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Assessment of boreal forest height from WorldView-2 satellite stereo 

images 

WorldView-2 satellite stereo images were used to derive a digital surface model, 

which together with a high resolution digital terrain model from airborne laser 

scanning (ALS) were used to estimate forest height. Lorey’s mean height (HL) 

could be estimated with a root mean square error (RMSE) of 1.5 m (8.3%) and 

1.4 m (10.4%), using linear regression, at the two Swedish test sites 

Remningstorp (Lat. 58°30'N, Long. 13°40'E) and Krycklan (Lat. 64°16'N, Long. 

19°46'E), which contain hemi-boreal and boreal forest. The correlation 

coefficients were r=0.94 and r=0.91, respectively. The 10 m sample plots were 

175 in Remningstorp and 282 in Krycklan. It was furthermore found, that 

WorldView-2 data are sometimes unstable for canopy top height estimations 

(ALS height percentile 100, p100) and that the reconstructed heights are 

generally located below the actual top height. The WorldView-2 p60 was found 

to correlate best with ALS p70 in Remningstorp, while WorldView-2 p95 was 

found to correlate best with ALS p70 in Krycklan, and it moreover reached the 

highest correlation for all other estimated variables, at both test sites. It was 

concluded, that WorldView-2 p95 height data overall represents approximately 

the forest height ALS p70. The overall high correlation coefficients above 0.90 at 

both test sites, with different forest conditions, indicate that stereo matching of 

WorldView-2 satellite images is suitable for forest height mapping.  
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1 Introduction 

Detailed and accurate updated information about the forest is vital for planning forest 

management actions, and also for following the current forest biomass inventory. The 

necessary information has traditionally been collected from sample based field visits 

(Nilsson 2013). Remote sensing techniques can provide comprehensive and accurate 

information in order to further increase the value of the field inventoried data (Tomppo 

et al. 2008). Remote sensing data have in numerous studies been shown to complement 

field based measures and estimations, such as basal area-weighted tree height (also 

known as Lorey’s mean height, HL), basal-area weighted stem diameter and mean stem 

volume (Hyyppä et al. 2000; Næsset et al. 2004; Yu et al. 2015). HL weights the 

contribution of trees to the stand height by their basal area, which causes larger trees to 

have a greater impact on the mean height. This measure is widely used in the forestry in 

US and Europe, and gives a more robust mean height in uneven stands compared to the 

arithmetic mean height which can be meaningful especially in even-aged stands. 

Currently, airborne laser scanning (ALS) is the most accurate airborne remote 

sensing technique available for estimation of many forest variables, such as HL, basal 

area or stem volume (Hyyppä et al. 2000; Næsset et al. 2004; Yu et al. 2015). However, 

satellite based platforms can provide information over large areas at lower cost and with 

short repetition intervals. Satellite images consisting of optical acquisitions with the 

spectral bands correlating with different forest variables in a 2-dimensional (2D) 

manner have been used for many decades. However, one important factor that makes 

ALS superior to other techniques have been its ability of reconstructing the forest in 

3 dimensions (3D). A balance of using the satellite platform and still obtain 3D data can 

be achieved by deriving a digital surface model (DSM) via stereo matching of optical 



satellite images and then a canopy height model can be computed, if an accurate digital 

terrain model (DTM) is available.  

Technical sensor improvements in the last decade have made sensors available 

which offer a ground sampling distance (GSD) below one meter and this set of sensors 

are frequently denoted very high resolution (VHR) sensors. Steerable sensors make 

stereo or even tri-stereo acquisitions available from a single overpass, which is crucial 

to obtain two cloud free images within a short temporal baseline. There are thus far only 

a limited number of studies which have used VHR sensors for estimation of forest 

variables. St-Onge et al. (2008) evaluated the accuracy of forest height and above-

ground biomass (AGB) based on an Ikonos stereo pair and an ALS DTM at a Canadian 

test site located close to Quebec. Straub et al. (2013) used Cartosat-1 and WorldView-2 

(WV2) stereo images to estimate growing stock in a mixed German forest. Immitzer et 

al. (2016) used WV2 stereo images in combination with national forest inventory data 

to map growing stock wall-to-wall in Bavaria, Germany.  

