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ABSTRACT

Jonathan Shabulinzenze: Comparison of MEMS sensors in machine vibration monitoring
Master of Science Thesis
Tampere University
Automation Engineering, MSc
March 2020

The advantages of MEMS accelerometers over conventional piezoelectric sensors have led to
an increased use of these sensors in condition monitoring systems. These sensors are compact,
lightweight, suitable for low power and inexpensive.

The first objective of this master thesis is to study the applicability of consumer grade mi-
croelectromechanical (MEMS) based accelerometers when measuring machine vibrations. The
second objective is to study the stochastic noises related to MEMS- accelerometer sensors and
the last objective is to evaluate the ability of a single board computer such as the Raspberry Pi
to process information from MEMS sensors. This is done by comparing the noise characteristic
of several MEMS- accelerometers. This performance comparison is done firstly, by comparing
their stochastic noise behaviour and secondly, by comparing their performance when they detect
oscillatory motion. The tests were carried out on an elevator and on a wheel loader machine. To
ensure that all sensors operate under similar conditions and results are comparable, a base was
built where the sensors under test were mounted. The sensors were connected to a Raspberry
Pi 3b via the I2C bus. The piezoelectric sensor was used together with the MEMS sensors as
a reference sensor. Robot operating system (ROS) used to control the robots was used to read
and store the sensor data. The stored data were further processed and analyzed in Matlab /
Simulink by using methods such as Allan variance, noise spectral density and power spectral
density. For oscillation analysis, data preprocessing methods for MEMS accelerometers were
investigated. The vibration analysis was performed in both time and frequency domain.

The results showed that MEMS accelerometers contain some noise that might affect vibration
results, therefore the preprocessing of data is crucial. Additionally, It was seen that random
noises such as Velocity Random Walk (VRW), Bias Instability (BI) and Acceleration Random
Walk (ARW) are all common disturbances in a MEMS accelerometer and need to be taken
into consideration. Based on vibration analysis results, it was found that the output of the
MEMS accelerometers was similar to that of the piezoelectric sensor when considering harmonic
frequencies within a given range, but there was a clear difference in terms of amplitudes. Also
MEMS accelerometers sensors showed to work well with a raspberryPi since they use a very low
power.

Keywords: MEMS,validation,vibration,stochastic,sensor
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TIIVISTELMÄ

Jonathan Shabulinzenze: MEMS-kiihtyvyysanturien vertailu konen värähtelyn mittauksessa
Diplomityö
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Maaliskuu 2020

MEMS-kiihtyvyysanturien edut perinteisiin pietsosähköisiin antureihin verrattuna on johta-
nut lisääntyneeseen näiden anturien käyttöön kunnonvalvontajärjestelmissä. Nämä anturit ovat
pienikokoisia, keveitä ja käyttävät vähän tehoa sekä ovat edullisia.

Tämän diplomityön ensisijainena tavoitteena on tutkia kuluttaja tason kuuluvien mikroe-
lektromekaanisten (MEMS) kiihtyvyysanturien soveltuvuutta koneen värähtelyiden mittaami-
sessa. Toisena tavoitteena on tutkia MEMS-kiihtyvyysantureitteen liittyviä stokastisia kohinoita
ja viimeisenä tavoitteena on arvioida yhden piirilevyn tietokoneen kuten Raspberry Pi:n kykyä
käsitellä MEMS-antureista saatavaa tietoa sekä validoida näiden ulostuloja. Tietojen validoin-
tia tutkittiin ensinnäkin suorittamalla stokastinen kohina-analyysi ja toiseksi vertaamalla niiden
suorituskykyä, silloin kun ne havaitsevat värähtelyliikettä. Käyttökohteena testeissä oli hissi ja
pyöräkuormaaja. Jotta kaikki anturit toimisivat samanlaisissa olosuhteissa ja tulokset vertailukel-
poisia, rakennettiin alusta, mihin tutkittavat anturit asennettiin. Anturit yhdistettiin Raspberry
Pi 3b malliin I2C-väylän kautta. Pietsosähköistä anturia käytettiin yhdessä MEMS-antureiden
kanssa referenssianturina. Robottien ohjauksessa käytettyä käyttöjärjestelmää (ROS) käytettiin
lukemaan ja tallentamaan anturidata. Tietojen käsittely ja analyysi tehtiin Matlab / Simulin-
killä käyttämällä menetelmiä, kuten Allan-varianssi ja meluspektritiheys ja tehospektritiheys.
Värähtelyanalyysia varten tutkittiin MEMS-kiihtyvyysantureiden datan esikäsittelymenetelmiä.
Värähtelyanalyysi tehtiin sekä aika-, että taajuustasossa.

