed as a step 
towards use of waste materials in concrete. Ascertaining 
strength of such concrete is a tedious and difficult task 
owing to the different properties of Recycled aggregates 
and fly ash (Hansen and Narud, 1983; Yueh and Hwang, 
2006; Ryu, 2002). Determination of compressive 
strength of concrete has great importance as it offers an 
option to do the essential modification on the mix pro-
portion to avoid circumstances where concrete does not 
attain the design strength and also for more economic 
use of raw material and fewer construction failures, thus 
reducing construction cost. Traditional determination of 
compressive strength of concrete needs actual testing 
which requires time and materials, which can be reduced 
by using data driven techniques like Artificial Neural 
Network (ANN), Genetic Programming (GP), and Model 
Tree (MT) etc. Prediction of compressive strength of 
concrete has been an active area of research in last two 
decades or so (Dias and Pooliyadda, 2001; I-Cheng, 

2007; Ni and Wang, 2000; Ahmet et al., 2006; Adriana et 
al., 2013; Duan et al., 2013; Deshpande et al., 2014; Gor-
phade et al., 2014; Sarıdemir, 2010; Bayazidi et al., 
2014). Relatively new techniques of GP and MT have 
been used sparingly for modeling the compressive 
strength of concrete. ANN models were developed to 
predict the strength and slump of ready mix concrete 
with admixtures in which the input parameters were 
non-dimensional ratios transformed from the material 
weights per unit volume. Neural network was also devel-
oped with the natural logarithms of both inputs and out-
puts (Dias and Pooliyadda, 2001). Weights of mixes per 
unit volume were considered as input parameters to 
predict slump of High Performance Concrete (HPC) us-
ing ANN (I-Cheng, 2007). A Three layered neural net-
work model was built to implement the complex nonlin-
ear relationship between the inputs (11 factors that in-
fluence concrete strength) and the output (concrete 
strength). The neural network models give high predic-
tion accuracy, and the research results conform to some 
rules of mix proportion of concrete (Ni and Wang, 2000). 
ANN models were developed to predict the Compressive 
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Strength and slump of High Strength Concrete (HSC) 
with input parameters such as water to binder ratio, wa-
ter content, fine aggregate ratio, fly ash content etc. (Ah-
met et al., 2006). ANN is used as an attempt to obtain 
more accurate concrete strength prediction based on pa-
rameters like concrete mix design, size and shape of 
specimen, curing technique and period, environmental 
conditions, etc. (Gupta et al., 2006). ANN with mix pro-
portions as input parameters was used to predict 
strength of concrete from ready-mixed concrete compa-
nies (Jong-In Kim et al., 2004). Particularly in the field of 
RAC, ANN was used to predict strength of RAC (Adriana 
et al., 2013; Duan et al., 2013; Deshpande et al., 2014). 
Application of Genetic Algorithm based neural network 
models for predicting the Compaction factor, VB time 
and Compressive strength, Tensile strength, Flexural 
strength and Young’s modulus of High performance con-
crete showed a prediction accuracy of 95% (Gorphade et 
al., 2014). In a study, two models using gene expression 
programming (GEP) approach were developed for pre-
dicting compressive strength of concrete containing rice 
husk ash at the age of 1, 3, 7, 14, 28, 56 and 90 days 
(Sarıdemir, 2010). MGGP as a technique was utilized to 
predict modulus of elasticity of concrete. A general 
model proposed for Normal strength concrete and High 
strength concrete using the 28 day strength data (Ba-
yazidi et al., 2014). Model Tree (MT) was used to predict 
strength of conventional and Recycled aggregate con-
crete (Deshpande et al., 2014; Deepa et al., 2010). 

The study concluded that ANN facilitates a better cor-
relation among inputs and output and displays a good 
performance. Very few applications of GP (specifically 
MGGP) have been reported in recent literature focused 
on predicting strength of concrete. Similarly very few 
works can be seen which used MT to predict the concrete 
strength (CS). The study mentioned earlier focused 
mainly on performance of tool used rather than discuss-
ing the influence of input parameters on output which is 
necessary, for the tag of ‘Black box’ on these techniques 
to be removed. In the present work, three techniques viz. 
Artificial Neural Network (ANN), MultiGene Genetic Pro-
gramming (MGGP) and Model Tree (MT) are used sepa-
rately to develop models to predict strength of Recycled 
aggregate concrete and Fly ash based concrete respec-
tively. Secondly, in total 8 models for each technique 
were developed with Mix proportions of materials, prop-
erties of materials and non-dimensional parameters as 
input parameters for developing different models. The 
data sets were designed in the said way so that the study 
is not limited to only type of input parameter/s for a sim-
ilar output. Third, the influence of parameters affecting 
the strength of concrete are shown in the form of Hinton 
diagram in ANN, in the form of coefficients and input fre-
quency in MGGP and coefficients of parameters in MT. 
Fourth, the comparative analysis of the modeling ap-
proaches (ANN, MGGP and MT) are validated with the 
observed values and best approach is suggested for pre-
dicting the 28 day compressive strength of concrete. 

The paper is further organized as follows: The next 
section gives an overview of ANN, GP-MGGP and MT 
techniques. The information about data used is provided 
in following section followed by the methodology 

adopted. The results of models developed and influences 
of parameters are discussed in the next section followed 
by concluding remarks. 

 

2. Modeling Techniques 

In the current study, prediction of 28 day concrete 
strength (CS) for RAC and Fly ash based concrete is done 
using Artificial Neural Networks, Genetic Programming- 
Multi Gene Genetic Programming, and Model Tree with 
M5 algorithm. These approaches are described in brief 
below. 

2.1. Artificial Neural Network (ANN) 

ANN is a soft computing technique involving an input 
layer, one or more hidden layer (s) and an output layer. 
The hidden layer is connected to the other layers by 
weights, biases and transfer functions. An error function 
is determined by the difference between network output 
and the target. The error is propagated back and the 
weight and biases are adjusted using some optimization 
technique which minimizes the error. The entire process 
called training is repeated for number of epochs (itera-
tions) till the desired accuracy in output is achieved. 
Once the network is trained it can be used to validate 
against unseen data using trained weights and biases (The 
ASCE Task Committee, 2000; Maier and Dandy, 2000).  