So far, Yu et al. (2015) is the only study known to the authors, that has used 

WV2 data to evaluate forest variables in boreal forest (Finland). They compared 

numerous remote sensing techniques to estimate AGB, stem volume, basal-area, basal 

area-weighted mean diameter and HL at plot-level. One technique was stereo matched 

WV2 images, where the RMSE was found to be 1.4 m for estimation of HL. The limited 

experience from stereo matched VHR WV2 images in boreal forest is the highest 

motivation for this study.  

The main objectives of this study are to examine the estimation of forest height 

at plot-level by using stereo matched very high resolution WorldView-2 satellite 

images, and an airborne laser scanning based digital terrain model. This is achieved by 

estimating field sampled HL and moreover by comparisons with ALS height percentiles.  



2 Study area and materials 

2.1 Test sites 

Two Swedish test sites located in the boreal forest zone were used (Figure 1). [Figure1]. 

The first test site was Remningstorp located in southern Sweden (Lat. 58°30'N, Long. 

13°40'E), and comprises about 1,200 ha of productive forest land. The prevailing tree 

species were Norway spruce (Picea abies; 68% volume), Scots pine (Pinus sylvestris; 

18% volume) and birch (Betula pendula and Betula pubescens; 13% volume). It is a 

rather flat region with moderately varying ground elevations between 120 m and 145 m 

above sea level and slopes up to 21°.  

The second test site is the Krycklan river catchment area located in northern 

Sweden (Lat. 64°16'N, Long. 19°46'E). The prevailing tree species were Scots pine 

(44% volume, mainly in dry upslope areas), Norway spruce (38.6% volume, mainly in 

wetter, low-lying areas), and birch (17.1% volume). The region is hilly with elevations 

between 125 m and 350 m above sea level and slopes up to 61°.  

2.2 Field data 

A systematic grid of circular plots with 10 m radius was distributed at both test sites. In 

Remningstorp 219 plots with about 200 m spacing were inventoried in the fall 2014. In 

Krycklan 326 plots with about 350 m spacing were inventoried in the fall 2015. The 

distribution of plots within the test sites is shown in Figure 1. The plot locations were 

measured using a Trimble GeoExplorer 6000 GeoXR, and all trees with a diameter at 

breast height (DBH) ≥ 0.04 m were calipered. The height was measured on a sub-

sample of the trees, using a hypsometer. The tree height distribution at the two test sites 

is presented in Figure 2 and some statistical measures are presented in Tables 1 and 2. 

[Figure 2] [Table 1] [Table 2]. 



2.3 Remote sensing data 

ALS height data were collected for the test sites approximately the same time as the 

field and satellite data. Remningstorp was scanned 4 August 2014 with a Riegl LMS 

680i laser scanner at 240 kHz PRF and with more than 20 points/m2 density. The 

wavelength was 1550 nm. Krycklan was scanned 22 and 23 August 2015 with a Titan 

L359 laser scanner at 300 kHz PRF and with more than 20 points/m2 density. The 

wavelength was 1064 nm. 

The DTM utilized was produced by the Swedish National Land Survey 

(Lantmäteriet) from ALS data, with 0.5 points/m2 point density, and 2 m pixel size 

(Rönnberg 2011; Bergström, Melin, and Nicolausson 2009). 

Optical satellite images were acquired from the WV2 satellite in 2015. The 

images were acquired as panchromatic along-track stereo pairs, with a spatial resolution 

of 0.5 m. The details about the satellite images are shown in Table 3. 

