509 research outputs found

    Impervious surface estimation using remote sensing images and gis : how accurate is the estimate at subdivision level?

    Get PDF
    Impervious surface has long been accepted as a key environmental indicator linking development to its impacts on water. Many have suggested that there is a direct correlation between degree of imperviousness and both quantity and quality of water. Quantifying the amount of impervious surface, however, remains difficult and tedious especially in urban areas. Lately more efforts have been focused on the application of remote sensing and GIS technologies in assessing the amount of impervious surface and many have reported promising results at various pixel levels. This paper discusses an attempt at estimating the amount of impervious surface at subdivision level using remote sensing images and GIS techniques. Using Landsat ETM+ images and GIS techniques, a regression tree model is first developed for estimating pixel imperviousness. GIS zonal functions are then used to estimate the amount of impervious surface for a sample of subdivisions. The accuracy of the model is evaluated by comparing the model-predicted imperviousness to digitized imperviousness at the subdivision level. The paper then concludes with a discussion on the convenience and accuracy of using the method to estimate imperviousness for large areas

    Urban and regional heat island adaptation measures in the Netherlands

    Get PDF
    The urban planner´s role should be adapted to the current globalised and overspecialised economic and environmental context, envisioning a balance at the regional scale, apprehending not only new technologies, but also new mapping principles, that allow obtaining multidisciplinary integral overviews since the preliminary stages of the design process. The urban heat Island (UHI) is one of the main phenomena affecting the urban climate. In the Netherlands, during the heat wave of 2006, more than 1,000 extra deaths were registered. UHI-related parameters are an example of new elements that should be taken into consideration since the early phases of the design process. Problem statement Thus, the development of urban design guidelines to reduce the heat islands in Dutch cities and regions requires first an overall reflection on the heat island phenomenom (relevance of the large scale assessment, existing tools, instruments) and proposal of integrative and catalysing mapping strategies and then a specific assessment of the phenomenom at the selected locations in The Netherlands (testing those principles). Main research question Could the use of satellite imagery help analyse the UHI in the Netherlands and contribute to suggest catalysing mitigation acions actions implementable in the existing urban context of the cities, regions and provinces assessed? Method The development of urban design principles that aim at reaching a physical balance at the regional scale is critical to ensure a reduction of the UHI effect. Landsat and Modis satellite imagery can be analysed and processed using ATCOR 2/3, ENVI 4.7 and GIS, allowing not only a neighbourhood, city and regional scale assessment, but also generating holistic catalysing mapping typologies: game-board, rhizome, layering and drift, which are critical to ensure the integration of all parameters. The scientific inputs need to be combined not only with other disciplines but often also with existing urban plans. The connection between scientific research and existing agreed visions is critical to ensure the integration of new aspects into the plans. Results At the neighbourhood level the areas that have a greater heat concentration in the cities of Delft, Leiden, Gouda, Utrecht and Den Bosch are the city centres characterised by their red ceramic roof tiles, brick street paving, and canals. Several mitigation strategies could be implemented to