2.2. Genetic Programming (GP) 

Genetic programming (GP) is a biologically inspired 
machine learning method that evolves computer pro-
grams to perform a task (usually represented by tree 
structures) and then breeding together the best per-
forming trees to create a new population. The three ge-
netic operations are as follows: Reproduction, Cross 
over and Mutation (Londhe and Dixit, 2012). In MGGP, 
multigene individual consists of one or more genes, each 
of which is a “traditional” GP tree (Searson et al., 2010). 
Genes are acquired incrementally by individuals in order 
to improve fitness (e.g. to reduce a model’s sum of 
squared errors on a data set). The overall model is a 
weighted linear combination of each gene. The resulting 
pseudo-linear model can capture non-linear behavior. 
When the transformations are forced to be low order (by 
restricting the GP tree depth), allows the evolution of ac-
curate, relatively compact mathematical models of pre-
dictor – response (input – output) data sets, even when 
there are a large number of input variables. For example, 
the multigene model shown in Fig. 1 predicts an output 
variable using input variables x1, x2 and x3.  

This model structure contains non-linear terms (e.g. 
the hyperbolic tangent) but is linear in the parameters 
with respect to the coefficients d0, d1 & d2. In practice, 
the user specifies the maximum number of genes Gmax 
a model is allowed to have and the maximum tree depth 
Dmax any gene may have and therefore can exert control 
over the maximum complexity of the evolved models. In 
particular, we have found that enforcing stringent tree 
depth restrictions (i.e. maximum depths of 4 or 5 nodes) 
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often allows the evolution of relatively compact models 
that are linear combinations of low order non-linear 
transformations of the input variables. Multigene GP 
combines the power of classical linear regression with 
the ability to capture non-linear behavior without need-
ing to pre-specify the structure of the non-linear model 

(Searson et al., 2010; Searson et al., 2007). The unique-
ness of the multi-gene genetic programming based 
model is that it automatically evolves a mathematical ex-
pression in a symbolic form which can be analyzed fur-
ther to find which variables impact the final prediction 
and in what fashion (Pandey et al., 2015).

 
Fig. 1. Example of a Multigene symbolic model.

2.3. Model Tree (MT) 

MT utilizes divide-and-conquer approach and pro-
vides rules for reaching the models at the leaf nodes. The 
linear models are then used to quantify the contribution 
of each attribute to the overall predicted value. M5P, a 
reconstruction of Quinlan’s M5 algorithm is used for in-
ducing trees of regression models and combines a con-
ventional decision tree with the possibility of linear re-
gression functions at the nodes. First, a decision-tree in-
duction algorithm is used to build a tree and a splitting 
criterion is then used that minimizes the intra-subset 
variation in the class values down each branch. The split-
ting procedure in M5 stops if the class values of all in-
stances that reach a node vary very slightly, or only a few 
instances remain. Second, the tree is pruned back from 
each leaf. When pruning an inner node is turned into a 
leaf with a regression plane. In comparison with classical 
regression trees, Model Trees deliver better compact-
ness and prediction accuracy (Deepa et al., 2010; Quin-
lan, 1992).  

 

3. Data and Model Development 

For predicting concrete strength using ANN, MGGP 
and MT, experimentation work was carried out by the 
authors and few data was also collected from literature 
(Hansen and Narud, 1983; Yueh and Hwang, 2006; Ryu, 
2002; Khatib, 2005; Padmini et al., 2003; Dapena et al., 
2011; Corinaldesi, 2010; Fathifazl et al., 2009; Yong and 
Teo, 2009; Yaprak et al., 2011; ChakradharaRao et al., 
2010; Schoppe, 2011; Kumutha and Vijai, 2010; Evange-
lista and Brito, 2010; Zega and Maio, 2003; Kou, 2006; 
Konin and Kouadio, 2011; Poon et al., 2004; Kotrayothar, 
2012; Adnan et al., 2011; Poon et al., 2007; Domingo-
Cabo et al., 2009; Pereira et al., 2012; Pelufo et al., 2009; 
Agarwal et al., 2011; Evangelista and Brito, 2004; Gon-
calves et al., 2004; Nikoo et al., 2015). The data used in 
the current work is divided into four sets i.e Set 1, Set 2, 

Set 3 and Set 4 and 2 models each. Set 1 is designed with 
process parameters related to Recycled aggregate con-
crete (RAC), Set 2 with Fly ash based concrete, Set3 with 
non-dimensional parameters for RAC and Set 4 with 
non-dimensional parameters of Fly ash based concrete. 
The data sets were designee in the said way so that the 
study is not limited to only one type of input parameters 
and number of data sets for a similar output. 

 
 
