59 research outputs found

    Derivation of forest inventory parameters from high-resolution satellite imagery for the Thunkel area, Northern Mongolia. A comparative study on various satellite sensors and data analysis techniques.

    Get PDF
    With the demise of the Soviet Union and the transition to a market economy starting in the 1990s, Mongolia has been experiencing dramatic changes resulting in social and economic disparities and an increasing strain on its natural resources. The situation is exacerbated by a changing climate, the erosion of forestry related administrative structures, and a lack of law enforcement activities. Mongolia’s forests have been afflicted with a dramatic increase in degradation due to human and natural impacts such as overexploitation and wildfire occurrences. In addition, forest management practices are far from being sustainable. In order to provide useful information on how to viably and effectively utilise the forest resources in the future, the gathering and analysis of forest related data is pivotal. Although a National Forest Inventory was conducted in 2016, very little reliable and scientifically substantiated information exists related to a regional or even local level. This lack of detailed information warranted a study performed in the Thunkel taiga area in 2017 in cooperation with the GIZ. In this context, we hypothesise that (i) tree species and composition can be identified utilising the aerial imagery, (ii) tree height can be extracted from the resulting canopy height model with accuracies commensurate with field survey measurements, and (iii) high-resolution satellite imagery is suitable for the extraction of tree species, the number of trees, and the upscaling of timber volume and basal area based on the spectral properties. The outcomes of this study illustrate quite clearly the potential of employing UAV imagery for tree height extraction (R2 of 0.9) as well as for species and crown diameter determination. However, in a few instances, the visual interpretation of the aerial photographs were determined to be superior to the computer-aided automatic extraction of forest attributes. In addition, imagery from various satellite sensors (e.g. Sentinel-2, RapidEye, WorldView-2) proved to be excellently suited for the delineation of burned areas and the assessment of tree vigour. Furthermore, recently developed sophisticated classifying approaches such as Support Vector Machines and Random Forest appear to be tailored for tree species discrimination (Overall Accuracy of 89%). Object-based classification approaches convey the impression to be highly suitable for very high-resolution imagery, however, at medium scale, pixel-based classifiers outperformed the former. It is also suggested that high radiometric resolution bears the potential to easily compensate for the lack of spatial detectability in the imagery. Quite surprising was the occurrence of dark taiga species in the riparian areas being beyond their natural habitat range. The presented results matrix and the interpretation key have been devised as a decision tool and/or a vademecum for practitioners. In consideration of future projects and to facilitate the improvement of the forest inventory database, the establishment of permanent sampling plots in the Mongolian taigas is strongly advised.2021-06-0

    Estimation of boreal forest attributes from very high resolution pleiades data

    Get PDF
    In this study, the potential of using very high resolution Pleiades imagery to estimate a number of common forest attributes for 10-m plots in boreal forest was examined, when a high-resolution terrain model was available. The explanatory variables were derived from three processing alternatives. Height metrics were extracted from image matching of the images acquired from different incidence angles. Spectral derivatives were derived by performing principal component analysis of the spectral bands and lastly, second order textural metrics were extracted from a gray-level co-occurrence matrix, computed with an 11 x 11 pixels moving window. The analysis took place at two Swedish test sites, Krycklan and Remningstorp, containing boreal and hemi-boreal forest. The lowest RMSE was estimated with 1.4 m (7.7%) for Lorey's mean height, 1.7 m (10%) for airborne laser scanning height percentile 90, 5.1 m(2)ha(-1) (22%) for basal area, 66 m(3)ha(-1) (27%) for stem volume, and 26 tonsha(-1) (26%) for above-ground biomass, respectively. It was found that the image-matched height metrics were most important in all models, and that the spectral and textural metrics contained similar information. Nevertheless, the best estimations were obtained when all three explanatory sources were used. To conclude, image-matched height metrics should be prioritised over spectral metrics when estimation of forest attributes is concerned

    Aboveground forest biomass derived using multiple dates of WorldView-2 stereo-imagery : quantifying the improvement in estimation accuracy