3 Methods 

3.1 Refinement of field data 

Linear regression was used to assign local height values species-wise to all inventoried 

trees at respective test site. The models had the form of (Söderberg 1986): 

 ln 𝐻 = 𝐷 + ln 𝐷 (1) 

where H is the field measured height and D means DBH. The cross-validated accuracy 

was 3.3 m (15.6%) RMSE for pine, 2.2 m (11.5%) for spruce, and 2.9 m (18.7%) for 

deciduous (birch) at Remningstorp, and correspondingly 2.4 m (16.4%) for pine, 1.9 m 

(13.8%) for spruce, and 2.0 m (15.1%) for deciduous (birch) at Krycklan. The forestry 

variable HL was computed plot-wise, according to  



 𝐻𝐿 =
∑ 𝐵 𝐻

∑ 𝐵
 (2) 

where B is the basal area.  

Plot-wise averages were extracted and those with a mean height corresponding 

to an ALS p100 of less than 4 m (equivalent to DBH=0.04 m) were removed and 

furthermore plots that have been clear-cut since the field inventory (1 year difference in 

Remningstorp), or were located within approximately 10 m, were removed.  

3.2 ALS height data processing 

The point clouds acquired from ALS were post-processed with the software Lastools. 

The ground was classified and then the point elevations above the ground were 

computed. The point cloud was filtered for noise, and points above 40 m were dropped, 

to avoid errors from for example birds. Metrics were extracted plot-wise above a 1.37 m 

height-cut-off to avoid under vegetation. The metrics included the height percentiles 

p50, p60, p70, p80, p90, p95, p99, p100, average, and standard deviation. 

The matched WV2 heights were compared with all ALS height percentiles. The 

ALS height percentile 100 corresponds to the maximum tree height and is close to the 

dominant height in a forest. Moreover, the highest correspondence between ALS 

heights and WV2 heights was examined among all extracted ALS height percentiles, 

and the highest correspondence was found for the ALS p70, which was also expected to 

be close to HL. Hence results for these height percentiles are presented in addition to HL.  

3.3 DSM generation via stereo matching of satellite image pairs 

The geo-location accuracy inherent to WV2 panchromatic imagery is reported to be 5 m 

CE90 at less than 30° off-nadir direction according to the satellite owner DigitalGlobe. 

However, the geo-location accuracy was improved by positioning ~10 ground control 



points (GCPs) per image manually. The resulting root mean square error (RMSE) of the 

triangulation solution was < 1 pixel.  

The stereo matching (and belonging geo-location optimization) was computed with the 

software Remote Sensing Graz (RSG). It used epipolar rectification of the images based 

on optimized sensor models, derived from the GCPs. Hence, a pre-defined point in the 

reference image can be found along a horizontal line in the search image. A semi-global 

image matching, similar to (Hirschmüller 2008), was used to compute disparities for 

each pixel for the stereo pair. Finally, spatial point intersection was applied to calculate 

ground coordinates in a least-squares manner out of the image matching disparities. The 

employed procedure is very similar to the more comprehensive description in Perko et 

al. (2014). The final step resulted in a 3D point cloud, from which the same plot-wise 

metrics as for ALS data were extracted. 

3.4 Modelling and evaluation 

Plot-wise metrics of the stereo matched WV2 point clouds were used in linear 

regression models to model the ALS percentiles, extracted the same way, from its point 

clouds. All extracted metrics were individually cross-compared, leading to the models 

presented in Table 4, which were found to perform the best. 

To evaluate the explanation performance of respective variable with WV2 data, 

the RMSE and the relative RMSE were computed (Hyndman and Koehler 2006):  

 RMSE = √
∑ (�̂�𝑖−𝑋𝑖)2𝑛

𝑖=1

𝑛
 (3) 

 RMSE(%) =
RMSE

�̅�
 (4) 



where n is the number of plots, �̂�𝑖 the value estimated from WW2 data for plot i, and 𝑋𝑖 

the observed value for plot i. �̅� represents the sampled mean for the variable in 

question. Moreover, the correlation coefficient r and the adjusted coefficient of 

determination (𝑅adj
2 ) were also computed (Kvålseth 1985).  