The process parameters that have been used as model 

input parameters for models in Set1 are: Content of ma-
terials in kg/m3 for Cement (RC, kg/m3), Natural fine ag-
gregate (RNFA, kg/m3), Natural coarse aggregate-20mm 
(RNCA-20, kg/m3), Natural coarse aggregate-10mm 
(RNCA-10, kg/m3), Recycled coarse aggregate-20mm 
(RCA-20, kg/m3), Recycled coarse aggregate-10mm 
(RCA-10, kg/m3), Admixture(RA, kg/m3) and water (RW, 
kg/m3). Water absorption of conventional coarse aggre-
gates (WA-NA, %) and water absorption of Recycled ag-
gregates (WA-RA, %) were used as additional input pa-
rameters in Set 1: model 2. The input parameters for 
models in Set 2 were: Cement (FC, kg/m3), Fly ash – Class 
F (F, kg/m3), Fine aggregate (FNFA, kg/m3), Natural 
coarse aggregate-20mm-1 (FNCA-20, kg/m3), Natural 
coarse aggregate-10mm (FNCA-10, kg/m3), water (FW, 
kg/m3), and Admixture (FA, kg/m3). Specific gravity of 
FNFA (FSP-NFA), Specific gravity of NCA-20 (FSP-20) 
and Specific gravity of NCA-10 (FSP-10) were additional 
input parameters in Set 2: model1. The input parameters 
for Set 3 were dimensionless parameters such as ratio of 
Water to cement ratio (RW/C), natural fine aggregate to 
total aggregate ratio (RNFA/A), Natural coarse aggre-
gate-20mm to cement content (RNC20/A), Natural 
coarse aggregate-10mm to cement content (RNC10/A), 
Recycled coarse aggregate-20mm (RCA-20) to cement 
(RC20/C), Recycled coarse aggregate-10mm (RCA-10) to 
cement (RC10/C), water to total materials (RW/T). Re-
placement ratio (R-RR) was used as an additional pa-
rameter in Set 3:model2. The input parameters for Set 4 
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were non-dimensional parameters for Fly Ash based 
concrete namely Water to binder ratio (FW/B), machine 
made sand by aggregate ratio (FNFA/A), Natural coarse 
aggregate-20mm to cement ratio (FNCA20/C), Natural 
coarse aggregate-10mm to cement ratio (FNCA10/C) 
and water to total materials ratio (FW/T). Replacement 
ratio (F-RR) was used as an additional input parameter 
in Set 4:model2. 

The output for each model is 28 day compressive 
strength of respective type of concrete (CS). The details 
of data used in developing the models are shown in Ta-
bles 1-4. The detail of models developed in each set is 
shown in Table 5. 

Three layered Feed Forward Back-Propagation ANN 
models were developed using MATLAB 2016, to predict 
the 28 day CS and trained till a very low performance er-
ror (mean squared error) was achieved. All the networks 
were trained using Levernberg-Marquardt algorithm 

with ‘log-sigmoid ‘transfer functions in between the first  
(input) and second (hidden) layer and ‘linear’ transfer 
function between the second and third layer (output). 
Trial and error method was utilized to determine the op-
timal number of hidden neurons. MGGP models were de-
veloped using GPTIPS-2. Readers are referred for fea-
tures of GPTIPS (Searson et al., 2007; Searson et al., 
2010). The RMSE function was adapted for error mini-
mization during runs (Searson et al., 2007; Searson et al., 
2010). The adopted function set to develop the GP model 
are as shown in table 6 for each model. The parameters 
were selected which yielded best performance of the 
models. These settings were based on experience with 
the predictive modeling of other data sets of similar size, 
and so they may not be optimal. A fairly large number of 
population and generations were tested to find models 
with minimum error. The programs run until the num-
ber of generations were reached as in Table 6.

Table 1. Details of data in Set 1. 

Sr. No Parameters Values (min-max) Correlation with Output 

1 RC ( kg/m3) 235-645 0.477 

2 RNFA ( kg/m3) 217-1050 0.004 

3 RNCA-20mm ( kg/m3) 0-1508.640 0.118 

4 RNCA-10mm ( kg/m3) 0-553 0.281 

5 RCA-20mm ( kg/m3) 0-1508.640 -0.3011 

6 RCA-10mm ( kg/m3) 0-840 -0.0989 

7 RW ( kg/m3) 120-271 0.0451 

8 RA ( kg/m3) 0-41.600 -0.3186 

9 WA-RA (%) 0-10.600 -0.109 

10 WA-NA (%) 0-3.560 -0.207 

11 S (N/mm2) 10.319-100.500  

Table 2. Details of data in Set 2. 

Sr. No Parameters Values (min-max) Correlation with Output 

1 FC ( kg/m3) 130-460 0.861 

2 F ( kg/m3) 0-120 -0.247 

3 FNFA-1 ( kg/m3) 398-1011 -0.421 

4 FNCA-20mm ( kg/m3) 0-958 -0.163 

5 FNCA-10mm ( kg/m3) 482-1242 0.039 

6 FW ( kg/m3) 127-202 0.099 

7 FA ( kg/m3) 0-5.520 0.519 

8 FSP-NFA 2.700-2.980 0.199 

9 FSP-20 0-3.050 -0.036 

10 FSP-10 2.850-3.040 0.225 

11 S (N/mm2) 12-60.2  

 

 



46 Kulkarni et al. / Challenge Journal of Structural Mechanics 5 (2) (2019) 42–61  

 

Table 3. Details of data in Set 3. 

Sr. No Parameters Values (min-max) Correlation with Output 

1 FW/B 0.315-0.980 -0.843 

2 FNFA/A 0.200-0.489 -0.197 

3 FNC20/C 1.175-5.393 -0.622 

4 FNC10/C 0-4.354 -0.499 

5 FW/T 0.051-0.0867 0.107 

6 F-RR 0-48 -0.48 

7 S (N/mm2) 12-60.200  

Table 4. Details of data in Set 4. 

Sr. No Parameters Values (min-max) Correlation with Output 

1 RWC 0.229-0.860 -0.584 

2 RNFA/A 0.148-1.566 0.085 

3 RNC20/C 0-4.726 0.029 

4 RNC10/C 0-2.196 0.204 

5 RC20/C 0-5.184 -0.359 

6 RC10/C 0-2.333 -0.125 

7 RW/T 0.054-0.139 -0.25 

8 R-RR 0-100 -0.251 

9 S (N/mm2) 10.319-100.5  

Table 5. Model development. 

