35 research outputs found

    Estimating Net Photosynthesis of Biological Soil Crusts in the Atacama Using Hyperspectral Remote Sensing

    Get PDF
    Biological soil crusts (BSC) encompassing green algae, cyanobacteria, lichens, bryophytes, heterotrophic bacteria and microfungi are keystone species in arid environments because of their role in nitrogen- and carbon-fixation, weathering and soil stabilization, all depending on the photosynthesis of the BSC. Despite their importance, little is known about the BSCs of the Atacama Desert, although especially crustose chlorolichens account for a large proportion of biomass in the arid coastal zone, where photosynthesis is mainly limited due to low water availability. Here, we present the first hyperspectral reflectance data for the most wide-spread BSC species of the southern Atacama Desert. Combining laboratory and field measurements, we establish transfer functions that allow us to estimate net photosynthesis rates for the most common BSC species. We found that spectral differences among species are high, and differences between the background soil and the BSC at inactive stages are low. Additionally, we found that the water absorption feature at 1420 nm is a more robust indicator for photosynthetic activity than the chlorophyll absorption bands. Therefore, we conclude that common vegetation indices must be taken with care to analyze the photosynthesis of BSC with multispectral data

    Ecophysiology and phylogeny of new terricolous and epiphytic chlorolichens in a fog oasis of the Atacama Desert

    Get PDF
    The Atacama Desert is one of the driest and probably oldest deserts on Earth where only a few extremophile organisms are able to survive. This study investigated two terricolous and two epiphytic lichens from the fog oasis “Las Lomitas” within the National Park Pan de Azúcar which represents a refugium for a few vascular desert plants and many lichens that can thrive on fog and dew alone. Ecophysiological measurements and climate records were combined with molecular data of the mycobiont, their green algal photobionts and lichenicolous fungi to gain information about the ecology of lichens within the fog oasis. Phylogenetic and morphological investigations led to the identification and description of the two new lichen species Ramalina reichenbergeri and Acarospora conafii as well as the lichenicolous fungi that accompanied them and revealed the trebouxioid character of all lichen photobionts. Their photosynthetic response during natural scenarios such as reactivation by high air humidity and in situ fog events were compared to elucidate the activation strategies of this lichen community. Epiphytic lichens showed photosynthetic activity that was rapidly induced by fog and additionally during high air humidity whereas terricolous lichens were only activated by fog

    Spectral Diversity Successfully Estimates the α-Diversity of Biocrust-Forming Lichens

    Get PDF
    Biocrusts, topsoil communities formed by mosses, lichens, liverworts, algae, and cyanobacteria, are a key biotic component of dryland ecosystems worldwide. Experiments carried out with lichen- and moss-dominated biocrusts indicate that climate change may dramatically reduce their cover and diversity. Therefore, the development of reproducible methods to monitor changes in biocrust diversity and abundance across multiple spatio-temporal scales is key for evaluating how climate change may impact biocrust communities and the myriad of ecosystem functions and services that rely on them. In this study, we collected lichen-dominated biocrust samples from a semi-arid ecosystem in central Spain. Their α-diversity was then evaluated using very high spatial resolution hyperspectral images (pixel size of 0.091 mm) measured in laboratory under controlled conditions. Support vector machines were used to map the biocrust composition. Traditional α-diversity metrics (i.e., species richness, Shannon’s, Simpson’s, and Pielou’s indices) were calculated using lichen fractional cover data derived from their classifications in the hyperspectral imagery. Spectral diversity was calculated at different wavelength ranges as the coefficient of variation of different regions of the reflectance spectra of lichens and as the standard deviation of the continuum removal algorithm (SD_CR). The accuracy of the classifications of the images obtained was close to 100%. The results showed the best coefficient of determination (r2 = 0.47) between SD_CR calculated at 680 nm and the α-diversity calculated as the Simpson’s index, which includes species richness and their evenness. These findings indicate that this spectral diversity index could be used to track spatio-temporal changes in lichen-dominated biocrust communities. Thus, they are the first step to monitor α-diversity of biocrust-forming lichens at the ecosystem and regional levels, a key task for any program aiming to evaluate changes in biodiversity and associated ecosystem services in drylands.The research has received funding from the European Union’s Horizon 2020 research and innovation 514 program under the Marie Sklodowska-Curie grant agreement no. 721995. F.T.M. acknowledges support from the European Research Council grant agreement no. 647038 (BIODESERT)