improve the UHI effect in those areas; however, since the city centres are consolidated and listed urban areas, the mitigation measures that would be easier to implement would consist in improving the roof albedo. A consistent implementation of albedo improvement measures (improving the thermal behaviour not only of flat roofs, but also of tiled pitched roofs) of all roofs included in the identified hotspots (with an average storage heat flux greater than 90 W/m2) would help reduce the temperatures between 1.4°C and 3°C. Pre-war and post-war compact and ground-based neighbourhoods present similar thermal behaviour of the surface cover, and green neighbourhoods and small urban centres also present similar thermal behaviour. At the city scale the analysis of 21 medium-size cities in the province of North Brabant, which belongs to the South region of the county -in relative terms the most affected by the UHI phenomenon during the heat wave of 2006-, reveals that albedo and normalised difference vegetation index (NDVI) are the most relevant parameters influencing the average nightime land surface temperature (LST). Thus, imperviousness, distance to the nearest town and the area of the cities do not seem to play a significant role in the LST night values for the medium-size cities analysed in the region of North Brabant, which do not exceed 7,700 ha in any case. The future growth of most medium-size cities of the regions will not per se aggravate the UHI phenomenon; in turn it will be the design of the new neighbourhoods that will impact the formation of urban heat in the province. The average day LST of provincial parks in South Holland varies depending on the land use. The analysis of the average night LST varies depending of the land use of the patches. The following surfaces are arranged from the lowest to the highest temperatures: water surfaces, forests, cropland, and greenhouse areas. For each of these land uses, NDVI, imperviousness and landscape shape index (LSI) shape index influence the thermal behaviour of the patches differently. NDVI is inversely correlated to day LST for all categories, imperviousness is correlated to day LST for all areas which do not comprise a significant presence of greenhouses (grassland and built patches) and inversely correlated to LST for areas with a high presence of greenhouses (cropland and warehouses). Greenhouse surfaces have highly reflective roofs, which contribute to the reduction of day LST. Finally, landscape shape index varies depending on the nature of the surrounding patches, especially for small patches (built areas, forests and greenhouse areas). When the patches analysed are surrounded by warmer land uses, slender and scattered patches are warmer, more compact and large ones are cooler. In turn, when they are surrounded by cooler patches it is the opposite: slenderer and scattered patches are cooler and more compact and larger ones are warmer. In Midden-Delfland (1 of the 6 South Holland provincial parks), most of the hotspots surrounding the park are adjacent to grassland patches. The measure to increase the cooling capacity of those patches would consist in a change of land use and/or an increase of NDVI of the existing grassland patches. Conclusions Satellite imagery can be used not only to analyse the heat island phenomenom in Dutch neighbourhoods, cities and regions (identify neighbourhoods with highest surface temperature, identify impact of city size and morphology in surface temperature, calcuate average surface temperature for different land uses…), but also to suggest mitigation actions for the areas assessed. Moreover, satellite imagery is here used to generate catalysing mapping typologies: game-board, rhizome, layering and drift, ensuring that the measures proposed remain accurate enough to actualy be efficient and open enough to be compatible with the rest of urban planning priorities