Sr. No Set No Model No. Input Parameters No. of Data Sets 

1 
Set 1  

 
(Recycled Aggregate Concrete) 

1-1 
RC, RNFA, RNC20, RNC10,  

RC20, RC-10,RA, RW 
226 

1-2 
RC, RNFA, RNC20, RNC10, RC20,  
RC-10, RA, RW, WA-RA, WA-NA 

226 

2 
Set 2  

 
(Fly Ash based Concrete) 

2-1 FC, F, FNFA, FNC20, FNC10, FA, FW 113 

2-2 
FC, F, FNFA, FNC20, FNC10, FA, FW,  

FSP-NFA, FSP-NC20, FSPNC10, FW,FA 
113 

3 

Set 3  
 

(Non-Dimensional Parameters for  
Recycled Aggregates) 

3-1 
RWC, RNFA/A, RNC20/C, RNC10/C, 

RC20/C, RC10/C, RW/T 
226 

3-2 
RWC, RNFA/A, RNC20/C, RNC10/C, 

RC20/C, RC10/C, RW/T, R-RR 
226 

4 

Set 4  
 

(Non Dimensional parameters related 
to Fly Ash based Concrete) 

4-1 
FW/B, FNFA/A, FNC20/C,  

FNC10/C, FW/T 
113 

4-2 
FW/B, FNFA/A, FNC20/C,  

FNC10/C, FW/T, F-RR 
113 
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Table 6. Parameter settings for the MGGP. 

GP Parameters Parameter Settings 

Population size 1000 

Number of generation 200,500 

Selection method tournament 

Tournament size 15 

Crossover rate 0.84 

Mutation rate 0.14 

Termination criteria 500 generation or fitness value 

 less than 0.00 whichever is earlier 

Maximum number of genes 6,8 

Maximum tree depth 4,5,6 

Mathematical operations  +, -, x, /, sin, cos, exp, √, exp,{} 

The maximum allowable number of genes in an indi-
vidual and the maximum tree depth directly influence 
the size of the search space and the number of solutions 
explored within the search space (Searson et al., 2007; 
Searson et al., 2010; Pandey et al., 2015). The allowable 
number of genes and tree depth were, respectively, set 
to optimal values as tradeoffs between the running time 
and the complexity of the evolved solutions (Searson et 
al., 2007; Searson et al., 2010; Pandey et al., 2015). The 
best MGGP models were chosen on the basis of providing 
the best fitness value on the training and testing data as 
well as the simplicity of the models (Bayazidi et al., 
2014). All these parameter combinations were tested 
and 2 replications for each were carried out. Multiple in-
dividual runs are suggested where the populations are 
automatically merged after the completion of the runs. 
This approach mitigates problems with the possible loss 
of model diversity over a run and with the GP algorithm 
getting stuck in local minima (Searson, 2015). The over-
all number of optimal individual runs equals to 
12x8x2=192 (6 group of models for each generations 
200 and 500. Each generation with genes 6 and 8 and 
further each generation and gene with tree depth 4, 5 
and 6. Thus 12 group of models each for generations 200 
and 500 and 2 replications for each models. The method-
ology is adopted for set 1 with 4 models and set 2 with 4 
models).  

For Model Tree as a technique, M5P algorithm imple-
mented in software WEKA was used for calibrating the 
model (Frank et al., 2016; Deepa, 2010). To check the ac-
curacies and robustness of the model, the dataset was di-
vided for training and testing purposes. From the availa-
ble data, 70% was selected to be used for training pur-
poses and the remaining 30% was used for model vali-
dation. The performance of the model was assessed by 
statistical measures like correlation coefficient (r) (Eq. 
(1)), Root mean squared error (RMSE) (Eq. (2)), Average 
absolute error (AARE) (Eq. (3)), Mean absolute error 
(MAE) (Eq. (4)), and Nash-Sutcliffe Efficiency (E) (Eq. (5)) 
(David and Gregory, 1999; Jain et al., 2008; Londhe, 2008). 
Lower RMSE indicates good prediction, but this statistic is 
biased towards to high error values. Coefficient of corre-
lation (r) measures the degree of association between the 

observed and predicted values and r closer to 1 indicates 
an almost perfect linear relationship between them. The 
value of zero for the coefficient of efficiency (E) indicates 
that the observed mean is as good a predictor as the 
model, while negative values indicate that the observed 
mean is a better predictor than the model. E is sensitive 
to outliers (David and Gregory, 1999). The degree to 
which RMSE exceeds MAE is an indicator of the extent to 
which outliers (or variance in the differences between 
the modeled and observed values) exist in the data (Da-
vid and Gregory, 1999; Jain et al., 2008; Londhe, 2008). 

𝑟 =
∑(𝑆𝑜𝑏𝑠− 𝑆̅𝑜𝑏𝑠)(𝑆𝑐𝑎𝑙−𝑆̅𝑐𝑎𝑙)

√∑(𝑆𝑜𝑏𝑠−𝑆̅𝑜𝑏𝑠)2(𝑆𝑐𝑎𝑙−𝑆̅𝑐𝑎𝑙)2
 (1) 

𝑅𝑀𝑆𝐸 = √∑ (𝑆𝑜𝑏𝑠 − 𝑆̅𝑐𝑎𝑙)2/𝑛𝑛
𝑖=1  (2) 

𝐴𝐴𝑅𝐸 =
1

𝑁
∑ |

(𝑆𝑐𝑎𝑙−𝑆𝑜𝑏𝑠)

𝑆𝑜𝑏𝑠
| × 100 (3) 

𝑀𝐴𝐸 =  
∑ |𝑆𝑐𝑎𝑙−𝑆̅𝑐𝑎𝑙|𝑁

𝑖=1

𝑁
  (4) 

𝐸 = 1 −  
∑(𝑆𝑐𝑎𝑙−𝑆𝑜𝑏𝑠)2

∑(𝑆𝑜𝑏𝑠−𝑆̅𝑜𝑏𝑠)2  (5) 

where 𝑆𝑜𝑏𝑠=observed strength; 𝑆𝑐𝑎𝑙=strength calculated 
from a model; 𝑆̅𝑜𝑏𝑠=average observed strength; 𝑆̅𝑐𝑎𝑙=av-
erage calculated strength; n=total number of data points 
predicted and all the summations run from 1 to N. 

The architecture of ANN models and no. of equations 
developed for each model by MT and the parameters not 
considered in the equation developed by MGGP is shown 
in Table 7. 