    QUANTIFYING GRASSLAND NON-PHOTOSYNTHETIC VEGETATION BIOMASS USING REMOTE SENSING DATA

    Get PDF
    Non-photosynthetic vegetation (NPV) refers to vegetation that cannot perform a photosynthetic function. NPV, including standing dead vegetation and surface plant litter, plays a vital role in maintaining ecosystem function through controlling carbon, water and nutrient uptake as well as natural fire frequency and intensity in diverse ecosystems such as forest, savannah, wetland, cropland, and grassland. Due to its ecological importance, NPV has been selected as an indicator of grassland ecosystem health by the Alberta Public Lands Administration in Canada. The ecological importance of NPV has driven considerable research on quantifying NPV biomass with remote sensing approaches in various ecosystems. Although remote images, especially hyperspectral images, have demonstrated potential for use in NPV estimation, there has not been a way to quantify NPV biomass in semiarid grasslands where NPV biomass is affected by green vegetation (PV), bare soil and biological soil crust (BSC). The purpose of this research is to find a solution to quantitatively estimate NPV biomass with remote sensing approaches in semiarid mixed grasslands. Research was conducted in Grasslands National Park (GNP), a parcel of semiarid mixed prairie grassland in southern Saskatchewan, Canada. Multispectral images, including newly operational Landsat 8 Operational Land Imager (OLI) and Sentinel-2A Multi-spectral Instrument (MSIs) images and fine Quad-pol Radarsat-2 images were used for estimating NPV biomass in early, middle, and peak growing seasons via a simple linear regression approach. The results indicate that multispectral Landsat 8 OLI and Sentinel-2A MSIs have potential to quantify NPV biomass in peak and early senescence growing seasons. Radarsat-2 can also provide a solution for NPV biomass estimation. However, the performance of Radarsat-2 images is greatly affected by incidence angle of the image acquisition. This research filled a critical gap in applying remote sensing approaches to quantify NPV biomass in grassland ecosystems. NPV biomass estimates and approaches for estimating NPV biomass will contribute to grassland ecosystem health assessment (EHA) and natural resource (i.e. land, soil, water, plant, and animal) management

    Biocrust-forming cyanobacteria inoculation to restore degraded soils from dryland ecosystems