4 Results and discussion 

Linear regression models with one of the WV2 height percentiles as explanatory 

variable were applied successfully in order to describe the variable in question. HL 

could be estimated from WV2 data with 1.5 m and 1.4 m RMSE at respective test site, 

which corresponds to 8.3% and 10.0% RMSE (Table 4, Figures 3(a) and 3(d)). [Figure 

3] [Table 4]. This corresponds well with the 1.4 m RMSE reported by Yu et al. (2015) 

for a Finnish test site. The top height, ALS p100, was estimated with slightly larger 

RMSE at both test sites (2.1 m and 1.7 m respectively; Figures 3(c) and 3(f)). The 

highest correlation and lowest RMSE for all possible combinations was found for ALS 

p70 at both test sites, which in Remningstorp was best described with WV2 p60, while 

in Krycklan WV2 p95 was the best estimator (Table 4, Figures 3(b) and 3(e)). The 

RMSEs were 0.8 m (5.8%) and 1.1 m (9.5%) at the respective test sites, which are lower 

than traditional field sampled methods (subjectively chosen locations evaluated using a 

relascope, about 10% to 15% RMSE) and in line with the accuracy with which HL can 

be estimated from ALS data (Ståhl 1992; Yu et al. 2015). 

The trees sampled in field contain inherent errors of the DBH and tree height. 

The DBH is normally accurately measured with errors below a few centimetres, while 

the height can differ more, and especially since linear regression was used to assign 

height values to all trees without measured heights. Therefore the high similarity with 

ALS p70, which likely could be close to HL, gives an extra indication that the applied 

method is plausible for estimation of forest height.  



The WV2 p95 was the strongest explanatory variable for all the other estimated 

variables at both test sites. This is likely due to that WV2 p100 was overall less robust 

(compared to WV2 p95), and lower WV2 height percentiles were generally originating 

from reflections too deep into the canopy. As the stereo matched WV2 point cloud 

originates from optical images with spectral wavelengths (450-800 nm), no or a limited 

depth sensibility was expected. This hence causes most of the height percentiles from 

the WV2 point cloud to be rather tightly gathered, and it was expected, that the WV2 

point cloud would correspond approximately to the canopy top height (ALS p100). 

However, as the highest correlation and lowest RMSE was found for the ALS p70, it 

can be concluded, that robust upper height percentiles (WV2 p95) from the VHR optical 

stereo matched images rather describe a forest height of about 70% of the top height.  

The canopy height is not a “fix” height, but rather an average of several tree 

heights, dependant on the spatial scale that is sampled. When the forest top height (ALS 

p100) was studied, a number of plots started to “stand out”, by becoming more 

prominently underestimated (Figures 3(c) and 3(f)). From investigations of these plots, 

many of them seem to be located in forest with low trees and frequently also rather 

sparse forest. Some of the underestimated plots contained two-layered forest, often 

originating from left seeding trees in younger stands, which in a sense can be considered 

sparse forest.  

All forest height related variables were estimated with high correlations (r at 

least 0.90) at both test sites with in-situ modelling data. The image resolution plays 

likely a vital role for this success, as stereo matching of lower resolution images have 

indicated little contribution for this type of applications (Persson et al. 2012). Moreover, 

the high geo-location accuracy causes the large intersection angles to come to their full 

potential, as a good matching can be achieved despite the somewhat different object 



appearances within the stereo pair. With lower resolution and worse geo-location 

accuracy, the challenge of matching the same objects in different images increase.  

As few/no plots with very young forest were included (trees < 10-30 years 

depending on the test site), caution should be taken before extrapolating these models to 

entire wall-to-wall maps including all kinds of forest. Furthermore, as the variable to be 

estimated shifted upwards in the forest canopy, the younger plots became more 

underestimated. Future studies should further investigate the influence of forest density, 

i.e., by also considering forest variables such as basal-area and stem volume.  

5 Conclusions 

This article shows how WV2 satellite images can be stereo matched in order to derive 

the forest height. The presented method requires a high resolution DTM, which in our 

case was obtained from ALS, in order to compute the difference between stereo 

matched heights and the ground. These height differences were extracted plot-wise on 

10 m sample plots in order to obtain the forest height. Three variables were evaluated to 

express the forest height; HL (basal area-weighted mean tree height), ALS p100 (canopy 

top height, close to the dominant forest height and corresponds to the maximum tree 

height), and moreover the most correlated ALS height percentile, which turned out to be 

ALS p70. The proposed approach was evaluated on a few hundreds of 10 m plots at two 

Swedish test sites with hemi-boreal and boreal forest respectively, which mainly 

contained coniferous forest.  