Tuloksista nähtiin, MEMS-kiihtyvyysantureiden datassa sisälsivät häiriöitä, jotka saattavat
vaikuttaa värähtelyn tuloksiin, joten datan esikäsittely on tosi tärkeä. Lisäksi, tulokset näyttivät
että satunnaiset kohinat, kuten Velocity Random Walk (VRW), Bias Instability (BI) sekä Acce-
leration Random Walk (ARW) ovat kuitenkin yleisiä häiriöitä MEMS-kiihtyvyysantureissa ja
niiden on otettava huomioon käsittelyssä. Värähtelyanalyysin perusteella havaittiin, että MEMS-
kiihtyvyysanturin ulostulo on samanlaista kuin pietsosähköisen anturin, kun tarkastellaan taa-
juuden harmonisia alueita tietyllä alueella, mutta niiden amplitudissa oli kuitenkin selvä ero.

Avainsanat: MEMS,validointi,värähtely,stokastinen,sensori

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1 INTRODUCTION

Inertial sensors play an important role in our modern electonic devices. These sensors
are made of miniaturized capacitive Micro-electro-mechanical system (MEMS) which al-
low them to have a small size, use low power and to have high level of functionality in
terms of application[1]. Additionally, due to the improved reliability and reduced cost,
these sensors are gaining an increased popularity in machine condition monitoring. For
vibration monitoring application capacitive MEMS accelerometers are being used in the
replacement of the traditional vibration monitoring transducers that are based on piezo-
electric technology. The advantages of using capacitive MEMS accelerometers in stead
of piezoelectric accelerometers are not only due to their low price, but also due to their
ability to be easily integrated to existing industrial IoT platform with extremely power
consumption as well as reduced cabling requirements. Accelerometers are categorized in
terms of grades as consumer grade, automotive grade, industrial grade, tactical grade an
navigation grade according to [2][3],where the consumer grade is the lowest and the most
inexpensive. These sensors can be found in the market at a price less that 10AC, making
them to be widely available for for all users.

Even though capacitive MEMS accelerometers are becoming popular in the application
mentioned above, they are still affected by wide noises caused by different sources such
as temperature, pressure, magnetic field electric field and other sources. All these noises
may lead to a poor and unreliable performance in application that demand high accuracy.

In order to achieve a better quality of performance, MEMS inertial sensors needs to be
calibrated at a high level. This calibration is mainly performed by the sensor manufacturer
and intend to give the sensor characteristics as well as remove or compensate static or
deterministic errors. However the stochastic noises of the sensors still have a big influence
in the overall performance of the these sensors. However, since the consumer grade sensor
are low cost and mostly designed mostly for hobbyist, the level of calibration is very poor
and barely done. In this case the user may need to perform this by his own, causing a lot
of extra work.
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1.1 Related work and earlier research on MEMS sensor

application

MEMS- sensor applications have been a study of concern in recent time as different
methodologies have been developed to analyse and study the performance of these sensors.
In his work, René [4] evaluated low cost MEMS- accelerometers and investigated inertial
algorithms for dead reckoning application in railway environment. He used a method of
assigning different weights and criteria for evaluation. His method achieved good results
in sensor comparison as a 10% error was achieved while estimating the displacement error
on his test platform. Similar work have been done by Göekem Secer[5] in which analyzed
the deterministic and stochastic error modeling of inertial sensors and magnetometers.
Daniel R.Greenheck[6] studied the design and characterization of low cost MEMS-IMU
clusters for precision navigation. In his work, he developed a prototype that incorporate
several low cost MEMS-IMUs on a single circuit board. Other work related to analysing
and modeling error related to MEMS- inertial senors can be found in [7][8][9][10][11].