    Get PDF
    Resumen: La acción combinada del cambio climático y el aumento de la presión antrópica están acelerando la degradación de los ecosistemas (Lal, 2015), la cual afecta negativamente a la biodiversidad, la fertilidad del suelo, la disponibilidad de agua y el bienestar de la población local, siendo uno de los principales problemas ambientales del siglo XXI (UNCCD, 2019). Los procesos de degradación son especialmente relevantes en las zonas áridas, por la fuerte presión antrópica que soportan y las condiciones climáticas adversas que los caracterizan. Por este motivo, las Naciones Unidas, en su Agenda 2030, ha propuesto un objetivo específico para detener y revertir la degradación mediante la rehabilitación ecológica de las tierras secas ya degradadas. Sin embargo, la mayoría de los intentos llevados a cabo para restaurar los ecosistemas en estas regiones secas, mediante las estrategias tradicionales centradas en el establecimiento de la cobertura vegetal, fracasan debido a la escasez de agua (Reynolds et al., 2007), baja fertilidad de los suelos y alta vulnerabilidad a la erosión que caracterizan a estas áreas. Por lo tanto, es necesario investigar estrategias de restauración complementarias, que soporten el fuerte estrés abiótico, mejoren las condiciones del suelo y y que sean viables económicamente. Debido a las duras condiciones abióticas que se presentan en las tierras secas, las plantas, a menudo, se sitúan en las zonas más favorables dentro del ecosistema, y en las menos favorables, aparecen otras formas de vida con menores requerimientos edáficos y de humedad, como las costras biológicas del suelo o biocostras. Las biocostras son comunidades formadas por organismos poiquilohídricos como bacterias, cianobacterias, arqueas, algas, hongos, musgos o líquenes, los cuales viven en estrecha asociación con las partículas del suelo (Belnap et al., 2016). Esta capa casi continua, que forma “la piel viva del suelo”, intercede en numerosos procesos clave de los ecosistemas (Castillo-Monroy and Maestre, 2011; Maestre et al., 2016), afectando positivamente a la estabilidad y fertilidad del suelo (Mazor et al., 1996), regulando la disponibilidad de agua en el suelo y reduciendo la erosión hídrica y eólica (Belnap et al., 2007; Cantón et al., 2014). Aunque, las biocostras son muy resistentes y pueden sobrevivir en condiciones climáticas adversas, numerosos trabajos han demostrado que son muy sensibles a las perturbaciones físicas (ej. al tráfico de vehículos o pastoreo) y a los efectos derivados del cambio climático (Ferrenberg et al., 2015), lo que a su vez reduce su capacidad de proporcionar servicios ecosistémicos clave (Weber et al., 2016). Además, una vez que la actividad que causa la alteración cesa, su recuperación natural tiende a ser muy lenta y no siempre ocurre (Weber et al., 2016). Por este motivo, en las últimas décadas se están desarrollando nuevas estrategias para ayudar en la recuperación de las biocostras ya alteradas o para inducir su nueva formación, y que contribuir así, al restablecimiento de los servicios ecosistémicos perdidos. De las diferentes técnicas desarrolladas hasta el momento, la inoculación del suelo con cianobacterias es una de las más atractivas. Estas bacterias fotoautotróficas son uno de los primeros colonizadores del suelo (Büdel et al., 2016), y gracias a su capacidad para fijar CO2 y N2, mejoran la fertilidad (Mazor et al., 1996), la estabilidad de los agregados (Chamizo et al., 2018) y la capacidad de retención de agua (Colica et al., 2014). Además, las cianobacterias presentan una gran variedad de adaptaciones para hacer frente a condiciones abióticas severas. Por ejemplo, todas las especies pueden permanecer en un estado latente durante los períodos de sequía y la gran mayoría son capaces de sintetizar pigmentos que las protegen frente a los rayos UV (Garcia-Pichel and Castenholz, 1991; Rajeev et al., 2013). Además, se pueden aislar a partir de pequeños fragmentos de biocostra natural y cultivarse ex situ en medio de cultivo líquido para producir grandes cantidades de inóculo en periodos de tiempo relativamente cortos. Todas estas características convierten a las cianobacterias en magníficas candidatas para contribuir a la rehabilitación ecológica de las tierras secas. Aunque estudios previos, en condiciones de laboratorio, han demostrado la viabilidad del uso de la inoculación de cianobacterias para promover la formación de una nueva biocostra que mejora las propiedades del suelo (Acea et al., 2003; Malam-Issa et al., 2007; Chamizo et al., 2018), esta tecnología aun no está lo suficientemente desarrollada como para aplicarse de forma generalizada en los procesos de restauración en tierras secas. Esto se debe, en cierta medida, a que una gran parte de los estudios se han centrado en el uso de una sola especie, Microcoleus vaginatus, mientras que apenas se han probado otras especies (Hu et al., 2002; Chen et al., 2006; Wang et al., 2009). Las especies de cianobacterias pueden presentar grandes diferencias en la facilidad para aislarlas y cultivarlas, y en su capacidad para colonizar el suelo y formar biocostras, así como en su tolerancia al estrés abiótico y en su efecto sobre la calidad del suelo (Rossi et al., 2017). Por lo tanto, un examen preliminar para evaluar su crecimiento y efecto sobre las propiedades del suelo en el laboratorio constituye un paso esencial para elegir entre las diferentes alternativas disponibles. Por ejemplo, la escasez de agua y las propiedades fisicoquímicas del suelo son dos de los principales factores que afectan a la supervivencia y colonización de las cianobacterias en condiciones de campo (Bu et al., 2014; Fernandes et al., 2018), pero rara vez se han considerado estos factores en los experimentos publicados realizados en laboratorio. En este sentido, el uso de especies nativas se vislumbra como la opción más atractiva ya que es más probable que ya estén adaptadas a las condiciones abióticas locales (Giraldo-Silva et al., 2019a). Además, trabajando con especies nativas se reduciría la modificación de la comunidad nativa de microorganismos. Por esa razón, esta tecnología se beneficiaría de la identificación y puesta a punto de nuevas especies nativas que pudieran aportar aptitudes y funciones ecológicas que permitieran, por un lado, resistir las duras condiciones en el campo y, por otro, colonizar suelos con diferentes características fisicoquímicas. La única experiencia exitosa a gran escala de esta tecnología en el campo se ha llevado a cabo en China, en ecosistemas de dunas de arena que fueron previamente estabilizadas (Chen et al., 2006; Wang et al., 2009), mientras que la mayoría de los intentos de inoculaciones del suelo con cianobacterias en los desiertos del oeste de EEUU no mostraron resultados satisfactorios (Kubeckova et al., 2003; Faist et al., 2020). Esto demuestra que la aplicación de cianobacterias en el campo sigue siendo un desafío, debido sobre todo a la alta radiación UV y las sequías prolongadas que caracterizan las tierras secas, y por el efecto de la erosión hídrica y eólica que desplazan el inóculo antes de que este se asiente definitivamente sobre la superficie del suelo. Por lo tanto, se han propuesto diferentes estrategias para mejorar la