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Abstract This article deals with the numerical integration in time of the nonlinear
Schrödinger equation with power law nonlinearity and random dispersion. We intro-
duce a new explicit exponential integrator for this purpose that integrates the noisy part
of the equation exactly. We prove that this scheme is of mean-square order 1 and we
draw consequences of this fact. We compare our exponential integrator with several
other numerical methods from the literature. We finally propose a second exponential
integrator, which is implicit and symmetric and, in contrast to the first one, preserves
the L2-norm of the solution.
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1 Introduction

We consider the time discretisation of the following nonlinear Schrödinger equation
with white noise dispersion

idu + c�u ◦ dβ + |u|2σu dt = 0

u(0) = u0, (1.1)

where the unknown u = u(x, t), with t ≥ 0 and x ∈ R
d , is a complex valued random

process, �u = ∑d
j=1

∂2u
∂x2j

denotes the Laplacian in R
d , c is a real number, σ is a

positive real number, and β = β(t) is a real valued standard Brownian motion. This
stochastic partial differential equation is understood in the Stratonovich sense, using
the ◦ symbol for the Stratonovich product.

The existence of a unique global square integrable solution to (1.1) was shown in
[14] for σ < 2/d and in [15] for d = 1 and σ = 2, see also [3]. The existence and
uniqueness of solutions to the one-dimensional cubic case of the above problem was
also studied in [26]. Furthermore, as for the deterministic Schrödinger equation, the
L2-norm, or mass, of the solution to (1.1) is a conserved quantity. This is not the case
for the total energy of the problem.

We now review the literature on the numerical analysis of the nonlinear Schrödinger
equation with white noise dispersion (1.1). The early work [18] studies the stability
with respect to random dispersive fluctuations of the cubic Schrödinger equation.
Furthermore, numerical experiments using a split step Fourier method are presented.
The paper [26] presents a Lie–Trotter splitting integrator for the above problem (1.1).
The mean-square order of convergence of this explicit numerical method is proven to
be at least 1/2 for a truncated Lipschitz nonlinearity [26, Sect. 5 and 6]. Furthermore,
[26] conjectures that this splitting scheme should have order one, and supports this
conjecture numerically. An analysis of asymptotic preserving properties of the Lie–
Trotter splitting is carried out in [16] for a more general nonlinear dispersive equation.
Very recently, the authors of [3] studied an implicit Crank–Nicolson scheme for the
time integration of (1.1). They show that this scheme preserves the L2-norm and has
order one of convergence in probability. Finally, the recent preprint [13] examine the
multi-symplectic structure of the problem and derive a multi-symplectic integrator
which converges with order one in probability.

In the present publication, we will consider exponential integrators for an efficient
time discretisation of the nonlinear stochastic Schrödinger equation (1.1). Exponen-
tial integrators for the time integration of deterministic semi-linear problems of the
form ẏ = Ly + N (y), are nowadays widely used and studied, as witnessed by
the recent review [22]. Applications of such numerical schemes to the deterministic
(nonlinear) Schrödinger equation can be found in, for example, [4–10,17,21] and refer-
ences therein. Furthermore, these numerical methods were investigated for stochastic
parabolic partial differential equations in, for example, [23–25], more recently for the
stochastic wave equations in [2,11,12,27], where they are termed stochastic trigono-
metric methods, and lately to stochastic Schrödinger equations driven by Ito noise
in [1].
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Themain result of this paper is a mean-square convergence result for an explicit and
easy to implement exponential integrator for the time discretisation of (1.1). Indeed,
we will show in Sect. 3 convergence of mean-square order one for this scheme as well
as convergence in probability. Note that the proofs of the results presented here use
similar techniques as the one used in [3].

In order to show the above convergence result, we begin the exposition by introduc-
ing some notations and recalling useful results in Sect. 2. After that, we present our
explicit exponential integrator for the numerical approximation of the above stochas-
tic Schrödinger equation and analyse its convergence in Sect. 3. Various numerical
experiments illustrating the main properties of the proposed numerical scheme will
be presented in Sect. 4. In the last section, we discuss the preservation of the mass, or
L2-norm, by symmetric exponential integrators.

2 Notation and useful results

We denote the classical Lebesgue space of complex functions by L2 := L2(Rd ,C),
endowed with its real vector space structure, and with the scalar product

(u, v) := Re
∫

Rd
uv̄ dx .

For s ∈ N, we further denote by Hs := Hs(Rd ,C) the Sobolev space of functions in
L2 such that their s first derivatives are in L2. The Fourier transform of a tempered
distribution v is denoted byF (v) or v̂. With this, Hs is the Sobolev space of tempered
distributions v such that (1 + |ζ |2)s/2v̂ ∈ L2.

Next, we consider a filtered probability space (�,F ,P, {Ft }t≥0) generated by a
one-dimensional standard Brownian motion β = β(t).

With the above definitions in hand, we can write the mild formulation of the
stochastic nonlinear Schrödinger equation (1.1) (with the constant c = 1 for ease
of presentation) [3,14,26]

u(t) = S(t, 0)u0 + i
∫ t

0
S(t, r)(|u(r)|2σu(r)) dr, (2.1)

with the random propagator S(t, r) expressed in the Fourier variables as

F (S(t, r)v(r))(ζ ) = exp
(
−i |ζ |2 (β(t) − β(r))

)
v̂(r)(ζ )

for t ≥ r ≥ 0, ζ ∈ R
d and v a tempered distribution.