 

4. Results and Discussion 

4.1. Models developed using ANN 

Performance of each of the models developed in test-
ing using the ANN technique is shown in Table 8.   
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Table 7. Details of models developed. 

Set. No Model No. ANN Architecture No. of equation in MT 
MGGP parameters not considered in 

the equation 

1 
1-1 8:25:01 2 NIL 

1-2 10:23:01 11 NIL 

2 
2-1 7:13:01 3 NIL 

2-2 10:08:01 5 SP-NC20 

3 
3-1 7:24:01 2 NIL 

3-2 8:25:01 2 RNC20/C 

4 
4-1 5:16:01 1 NIL 

4-2 6:10:01 1 NIL 

Table 8. Performance of models developed using ANN. 

Set. No Model No. 
RMSE 
(m/s) 

MAE 
(m/s) 

E AARE r 

1 
ANN 1-1 5.759 4.3375 0.87934 11.4091 0.9440 

ANN 1-2 7.8139 5.9043 0.78034 14.6269 0.8890 

2 
ANN 2-1 3.6983 2.5631 0.85917 8.3445 0.9388 

ANN 2-2 4.0241 2.7790 0.83327 8.7192 0.9293 

3 
ANN 3-1 6.5255 4.6132 0.84508 11.9555 0.9219 

ANN 3-2 6.2345 4.4092 0.85859 10.8077 0.9268 

4 
ANN 4-1 3.2909 2.4703 0.87941 7.7395 0.9438 

ANN 4-2 3.5056 2.7136 0.88577 10.1742 0.9452 

Fig. 2 shows the scatter plot for ANN 1-1. Comparison 
between measured & predicted values for strength char-
acteristics of RAC for whole test data in Fig. 2 demon-
strates that there are few scatters away from the line of 
equality between measured and predicted values. As 

shown, the proposed model for compressive strength of 
RAC has a reasonable accuracy with less scatter and a high 
value of correlation coefficient (r=0.94). Fig. 3 shows the 
Hinton diagram which depicts the influence of various pa-
rameters on the compressive strength of concrete in ANN.

 

 

Fig. 2. Scatter plot for ANN1-1. 

 

Fig. 3. Hinton diagram for ANN1-1. 

A Hinton diagram is plot of weight matrix of a neural 
network, where the size of the square represents the 
magnitude, and the color represents the polarity 
(red=positive, green=negative). A Hinton diagram thus 
at a glance shows the units which are strongly active, 

which input parameters are off and which input param-
eters are intermediate in influence towards predicting 
the 28 day CS of RAC (Ahmet et al., 2006). A Hinton dia-
gram for ANN1-1, shows maximum influence of cement 
content, water content followed by recycled aggregate 
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content in ANN1-1 on the CS of RAC. Hinton for ANN2-2 
in Fig. 4 shows cement content, aggregate content and fly 
ash content as influential parameters in decreasing order 
followed by other input parameters. The Hinton diagram 
can thus eliminate the need for the sensitivity analysis. 

The scatter plot for ANN3-1 is shown in Fig. 5, shows over 
prediction of strength. Hinton diagram for ANN4-2 is as 
shown in Fig. 6 which shows aggregate to cement ratio 
and water to binder ratio as the highly influential param-
eters and with F-RR as the least influential parameter. 

 

 

Fig. 4. Hinton diagram for ANN2-2. 

 

Fig. 5. Scatter plot for ANN2-2. 

28 day strength of concrete is affected due to the wa-
ter binder ratio (W/B) & increase in W/B can decrease 
the strength. Also replacement ratio of RA or Fly ash in 
concrete can decrease the strength of concrete (Shetty, 
2005; Neville, 2012). Specifically in RAC, in a given mix 
when Aggregate to cement ratio increases, the strength 
decreases. Also increase in the CS can be seen with in-
crease in water to total materials ratio and fine aggre-
gate to total aggregate content up to a certain limit and 
further it shows a decrease in strength (Deshpande, 
2016).  

4.2. Model formulation using MGGP 

With input parameters as mix proportions of con-
crete, properties of materials and non-dimensional pa-
rameters, models were calibrated using MGGP as shown 
in Table 1 and Table 2. Performance of each of the model 
in testing is shown in Table 9. 

To find the optimal model, the MGGP algorithm was 
run several times with different combinations of the pa-
rameters as shown in Table 6. Results of models with 
Population:1000, generation:500, tree depth:4 and no. of 
genes:6 were found to be satisfactory and recorded here. 
Fig. 7 and Table 10 show the individual genes/model 
terms for the best models of MGGP1-1 and MGGP2-1 that 
were obtained during the conducted runs. 

Each gene includes its weighing coefficient. It is seen 
that the weight of the genes (sub-programs) 1, 3, 5 and 
the bias terms are higher than the other genes for 
MGGP2-1 and high importance of gene 6, 4, 3 and bias 
term in MGGP1-1. This means that they have higher con-
tribution to the strength prediction of concrete. Fig. 8 
shows the expressional trees for the best models that 
were obtained during the conducted runs for MGGP3-1. 
Each gene includes its weighing coefficient. As can be ob-
served from Fig. 8, the derived model is composed of 
complicated array of operators, variables, and constants 
to estimate the 28 CS of concrete. 

Table 9. Performance of models developed using MGGP. 

Set. No Model No. 
RMSE 
(m/s) 

MAE 
(m/s) 

E AARE r 

1 
MGGP 1-1 6.9110 5.5560 0.8262 14.3747 0.9090 

MGGP 1-2 8.5412 6.3821 0.7375 16.4551 0.8588 

2 
MGGP 2-1 4.0559 2.8832 0.8222 9.0642 0.9283 

MGGP 2-2 3.6216 2.8611 0.8649 9.6019 0.9414 

3 
MGGP 3-1 6.9458 5.3300 0.8244 13.3762 0.9095 

MGGP 3-2 8.4083 6.4100 0.7427 16.4922 0.8647 

4 
MGGP 4-1 4.2349 2.8108 0.8003 9.7842 0.9177 

MGGP 4-2 3.5550 2.7290 0.8824 10.3964 0.9518 
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Fig. 6. Hinton diagram for ANN4-2. 