Other work have been done by Quinchia Alex et al[12] that compared different error mod-
eling of MEMS sensors applied to GPS/INS integrated systems. In their work different
stochastic error model for the measurement noise components of MEMS IMU sensor was
derived from experimental data using the autoregressive, wavelet de-noising and Allan
variance methods as well as their combination. MEMS-based inertial sensors have found
usages in application such as robotics and hydraulic manipulators. Honkakorpi[13] studied
MEMS-based motion state estimation and control of hydraulic manipulators. As results,
he found that the combination of rigid body motion kinematics with an understanding of
efficient, yet straightforward signal processing methods, low-cost and relatively low reso-
lution components can be used in creating innovating solutions in hydraulic manipulator
motion sensing. Related to condition monitoring applications, a vibration monitoring of
rotating machine using MEMS accelerometer have been done by Chaudhury et al[14],
where they propose a basic design for the development of a low cost MEMS accelerometer
based vibration sensor by the integration a basic sensor and the intelligent of the vibra-
tion analysis methods. Other work analysing the suitability of MEMS accelerometer for
condition was done by Albarbar et al[15] using an experimental approach. A alternative
work related to the suitability of low-cost MEMS accelerometer when working as vibra-
tion monitor was studied in [16], where a market review on potential sensors was done in
order to see if low cost MEMS sensors can meet requirements assigned.



3

1.2 Objectives and requirements of this thesis

In order to insure the reliability of data produced by MEMS- inertial sensors, the source
of noises needs to be investigated and a models that can optimally correct these noises
needs to be done. The performance level requirements of MEMS sensors vary depending
on the application area as well as accuracy characteristics. In many cases, the price of
the sensor have a significant contribution while making the choice of the sensor.

In most of the cases sensor manufacturer provide all information related to the product in
the data sheet (or spec sheet). However, the information provided is not always complete
and it might be difficult for the user to understand what is being stated in the data sheet.
Thus, it is critical to have a perfect understanding on what is provided and how to validate
that information in order to make decisions that feat well the application on which the
sensor will be used.

This thesis have two main objectives:

• The first objective is to study the applicability of MEMS accelerometers when ap-
plied for machine vibration monitoring.

• The second objective is to evaluate the performance of a raspberry Pi to process
data from several MEMS sensors.

• Finally the validity of data from the MEMS sensors is studied.

To better understand the differences, three type of experiments was performed. Firstly,
the static data of sensors was acquired while no motion is applied to the sensors, secondly,
the data was acquired on moving elevator and thirdly, the data was acquired on a vibrating
wheel loader machine base.

As requirement, sensors to be used was set to be from consumer grade, of a price less
that 50AC. It was set that these sensors must be of fairly high accuracy and less noise.
The frequency range to be measured by these sensors was set to be up to 300 Hz. More
importantly, these sensors must compatible with low power systems of course must have
the capability to be integrated into IoT platforms.