We finally collect some results that we will use in the error analysis presented in
Sect. 3:

• The random propagator S(t, r) is an isometry in Hs for any s, see for example [3].
• There is a constant C such that, for t ≥ 0, h ∈ (0, 1) and r ∈ (t, t + h) and
for any Ft -measurable function v ∈ L2(�, Hs+4), one has the bounds (see [3,
Lemma 2.10 and equation (2.46)])
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E

[
‖S(r, t)v − v‖2Hs

]
≤ ChE

[
‖v‖2Hs+2

]
(2.2)

‖E [(S(r, t) − I )v]‖2Hs ≤ Ch2E
[
‖v‖2Hs+4

]
. (2.3)

• Withoutmuch loss of generality, wewill truncate the nonlinearity in (1.1) in Sect. 3
and thus recall the following estimates from [3]. Let f be a function from Hs to Hs ,
which sends Hs+2 to itself and Hs+4 to itself, with f (0) = 0, twice continuously
differentiable on those spaces, with bounded derivatives of order 1 and 2. Consider
u a solution on [0, T ] of

u(r) − u(t) = S(r, t)u(t) − u(t) + i
∫ r

t
S(r, σ ) f (u(σ )) dσ.

Then, there exists a constant C , which depends on f , such that (see [3, Equations
(2.30) and (2.44)])

E

[
‖u(r) − u(t)‖2Hs

]
≤ Ch sup

σ∈[0,T ]
E

[
‖u(σ )‖2Hs+2

]
(2.4)

E

[
‖u(r) − u(t)‖4Hs

]
≤ Ch2 sup

σ∈[0,T ]
E

[
‖u(σ )‖4Hs+2

]
, (2.5)

with h, r, t as in the above point (provided that the right-hand side is finite).

3 Exponential integrator and mean-square error analysis

This section presents an explicit time integrator for (1.1), and further states and proves
a mean-square convergence result for this numerical method. As a by-product result,
we also obtain convergence in probability of the exponential integrator.

3.1 Presentation of the exponential integrator

Let T > 0 be a fixed time horizon and an integer N ≥ 1. We define the step size
of the numerical method by h = T/N and denote the discrete times by tn = nh, for
n = 0, . . . , N . Looking at the mild solution (2.1) of the problem (1.1) on the interval
[tn, tn+1], and discretising the integral (by freezing the integrand at the left-end point
of this interval), one can iteratively define the following explicit exponential integrator

u0 = u(0)

un+1 = S(tn+1, tn)un + ihS(tn+1, tn)(|un|2σun). (3.1)

We thus obtain a finite sequence of numerical approximations un ≈ u(tn) of the exact
solution to the problem (1.1) at the discrete times tn = nh.
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3.2 Truncated Schrödinger equation

As in [3], we introduce a cut-off function in order to cope with the nonlinear part
of the stochastic partial differential equation (1.1): Let θ ∈ C∞(R+) with θ ≥ 0,
supp(θ) ⊂ [0, 2] and θ ≡ 1 on [0, 1]. For k ∈ N

∗ and x ≥ 0, we set θk(x) = θ( xk ).
Finally, one defines fk(u) = θk(‖u‖2

Hs+4) |u|2σ u.
Observe that, for s > d/2 and σ ∈ N

	, for a fixed k ∈ N
∗, fk is a bounded

Lipschitz function from Hs to Hs which sends Hs+2 to Hs+2 and Hs+4 to Hs+4.
It is twice differentiable on these spaces, with bounded and continuous derivatives
of order 1 and 2. Thus one has a unique global adapted solution uk to the truncated
problem in L∞(�,C ([0, T ], Hs)) if the initial value u0 ∈ Hs , see [3]. Note that,
with the assumptions above, uk ∈ L∞(�,C ([0, T ], Hs+2)) as soon as u0 ∈ Hs+2,
and uk ∈ L∞(�,C ([0, T ], Hs+4)) as soon as u0 ∈ Hs+4.

The global solution uk ∈ L∞(�,C ([0, T ], Hs)) to the truncated problem solves

uk(t) = S(t, 0)u0 + i
∫ t

0
S(t, r) fk(u

k(r)) dr, (3.2)

and the exponential integrator takes the form

uk0 = u(0)

ukn+1 = S(tn+1, tn)u
k
n + ihS(tn+1, tn) fk(u

k
n). (3.3)

Note that thismethod looks like the composition of twomethods: the first is the explicit
Euler equation applied to the differential equation u′ = fk(u), the second is the exact
solution of the linear stochastic Schrödinger equation.

3.3 Main result and convergence analysis

This subsection states and proves themain result of this paper on themean-square con-
vergence of the exponential integrator applied to the nonlinear Schrödinger equation
with white noise dispersion (1.1).