supervivencia y el establecimiento de las cianobacterias en condiciones de campo. Una de estas estrategias consiste en aumentar gradualmente la radiación UV y reducir la disponibilidad de agua durante la fase de cultivo para endurecer el inóculo y adquiera mayor capacidad para soportar el estrés abiótico al que se enfrentará en el campo (Giraldo-Silva et al., 2019b). Las primeras pruebas realizadas que usaron esa estrategia mostraron resultados positivos en 13 de las 20 cepas de cianobacterias probadas (Giraldo-Silva et al., 2019b), sin embargo, la viabilidad del inóculo pre-acondicionado aún no se ha probado bajo condiciones de campo. Otra posibilidad es reducir el estrés tras la inoculación (pe: cubrir con una malla de yute), lo cual ya ha mostrado resultados prometedores para la rehabilitación de biocostras utilizando como inóculo propágulos de biocostra natural previamente cultivados en el invernadero (Bowker et al., 2020). Sin embargo, su aplicación en inoculaciones utilizando exclusivamente especies de cianobacterias aún no se ha ensayado. Además, una vez que se cosecha la biomasa, esta se debe aplicar en el área objetivo de forma casi inmediata, de lo contrario puede contaminarse o verse afectada por el ataque de patógenos. Esto dificulta su incorporación en las acciones de restauración tradicionales, y por este motivo hay varios grupos de investigación trabajando en el desarrollo de nuevas metodologías y técnicas que mejoren su almacenamiento, transporte y aplicación en las zonas a restaurar. Una de estas alternativas sería la incorporación de los cultivos de cianobacterias en pellets. Por ejemplo, Buttars et al., (1998) demostraron que M. vaginatus puede sobrevivir al proceso de peletización en pellets de alginato y que posterior se pueden liberar al suelo con éxito. Por el contrario, otros intentos con la misma especie, pero usando almidón como agente aglutinante, mostraron una alta mortalidad (Howard y Warren, 1998). Es necesario, por tanto, probar su aplicación con otras especies y compuestos de pellets. Una vez que se ha realizado la inoculación del suelo con cianobacterias es necesario llevar a acabo un seguimiento continuo de la evolución de la nueva biocostra generada, que nos permita evaluar el éxito de la restauración e identificar los posibles factores que puedan limitar la viabilidad del inóculo. Los indicadores más usados para realizar el seguimiento de las biocostras y controlar el éxito de la restauración son la cobertura de biocostra y, sobre todo, su contenido en clorofila. El problema es que los procedimientos que se suelen utilizar para para determinar el contenido de clorofila son lentos y costosos, y producen una alteración de la zona inoculada. Por lo tanto, es necesario desarrollar metodologías alternativas que nos permitan estimar el contenido de clorofila de forma indirecta y no destructiva. Una de las metodologías con mayor potencial para la estima indirecta del contenido de clorofila de las biocostras es la aplicación de indicadores espectrales calculados a partir de su reflectancia, tal como se viene haciendo desde hace algunos años para las plantas (Haboudane et al., 2002). Sin embargo, hasta ahora, esta metodología no ha sido probada ni adaptada para su uso con comunidades de biocostras, ya sean naturales o artificiales. El objetivo principal de esta tesis es probar el potencial de la inoculación con especies de cianobacterias formadoras de biocostras para promover el desarrollo de una nueva biocostra que mejore las condiciones de los suelos degradados de tierras secas. Para lograrlo, en primer lugar, se llevó a cabo un experimento para evaluar el potencial de tres cepas nativas de cianobacterias fijadoras de nitrógeno, Nostoc commune, Scytonema hyalinum y Tolypothrix distorta, de forma individual y combinadas formando un consorcio, para restaurar las funciones del suelo. La inoculación se llevó a cabo en tres suelos con diferentes grados de desarrollo provenientes de ecosistemas semiáridos de la provincia de Almería (sureste de España). Los resultados de este experimento demostraron que la inoculación con cianobacterias nativas induce la formación de una nueva biocostra que mejora las propiedades del suelo, relacionadas con su fertilidad, en un período de tiempo corto. De las diferentes cepas probadas, N. commune y el Consorcio de las tres cepas fueron los tratamientos que mostraron una mayor capacidad para colonizar y mejorar las propiedades del suelo (CAPÍTULO I). Con el fin de identificar el inoculo que mejor se adapta a condiciones de estrés hídrico, el experimento se repitió simulando dos regímenes de hidratación, uno que correspondía a un año hidrológico húmedo y otro a un año seco en las áreas de origen. En contra de lo que cabría esperar, tanto el desarrollo de la biocostra como las mejoras en las condiciones edáficas fueron similares bajo ambos regímenes de hidratación y para todos los tratamientos de inoculación probados, lo que sugiere que la disponibilidad de agua podría no ser tan importante para la formación de la nueva biocostra mediante la inoculación con cianobacterias, como inicialmente se pensaba. Además, Noctoc commune, el cual es conocido por ser un buen tolerante frente a la desecación, mostró una mayor capacidad de crecimiento bajo escenarios de restricción de agua, convirtiéndose de esta forma en un buen candidato para restaurar áreas degradadas en zonas áridas (CAPÍTULO II). Posteriormente, se evaluó la viabilidad de esas mismas cepas bajo condiciones de campo inoculando un consorcio de ellas en suelos de nuestras tres áreas de estudio. Para ello, previamente, se llevó a cabo el cultivo en fotobiorreactores de 100 L utilizando un medio de cultivo hecho a base de fertilizantes, lo que reduce considerablemente el coste de producción biomasa (Roncero-Ramos et al., 2019). Este experimento no generó los resultados esperados, pues se encontraron valores similares de clorofila a, absorción espectral de clorofila y albedo en las parcelas inoculadas y en las no inoculadas, dos años después de la inoculación. La baja tasa de éxito en campo motivó la realización de un segundo experimento para evaluar el efecto de técnicas dirigidas a la aclimatación o endurecimiento del inóculo, en el éxito de la inoculación. Para ello, los cultivos se aclimataron aumentando la radiación solar y disminuyendo el suministro de agua progresivamente antes de la inoculación. A pesar de ello, 6 meses después de inocular el suelo con el inóculo acondicionado se obtuvieron resultados poco exitosos y similares para parcelas en las que se aplicó el inóculo aclimatado y sin aclimatar. Finalmente, se evaluó el efecto de la cobertura de las parcelas con una red de plástico y una malla de fibra vegetal reciclada que aportaba sombra y mejoraba las condiciones ambientales del inoculo una vez instalado en campo. La combinación de la inoculación con cianobacterias no acondicionadas y posteriormente cubiertas por la malla vegetal dio lugar a una mayor colonización, contenido de clorofila, picos de absorción espectral de la clorofila más profundos y albedo más bajo que las parcelas descubiertas (CAPÍTULO III). Con el objetivo de desarrollar una metodología que permitiese mejorar el almacenamiento y la aplicabilidad del inóculo, se