1.3 Research methods and limitations

Since MEMS sensor output is affected by different noises, the understanding of the noise
source is extremely important in order to validate the data from these sensors. The noise
from MEMS- sensors can be categorized as deterministic and stochastic noise. Deter-
ministic noise are not time dependent and are mainly caused by a sensor static bias,
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non-orthogonality and axis misalignment. These error parameters can be defined while
performing the laboratory calibration and the used in the error compensation algorithms,
error in scale factor and temperature effect [17]. Fortunately, these errors can be corrected
by utilizing the error compensation models after calibration. For higher grade sensors,
this calibration is usually done by the sensor manufacturer, however, for consumer grade
sensors the calibration might not be specified properly. Stochastic errors are mostly ran-
dom noises and time dependent. These noises cannot be corrected during calibration.
The errors will be studied more in this work. To analyze these errors, Allan variance
and power spectral density (PSD) methods [18][19][9]have been utilized. By knowing the
noise characteristics of sensors, different methods can be used to compensate these and
reduce their influence in the overall output data. Methods such as Kalman filter, [20] and
Gauss-Markov and autoregressive processes[12] can be utilized to model the stochastic
errors. Other methods such as moving average[21], wavelet de-noising[22] and median
filter can be applied to remove noises and to smooth MEMS sensor data. These methods
will be discussed more in details in chapter 3. The stochastic analysis conducted in this
work can be applied to other sensors in MEMS- IMU unit but for the purpose of simplicity
this thesis focuses only in accelerometer application. Additionally, since the deterministic
errors are not the main focus in this work and the application experiment have been done
in laboratory environment, where temperature was constant, It was assumed that the
effect of temperature change in MEMS sensor is minimal.

The research conducted in this thesis is divided in time domain and frequency domain
analysis.

• In time domain analysis, the comparison of sensor noise have been studied. Sensor
noises related to static motion was compared. Bias variation of these sensor was
analyzed using the most widely used Allan variance algorithm.

• In frequency domain analysis, Fast Fourier Transform (FFT) and the power spectral
density (PSD) as well as spectrogram analysis were utilized.

Other details on the methods and methodologies applied for each experiment is explained
in chapter 3

1.4 Thesis structure and contributions

The rest of this work is structured as follow: Chapter 2 contains the literature background
of MEMS accelerometer functionality as well as terminologies related to noises in MEMS
sensors.
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Chapter 3 contains the derivation of methods used in this thesis. A literature review
related to data validation techniques was discussed and methods used in this work are
derived more in details.

Chapter 4 explains how the experiment setup was constructed and the characteristics of
sensors used in this work.In this chapter it is different method used in data acquisition.

In chapter 5, the results obtained from experiments conducted in this work are presented
along with a discussion on relevant findings.

Chapter 6 expresses what was done in a compact form and points out the major findings
of this work.

Additional information is provided in the Appendix after Chapter 6.
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2 BACKGROUND

2.1 Background and Applications of MEMS sensors

In it’s simple way of operation, an accelerometer consist of a mass, also called proof mass,
supported by a spring as it is illustrated in figure 2.1 From the figure, Newton’s second
law can be formulated as:

mẍm = Fs −mg (2.1)

For the spring with natural length l0 ,the relationship between the force and extension d

is:
Fs = kd, (2.2)

where the correlation between the displacement is:

xb − (lo + d) = xm (2.3)

Taking the double derivative of this equation and substituting it into equation 2.1,this
produce

ẍb − d̈ =
1

m
(kd+mg) (2.4)

The quantity desired to measure is the acceleration a = ẍb and the relative displacement
of the proof mass. However, it was assumed that d̈ = 0 in steady state, but in reality
there would be a dumping element that will increase the friction and stop the mass from
oscillating. Because of this, a term −Bẋm is added to the right hand side of equation 2.1.
The relative displacement of the prof mass is linearly related to the acceleration according
to equation 2.5.

d =
m

k
(a+ g) (2.5)

The displacement is measured and scaled by the factor of k/m such that the output of
the sensor is a∗ = a+ g in m/s2

If the accelerometer is placed on a completely horizontal table, the measured acceleration
would be a∗ = 0 + g in the upward direction, because only the gravitational force mg is