Theorem 3.1 Let us fix s > d/2, the initial value u0 ∈ Hs+4(Rd) and an integer
k ≥ 1. Consider the unique adapted truncated solution of the random nonlinear
Schrödinger equation uk(t) given by (3.2) with path a.s. in C ([0, T ], Hs+4(Rd)).
Further, consider the numerical solutions {ukn}, n = 0, 1, . . . , N, given by the explicit
exponential integrator (3.3)with step size h. One then has the following error estimate

∀ h ∈ (0, 1), sup
n | nh≤T

E[
∥
∥
∥ukn − uk(tn)

∥
∥
∥
2

Hs
] ≤ Ch2

for the discrete times tn = nh. Here, the constant C does not depend on n, h with

nh ≤ T but may depend on k, T, supt∈[0,T ] E[∥∥uk(t)∥∥4s+2], supt∈[0,T ] E[∥∥uk(t)∥∥2s+4].
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Proof For ease of presentation, we will ignore the index k referring to the cut-off in
the notations of the numerical and exact solutions as well as in the nonlinear function
fk . But we keep in mind that the constants belowmay depend on this index.We denote
by C such a constant, providing it does not depend on n ∈ N nor on h ∈ (0, 1) such
that nh ≤ T .

In order to later apply a discrete Gronwall-type argument, we first look at the error
between the exact and numerical solutions

en+1 := u(tn+1) − un+1 = S(tn+1, tn)en + ihS(tn+1, tn) ( f (u(tn)) − f (un))

− i
∫ tn+1

tn
(S(tn+1, tn) f (u(tn)) − S(tn+1, r) f (u(r)) dr

= S(tn+1, tn)en + ihS(tn+1, tn) ( f (u(tn)) − f (un))

− i
∫ tn+1

tn
(S(tn+1, tn) − S(tn+1, r)) f (u(tn)) dr

− i
∫ tn+1

tn
S(tn+1, r) ( f (u(tn) − f (u(r)) dr

=: I1 + I2 + I3 + I4.

The so-called mean-square error thus reads

E

[
‖en+1‖2s

]
=

4∑

j=1

E

[∥
∥I j

∥
∥2
s

]
+ 2

4∑

j=1

4∑

k= j+1

E
[
Re(I j , Ik)s

]
, (3.4)

with the Hs norm ‖·‖2s = Re(·, ·)s = ‖·‖2Hs .
We now proceed with the estimations of the above quantities. Before estimating

the mixed terms in (3.4), we start with the first four terms. By isometry of the random
propagator S(t, r), one gets

E

[
‖I1‖2s

]
= E

[
‖S(tn+1, tn)en‖2s

]
= E

[
‖en‖2s

]
.

For the second term, we again use the isometry property of the free random propagator
and further the fact that the function f is Lipschitz. This gives us

E

[
‖I2‖2s

]
= E

[
‖hS(tn+1, tn) ( f (u(tn)) − f (un))‖2s

]

= h2E
[
‖ f (u(tn)) − f (un)‖2s

]
≤ Ch2E

[
‖en‖2s

]
.

Using the isometry property of S(t, r), Cauchy–Schwarz’s inequality, the estimate
(2.2) from Sect. 2, and the fact that the exact solution is bounded, we can bound the
third term by
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E

[
‖I3‖2s

]
= E

[∥
∥
∥
∥

∫ tn+1

tn
S(tn+1, tn)(I − S(tn, r)) f (u(tn)) dr

∥
∥
∥
∥

2

s

]

≤ E

[(∫ tn+1

tn
1 · ‖S(tn+1, tn)(I − S(tn, r)) f (u(tn))‖s dr

)2
]

≤ h
∫ tn+1

tn
E

[
‖(I − S(tn, r)) f (u(tn))‖2s

]
dr

= h
∫ tn+1

tn
E

[
‖S(tn, r)(S(r, tn) − I ) f (u(tn))‖2s

]
dr

≤ Ch2
∫ tn+1

tn
E

[
‖ f (u(tn))‖2s+2

]
dr ≤ Ch3 sup

t∈[0,T ]
E

[
‖u(t)‖2s+2

]
≤ Ch3.

In order to estimate the fourth term, we use the isometry property of the free random
propagator, Cauchy–Schwarz’s inequality, the fact that f is Lipschitz, the estimate
(2.4) on the time-variations of the exact solution, and the fact that the exact solution
is bounded which is recalled in Sect. 2. We then obtain

E

[
‖I4‖2s

]
= E

[∥
∥
∥
∥

∫ tn+1

tn
S(tn+1, r) ( f (u(tn)) − f (u(r))) dr

∥
∥
∥
∥

2

s

]

≤ Ch
∫ tn+1

tn
E

[
‖ f (u(tn)) − f (u(r))‖2s

]
dr

≤ Ch
∫ tn+1

tn
E

[
‖u(tn) − u(r)‖2s

]
dr

≤ Ch3 sup
t∈[0,T ]

E

[
‖u(t)‖2s+2

]
≤ Ch3.

Next, we go on with deriving bounds for the mixed terms present in (3.4). Using
Cauchy–Schwarz’s inequality, the above bounds for the moments of I2 and I3, and
the fact that for all real numbers a, b, we have ab ≤ 1

2 (a
2 + b2), we obtain the bound

|E[(I2, I3)s]| ≤
(
E[‖I2‖2s ]

)1/2 (
E[‖I3‖2s ]

)1/2 ≤ Ch
(
E[‖en‖2s ]

)1/2
h3/2

≤ C(hE[‖en‖2s ] + h4).

