1,434 research outputs found

    Data-Driven Denoising of Stationary Accelerometer Signals

    Full text link
    Modern navigation solutions are largely dependent on the performances of the standalone inertial sensors, especially at times when no external sources are available. During these outages, the inertial navigation solution is likely to degrade over time due to instrumental noises sources, particularly when using consumer low-cost inertial sensors. Conventionally, model-based estimation algorithms are employed to reduce noise levels and enhance meaningful information, thus improving the navigation solution directly. However, guaranteeing their optimality often proves to be challenging as sensors performance differ in manufacturing quality, process noise modeling, and calibration precision. In the literature, most inertial denoising models are model-based when recently several data-driven approaches were suggested primarily for gyroscope measurements denoising. Data-driven approaches for accelerometer denoising task are more challenging due to the unknown gravity projection on the accelerometer axes. To fill this gap, we propose several learning-based approaches and compare their performances with prominent denoising algorithms, in terms of pure noise removal, followed by stationary coarse alignment procedure. Based on the benchmarking results, obtained in field experiments, we show that: (i) learning-based models perform better than traditional signal processing filtering; (ii) non-parametric kNN algorithm outperforms all state of the art deep learning models examined in this study; (iii) denoising can be fruitful for pure inertial signal reconstruction, but moreover for navigation-related tasks, as both errors are shown to be reduced up to one order of magnitude.Comment: 10 pages, 15 figures, 8 table

    Characterization of errors and noises in MEMS inertial sensors using Allan variance method

    Get PDF
    This thesis work has addressed the problems of characterizing and identifying the noises inherent to inertial sensors as gyros and accelerometers, which are embedded in inertial navigation systems, with the purpose of estimating the errors on the obtained position. The analysis of the Allan Variance method (AVAR) to characterize and identify the noises related to these sensors, has been done. The practical implementation of the AVAR method for the noises characterization has been performed over an experimental setup using the IMU 3DM-GX3 -25 data and the Matlab environment. From the AVAR plots it was possible to identify the Angle Random Walk and the Bias Instability in the gyros, and the Velocity Random Walk and Bias Instability in the accelerometers. A denoising process was also performed by using the Discrete Wavelet Transforms and the Median Filter. After the filtering the AVAR plots showed that the ARW was almost removed or attenuated using Wavelets, but not good results were obtained with the Median Filter

    Generic Multisensor Integration Strategy and Innovative Error Analysis for Integrated Navigation

    Get PDF
    A modern multisensor integrated navigation system applied in most of civilian applications typically consists of GNSS (Global Navigation Satellite System) receivers, IMUs (Inertial Measurement Unit), and/or other sensors, e.g., odometers and cameras. With the increasing availabilities of low-cost sensors, more research and development activities aim to build a cost-effective system without sacrificing navigational performance. Three principal contributions of this dissertation are as follows: i) A multisensor kinematic positioning and navigation system built on Linux Operating System (OS) with Real Time Application Interface (RTAI), York University Multisensor Integrated System (YUMIS), was designed and realized to integrate GNSS receivers, IMUs, and cameras. YUMIS sets a good example of a low-cost yet high-performance multisensor inertial navigation system and lays the ground work in a practical and economic way for the personnel training in following academic researches. ii) A generic multisensor integration strategy (GMIS) was proposed, which features a) the core system model is developed upon the kinematics of a rigid body; b) all sensor measurements are taken as raw measurement in Kalman filter without differentiation. The essential competitive advantages of GMIS over the conventional error-state based strategies are: 1) the influences of the IMU measurement noises on the final navigation solutions are effectively mitigated because of the increased measurement redundancy upon the angular rate and acceleration of a rigid body; 2) The state and measurement vectors in the estimator with GMIS can be easily expanded to fuse multiple inertial sensors and all other types of measurements, e.g., delta positions; 3) one can directly perform error analysis upon both raw sensor data (measurement noise analysis) and virtual zero-mean process noise measurements (process noise analysis) through the corresponding measurement residuals of the individual measurements and the process noise measurements. iii) The a posteriori variance component estimation (VCE) was innovatively accomplished as an advanced analytical tool in the extended Kalman Filter employed by the GMIS, which makes possible the error analysis of the raw IMU measurements for the very first time, together with the individual independent components in the process noise vector