7

acting on the sensor according to Newton law as shown in equation 2.1. However, in many
applications, the accelerometer output is referred as proper or inertial acceleration. Ac-
celerometers measures acceleration typically in a single axis. However, three dimentianal
accelerometer can be done by arranging three similar accelerometers such that their sen-
sitive axes are aligned orthogonally. The triaxial accelerometer output is the components
of vector Ba∗ measured in body frame {B}.[23]

Figure 2.1. Simple Accelerometer working principle and it’s elements [23]

In inertial navigation applications, the estimate of the vehicle motion is frequently done
in inertial frame {0} rather than in body frame {B}. However, moving systems will
experience both acceleration due to gravity and acceleration due to motion when MEMS
sensor are being used. In applications where only the acceleration due to motion is needed
will require to transform the sensed acceleration to inertial frame, or in other word the
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acceleration due gravity need to be removed from acceleration data. In navigation systems,
this can be done by applying complex multiple sensor fusion algorithms such as Kalman
filter. Equation 2.6 show a simplified method how to remove gravity from acceleration
data.

0âv =
0 R̂

B

Ba∗ −0 g, (2.6)

where 0R̂B is the rotation matrix from body frame to inertial frame. Other approach
to remove the gravity from accelerometer data is using a high pass filter that let pass
high frequency components and attenuate constant components as well as slowly varying
components such as gravity.

By assuming that 0R̂B and g are known or using simple filtering methods, one can inte-
grate the acceleration in order to get the velocity as in Equation 2.7

0v̂v (t) =

∫︂
âv (t) dt (2.7)

and further integrate the velocity in order to get the displacement as in Equation 2.8 .

0p̂v (t) =

∫︂
v̂v (t) dt (2.8)

The sensing principal of micromechanical accelerometers can be grouped according to [24]
to piezoresistive sensing, capacitive sensing and piezoelectric sensing. The piezoresistive
sensing is based on piezoresistors that are integrated onto the spring in the sens that
the piezoresistor resistance changes when subjected to acceleration induced stress. In
this case the acceleration can be obtained by measuring the change in the resistance.This
sensing method is known to be robust and simple to implement, its suffers for a poor
noise and power performance[24] Piezoelectric sensing mechanism is based on a charge
polarization of piezoelectric materials due to the strain that is caused by the inertial
force. The simplest configuration of this sensing is that the proof mass is attached to a
piezoelectric plate that acts as a spring. This plate generates current that is proportional
to the change in acceleration. Some of the drawback of this type of sensing is that
the sensor can only measure the change in acceleration and cannot measure constant
acceleration such as gravity. This mechanism is used mostly in macroscopic sensors [24].
The capacitive sensing mechanism is based on detecting small changes in capacitance
due relative movement of the proof mass and the frame. This mechanism is the most
widely found in MEMS sensors and are at this time the most odopted since they are less
expensive, perform well i terms of noise and power consumption.In this work capasitive
MEMS sensors are the main fucus. However, a piezoelectric based accelerometer is used
mostly for comparison purposes. More details on these sensing methodologies have been
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clearly opened in [24].

In applications related to attitude and heading reference systems (AHRS) parameters
used in filtering algorithms are modeled with stochastic information derived from Al-
lan Variance curves. In this case the choice of accelerometer is highly dependent on
the application. However accelerometer needs to be calibrated in order to output the
useful information. The purpose of the sensor calibration is to find the gain or scale
factor and the bias/offset as well as their temperature dependency, the cross-axis sen-
sitivity or misalignment in case of 3D accelerometers.[23] When an accelerometer is in
the static position, it senses the acceleration due to gravity in the downward direc-
tion. This acceleration is due to the material in the Earth beneath us and the dis-
tance from the Earth’s center. Nonetheless, the earth is not a perfect sphere, which
means that points in the equatorial region are further from the center than points in
polar area. As is stated in [23], the gravitational acceleration can be approximated by
g ≈ 9.780327(1+0.0053024sin2ϕ−0.0000058sin22ϕ)−0.000003086h, where ϕ is the angle
a latitude and h is the height above sea level.