Similarly, one has

|E[(I2, I4)s]| ≤ C(hE[‖en‖2s ] + h4)

and

|E[(I3, I4)s]| ≤ Ch3.
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The term containing I1 and I2 can be estimated using Cauchy–Schwarz’s inequality
and the fact that the function f is Lipschitz:

|E[(I1, I2)s]| = |E[(S(tn+1, tn)en, ihS(tn+1, tn) ( f (u(tn)) − f (un)))s]|
≤

(
E[‖en‖2s ]

)1/2
h

(
E[‖ f (u(tn)) − f (un)‖2s ]

)1/2 ≤ ChE[‖en‖2s ].

The last two terms |E[(I1, I3)s]| and |E[(I1, I4)s]| demand more work. For the first
one, we use the isometry of the random propagator S(t, r) and Cauchy–Schwarz’s
inequality to get:

|E[(I1, I3)s]| =
∣
∣
∣
∣E[(S(tn+1, tn)en,

∫ tn+1

tn
S(tn+1, tn)(I − S(tn, r)) f (u(tn)) dr)s

∣
∣
∣
∣

=
∣
∣
∣
∣E[(en,

∫ tn+1

tn
(I − S(tn, r)) f (u(tn)) dr)s

∣
∣
∣
∣

≤ h1/2
(∫ tn+1

tn
|E[(en, (I − S(tn, r)) f (u(tn)))s]|2 dr

)1/2

.

We next apply the law of total expectation and again Cauchy–Schwarz’s inequality in
order to get

|E[(I1, I3)s]| ≤ h1/2
(∫ tn+1

tn
|E[(en,E{(I − S(tn, r)) f (u(tn))|Ftn })s]|2 dr

)1/2

≤ h1/2
(∫ tn+1

tn
E[‖en‖2s ] · E[∥∥E{(I−S(tn, r)) f (u(tn))|Ftn }

∥
∥2
s ] dr

)1/2

.

Finally, using (2.3) and the fact that the exact solution is bounded, one obtains the
bound

|E[(I1, I3)s]| ≤ Ch1/2
(
E[‖en‖2s ]

)1/2
h

(∫ tn+1

tn
E[‖ f (u(tn))‖2s+4] dr

)1/2

≤ Ch2
(
E[‖en‖2s ]

)1/2
(

sup
t∈[0,T ]

E[‖ f (u(t))‖2s+4]
)1/2

≤ Ch2
(
E[‖en‖2s ]

)1/2 ≤ C(h3 + hE[‖en‖2s ]).

In order to estimate the last term |E[(I1, I4)s]|, we use the mild formulation

u(r) − u(tn) = S(tn, r)u(tn) − u(tn) + i
∫ r

tn
S(tn, θ) f (u(θ)) dθ

= (S(tn, r) − I )u(tn) + i
∫ r

tn
S(tn, θ) f (u(θ)) dθ,

123



600 Stoch PDE: Anal Comp (2017) 5:592–613

and then Cauchy–Schwarz’s inequality and a Taylor expansions of f ∈ C 2
b (Hs, Hs)

to arrive at

|E[(I1, I4)s]| =
∣
∣
∣
∣E[(S(tn+1, tn)en,

∫ tn+1

tn
S(tn+1, r)( f (u(tn)) − f (u(r))) dr)s]

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ tn+1

tn
1 · E[(en, S(tn, r)( f (u(tn)) − f (u(r))))s] dr

∣
∣
∣
∣

≤ Ch1/2
(∫ tn+1

tn
|E[(en, S(tn, r)( f (u(tn)) − f (u(r))))s]|2 dr

)1/2

≤ Ch1/2
(∫ tn+1

tn

∣
∣E[(en, S(tn, r) {Df (u(tn))(u(r)−u(tn))})s]

∣
∣2 dr

)1/2

+ Ch1/2
(∫ tn+1

tn
|E[(en, S(tn, r)

{∫ 1

0
D2 f (θu(r) + (1−θ)u(tn)) dθ

×(u(r) − u(tn), u(r) − u(tn))})s]|2 dr
)1/2

≤ Ch1/2
(∫ tn+1

tn
|E[J1]|2 dr

)1/2

+ Ch1/2
(∫ tn+1

tn
|E[J2]|2 dr

)1/2

.

It thus remains to bound the above two terms. In order to start to estimate the first
term, we insert the mild solution and obtain

h1/2
(∫ tn+1

tn
|E[J1]|2 dr

)1/2

≤ h1/2
(∫ tn+1

tn

∣
∣
∣
∣E

[

(en, S(tn, r)Df (u(tn))

{

(S(tn, r) − I )u(tn)

+ i
∫ r

tn
S(tn, θ) f (u(θ)) dθ

}

s

]∣
∣
∣
∣

2

dr

)1/2

≤ h1/2
(∫ tn+1

tn
|E[(en, S(tn, r)Df (u(tn)) {(S(tn, r) − I )u(tn)})s]|2 dr

)1/2

+ h1/2
(∫ tn+1

tn

∣
∣
∣
∣E[(en, S(tn, r)Df (u(tn))

{∫ r

tn
S(tn, θ) f (u(θ)) dθ

}

)s]
∣
∣
∣
∣

2

dr

)1/2

.