    Inertial Measurement Unit based Virtual Antenna Arrays - DoA Estimation and Positioning in Wireless Networks

    Get PDF
    Today we have different location based services available in a mobile phone or mobile station (MS). These services include: direction finding to nearby ATMs, locating favorite food restaurants, or finding any target destination. Similarly, we see different applications of the positioning and navigation systems in firefighting or other rescue operations. The common factor in almost all of the location based services is the system's ability to determine the user's current position, with reference to a floor plan or a navigation map. Current technologies are using sensor data measurements from one or more sensors, available to the positioning device, for positioning and navigation. Typical examples are radio based positioning such as global positioning system, inertial sensors based inertial navigation system, or camera based positioning systems. Different accuracy and availability conditions of the positioning and navigation solution can be obtained depending on the positioning algorithms and the available sensor information.Nowadays, the focus of research in positioning and navigation has been mostly on the use of existing hardware infrastructure and low-cost solutions, such that the proposed technique can be deployed with ease and without extra infrastructure requirements as well as without any expensive sensor equipment. In this work, we investigate a novel idea for positioning using existing wireless networks and low-cost inertial sensor measurements available at the MS. We propose to use received baseband radio signal along with inertial sensor data, such as accelerometer and rate gyroscope measurements, for direction of arrival (DoA) estimation and positioning. The DoA information from different base stations or access points can be used to estimate the MS position using triangulation technique. Furthermore, due to size and cost restrictions it is difficult to have real antenna arrays at the MS, the idea of DoA estimation and positioning is proposed to be used with single antenna devices by using the so-called virtual antenna arrays.We have presented our research results in three different papers. We provide measurement based results to perform a quantitative evaluation of DoA estimation using arbitrary virtual antenna arrays in 3-D; where a state-of-the-art high-resolution algorithm has been used for radio signal parameter estimation. Furthermore, we provide an extended Kalman filter framework to investigate the performance of unaided inertial navigation systems with 3-axis accelerometer and 3-axis rate gyroscope measurements, from a six-degrees-of-freedom inertial measurement unit. Using the extended Kalman filter framework, we provide results for position estimation error standard deviation with respect to integration time for an unaided inertial navigation system; where the effect of different stochastic errors noise sources in the inertial sensors measurements such as white Gaussian noise and bias instability noise is investigated. Also, we derive a closed form expression for Cramér-Rao lower bound to investigate DoA estimation accuracy for a far-field source using random antenna arrays in 3-D. The Cramér-Rao lower bound is obtained using known antenna coordinates as well as using estimated antenna coordinates, where the antenna coordinates are estimated with an uncertainty whose standard deviation is known. Furthermore, using Monte-Carlo simulations for random antenna arrays, we provide Cramér-Rao lower bound based performance evaluation of random 3-D antenna arrays for DoA estimation

    Validation and Experimental Testing of Observers for Robust GNSS-Aided Inertial Navigation

    Get PDF
    This chapter is the study of state estimators for robust navigation. Navigation of vehicles is a vast field with multiple decades of research. The main aim is to estimate position, linear velocity, and attitude (PVA) under all dynamics, motions, and conditions via data fusion. The state estimation problem will be considered from two different perspectives using the same kinematic model. First, the extended Kalman filter (EKF) will be reviewed, as an example of a stochastic approach; second, a recent nonlinear observer will be considered as a deterministic case. A comparative study of strapdown inertial navigation methods for estimating PVA of aerial vehicles fusing inertial sensors with global navigation satellite system (GNSS)-based positioning will be presented. The focus will be on the loosely coupled integration methods and performance analysis to compare these methods in terms of their stability, robustness to vibrations, and disturbances in measurements
    corecore