 

Fig. 7. Weights of the genes (sub-programs) of MGGP1-1. 

Table 10. Individual genes/model terms for the prediction of CS for MGGP2-1. 

Term Value 

Bias 14.5 

Gene 1 (1.2 𝑥1
2) / (𝑥6 − 1.0 𝑥7) 

Gene 2 −(0.0139 𝑥1
2 𝑥7) / (𝑥6 + 𝑥7) 

Gene 3 −(1.16 𝑥1
2) / (𝑥6 + 𝑥7) 

Gene 4 (0.00531 𝑥2 𝑥5) / (psqroot(𝑥6) + psqroot(𝑥7)) 

Gene 5 −(9.19 𝑥2 𝑥5) / 𝑥6 + 5.08)2 

Gene 6 − (0.00149 (𝑥3 + 𝑥7) (𝑥3 + 𝑥6 + psqroot(𝑥6))) / (2.0 𝑥2 + 𝑥6) 

Each gene includes its weighing coefficient. It is seen 
that the weight of the genes (sub-programs) 1, 3, 5 and 
the bias terms are higher than the other genes for 
MGGP2-1 and high importance of gene 6, 4, 3 and bias 
term in MGGP1-1. This means that they have higher con-
tribution to the strength prediction of concrete. Fig. 8 

shows the expressional trees for the best models that 
were obtained during the conducted runs for MGGP3-1. 
Each gene includes its weighing coefficient. As can be ob-
served from Fig. 8, the derived model is composed of 
complicated array of operators, variables, and constants 
to estimate the 28 CS of concrete. 
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Fig. 8. Expression trees of the best models for the prediction of CS of concrete for MGG 3-1.

To facilitate the use of the developed model, model 
MGGP3-1 was transformed into a simplified functional 
form (Eq. (6)):  

𝑦 =  16.9 x6 −  94.0 x4  −  94.0 x1  −  94.0 tanh(x7) −

(1.0 (7.79𝑒15 x1  +  7.79𝑒15 x2  +  7.79𝑒15 x7)) /

(1.76𝑒13 x2  +  1.76𝑒13  ∙  sqrt(x7) +  1.76𝑒13 x1
2) −

 16.9 x2 x6
2  +  153.0 x2 tanh(x4) +  92.9 𝑥4 𝑥7 (x3  +  9.0) −

 16.9 x2 x5 x7  −  4988.0 x1 x7  ∙  sqrt(x7) tanh(x4) +

 995.0 x4
3 x5 x6

4 (x4  + x6) (x2  −  1.0 x5)  +  550.0 (6) 

where x1=RWC, x2=RNFA/A, x3=RNC20/C, x4= RNC10/C, 
x5=RC20/C, x6=RC10/C, x7=RW/T. 

Fig. 9 presents the accuracy against the complexity of 
the evolved models. Green dots represent the Pareto 

front of models in terms of model performance (1 – R2) 
and model complexity. Blue dots represent non-Pareto 
models. The red circled dot represents the best model in 
the population in terms of R2 on the training data (Sear-
son, 2015). The red circle in Fig. 10 for MGGP3-1 desig-
nates the best model presented herein that is not outper-
formed by any other model in terms of complexity and 
fitness. A less complex model for MGGP2-1 can be seen 
in Fig. 9. 

From the Pareto front (Figs. 9 and 10), user can decide 
whether the incremental gain in performance is worth 
with associated model complexity. Concisely, the MGGP 
paradigm evolves multiple models which provide more 
number of choices to the designer. A single model can be 
selected based on the application requirements (Searson 
et al., 2007; Pandey, 2015). Figs. 11 and 12 also depict 
the convergence characteristics of the genetic program-
ming algorithm.   
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Fig. 9. Pareto front report for MGGP2-1. 

 

Fig. 10. Pareto front report for MGGP3-1. 

 

Fig. 11. Convergence of the MGGP solutions for MGGP1-2. 
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Fig. 12. Convergence of the MGGP solutions for MGGP3-2.

It is evident that the mean fitness of the curve be-
comes smoother after 100 (in both the figures) genera-
tions and that the change in objective function is not sig-
nificant near the end of the genetic programming run. It 
indicates that running the genetic programming for 
more generations does not result in a more favorable 
outcome. However, as the best fitness is reported at 450 
(RMSE-7.14 for MGGP1-2) in this particular case, it sug-
gests that the genetic programming algorithm should 

have to run for at least 500 generations for all the models 
developed here. Figs. 13-16 show the frequency of input 
data for models in GP with coefficient of determination 
R2≥0.6 (Searson, 2010; Searson et al., 2007; Pandey, 
2015). Input frequency of the graphical input frequency 
analysis of single model or of a user specified fraction of 
the population is used to provide the identification of In-
put variables that are significant to the output (Searson 
et al., 2007; Singh, 2014).

 

Fig. 13. Input frequency for MGGP1-1. 

 

Fig. 14. Input frequency for MGGP2-1. 



54 Kulkarni et al. / Challenge Journal of Structural Mechanics 5 (2) (2019) 42–61  

 

 

Fig. 15. Input frequency for MGGP2-2. 

 

Fig. 16. Input frequency for MGGP3-2.

For MGGP1-1, out of 8 parameters, parameters: 
RNC10, RC and RW are influential followed by RNFA, RA, 
RC20, RC10 and RNC20 content. This finding is in tune 
with the fundamental knowledge of concrete technology 
(Shetty, 2005; Neville, 2012). For MGGP2-1, FW and F 
are seen as important parameters. With addition of 
properties of materials like Specific gravity of aggregate 
content, MGGP2-2 shows specific gravity as an influen-
tial parameter with cement content being the most influ-
ential parameter followed by water content and other 
parameters. In MGGP3-2 the frequency of input parame-
ters is as shown in figure 16 which shows RC20/C as the 
least influential parameter.  