    Urban and regional heat island adaptation measures in the Netherlands

    Get PDF
    The urban planner´s role should be adapted to the current globalised and overspecialised economic and environmental context, envisioning a balance at the regional scale, apprehending not only new technologies, but also new mapping principles, that allow obtaining multidisciplinary integral overviews since the preliminary stages of the design process. The urban heat Island (UHI) is one of the main phenomena affecting the urban climate. In the Netherlands, during the heat wave of 2006, more than 1,000 extra deaths were registered. UHI-related parameters are an example of new elements that should be taken into consideration since the early phases of the design process. PROBLEM STATEMENT Thus, the development of urban design guidelines to reduce the heat islands in Dutch cities and regions requires first an overall reflection on the heat island phenomenom (relevance of the large scale assessment, existing tools, instruments) and proposal of integrative and catalysing mapping strategies and then a specific assessment of the phenomenom at the selected locations in The Netherlands (testing those principles). MAIN RESEARCH QUESTION Could the use of satellite imagery help analyse the UHI in the Netherlands and contribute to suggest catalysing mitigation acions actions implementable in the existing urban context of the cities, regions and provinces assessed? METHOD The development of urban design principles that aim at reaching a physical balance at the regional scale is critical to ensure a reduction of the UHI effect. Landsat and Modis satellite imagery can be analysed and processed using ATCOR 2/3, ENVI 4.7 and GIS, allowing not only a neighbourhood, city and regional scale assessment, but also generating holistic catalysing mapping typologies: game-board, rhizome, layering and drift, which are critical to ensure the integration of all parameters. The scientific inputs need to be combined not only with other disciplines but often also with existing urban plans. The connection between scientific research and existing agreed visions is critical to ensure the integration of new aspects into the plans. RESULTS At the neighbourhood level the areas that have a greater heat concentration in the cities of Delft, Leiden, Gouda, Utrecht and Den Bosch are the city centres characterised by their red ceramic roof tiles, brick street paving, and canals. Several mitigation strategies could be implemented to improve the UHI effect in those areas; however, since the city centres are consolidated and listed urban areas, the mitigation measures that would be easier to implement would consist in improving the roof albedo. A consistent implementation of albedo improvement measures (improving the thermal behaviour not only of flat roofs, but also of tiled pitched roofs) of all roofs included in the identified hotspots (with an average storage heat flux greater than 90 W/m2) would help reduce the temperatures between 1.4°C and 3°C. Pre-war and post-war compact and ground-based neighbourhoods present similar thermal behaviour of the surface cover, and green neighbourhoods and small urban centres also present similar thermal behaviour. At the city scale the analysis of 21 medium-size cities in the province of North Brabant, which belongs to the South region of the county -in relative terms the most affected by the UHI phenomenon during the heat wave of 2006-, reveals that albedo and normalised difference vegetation index (NDVI) are the most relevant parameters influencing the average nightime land surface temperature (LST). Thus, imperviousness, distance to the nearest town and the area of the cities do not seem to play a significant role in the LST night values for the medium-size cities analysed in the region of North Brabant, which do not exceed 7,700 ha in any case. The future growth of most medium-size cities of the regions will not per se aggravate the UHI phenomenon; in turn it will be the design of the new neighbourhoods that will impact the formation of urban heat in the province. The average day LST of provincial parks in South Holland varies depending on the land use. The analysis of the average night LST varies depending of the land use of the patches. The following surfaces are arranged from the lowest to the highest temperatures: water surfaces, forests, cropland, and greenhouse areas. For each of these land uses, NDVI, imperviousness and landscape shape index (LSI) shape index influence the thermal behaviour of the patches differently. NDVI is inversely correlated to day LST for all categories, imperviousness is correlated to day LST for all areas which do not comprise a significant presence of greenhouses (grassland and built patches) and inversely correlated to LST for areas with a high presence of greenhouses (cropland and warehouses). Greenhouse surfaces have highly reflective roofs, which contribute to the reduction of day LST. Finally, landscape shape index varies depending on the nature of the surrounding patches, especially for small patches (built areas, forests and greenhouse areas). When the patches analysed are surrounded by warmer land uses, slender and scattered patches are warmer, more compact and large ones are cooler. In turn, when they are surrounded by cooler patches it is the opposite: slenderer and scattered patches are cooler and more compact and larger ones are warmer. In Midden-Delfland (1 of the 6 South Holland provincial parks), most of the hotspots surrounding the park are adjacent to grassland patches. The measure to increase the cooling capacity of those patches would consist in a change of land use and/or an increase of NDVI of the existing grassland patches. CONCLUSIONS Satellite imagery can be used not only to analyse the heat island phenomenom in Dutch neighbourhoods, cities and regions (identify neighbourhoods with highest surface temperature, identify impact of city size and morphology in surface temperature, calcuate average surface temperature for different land uses…), but also to suggest mitigation actions for the areas assessed. Moreover, satellite imagery is here used to generate catalysing mapping typologies: game-board, rhizome, layering and drift, ensuring that the measures proposed remain accurate enough to actualy be efficient and open enough to be compatible with the rest of urban planning priorities

    Mapping urban growth and investigating its potential impact on surface water quality in Chattanooga, Tennessee using GIS and remote sensing