desarrolló un experimento paralelo para evaluar la supervivencia y el establecimiento de las cianobacterias después de ser encapsuladas en pellets. Para ello, se seleccionaron tres cepas de cianobacterias pertenecientes a géneros de fijadoras (Nostoc y Scytonema) y no fijadoras (Leptolyngbya) de nitrógeno. Las diferentes especies y el consorcio se incorporaron en pellets hechos a base de arena y arcilla y se probaron sobre suelos de tres sitios degradados de Australia. Los resultados obtenidos en este experimento mostraron que los pellets pueden disolverse completamente, y el inóculo se extiende hacia zonas subyacentes en todos los tratamientos probados. Los pellets que incorporaron Scytonema y el Consorcio mostraron mayor biomasa que los que incluían Nostoc y Leptolyngbia al final del período de incubación. Además, el almacenamiento de los pellets durante 30 días produjo una reducción de en el contenido de clorofila a en todos los tratamientos, aunque al menos el 50% de la biomasa aún estaba presente (CAPÍTULO IV). Finalmente, se estudió el potencial del uso de la reflectancia de la superficie del suelo para el seguimiento no destructivo de la biocostra inducida. El análisis de la respuesta espectral de diferentes comunidades de biocostras reveló que algunas transformaciones aplicadas a las firmas espectrales, tales como el continuo quitado y la primera derivada de la reflectancia, así como los índices de diferencia normalizada y los índices verdes estándar, tanto hiperespectrales como de banda ancha, se pueden utilizar de forma efectiva para este propósito. Sin embargo, esta metodología debe adaptarse de forma específica a cada tipo de biocostra. Para resolver esta limitación aplicamos un “random forest” que combinaba la información espectral con datos de la cobertura de cada tipo de costra. Este modelo no lineal dio muy buenos resultados cuando se aplicó al conjunto de la base de datos (CAPÍTULO V). En resumen, los resultados de esta tesis proporcionan información valiosa para la mejora de las acciones de rehabilitación del suelo basadas en la aplicación de una biotecnología basada en la incoculación de cianobacterias formadoras de biocostras, para su aplicación en zonas áridas. En primer lugar, los experimentos de laboratorio realizados demuestran la viabilidad del uso de un consorcio de cianobacterias nativas para promover la formación y el desarrollo de una nueva biocostra que mejora notablemente las propiedades clave de diferentes suelos degradados. Además, su aplicación exitosa sobre suelos con diferentes propiedades fisicoquímicas, incluyendo suelos de textura fina y sustratos de cantera, proporciona nuevos avances para desarrollar una tecnología aplicable en diferentes entornos. También hemos comprobado que N. commune puede sobrevivir y colonizar el suelo con muy poca disponibilidad de agua, lo que demuestra su gran potencial para restaurar suelos de ecosistemas donde el agua es un recurso limitante. Sin embargo, la inoculación directa del suelo en campo con el consorcio de cianobacterias nativas no mostró los resultados esperados. El bajo éxito se explicaba principalmente porque cuando se secó el suelo el inoculo se desprendió de la superficie del suelo y fue arrastrado por el viento y por la escorrentía. El uso de procedimientos para la mejora del hábitat redujo considerablemente el estrés abiótico y la inestabilidad del suelo, mejorando de esta forma significativamente la supervivencia y el establecimiento del inóculo. Sin embargo, aunque estos resultados son prometedores de cara a su aplicación a escala local, se necesitan más estudios para el desarrollo de técnicas de mejora del hábitat que puedan aplicarse a escalas más grandes. Por otro lado, nuestros resultados muestran que algunas cianobacterias, especialmente Scytonema sp. y el Consorcio, se pueden incorporar con éxito en pellets hechos a base de arena y bentonita. Aunque durante el almacenamiento del pellet se pierde parte de la clorofila al menos el 50% de la biomasa total cianobacterias sobrevivió. Por lo tanto, esta tecnología, aunque prometedora, necesita ser revisada y refinada en futuro estudios antes de que pueda aplicarse en situaciones reales de campo. Finalmente, la tesis presenta el primer estudio donde las propiedades espectrales de las biocostras se emplean con éxito para la estimación no destructiva de biomasa en biocostras. Esta información puede incorporarse a un coste razonable en los programas de monitoreo para la evaluación de proyectos de rehabilitación basados en el uso de biocostras. Summary: In drylands, the largest earth biome, the coupled action of climate change and rising human pressure are causing accelerated land degradation (Lal, 2015). This negatively affects biodiversity, soil fertility, water availability, and local population wellbeing, being one of the major environmental issues of the 21st century (UNCCD, 2019). For all these reasons, United Nations, in the Agenda 2030 has proposed a specific goal to stop and reverse ongoing land degradation by the ecological rehabilitation of already degraded drylands. However, most attempts to restore drylands ecosystems by using traditional strategies focused on plant cover establishment fails due to the water scarcity, low fertility and high vulnerability to erosion that characterize these areas (Reynolds et al., 2007). Thus, it is necessary to investigate complementary restoration strategies adapted to strong abiotic stress that can contribute to the recovery of these ecosystems in a cost-effective manner. Due to the harsh abiotic conditions imposed in drylands, plants are often restricted to the most favorable position within the landscape. In open and less favourable inter-plant spaces, other life-forms with lower edaphic and moisture requirements appear, such as poikilohydric communities of cyanobacteria, algae, fungi, bryophytes and lichens, living in close association with soils particles, and known as biological soil crusts or biocrusts (Belnap et al., 2016). By covering the soil surface, biocrusts form an almost continuous live-skin that intercede in numerous key ecosystems processes (Castillo-Monroy and Maestre, 2011; Maestre et al., 2016), positive affecting soil stability and fertility (Mazor et al., 1996), regulating water balance and reducing water and wind erosion (Belnap et al., 2007; Cantón et al., 2014). However, they are very sensitive to physical disturbance (e.g., vehicular traffic or grazing) and climate change (Ferrenberg et al., 2015), which in turn results in a reduction of their ability to provide key ecosystems services (Weber et al., 2016). In addition, once the activity that causes the disturbance ceases their natural recovery, when possible, tends to be very slow (Weber et al., 2016). Within the last decades, several innovative techniques are being developed to assist in the recovery of disturbed biocrust or to induce the formation of new ones, thereby reinstating the lost ecosystem services. From the different techniques already developed, soil inoculation with biocrust-forming cyanobacteria propagules is among the most attractive for several reasons. For example, theses photoautotrophic bacteria are among the first colonizers of soils (Büdel et al., 2016), enhancing so

