33 research outputs found

    An extended Fourier pseudospectral method for the Gross-Pitaevskii equation with low regularity potential

    Full text link
    We propose and analyze an extended Fourier pseudospectral (eFP) method for the spatial discretization of the Gross-Pitaevskii equation (GPE) with low regularity potential by treating the potential in an extended window for its discrete Fourier transform. The proposed eFP method maintains optimal convergence rates with respect to the regularity of the exact solution even if the potential is of low regularity and enjoys similar computational cost as the standard Fourier pseudospectral method, and thus it is both efficient and accurate. Furthermore, similar to the Fourier spectral/pseudospectral methods, the eFP method can be easily coupled with different popular temporal integrators including finite difference methods, time-splitting methods and exponential-type integrators. Numerical results are presented to validate our optimal error estimates and to demonstrate that they are sharp as well as to show its efficiency in practical computations.Comment: 20 pages, 7 figure

    An explicit and symmetric exponential wave integrator for the nonlinear Schr\"{o}dinger equation with low regularity potential and nonlinearity

    Full text link
    We propose and analyze a novel symmetric exponential wave integrator (sEWI) for the nonlinear Schr\"odinger equation (NLSE) with low regularity potential and typical power-type nonlinearity of the form f(ρ)=ρσ f(\rho) = \rho^\sigma , where ρ:=ψ2 \rho:=|\psi|^2 is the density with ψ \psi the wave function and σ>0 \sigma > 0 is the exponent of the nonlinearity. The sEWI is explicit and stable under a time step size restriction independent of the mesh size. We rigorously establish error estimates of the sEWI under various regularity assumptions on potential and nonlinearity. For "good" potential and nonlinearity (H2H^2-potential and σ1\sigma \geq 1), we establish an optimal second-order error bound in L2L^2-norm. For low regularity potential and nonlinearity (LL^\infty-potential and σ>0\sigma > 0), we obtain a first-order L2L^2-norm error bound accompanied with a uniform H2H^2-norm bound of the numerical solution. Moreover, adopting a new technique of \textit{regularity compensation oscillation} (RCO) to analyze error cancellation, for some non-resonant time steps, the optimal second-order L2L^2-norm error bound is proved under a weaker assumption on the nonlinearity: σ1/2\sigma \geq 1/2. For all the cases, we also present corresponding fractional order error bounds in H1H^1-norm, which is the natural norm in terms of energy. Extensive numerical results are reported to confirm our error estimates and to demonstrate the superiority of the sEWI, including much weaker regularity requirements on potential and nonlinearity, and excellent long-time behavior with near-conservation of mass and energy.Comment: 35 pages, 10 figure

    Uniformly Accurate Methods for Klein-Gordon type Equations

    Get PDF
    The main contribution of this thesis is the development of a novel class of uniformly accurate methods for Klein-Gordon type equations. Klein-Gordon type equations in the non-relativistic limit regime, i.e., c1c\gg 1, are numerically very challenging to treat, since the solutions are highly oscillatory in time. Standard Gautschi-type methods suffer from severe time step restrictions as they require a CFL-condition c2τ<1c^2\tau<1 with time step size τ\tau to resolve the oscillations. Within this thesis we overcome this difficulty by introducing limit integrators, which allows us to reduce the highly oscillatory problem to the integration of a non-oscillatory limit system. This procedure allows error bounds of order O(c2+τ2)\mathcal{O}(c^{-2}+\tau^2) without any step size restrictions. Thus, these integrators are very efficient in the regime c1c\gg 1. However, limit integrators fail for small values of cc. In order to derive numerical schemes that work well for small as well as for large cc, we use the ansatz of "twisted variables", which allows us to develop uniformly accurate methods with respect to cc. In particular, we introduce efficient and robust uniformly accurate exponential-type integrators which resolve the solution in the relativistic regime as well as in the highly oscillatory non-relativistic regime without any step size restriction. In contrast to previous works, we do not employ any asymptotic nor multiscale expansion of the solution. Compared to classical methods our new schemes allow us to reduce the regularity assumptions as they converge under the same regularity assumptions required for the integration of the corresponding limit system. In addition, the newly derived first- and second-order exponential-type integrators converge to the classical Lie and Strang splitting schemes for the limit system. Moreover, we present uniformly accurate schemes for the Klein-Gordon-Schrödinger and the Klein-Gordon-Zakharov system. For all uniformly accurate integrators we establish rigorous error estimates and underline their uniform convergence property numerically