    Get PDF
    Urban development involves the conversion of land cover from pervious to impervious surfaces. Impervious surfaces (IS) can have ramifications for urban stormwater and facilitate the movement of pollutants and other substances to nearby water bodies. This study investigated the changes in IS in and around the city of Chattanooga, Tennessee using GIS and remote sensing technologies based on Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) acquired in 1986 and 2016, respectively. A model was developed utilizing the Normalized Difference Vegetation Index (NDVI) and a supervised image classification algorithm to detect IS growth. The changes in IS were quantified at watershed level scale including stream riparian areas. The obtained results show a net growth of 45.12 km2 of IS, 9.96 km2 being within 90 m of streams, a conversion of 6% of the study site’s land cover. A stream risk assessment study was conducted using the riparian zone percent imperviousness to assess the potential of stream impairment due to IS growth. This assessment shows a significant increase in the number of streams that are potentially at risk to be impaired due to current urban growth

    Mapping and Estimation of Impervious Surfaces

    Get PDF

    Improving distributed runoff prediction in urbanized catchments with remote sensing based estimates of impervious surface cover

    Get PDF
    The amount and intensity of runoff on catchment scale are strongly determined by the presence of impervious land-cover types, which are the predominant cover types in urbanized areas. This paper examines the impact of different methods for estimating impervious surface cover on the prediction of peak discharges, as determined by a fully distributed rainfall-runoff model (WetSpa), for the upper part of the Woluwe River catchment in the southeastern part of Brussels. The study shows that detailed information on the spatial distribution of impervious surfaces, as obtained from remotely sensed data, produces substantially different estimates of peak discharges than traditional approaches based on expert judgment of average imperviousness for different types of urban land use. The study also demonstrates that sub-pixel estimation of imperviousness may be a useful alternative for more expensive high-resolution mapping for rainfall-runoff modelling at catchment scale

    Modeling Land-Cover Types Using Multiple Endmember Spectral Mixture Analysis in a Desert City

    Get PDF
    Spectral mixture analysis is probably the most commonly used approach among sub-pixel analysis techniques. This method models pixel spectra as a linear combination of spectral signatures from two or more ground components. However, spectral mixture analysis does not account for the absence of one of the surface features or spectral variation within pure materials since it utilizes an invariable set of surface features. Multiple endmember spectral mixture analysis (MESMA), which addresses these issues by allowing endmembers to vary on a per pixel basis, was employed in this study to model Landsat ETM+ reflectance in the Phoenix metropolitan area. Image endmember spectra of vegetation, soils, and impervious surfaces were collected with the use of a fine resolution Quickbird image and the pixel purity index. This study employed 204 (=3x17x4) total four-endmember models for the urban subset and 96 (=6x6x2x4) total five-endmember models for the non-urban subset to identify fractions of soil, impervious surface, vegetation, and shade. The Pearson correlation between the fraction outputs from MESMA and reference data from Quickbird 60 cm resolution data for soil, impervious, and vegetation were 0.8030, 0.8632, and 0.8496 respectively. Results from this study suggest that the MESMA approach is effective in mapping urban land covers in desert cities at sub- pixel level.

    Small-Area Population Estimation: an Integration of Demographic and Geographic Techniques