The results show that stereo matched WorldView-2 images seem suitable to 

efficiently map forest height. It is potentially also well suited for updating existing 

inventories, which often are based on more expensive ALS. The presented approach can 

likely be used similarly in large parts of the boreal forests, as similar results were 

obtained across the test sites, and moreover, the results obtained in this study confirm 



other studies from for example, German and Canadian forests, which contain a higher 

degree of deciduous forest (St-Onge, Hu, and Vega 2008; Maack et al. 2015). The plot-

level results of about 6% to 10% RMSE are better than traditional field inventory 

methods currently used by many Swedish forest companies. A general tendency to 

underestimation of higher trees could be noticed, and this tended to be most prominent 

for the estimations of HL and ALS p100.  
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9 Tables 

Table 1. Field plot properties for HL. The “number of plots used“ contains no clear-cut 

plots or plots with mean ALS p100<4 m. 

Test site Number of 

inventoried 

plots 

Number of 

plots used 

Mean  

(m) 

Min 

(m) 

Max 

(m) 

Standard 

deviation  

(m) 

Remningstorp 219 175 18.7 6.04 28.0 4.66 

Krycklan 326 282 14.4 4.42 24.6 3.57 

Table 2. Number of inventoried trees at respective test site, presented species-wise. The 

DBH was always measured for all trees where the height was measured. 

Test site Species No. of trees 

(DBH) 

No. of trees 

(height) 

Remningstorp Spruce 3930 1071 

Remningstorp Deciduous 1860 506 

Remningstorp Pine 465 239 

Krycklan Spruce 5869 1064 

Krycklan Deciduous 3439 506 

Krycklan Pine 6256 1942 

Table 3. Details for the WV2 satellite images.  

Test site Date of  

acquisition 

In-track  

view angle (°) 

Across-track 

view angle (°) 

Intersection 

angle (°) 

Remningstorp 1 11 Sep 2015 -14.6 -20.8 

} 27.1 

Remningstorp 2 11 Sep 2015 12.5 -20.0 

Krycklan #1 11 Sep 2015 -23.0 -22.3 

} 29.7 

Krycklan #2 11 Sep 2015 6.7 -21.7 



Table 4. Results of estimations at 10 m radius plot-level. ALS p70 and ALS p100 are 

the airborne laser scanning percentiles 70 and 100. 

Test site Estimated 

variable 

Explanatory 

variable 

RMSE 

(m) 

RMSE 

(%) 

r           𝑅adj
2  

Remningstorp HL WV2 p95 1.5 8.3 0.94 0.89 

Remningstorp ALS p70 WV2 p60 0.8 5.8 0.96 0.96 

Remningstorp ALS p100 WV2 p95 2.1 9.4 0.90 0.81 

Krycklan HL WV2 p95 1.4 10.0 0.91 0.83 

Krycklan ALS p70 WV2 p95 1.1 9.5 0.95 0.90 

Krycklan ALS p100 WV2 p95 1.7 9.4 0.92 0.85 

10 Figure captions 

Figure 1. The two test sites Remningstorp (right) and Krycklan (left), located in 

southern (58°N) and northern (64°N) Sweden (middle), respectively. The absence of 

plots in the systematic grids are plots located on non-forest land (e.g., lakes, roads or 

meadows). 

Figure 2. Height distribution of HL for the 10 m field plots at respective test site. a) 

Remningstorp b) Krycklan. 

Figure 3. Estimation of heights at the test sites at plot-level with 10 m radius. 

(a) HL in Remningstorp. 

(b) ALS p70 in Remningstorp. 

(c) ALS p100 (top height) in Remningstorp. 

(d) HL in Krycklan. 

(e) ALS p70 in Krycklan. 

(f) ALS p100 (top height) in Krycklan. 