We can now apply Cauchy–Schwarz’s inequality, the fact that S, f, Df are bounded
and the regularity estimate (2.3) from Sect. 2 to arrive at

h1/2
(∫ tn+1

tn
|E[J1]|2 dr

)1/2

≤ Ch1/2
(∫ tn+1

tn
E[‖en‖2s ]E[‖(S(tn, r) − I )u(tn)‖2s ] dr

)1/2
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+ Ch1/2
(∫ tn+1

tn
E[‖en‖2s ]E[

∥
∥
∥
∥

∫ r

tn
S(tn, θ) f (u(θ)) dθ

∥
∥
∥
∥

2

s

] dr
)1/2

≤ Ch1/2(E[‖en‖2s ])1/2h1/2h sup
t∈[0,T ]

(E[‖u(t)‖2s+4])1/2

+ Ch1/2(E[‖en‖2s ])1/2
(∫ tn+1

tn
(r − tn)

2 dr

)1/2

≤ Ch2(E[‖en‖2s ])1/2
(

1 + sup
t∈[0,T ]

(E[‖u(t)‖2s+4])1/2
)

≤ C(h3 + hE[‖en‖2s ])
(

1 + sup
t∈[0,T ]

(E[‖u(t)‖2s+4])1/2
)

.

For the second term, we again use Cauchy–Schwarz’s inequality with the fact that
S, Df and D2 f are bounded and the bound (2.5):

h1/2
(∫ tn+1

tn
|E[J2]|2 dr

)1/2

≤ Ch1/2
(∫ tn+1

tn
E[‖en‖2s ]E[‖u(r) − u(tn)‖4s ] dr

)1/2

≤ Ch1/2(E[‖en‖2s ])1/2h1/2h sup
t∈[0,T ]

(E[‖u(t)‖4s+2])1/2

≤ Ch2(E[‖en‖2s ])1/2 sup
t∈[0,T ]

(E[‖u(t)‖4s+2])1/2

≤ C(h3 + hE[‖en‖2s ]) sup
t∈[0,T ]

(E[‖u(t)‖4s+2])1/2.

Altogether, we arrive at

|E[(I1, I4)s]| ≤ C(h3 + hE[‖en‖2s ])(

1 + sup
t∈[0,T ]

(E[‖u(t)‖4s+2])1/2 + sup
t∈[0,T ]

(E[‖u(t)‖2s+4])1/2
)

.

Collecting all the above bounds, the mean-square error (3.4) can thus be estimated
by

E[‖en+1‖2s ] ≤ (1 + K1h + K2h
2)E[‖en‖2s ] + K3h

3 + K4h
4

and an application of a discrete Gronwall lemma gives the final bound

E[‖en‖2s ] = E[
∥
∥
∥ukn − uk(tn)

∥
∥
∥
2

s
] ≤ Ch2

which concludes the proof of the theorem. ��
Using the above mean-square convergence result and similar arguments as in [19,

26] or [3], one can also show that the exponentialmethod (3.1) has order of convergence
one in probability.
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Proposition 3.2 Let T > 0 and assume that u0 ∈ Hs+4(Rd) with s > d/2 is such
that the nonlinear Schrödinger equation with white noise dispersion (1.1) possesses
a unique adapted solution u with paths a.s. in C ([0, T ], Hs+4(Rd)). Let us apply the
stochastic exponential integrator (3.1) to compute un with step size h = T/N. Then,
one has

lim
C→+∞P

(

max
n=0,...,N

‖u(tn) − un‖s ≥ Ch

)

= 0

uniformly in h, where we recall that tn = nh.

4 Numerical experiments

This section presents various numerical experiments for the nonlinear Schrödinger
equation with white noise dispersion (1.1). We will use the following numerical
schemes:

1. The explicit exponential integrator (3.1);
2. The Lie–Trotter splitting

u∗ = S(tn+1, tn)un
un+1 = Y (h)u∗ (4.1)

from [26]. Here, Y (h)u∗ denotes the value at time h of flow associated to the
problem i ∂u

∂t + |u|2σu = 0 with initial datum u∗;
3. The Strang splitting

u∗ = S(tn + h/2, tn)un
û = Y (h)u∗

un+1 = S(tn+1, tn + h/2)̂u, (4.2)

where again Y (h) is defined as above;
4. The implicit Crank–Nicolson scheme

i
un+1 − un

h
+ χn√

h
�un+1/2 + g(un, un+1) = 0 (4.3)

from [3]. Here, we have set un+1/2 = 1
2 (un + un+1), χn = β(tn+1)−β(tn)√

h
and

g(u, v) = 1
σ+1

( |u|2σ+2−|v|2σ+2

|u|2−|v|2
) ( u+v

2

)
.

