Uniformly Accurate Methods for Klein-Gordon type Equations

Abstract

The main contribution of this thesis is the development of a novel class of uniformly accurate methods for Klein-Gordon type equations. Klein-Gordon type equations in the non-relativistic limit regime, i.e., c1c\gg 1, are numerically very challenging to treat, since the solutions are highly oscillatory in time. Standard Gautschi-type methods suffer from severe time step restrictions as they require a CFL-condition c2τ<1c^2\tau<1 with time step size τ\tau to resolve the oscillations. Within this thesis we overcome this difficulty by introducing limit integrators, which allows us to reduce the highly oscillatory problem to the integration of a non-oscillatory limit system. This procedure allows error bounds of order O(c2+τ2)\mathcal{O}(c^{-2}+\tau^2) without any step size restrictions. Thus, these integrators are very efficient in the regime c1c\gg 1. However, limit integrators fail for small values of cc. In order to derive numerical schemes that work well for small as well as for large cc, we use the ansatz of "twisted variables", which allows us to develop uniformly accurate methods with respect to cc. In particular, we introduce efficient and robust uniformly accurate exponential-type integrators which resolve the solution in the relativistic regime as well as in the highly oscillatory non-relativistic regime without any step size restriction. In contrast to previous works, we do not employ any asymptotic nor multiscale expansion of the solution. Compared to classical methods our new schemes allow us to reduce the regularity assumptions as they converge under the same regularity assumptions required for the integration of the corresponding limit system. In addition, the newly derived first- and second-order exponential-type integrators converge to the classical Lie and Strang splitting schemes for the limit system. Moreover, we present uniformly accurate schemes for the Klein-Gordon-Schrödinger and the Klein-Gordon-Zakharov system. For all uniformly accurate integrators we establish rigorous error estimates and underline their uniform convergence property numerically

    Similar works