2.2 MEMS- Accelerometer Error Model

Due of their imperfectness, when it comes to errors, MEMS- IMUs contain different error
that originate from different sources. In order to get rid of those error, an understanding
of their source is very important, after that a mathematical modeling of these error need
to be done. Based on the error model of the IMU sensor, a compensation model is required
in order to eliminate or reduce errors containing IMU data. In this section the error model
of an accelerometer and gyroscope is formulated and a compensation model is studied.
Equation 2.9 [17][25][26] illustrates the overall error model of MEME accelerometers. The
error parameters are explained bellow:

⎡⎢⎢⎢⎢⎣
âx

ây

âz

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1 + Sx + δSx Mxy Mxz

Myx 1 + Sy + δSy Myz

Mzx Mzy 1 + Sz + δSz

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
ax

ay

az

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
Bx + δBx

By + δBy

Bz + δBz

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
nx

ny

nz

⎤⎥⎥⎥⎥⎦ (2.9)

where a:acceleromenter and gyroscope output signal before transformation to real physical
value.

â: accelerometer and gyroscope output after transformation
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S, δS: scale factor error and scale factor error instability
B, δB: bias/drift and bias/drift instability
Bg: g-dependent bias error coefficient
n: wight/random sensor noise
M : non-orthogonality/ misalignment errors.

MEMS errors are categorized into deterministic and stochastic errors. Deterministic sen-
sor errors includes the sensor bias, the scale factor error and the misalignment errors. As
stated earlier in section 2 the bias error define the sensor output when no input is applied.
Sensor bias may include different term such as:

• fixed terms

• temperature variation

• turn-on to turn-on variation

• in-run variation

The scale factor error is the error due to the ratio of change in the output signal to
the change in input signal of the IMU sensor. Similar to bias error, the scale factor
error contain fixed terms, temperature and other error terms due to asymmetry and non-
linearity[17].

Misalignment errors are due non-orthogonality of axis of sensitivity in IMU sensors. This
is mostly caused by the mechanical manufacturing failure. The correlation between IMU
axis due to misalignment can seen in above equations.

In order to eliminate the deterministic errors in sensor data, full laboratory calibration of
the sensor is required. I general this calibration is performed by the sensor manufacturer.
However, for own purposes, the user can be interested in performing the calibration.
Different algorithms can be used to calibrate the IMU sensors. The basic approach for
IMU sensor calibration is to use the so called "Six Position Direct Method", or "Six
Position Weighted Least Squares Method " as shown in [26]. For more investigation
of IMU sensor calibration and error compensation,refer to [25, p. 253][27][28][29][30].
Since MEMS sensors are pre-calibrated by the manufacturer, all deterministic errors are
assumed constant and only the stochastic errors will be analyzed in order to see the
difference of low-cost MEMS sensors compared to a high cost sensor.

As it was mentioned in section 2, stochastic errors are random errors that appear in IMU
data due to random variation of bias and scale factor over time. In the stochastic error,
there are high and low frequency noises that affect the data. Random changes in bias and
scale factor errors are low frequency components of the stochastic errors. However, noise



11

due to measurement produce high frequency component of stochastic errors. According
to [25][17] the cause of stochastic noise is due flicker noise in electronics and effect caused
by interference of the signal.

Bias instability (flicker noise) appear due to change of bias in time. In order to analyze
the characteristics of stochastic errors, different methods can be utilized. The Allan
variance, power spectral density and autocorrelation methods are the most widely used
for this purpose [18]. The Allan variance is studied more in details later. The result of
Allan variance gives a way to start modeling the stochastic error and their compensation
method. In recent studied Kalman filter [31] have been the state of the art for modeling
and analyzing stochastic noises In this thesis the Kalman filter algorithm is introduced
and the working of this method is applied to models MEMS- accelerometer stochastic
errors.
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3 MEMS ACCELEROMETER STOCKASTIC