We will consider the stochastic partial differential equation (1.1) on the one and two
dimensional toruswith periodic boundary conditions. The spatial discretisation is done
by a pseudospectral method with M Fourier modes in 1d, and M2 Fourier modes in
2d.
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Fig. 1 Mean-square errors as a function of the time step for c = 1 and c = 0.25: exponential integrator
(square), Lie–Trotter (diamond), Crank–Nicolson (asterisk), Strang (circle). Ms = 5000 samples are used
to approximate the averages. The dotted lines have slopes 1 and 2. a c = 1, b c = 0.25

4.1 Numerical experiments in 1d

This subsection presents convergence plots for the above mentioned numerical meth-
ods applied to the nonlinear Schrödinger equation with white noise dispersion (1.1);
space-time evolution plots; experiments illustrating the influence of the power non-
linearity σ supporting a conjecture proposed in [3]; and finally illustrations of the
preservation of the L2-norm along numerical solutions.

4.1.1 Convergence plots

In order to illustrate the mean-square convergence of the exponential integrator (3.3),
we consider problem (1.1) on the interval [0, 2π ] with parameters c = σ = 1.
The initial datum is u0(x) = e−(x−π)2 for x ∈ [0, 2π ]. Furthermore, M =
28 Fourier modes are used for the spatial discretisation. The mean-square errors
E[‖u(x, Tend) − uN (x)‖2L2 ] at time Tend = 0.5 are displayed in Fig. 1a for various
values of the time step h = 2−� for � = 6, . . . , 17. Here, we simulate the exact solu-
tion u(x, t) with the exponential method, with a small time step hexact = 2−17. The
expected values are approximated by computing averages over Ms = 5000 samples.
We computed the estimate for the largest standard errors to be 5.78 × 10−4 for the
Crank–Nicolson scheme and around 10−6 for the other numerical schemes. These
estimates are far from optimal but we observed that using a larger number of samples
(Ms = 10,000) does not improve significantly the behaviour of the convergence plots.
This is also the case for the other convergence plots presented below. In Fig. 1a, we
observe convergence of order 1 for the exponential integrator. This is in agreement
with Theorem 3.1. The orders of convergence for the splitting schemes and for the
Crank–Nicolson scheme are also seen to be 1.

Note that the explicit exponential method (3.3), as well as the Lie and Strang split-
ting methods (4.1)–(4.2) take full advantage of the exact integration of the stochastic
linear part of the Schrödinger equation when one uses periodic boundary conditions
and hence the spectral properties of the Laplace operator are exactly known. In con-
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trast, the Crank–Nicolson scheme (4.3) does not integrate the stochastic part of the
equation exactly. One can even argue that the error in the identity

1 + iX

1 − iX
= e2iX + O(X3),

which is the cornerstone of the error analysis of the linear part of the Crank–Nicolson
scheme applied to a Schrödinger equation, is fully under control in the deterministic
case (when X = − h

2 ξ2, and ξ is the Fourier variable), while it can be much higher

in the stochastic case (when X = −c�Wn
2 ξ2) even for small time steps. Once again,

such an error corresponding directly to the stochastic part of the PDE is not present in
the three other schemes (3.1), (4.1) and (4.2). This explains, in 1d as well as in higher
dimension (see next section for numerical examples in dimension 2), the relatively
poor behaviour of the Crank–Nicolson scheme in this situation (see Fig. 1a) even if
c is of order 1. On the other, as observed in Fig. 1b, the good convergence behaviour
of the Crank–Nicolson is recovered for c = 0.25 (smaller noise intensity parameter).
The other parameters are the same as in the previous numerical experiments.

4.1.2 Evolution plots

Figure 2 shows the evolution of |un|2 along one sample of the numerical solution
obtained by the exponential integrator (3.1) for the above problem with the discretisa-
tion parameters h = 2−14 andM = 28. This illustrates, in the case σ = 1, the interplay
and the balance between the random dispersion and the nonlinearity. In contrast, the
qualitative behaviour is different for higher values of σ .

The article [3] conjectures that the power nonlinearity σ = 4 is the critical case
for (1.1) in dimension one. We now present numerical experiments supporting this
conjecture. Problem (1.1) with the initial value u0(x) = 2.3 · e−14(x−π)2 is integrated
over the time interval [0, 0.05]with discretisation parameters h = 2−12 and M = 214.
Figure 3 shows the space-time evolution for the power nonlinearityσ = 3.9 andσ = 4.

(a)

Space

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time

(b)

Fig. 2 Space-time evolution and contour plot for the exponential integrator (3.3). The discretisation param-
eters are h = 2−14 and M = 28. a Space-time evolution, b contour plot
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Fig. 3 Space-time evolution for the exponential integrator: σ = 3.9 and σ = 4. The discretisation param-
eters are h = 2−12 and M = 214. a σ = 3.9, b σ = 4

Blow-up of the solution can be observed in the critical case σ = 4 thus numerically
confirming the conjecture from [3].

We now perform another numerical test to support the criticality of the exponent
σ = 4. We consider the numerical integration of (1.1) with c = 1.0 for several values
of σ , namely 3.0, 3.9 and 4.1, starting from the initial datum u0(x) = 10e−10x2

for x ∈ [−20π, 20π ], over the time interval [0, 7.10−8]. We use the Lie–Trotter
method (4.1) and the explicit exponential scheme (3.1) to integrate the problem. We
use M = 219 Fourier modes in space. We run several samples for each method and
we plot the numerical H1-norm as a function of time. We observe numerical blow
up in finite time for some samples. We count the number of samples that blow up in
finite time, and the evolution of this number when one refines the time step. Numerical
results are presented in Figs. 4 and 5. We observe that, for each method, for σ = 3.0
and σ = 3.9, reducing the time step leads to a smaller proportion of solutions that
blow up in finite time. In contrast when σ = 4.1, for each method, the percentage of
solutions that blow up in finite time does not decrease when one reduces the time step.
This illustrates numerically the criticality of the exponent σ = 4.0 in dimension one.