    Exponential integrators: tensor structured problems and applications

    Get PDF
    The solution of stiff systems of Ordinary Differential Equations (ODEs), that typically arise after spatial discretization of many important evolutionary Partial Differential Equations (PDEs), constitutes a topic of wide interest in numerical analysis. A prominent way to numerically integrate such systems involves using exponential integrators. In general, these kinds of schemes do not require the solution of (non)linear systems but rather the action of the matrix exponential and of some specific exponential-like functions (known in the literature as phi-functions). In this PhD thesis we aim at presenting efficient tensor-based tools to approximate such actions, both from a theoretical and from a practical point of view, when the problem has an underlying Kronecker sum structure. Moreover, we investigate the application of exponential integrators to compute numerical solutions of important equations in various fields, such as plasma physics, mean-field optimal control and computational chemistry. In any case, we provide several numerical examples and we perform extensive simulations, eventually exploiting modern hardware architectures such as multi-core Central Processing Units (CPUs) and Graphic Processing Units (GPUs). The results globally show the effectiveness and the superiority of the different approaches proposed

    Geometric Integrators for Schrödinger Equations

    Full text link
    The celebrated Schrödinger equation is the key to understanding the dynamics of quantum mechanical particles and comes in a variety of forms. Its numerical solution poses numerous challenges, some of which are addressed in this work. Arguably the most important problem in quantum mechanics is the so-called harmonic oscillator due to its good approximation properties for trapping potentials. In Chapter 2, an algebraic correspondence-technique is introduced and applied to construct efficient splitting algorithms, based solely on fast Fourier transforms, which solve quadratic potentials in any number of dimensions exactly - including the important case of rotating particles and non-autonomous trappings after averaging by Magnus expansions. The results are shown to transfer smoothly to the Gross-Pitaevskii equation in Chapter 3. Additionally, the notion of modified nonlinear potentials is introduced and it is shown how to efficiently compute them using Fourier transforms. It is shown how to apply complex coefficient splittings to this nonlinear equation and numerical results corroborate the findings. In the semiclassical limit, the evolution operator becomes highly oscillatory and standard splitting methods suffer from exponentially increasing complexity when raising the order of the method. Algorithms with only quadratic order-dependence of the computational cost are found using the Zassenhaus algorithm. In contrast to classical splittings, special commutators are allowed to appear in the exponents. By construction, they are rapidly decreasing in size with the semiclassical parameter and can be exponentiated using only a few Lanczos iterations. For completeness, an alternative technique based on Hagedorn wavepackets is revisited and interpreted in the light of Magnus expansions and minor improvements are suggested. In the presence of explicit time-dependencies in the semiclassical Hamiltonian, the Zassenhaus algorithm requires a special initiation step. Distinguishing the case of smooth and fast frequencies, it is shown how to adapt the mechanism to obtain an efficiently computable decomposition of an effective Hamiltonian that has been obtained after Magnus expansion, without having to resolve the oscillations by taking a prohibitively small time-step. Chapter 5 considers the Schrödinger eigenvalue problem which can be formulated as an initial value problem after a Wick-rotating the Schrödinger equation to imaginary time. The elliptic nature of the evolution operator restricts standard splittings to low order, ¿ < 3, because of the unavoidable appearance of negative fractional timesteps that correspond to the ill-posed integration backwards in time. The inclusion of modified potentials lifts the order barrier up to ¿ < 5. Both restrictions can be circumvented using complex fractional time-steps with positive real part and sixthorder methods optimized for near-integrable Hamiltonians are presented. Conclusions and pointers to further research are detailed in Chapter 6, with a special focus on optimal quantum control.Bader, PK. (2014). Geometric Integrators for Schrödinger Equations [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/38716TESISPremios Extraordinarios de tesis doctorale

    Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to classical splitting schemes in the nonlinear Schrödinger limit

    Get PDF
    International audienceWe introduce efficient and robust exponential-type integrators for Klein-Gordon equations which resolve the solution in the relativistic regime as well as in the highly-oscillatory non-relativistic regime without any step-size restriction, and under the same regularity assumptions on the initial data required for the integration of the corresponding limit system. In contrast to previous works we do not employ any asymptotic/multiscale expansion of the solution. This allows us derive uniform convergent schemes under far weaker regularity assumptions on the exact solution. In particular, the newly derived exponential-type integrators of first-, respectively, second-order converge in the non-relativistic limit to the classical Lie, respectively, Strang splitting in the nonlinear Schrödinger limit
    corecore