    Get PDF
    The aim of this study was to investigate the capabilities of two date satellite-derived image-based point clouds (IPCs) to estimate forest aboveground biomass (AGB). The data sets used include panchromatic WorldView-2 stereo-imagery with 0.46 m spatial resolution representing 2014 and 2016 and a detailed digital elevation model derived from airborne laser scanning data. Altogether, 332 field sample plots with an area of 256 m(2) were used for model development and validation. Predictors describing forest height, density, and variation in height were extracted from the IPC 2014 and 2016 and used in k-nearest neighbour imputation models developed with sample plot data for predicting AGB. AGB predictions for 2014 (AGB(2014)) were projected to 2016 using growth models (AGB(Projected_2016)) and combined with the AGB estimates derived from the 2016 data (AGB(2016)). AGB prediction model developed with 2014 data was also applied to 2016 data (AGB(2016_pred2014)). Based on our results, the change in the 90(th) percentile of height derived from the WorldView-2 IPC was able to characterize forest height growth between 2014 and 2016 with an average growth of 0.9 m. Features describing canopy cover and variation in height derived from the IPC were not as consistent. The AGB(2016) had a bias of -7.5% (-10.6 Mg ha(-1)) and root mean square error (RMSE) of 26.0% (36.7 Mg ha(-1)) as the respective values for AGB(Projected_2016) were 7.0% (9.9 Mg ha(-1)) and 21.5% (30.8 Mg ha(-1)). AGB(2016_pred2014) had a bias of -19.6% (-27.7 Mg ha(-1)) and RMSE of 33.2% (46.9 Mg ha(-1)). By combining predictions of AGB(2016) and AGB(Projected_2016) at sample plot level as a weighted average, we were able to decrease the bias notably compared to estimates made on any single date. The lowest bias of -0.25% (-0.4 Mg ha(-1)) was obtained when equal weights of 0.5 were given to the AGB(Projected_2016) and AGB(2016) estimates. Respectively, RMSE of 20.9% (29.5 Mg ha(-1)) was obtained using equal weights. Thus, we conclude that combination of two date WorldView-2 stereo-imagery improved the reliability of AGB estimates on sample plots where forest growth was the only change between the two dates.Peer reviewe

    Current Trends in Forest Ecological Applications of Three-Dimensional Remote Sensing: Transition from Experimental to Operational Solutions?

    Get PDF
    The alarming increase in the magnitude and spatiotemporal patterns of changes in composition, structure and function of forest ecosystems during recent years calls for enhanced cross-border mitigation and adaption measures, which strongly entail intensified research to understand the underlying processes in the ecosystems as well as their dynamics. Remote sensing data and methods are nowadays the main complementary sources of synoptic, up-to-date and objective information to support field observations in forest ecology. In particular, analysis of three-dimensional (3D) remote sensing data is regarded as an appropriate complement, since they are hypothesized to resemble the 3D character of most forest attributes. Following their use in various small-scale forest structural analyses over the past two decades, these sources of data are now on their way to be integrated in novel applications in fields like citizen science, environmental impact assessment, forest fire analysis, and biodiversity assessment in remote areas. These and a number of other novel applications provide valuable material for the Forests special issue “3D Remote Sensing Applications in Forest Ecology: Composition, Structure and Function”, which shows the promising future of these technologies and improves our understanding of the potentials and challenges of 3D remote sensing in practical forest ecology worldwide

    Assessment of boreal forest height from WorldView-2 satellite stereo images

    Get PDF
    WorldView-2 (WV2) satellite stereo images were used to derive a digital surface model, which together with a high-resolution digital terrain model from airborne laser scanning (ALS) were used to estimate forest height. Lorey's mean height (H-L) could be estimated with a root mean square error of 1.5 m (8.3%) and 1.4 m (10.4%), using linear regression, at the two Swedish test sites Remningstorp (Lat. 58 degrees 30'N, Long. 13 degrees 40'E) and Krycklan (Lat. 64 degrees 16'N, Long. 19 degrees 46'E), which contain hemi-boreal and boreal forest. The correlation coefficients were r = 0.94 and r = 0.91, respectively. The 10 m sample plots were 175 in Remningstorp and 282 in Krycklan. It was furthermore found that WV2 data are sometimes unstable for canopy top height estimations (ALS height percentile 100, p100) and that the reconstructed heights are generally located below the actual top height. The WV2 p60 was found to correlate best with ALS p70 in Remningstorp, while WV2 p95 was found to correlate best with ALS p70 in Krycklan, and it moreover reached the highest correlation for all other estimated variables, at both test sites. It was concluded that WV2 p95 height data overall represent approximately the forest height ALS p70. The overall high correlation coefficients above 0.90 at both test sites, with different forest conditions, indicate that stereo matching of WV2 satellite images is suitable for forest height mapping

    Classification of Mangrove Vegetation Structure using Airborne LiDAR in Ratai Bay, Lampung Province, Indonesia

    Get PDF
    Mapping and inventory of the distribution and composition of mangrove vegetation structures are crucial in managing mangrove ecosystems. The availability of airborne LiDAR remote sensing technology provides capability of mapping vegetation structures in three dimensions. It provides an alternative data source for mapping and inventory of the distribution of mangrove ecosystems. This study aims to test the ability of airborne LiDAR data to classify mangrove vegetation structures conducted in Ratai Bay, Pesawaran District, Lampung Province. The classification system applied integrates structure attributes of lifeforms, canopy height, and canopy cover percentage. Airborne LiDAR data are derived into canopy height models (CHM) and canopy cover percentage models, then grouped by examining statistics and the zonation distribution of mangroves in the study area. The results of this study show that airborne LiDAR data are able to map vegetation structures accurately. The canopy height model derived using a pit-free algorithm can represent the maximum tree height with an error range of 3.17 meters and 82.3-88.6% accuracy. On the other hand, the canopy cover percentage model using LiDAR Fraction Cover (LFC) tends to be overestimate, with an error range of 16.6% and an accuracy of 79.6-94.7%. Meanwhile, the classification results of vegetation structures show an overall accuracy of 77%