Of course, this is only a rough result and one can think of more sophisticated
techniques such as adaptivemesh refinement techniques to have a better understanding
of the behaviour of the solution close to the blow-up.

4.1.3 Preservation of the L2-norm

It is known that the L2-norm of the solution to the SPDE (1.1) remains constant
for all times [3]. Figure 6 illustrates the corresponding preservation properties of the
above numerical integrators along one sample path. For this numerical experiment,
we consider the parameters c = 1, σ = 1, h = 2−5, M = 28 and the initial value
u0(x) = e−10(x−π)2 for x ∈ [0, 2π ]. Exact preservation of the L2-norm for the
splitting schemes and for the Crank–Nicolson scheme is observed, whereas a small
drift is observed for the exponential integrator (3.1). In Sect. 5, we will propose a
symmetric exponential integrator that preserves exactly the L2-norm.
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Fig. 4 H1-norm of the solution of (1.1) as a function of time with σ = 3.0 (up), σ = 3.9 (middle), σ = 4.1
(down), using the exponential method (3.1). Time steps 2 × 10−12 (left), 10−12 (middle), 0.5 × 10−12

(right)

4.2 Numerical experiments in 2d

This subsection presents convergence plots for (1.1) in two dimensions as well as
experiments illustrating the influence of the power nonlinearity σ supporting a con-
jecture proposed in [3].

4.2.1 Convergence plots

We illustrate themean-square convergence of the exponential integrator (3.1) in 2d. To
do so, we consider the problem (1.1) on [0, 2π ] × [0, 2π ] with parameters σ = 1 and
c = 1 or c = 0.1. The initial value is set to be u0(x, y) = e−((x−π/2)2+(y−π/2)2)ei10x +
e−0.5((x−3π/2)2+(y−3π/2)2)e−i10y for (x, y) ∈ [0, 2π ]×[0, 2π ]. Furthermore, M = 26

Fourier modes are used in each directions for the spatial discretisation. The temporal
errors at time Tend = 0.5 are displayed in Fig. 7 for various values of the time step
h = 2−� for � = 15, . . . , 23. Here, we simulate the exact solution u(x, y, t) with a
small time step hexact = 2−23. The expected values are approximated by computing
averages over Ms = 25 samples (for these computationally expensive simulations).
In this figure, we observe convergence of order 1 for the exponential integrator. This
is in agreement with Theorem 3.1.
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Fig. 5 H1-norm of the solution of (1.1) as a function of time with σ = 3.0 (up), σ = 3.9 (middle), σ = 4.1
(down), using the Lie–Trotter method (4.1). Time steps 2 × 10−12 (left), 10−12 (middle), 0.5 × 10−12

(right)
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Fig. 6 Preservation of the L2-norm: exponential integrator (square), Lie–Trotter (diamond), Crank–
Nicolson (asterisk), Strang (circle)

123



608 Stoch PDE: Anal Comp (2017) 5:592–613

10 -7 10 -6 10 -5 10 -4

h

10 -15

10 -10

10 -5

10 0
M

S
-E

rr
or

Slope 1
Slope 2
Exp
Lie
Crank-Nicolson
Strang

10 -7 10 -6 10 -5 10 -4

h

10 -15

10 -10

10 -5

10 0

M
S

-E
rr

or

Slope 1
Slope 2
Exp
Lie
Crank-Nicolson
Strang

Fig. 7 Mean-square errors in 2d for c = 1 (left) and c = 0.1 (right): exponential integrator (square), Lie–
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the averages. The dotted lines have slopes 1 and 2
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Fig. 8 Snapshots of the evolution of the exponential integrator in 2d: σ = 1.9 (up) and σ = 2 (bottom).
Discretisation parameters: h = 2−11 and M = 27. Note the scale on the z-axis on (f). a Snapshot at time
0, b snapshot at time 0.049, c Snapshot at time 0.105, d Snapshot at time 0, e Snapshot at time 0.049, f
Snapshot at time 0.105

4.2.2 Evolution plots

Let us now consider the following parameters c = 1, h = 2−11, M = 27 and the
initial value 5 · e−14((x−π/2)2+(y−π/2)2) · ei10x for (x, y) ∈ [0, 2π ] × [0, 2π ]. Figure 8
displays snapshots of the numerical solutions for the Schrödinger equation with power
nonlinearity σ = 1.9 and σ = 2. Blow-up of the solution can be observed numerically
in the conjectured critical case σ = 4/d = 2 from [3].

5 L2-preserving exponential integrators

As seen above, the proposed explicit exponential integrator unfortunately does not
preserve the L2-norm. This can be fixed by considering symmetric exponential inte-
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grators using ideas from [9]. We thus propose the following symmetric exponential
method for the numerical discretisation of nonlinear Schrödinger equation with white
noise dispersion (1.1)

u0 = u(0)

N∗ = N

(

S(tn + h

2
, tn

)

un + h

2
N∗)

un+1 = S(tn+1, tn)un + hS

(

tn + h, tn + h

2

)

N∗, (5.1)

where N (u) = i|u|2σu is the nonlinearity.
This numerical method preserves the L2-norm as seen in the following proposition.