    Microbial Hotspots in Lithic Macrohabitats Inferred from DNA Fractionation and Metagenomics in the Atacama Desert

    Get PDF
    The existence of microbial activity hotspots in temperate regions of Earth is driven by soil heterogeneities, especially the temporal and spatial availability of nutrients. Here we investigate whether microbial activity hotspots also exist in lithic microhabitats in one of the most arid regions of the world, the Atacama Desert in Chile. While previous studies evaluated the total DNA fraction to elucidate the microbial communities, we here for the first time use a DNA separation approach on lithic microhabitats, together with metagenomics and other analysis methods (i.e., ATP, PLFA, and metabolite analysis) to specifically gain insights on the living and potentially active microbial community. Our results show that hypolith colonized rocks are microbial hotspots in the desert environment. In contrast, our data do not support such a conclusion for gypsum crust and salt rockenvironments, because only limited microbial activity could be observed. The hypolith community is dominated by phototrophs, mostly Cyanobacteria and Chloroflexi, at both study sites. The gypsum crusts are dominated by methylotrophs and heterotrophic phototrophs, mostly Chloroflexi, and the salt rocks (halite nodules) by phototrophic and halotolerant endoliths, mostly Cyanobacteria and Archaea. The major environmental constraints in the organic-poor arid and hyperarid Atacama Desert are water availability and UV irradiation, allowing phototrophs and other extremophiles to play a key role in desert ecology