    Get PDF
    Knowledge of detailed and accurate population information is essential to analyze and address a wide variety of socio-economic, political, and environmental issues and to support necessary planning practices for both public agencies and the private sector. However, such important data are generally only available once every decade through the National Census. Moreover, populations in some rapidly-developing areas may increase quickly, such that this ten-year frequency does not meet the needs of these areas. Therefore, a cost-effective method for population estimation is necessary. To address this issue, this research integrated geographic, sociological, and demographic theories and exploited remotely sensed imagery and geographic information system (GIS) datasets to derive better population estimates at the census block level, the finest level of the national census. Specifically, three new approaches have been proposed in this dissertation to assist in the improvement of small-area population estimation accuracy. First, existing remotely sensed and GIS data have been adopted to estimate two major components of a demographic framework, including the redistribution of newly built dwelling units from the aggregated geographic level to the census block level and the estimation of persons per household (PPH) at such a fine scale. Second, in addition to the use of existing data, new urban environmental indicators were also extracted and employed to improve population estimation. In particular, to implement the automatic enumeration for individual housing units, a new spectral index, biophysical composition index (BCI), has been proposed to derive impervious surface information, a desirable urban environmental parameter. Third, using the extracted high-resolution urban environmental information and GIS data, a new bottom-up method was developed for small-area population estimation at the census block level by incorporating these high-resolution data into the demographic framework. Analyses of the results suggest three major conclusions. First, existing GIS spatial factors, together with demographic information, can assist in improving the accuracy of small-area population estimation. Second, the BCI has a closer relationship with impervious surface area than do other popular indices. Moreover, it was shown to be the most effective index of the four evaluated for separating impervious surfaces and bare soil, which consequently might assist in more accurately deriving fractional land cover values. Third, the use of the new environmental indicators extracted from remote sensing imagery and GIS data and the integration of demographic and geographic approaches has significantly improved the estimation accuracy of housing unit (HU) numbers, PPH, and population counts at the census block level. Therefore, this research contributes to both the remote sensing and applied demography fields. The contribution to the remote sensing field lies in the development of a novel spectral index to characterize urban land for monitoring and analyzing urban environments. This index provided more significant separability between impervious surfaces and bare soil than did other existing indices. Moreover, three major contributions have been made in the field of applied demography: 1) the generation of accurate HU estimates using high-resolution remote sensing and GIS datasets, 2) the development of a model to derive an accurate PPH estimate, and 3) the improvement of small-area population estimation accuracy through the integration of geographic and demographic approaches

    Online Εvaluation of Earth Observation Derived Indicators for Urban Planning and Management

    Get PDF
    Extensive urbanization and growth of population density have acquired a paramount interest towards a sustainable urban development. Earth Observation (EO) is an important source of information required for urban planning and management. The availability of EO data provides the immense opportunity for urban environmental indicators development easily derived by remote sensors. In this study, the state of the art methods were employed to develop urban planning and management relevant indicators that can be evaluated by using EO data. The importance of this approach lies on providing alternatives for improving urban planning and management, without consuming time and resources in collecting field or archived data. The evaluated urban indicators were integrated into a Web‐based Information System that was developed for online exploitation. The results for three case studies are therefore available online and can be used by urban planners and stakeholders in supporting their planning decisions

    Characterising urban catchments for explaining storm runoff and application in UK flood estimation

    Get PDF
    The impacts of urbanisation on catchment hydrology have been the focus of investigation over the last few decades, but quantifying and predicting the impacts remains an ongoing area of active research. One such area has been improving characterisation of urban land cover to predict urbanisation impacts whereby lumped catchment characterisation of urban land cover limits the ability of attribution and modelling methods to consider the spatial role of land cover in runoff response. This thesis evaluates the potential for spatially explicit characterisations of urban land cover based on landscape metrics, commonly employed in landscape ecology, to explain storm runoff in urban catchments and their application in UK flood estimation methods. Rainfall and channel flow monitoring across two towns containing 18 variably urbanised sub-catchments were used to provide high-resolution time-series of rainfall and runoff and to identify storm events which were quantified using a range of hydrological metrics. Analysing storm runoff along a rural-urban gradient showed a lumped measure of urban extent can generally explain differences in the hydrological response between rural and urban catchments but not between more urbanised catchments in which soil moisture does not play a contributing role. Using high resolution geospatial data can improve the representation of the urban environment and landscape metrics can better represent the form and function of urban land cover, improving estimates of the index flood QMED over lumped catchment descriptors. Regression analysis of hydrological metrics showed the potential of landscape metrics for explaining inter-catchment differences in rainfall-runoff and point to the importance of considering the location and connectivity of urban surfaces. Landscape metrics provide a workable means of overcoming the limitations inherent in using lumped characterisation of complex urban land cover and their ability to express connectivity, size and location of urban land cover promises potential applications in hydrological applications such as UK design flood estimation methods
    • …
    corecore