4.3. Models developed using MT 

Model tree is the third technique used to predict the 
28 day strength of concrete. Fig. 17 below shows a typi-
cal Model Tree developed for Model 1-1. The linear re-
gression equations developed by MT1-1 are shown in 
Fig. 18. 

 

Fig. 17. Model Tree for MT1-1. 
(The first number in the bracket is the number of  

samples in the subset sorted to this leave and the sec-
ond one-root mean squared error (RMSE) of the  

corresponding linear model divided by the standard  
deviation of the samples subset for which it is built.)  

(expressed in percent) 
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Fig. 18. Equations developed for MT1-1.

Similarly for other models, the number of equations 
developed are shown in Table 7. Equation developed 
for MT1-1 as shown in Fig. 17, shows positive coeffi-
cients to cement content, admixture content and RC-10 
content.  

Negative coefficients can be seen for other parame-
ters specially water content, indicating that its increase 
in mix after a certain limit can decrease the strength of 
concrete which agrees with the domain knowledge 

(Shetty, 2005; Neville, 2012; Deshpande, 2016). This can 
also be seen in MT equation developed for Fly ash based 
concrete i.e Model MGGP2-1. The series of equations de-
veloped for MT2-1 areas shown in Fig. 17. Inclusion of 
replacement ratio in models for RAC and Fly ash based 
concrete in Model 3-2 and 4-2 are shown in Fig. 19 for 
RAC and Fig. 20 or Fly ash based concrete. 

The performance of each model developed using MT 
in each set are as shown in Table 11.

 

Fig. 19. Equations developed for MT3-2. 
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Fig. 20. Equations developed for MT4-2. 

Table 11. Performance of models developed using MT. 

Set. No Model No. 
RMSE 
(m/s) 

MAE 
(m/s) 

E AARE r 

1 
MT 1-1 10.66 7.213 0.586 17.123 0.767 

MT 1-2 9.883 6.176 0.706 14.011 0.843 

2 
MT 2-1 4.544 3.442 0.77 10.916 0.902 

MT 2-2 4.641 3.861 0.797 11.284 0.929 

3 
MT 3-1 10.66 7.212 0.586 17.122 0.767 

MT 3-2 10.66 7.212 0.586 17.122 0.767 

4 
MT 4-1 8.053 3.992 0.278 15.326 0.795 

MT 4-2 6.944 3.987 0.463 14.917 0.817 

4.4. Comparison of models developed using ANN, 
MGGP and MT 

The models were developed using same data division 
and their results were compared on testing data sets as 
shown in Tables 8, 9 and 11. Performance of each of the 

model was judged using 5 statistical error measures 
namely RMSE, MAE, E, AARE and r.  

ANN outperformed the other data driven techniques 
as seen in the Tables 8, 9 and 11. ANN predicted the out-
put of 28 day CS of concrete better, as compared to MGGP 
and MT. Figs. 21and 22 show the predictions of RAC and 
Fly ash based concrete in models 1 in Set 1 and Set 2.

 

Fig. 21. Prediction trend for model 1-1. 
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Fig. 22. Prediction trend for model 2-1.

On the other hand, MGGP model performs better than 
MT models. Table 8 shows that the performance of 
model ANN1-1 is better as compared to ANN1-2. This 
can be also be seen in models developed using MGGP. 
Models developed using kg/m3 proportions of materials 
predict strength better as compared to models devel-
oped with additional properties of materials i.e water 
absorption of aggregates in Set 1 in ANN. A similar per-
formance can be seen with models developed using 
MGGP when Specific gravity of MNFA, FNCA20 and 
FNC10 become part of input parameters in Set 2. Pres-
ence of non-dimensional parameters as input parame-
ters for development of models using ANN, MGGP and 
MT show a similar performance in RAC and fly ash based 
concrete. Scatter plots for ANN1-1 and MGGP1-1 are as 
shown in Figs. 23 and 24, respectively. Scatter plot for 
MGGP1-1 shows slight under prediction of RAC. 

 

Fig. 23. Scatter plot for MGGP 1-1.

 

Fig. 24. Observed and Predicted values for MT 1-2.

However models in Set 1 and Set 2 developed using 
MT show performance of models with properties of ma-
terials better than relative proportions of materials i.e 
than MT1-1. This can be seen through lower r, E and 
higher AARE values for MT1-1. The same can be seen 
with models developed with fly ash based concrete too. 
The plot in Fig. 24 shows the trend of RAC prediction and 
observed for MT1-2. This figure shows the ratio of the 

predicted to observed RAC strength values. Apparently, 
a ratio closer to 1 indicates a more precise prediction. 

Non-dimensional parameters have a greater signifi-
cance in ascertaining strength characteristics of con-
crete. It has also been seen that instead of using propor-
tions of materials as input parameters, if individual non-
dimensional parameters are used, the performance of 
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the models can be similar as that of the former or in-
creases  (Deshpande, 2014). Thus Set 3 and Set 4 were 
designed with non-dimensional parameters as input pa-
rameters. It was seen that with higher r, AARE and E val-
ues, models with non-dimensional parameters perform 
better when developed using ANN. A slight decrease in 
the performance of model ANN3-2 can be seen as com-
pared to ANN3-1 in which RR was an additional parame-
ter included. Thus it can be said that the influence of R-
RR parameter is considered in the parameter: aggregate 
proportion. Similar performance can be seen in fly ash 
based concrete (model ANN4-1 and ANN4-2). MGGP3-1 
shows a similar performance as MGGP1-1 and with R-RR 
as input parameter in MGGP3-2 shows r as 0.864. An in-
creased (r=0.952) performance can be seen in MGGP4-2 
as compared to MGGP4-1 (r=0.918).  

Models developed using MT for RAC i.e MT3-1 and 
MT3-2 showed a similar performance. MT4-2 shows an 
increase in performance when F-RR was considered as 
an input parameter as compared to MT4-1.   