    Calibration of DART Radiative Transfer Model with Satellite Images for Simulating Albedo and Thermal Irradiance Images and 3D Radiative Budget of Urban Environment

    Get PDF
    Remote sensing is increasingly used for managing urban environment. In this context, the H2020 project URBANFLUXES aims to improve our knowledge on urban anthropogenic heat fluxes, with the specific study of three cities: London, Basel and Heraklion. Usually, one expects to derive directly 2 major urban parameters from remote sensing: the albedo and thermal irradiance. However, the determination of these two parameters is seriously hampered by complexity of urban architecture. For example, urban reflectance and brightness temperature are far from isotropic and are spatially heterogeneous. Hence, radiative transfer models that consider the complexity of urban architecture when simulating remote sensing signals are essential tools. Even for these sophisticated models, there is a major constraint for an operational use of remote sensing: the complex 3D distribution of optical properties and temperatures in urban environments. Here, the work is conducted with the DART (Discrete Anisotropic Radiative Transfer) model. It is a comprehensive physically based 3D radiative transfer model that simulates optical signals at the entrance of imaging spectro-radiometers and LiDAR scanners on board of satellites and airplanes, as well as the 3D radiative budget, of urban and natural landscapes for any experimental (atmosphere, topography,…) and instrumental (sensor altitude, spatial resolution, UV to thermal infrared,…) configuration. Paul Sabatier University distributes free licenses for research activities. This paper presents the calibration of DART model with high spatial resolution satellite images (Landsat 8, Sentinel 2, etc.) that are acquired in the visible (VIS) / near infrared (NIR) domain and in the thermal infrared (TIR) domain. Here, the work is conducted with an atmospherically corrected Landsat 8 image and Bale city, with its urban database. The calibration approach in the VIS/IR domain encompasses 5 steps for computing the 2D distribution (image) of urban albedo at satellite spatial resolution. (1) DART simulation of satellite image at very high spatial resolution (e.g., 50cm) per satellite spectral band. Atmosphere conditions are specific to the satellite image acquisition. (2) Spatial resampling of DART image at the coarser spatial resolution of the available satellite image, per spectral band. (3) Iterative derivation of the urban surfaces (roofs, walls, streets, vegetation,…) optical properties as derived from pixel-wise comparison of DART and satellite images, independently per spectral band. (4) Computation of the band albedo image of the city, per spectral band. (5) Computation of the image of the city albedo and VIS/NIR exitance, as an integral over all satellite spectral bands. In order to get a time series of albedo and VIS/NIR exitance, even in the absence of satellite images, ECMWF information about local irradiance and atmosphere conditions are used. A similar approach is used for calculating the city thermal exitance using satellite images acquired in the thermal infrared domain. Finally, DART simulations that are conducted with the optical properties derived from remote sensing images give also the 3D radiative budget of the city at any date including the date of the satellite image acquisition