    Spatial and temporal statistics of SAR and InSAR observations for providing indicators of tropical forest structural changes due to forest disturbance

    Get PDF
    Tropical forests are extremely important ecosystems which play a substantial role in the global carbon budget and are increasingly dominated by anthropogenic disturbance through deforestation and forest degradation, contributing to emissions of greenhouse gases to the atmosphere. There is an urgent need for forest monitoring over extensive and inaccessible tropical forest which can be best accomplished using spaceborne satellite data. Currently, two key processes are extremely challenging to monitor: forest degradation and post-disturbance re-growth. The thesis work focuses on these key processes by considering change indicators derived from radar remote sensing signal that arise from changes in forest structure. The problem is tackled by exploiting spaceborne Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) observations, which can provide forest structural information while simultaneously being able to collect data independently of cloud cover, haze and daylight conditions which is a great advantage over the tropics. The main principle of the work is that a connection can be established between the forest structure distribution in space and signal variation (spatial statistics) within backscatter and Digital Surface Models (DSMs) provided by SAR. In turn, forest structure spatial characteristics and changes are used to map forest condition (intact or degraded) or disturbance. The innovative approach focuses on looking for textural patterns (and their changes) in radar observations, then connecting these patterns to the forest state through supporting evidence from expert knowledge and auxiliary remote sensing observations (e.g. high resolution optical, aerial photography or LiDAR). These patterns are descriptors of the forest structural characteristics in a statistical sense, but are not estimates of physical properties, such as above-ground biomass or canopy height. The thesis tests and develops methods using novel remote sensing technology (e.g. single-pass spaceborne InSAR) and modern image statistical analysis methods (wavelet-based space-scale analysis). The work is developed on an experimental basis and articulated in three test cases, each addressing a particular observational setting, analytical method and thematic context. The first paper deals with textural backscatter patterns (C-band ENVISAT ASAR and L-band ALOS PALSAR) in semi-deciduous closed forest in Cameroon. Analysis concludes that intact forest and degraded forest (arising from selective logging) are significantly different based on canopy structural properties when measured by wavelet based space-scale analysis. In this case, C-band data are more effective than longer wavelength L-band data. Such a result could be explained by the lower wave penetration into the forest volume at shorter wavelength, with the mechanism driving the differences between the two forest states arising from upper canopy heterogeneity. In the second paper, wavelet based space-scale analysis is also used to provide information on upper canopy structure. A DSM derived from TanDEM-X acquired in 2014 was used to discriminate primary lowland Dipterocarp forest, secondary forest, mixed-scrub and grassland in the Sungai Wain Protection Forest (East Kalimantan, Indonesian Borneo) which was affected by the 1997/1998 El Niño Southern Oscillation (ENSO). The Jeffries- Matusita separability of wavelet spectral measures of InSAR DSMs between primary and secondary forest was in some cases comparable to results achieved by high resolution LiDAR data. The third test case introduces a temporal component, with change detection aimed at detecting forest structure changes provided by differencing TanDEM-X DSMs acquired at two dates separated by one year (2012-2013) in the Republic of Congo. The method enables cancelling out the component due to terrain elevation which is constant between the two dates, and therefore the signal related to the forest structure change is provided. Object-based change detection successfully mapped a gradient of forest volume loss (deforestation/forest degradation) and forest volume gain (post-disturbance re-growth). Results indicate that the combination of InSAR observations and wavelet based space-scale analysis is the most promising way to measure differences in forest structure arising from forest fires. Equally, the process of forest degradation due to shifting cultivation and post-disturbance re-growth can be best detected using multiple InSAR observations. From the experiments conducted, single-pass InSAR appears to be the most promising remote sensing technology to detect forest structure changes, as it provides three-dimensional information and with no temporal decorrelation. This type of information is not available in optical remote sensing and only partially available (through a 2D mapping) in SAR backscatter. It is advised that future research or operational endeavours aimed at mapping and monitoring forest degradation/regrowth should take advantage of the only currently available high resolution spaceborne single-pass InSAR mission (TanDEM-X). Moreover, the results contribute to increase knowledge related to the role of SAR and InSAR for monitoring degraded forest and tracking the process of forest degradation which is a priority but still highly challenging to detect. In the future the techniques developed in the thesis work could be used to some extent to support REDD+ initiatives

    The global tree carrying capacity (keynote)

    Full text link
    editorial reviewe
    corecore