Proposition 5.1 The exponential integrator (5.1) preserves the L2-norm, as does the
exact solution of the nonlinear Schrödinger equation with white noise dispersion (1.1).

Proof This proof is an adaptation of the proof stating conditions for a Runge–Kutta
methods to preserve quadratic invariants, see [20, Section IV.2.1] and further [9].

Let us compute the L2-norm of u1:

‖u1‖2 =
∥
∥
∥
∥S(t1, t0)u0 + hS(t0 + h, t0 + h

2
)N∗

∥
∥
∥
∥

2

= ‖u0‖2 + h2 ‖N∗‖2

+ h

(

S(t1, t0)u0, S

(

t0 + h, t0 + h

2

)

N∗
)

+ h

(

S

(

t0 + h, t0 + h

2

)

N∗, S(t1, t0)u0

)

using the isometry of the random propagator S(t, r). We next define Y := S(t0 +
h
2 , t0)u0 + h

2 N∗ so that u0 = S(t0, t0 + h
2 )(Y − h

2 N∗). Inserting this quantity in the
above equation and using the definition of S(t, r) yields

‖u1‖2 = ‖u0‖2 + h2 ‖N∗‖2 − h2

2
‖N∗‖2 − h2

2
‖N∗‖2 + h ((Y, N∗) + (N∗,Y ))

= ‖u0‖2

since the last term in brackets is zero (this follows from the fact that N∗ = N (Y ) and
the fact that the L2-norm is a first integral). ��

5.1 Numerical experiments for the symmetric exponential integrator

Figure 9 illustrates the preservation of the L2-norm by the exponential methods (3.1)
and (5.1) as well as strong convergence plots. The parameter values are the same as
in the above numerical experiments. Exact preservation of the L2-norm, as stated in
Proposition 5.1, is observed for the symmetric version. The convergence plot indicates
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Fig. 9 Preservation of the L2-norm (top) and mean-square errors (bottom) for the symmetric exponential
integrator (5.1) (plus) and for the exponential integrator (3.1) (square). Ms = 5000 samples are used to
approximate the averages. The dotted lines have slopes 1 and 2

the same order of convergence for the symmetric version of the scheme as for the
original exponential integrator (3.1).

6 Computational cost

The goal of this section is to compare the computational cost of the explicit exponential
method (3.1) and its symmetric version (5.1) introduced in this paper to that of classical
numerical methods from the literature, for the integration of the Cauchy problem
(1.1). We choose to implement the Crank–Nicolson method (4.3), and the Lie and
Strang splitting methods (4.1), resp (4.2). We run the five methods over the time
interval [0, 0.01] for the Cauchy problem (1.1) with c = 1, σ = 3 and initial datum
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Fig. 10 Computational time as a function of the averaged final error for the five numerical methods

u0(x) = e−10x2 . We discretise the spatial domain [−20π, 20π ] with 213 points and
use FFT as if the solution were exactly periodic in space. We run 100 samples for
each numerical method. For each method and each sample, we run several time steps
and compare the L2 error at final time with the solution provided for the same sample
with the same method for the very small time step h = 2−20. We plot on Fig. 10 the
total computational time for all the samples, for each method and each time step, as a
function of the averaged final error we obtain.

We see that all numerical methods but the Crank–Nicolson method actually behave
rather similarly for small time steps, since the points we obtain are almost aligned.
The fact that the Crank–Nicolson method behaves a rather differently to the other four
methods can be explained mainly by the fact that it is the only numerical method in
this test that does not integrate the linear stochastic part of the equation exactly (as
noticed in the analysis of the convergence plots in Sect. 4.1.1 above). Note that if one
takes more complicated space geometries or space discretisations (and not equispaced
points on a finite interval that allow using FFT) so that the linear part of the equation
can no longer be integrated exactly, then the numerical cost of the other four numerical
methods may be of the same order as that of the Crank–Nicolson method.

7 Conclusion

We introduced a new, explicit, exponential integrator (3.1) for the time integration of
the nonlinear Schrödinger equation with power-law nonlinearity and random disper-
sion (1.1). We showed that this integrator has mean-square order one (Theorem 3.1).
We compared it with other methods from the literature. In contrast to methods such
as the Lie–Trotter splitting or the Crank–Nicolson method, it does not preserve the
L2-norm exactly (Fig. 6). However, it shares the same order and our numerical experi-
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ments show that it outperforms methods that do not integrate exactly the linear part of
the equation, such as the Crank–Nicolson method, in terms of size of constant errors,
for reasonably large noise intensity (Fig. 1). Furthermore, we used this new scheme
in Sect. 4.2 to support a conjecture on the critical power to get blow-up in finite time
in the nonlinear Schrödinger equation (1.1). Finally, we proposed another exponen-
tial integrator (5.1) which is symmetric and has the same numerical order as the one
proposed initially. It however is implicit and hence has higher numerical cost.
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