    Range limit dynamics of biocrusts in a changing climate

    Full text link
    Climate change continues to drive a broad range of responses among the world’s biota. For example, there are plants that now flower earlier, animals that have evolved different camouflage, and many species that are shifting their ranges. Range shifting is well-documented for highly mobile taxa such as birds and insects, yet little is known about range shifting in species that form biocrusts—communities of lichens, non-vascular plants, and microbes that live on the soil surface and play important functional roles in nutrient cycling and erosion control. Another key theme of climate change ecology is that some species mediate the responses of other species, for example, by buffering the local microclimate or altering the cycling of nutrients. In line with these two themes, the aim of my thesis is to investigate: 1) what drives range limits in species of biocrust; 2) how biocrust species ranges have responded to recent climate change; 3) how biocrust species ranges are likely to respond to future climate change; and 4) how biocrust species mediate the effects of climate change on soil biota through microclimate buffering. I found that biocrust species are generally carbon limited at their arid range limits (Chapter 2), which suggests that range limits in biocrusts represent the point at which carbon budgets become unsustainable. Chapter 3 describes a field study comparing the modern and historical (25-year-old) distributions of three biocrust species, in which I found no evidence that any species have shifted in space to counteract climate warming. Global species distribution models show that the area of future suitable habitat is likely to be highly variable among biocrust species (Chapter 4), and accessing this habitat will require dispersal over considerable distances (4.6 km yr-1 on average). Finally, I found that tundra lichen mats play a major role in buffering high soil temperatures during summer (Chapter 5). The findings of this thesis are foundational for understanding the spatial aspect of biocrust responses to climate change and can be used to predict and mitigate losses of ecosystem functioning in areas where biocrust species are pushed beyond their niche limits

    Global assessment of sand and dust storms

    Get PDF
    The specific objectives of the assessment are to: 1) Synthesise and highlight the environmental and socio-economic causes and impacts of SDS, as well as available technical measures for their mitigation, at the local, regional and global levels; 2) Show how the mitigation of SDS can yield multiple sustainable development benefits; 3) Synthesize information on current policy responses for mitigating SDS and 4) Present options for an improved strategy for mitigating SDS at the local, regional and global levels, building on existing institutions and agreements

    Rangeland Systems: Processes, Management and Challenges

    Get PDF
    environmental management; environmental law; ecojustice; ecolog
    corecore