Thus it can be said that models developed using ANN 
and MGGP displayed a good performance with relative 
proportions of constituents of materials in concrete; 
Non-dimensional parameters as input parameters per-
formed similarly or slightly better than the model with 
proportions of materials as input parameters, however 
it is necessary to select non-dimensional parameters ju-
diciously for a better representation of material propor-
tions. Models developed using MT performed poor as 
compared to ANN and MGGP, however they have an ad-
vantage of series of equations which can be readily used. 
In the Hinton diagram for ANN1-1, RNC20, RW and RC 
are influential factors followed by other parameters. A 
similar trend of influential parameters can be seen in 

MGGP1-1 as well. A similar trend in terms of coefficients 
can be seen in model MT1-1 developed using MT (refer 
Fig. 19). Similarly for models ANN2-1, MGGP2-1 and 
MT2-1 with cement and fly ash content and specific grav-
ity of fine aggregate are the most important parameters 
followed by other parameters. Parameter SP-NC20 was 
eliminated from MT models and seen as very low influ-
ence in ANN and MGGP models. 

With non -dimensional parameters as input parame-
ters, the influential parameters in ANN3-1, MGGP3-1 and 
MT3-1 are as shown in Figs. 25, 26 and 27, respectively. 
A slight difference in the influential parameters can be 
seen. ANN builds an approximate function that matches 
a list of inputs to the desired outputs. In the process, it 
adjusts the weights and biases to reach a predefined 
goal. This process makes ANN flexible and increases its 
performance as compared to GP.  

GP, on the other hand, is based on evolutionary ap-
proach technique in which it does not involve any trans-
fer function and evolves generations of ‘offspring’ based 
on the ‘fitness criteria’ and genetic operations. GP ap-
proach works with the concept of disregarding input pa-
rameters that do not contribute effectively in the model 
and thus based solely on ‘fitness’ criteria. In the process 
of building programs (through processes of mutation, 
crossover and reproduction), GP selects parameters 
which are useful in achieving the fitness criteria and de-
letes the remaining. This can reduce the - performance 
of GP as compared to ANN. This is in contrast to the work 
done by Londhe (2008). However the work in Londhe 
(2008), the problems were indeterministic in nature; 
whereas predicting strength of concrete is of determinis-
tic nature. This may be the reason behind ANN working 
better than GP. However this needs to be explored further.

 

Fig. 25. Hinton diagram for ANN3-1.

In Model tree with M5P algorithm, the basic tree is 
formed based on a splitting criterion. It uses the stand-
ard deviation of the class values for each node as a meas-
ure of the error at that node and then calculates the ex-
pected error reduction as a result of testing each attrib-
ute at that node. Then, the attribute that maximizes the 
expected error reduction is selected to split the data at 
that node and the remaining are not considered in the 

developed equation. Thus RC10/C is included in Eq. (2) 
of MT3-2 and excluded in equation 1 of MT3-2 (refer Fig. 
27). This can also be one of the reasons for poorer per-
formance of MT as compared to ANN and MGGP. The er-
rors of a good prediction model should be independent 
of physical parameters involved in that problem. Other-
wise, it can be concluded that those physical parameters 
should be added to that prediction model or they weren’t 
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considered correctly in that model. It should be men-
tioned that the errors of developed models in set 3 and 
4, show a similar or increased performance when RR is 
included as input parameter in ANN, MT and MGGP, ex-
cept for model MGGP3-2. However the authors recom-
mend the use of individual aggregate ratios as they dis-
play a better picture about contribution of each aggre-
gate type on the strength of concrete. Thus it can be seen 

that models developed using ANN, MGGP and MT learn 
from the examples given and predict the strength of con-
crete with influential parameters which are in tune 
with the domain knowledge. The correlation of input 
parameters and output parameters seen in Tables 1, 2 
and 3 also show significant parameters as cement con-
tent followed by water and aggregates for the current 
study. 

 

Fig. 26. Input frequency for MGGP3-1. 

 

Fig. 27. Equations for MT3-1. 
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Thus, models developed using ANN technique per-
form better as compared to MGGP and MT. MGGP on 
other hand perform better than MT. This can be seen in 
case of RAC and fly ash based concrete and different 
properties of materials. ANN though performs better; 
has a limitation of its ease of its use. MGGP and MT on 
other hand are easy to use with equation and series of 
equations developed respectively for ready use. Perfor-
mance of MGGP and MT though less as compared to ANN, 
equations are developed by the techniques by under-
standing the basics of domain knowledge which can be 
seen through the equations. 

 

5. Conclusions 

In the current study an attempt was made to predict 
28 day compressive strength of Recycled Aggregate con-
crete and Fly ash based concrete with input parameters 
as kg/m3 proportions of materials used in concrete, 
properties of materials used and non-dimensional pa-
rameters. The following outcomes can be noted from the 
current study: 
 Models developed using ANN outperform MGGP and 

MT models with higher R, AARE and E values and 
lower RMSE and MAE values.  

 ANN has an advantage of better performance; MGGP 
on other hand with acceptable accuracy can provide 
equations which can be readily used. Models devel-
oped using MT display performance less as compared 
to ANN and MGGP. 

 Use of relative proportions of materials as input pa-
rameters predicts strength better than input parame-
ters with properties of materials in ANN and MGGP. 
However MT shows performance with properties of 
materials better as compared to relative proportions 
of materials. 

 Use of Non- dimensional parameters as input param-
eters can be encouraged for prediction of CS of con-
crete; however judicious selection of non-dimen-
sional parameters needs to be done. 
The study also shows that ANN, MGGP and MT learn 

from the examples given and display influential input pa-
rameters which are in tune with the domain knowledge 
of Concrete Technology specifically for ANN. GP and MT 
show a slight variation as compared to influential pa-
rameters observed in ANN and maybe due to the basic 
working concept of MGGP and MT. 
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