ERROR MODELING

3.1 Allan Variance Background
Also known as two−samplevariance, the Allan variance AV AR was developed DavidW.Allan

in 1966 to measure the frequency stability in clocks, oscillators and amplifiers in time do-
main.However,it can also be used to identify different kind of noise source that are present
in different measurement instruments. such as gyroscope and accelerometer sensors. The
effectiveness of Allan variance is seem when the data is plotted in a logarithmic scale,
where different errors including in the data can be distinguished by investigating the
varying slop on the plot. [32]. According to the author of [18], the Allan variance is sim-
ply a method of representing root mean square (RMS) random drift error as a function
of averaging time.

3.1.1 Allan variance cluster sampling techniques

A sampling technique for data analysis of ring laser gyroscope was introduced by Tehrani
et all[33] in 1983. This technique have been widely used in inertial sensor stochastic error
analysis[34]. In order to analyse IMu data with Allan variance approach, data consisting
of N data points is acquired at sample time τ0. This data is further divided in M groups
that contain n successive data points as it can been seen in Figure 3.1,
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Figure 3.1. Allan variance algorithm scheme structure[11]

where each group covers the time period τ = nτ0. In this case τ is referred as cluster
time, which is the length of the period over which windows the averaging was done. The
average of each cluster is referred as cluster sample[34]. Different ways of performing the
cluster sampling have been a subject of research in recent time. The simplest methods use
the technique overlapping and the non-overlapping sampling for Allan variance analysis.
Here bellow is shortly the difference between overlapping and non-overlapping sampling
technique of Allan variance.

• Non-overlapping Allan variance

In the non-overlapping, two sample variance are taken as fundamental measure of
frequency stability. The time averaging is computed on either fractional frequency
or phase measurements, similarly, the Allan deviation is derived for inertial sensors
based on both typed of measurements. For accelerometer measurements the velocity
data is utilized for Allan Variance measurements[34]

• Overlapping Allan variance

In overlapping sample technique, all possible combinations of data from a certain
distance are performed. This have an advantage in increasing the effective number of
degree of freedom and in improving the confidence of the estimation but in expense
of the computation time according to [34]. More improvement on cluster sampling
techniques for Allan variance analysis is studied in [35][36], where the fully overlap-
ping cluster sampling have been extended to not fully overlapping, which improve
the computation time. Li et all[35] introduces the total variance and the modified
total variance techniques for computing Allan variance. Yadav et. all [36], introduce
a fast parallel algorithm that improves the fully overlapping Allan variance in terms
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of computation speed.

3.1.2 Power Spectral Density

Power spectral density (PSD) is one of most powerful tools used to characterize data and
performing stochastic modeling. It is considered as the most commonly used technique
to represent the spectral decomposition of time series data. Moreover, PSD is also better
suited to analyzing periodic and non-periodic signals than other methods according to
[37][18]. PSD analysis can be used in the same purposes as Allan variance. The basic
relationship for stationary process between the two-sided PSD S(ω) and the covariance
K(τ) is expressed as a Fourier transform pairs in equations 3.1 and 3.2bellow:

S(ω) =

∫︂ ∞

−∞
e−jωτK(τ)dτ (3.1)

and
K(τ) =

1

2π

∫︂ ∞

−∞
ejωτS(ω)dω (3.2)

As stated in [18],the transfer function form of the stochastic model can be estimated from
the PSD of the output data. In case of linear systems, the output PSD is a product of
the input PSD and the magnitude squared of system transfer function. If the state space
methods are used, the PSD matrices of the input and output are related to the system
transfer function matrix by Equation 3.3 bellow:

Syy(ω) = H(jω)Sxx(ω)H
∗T (jω), (3.3)

where

• H: transfer function of the system

• H∗T : complex conjugate transpose of H

• Syy: output PSD

• Sxx: input PSD

In the case of white noise input, the output PSD gives directly the system transfer function
according to[18].
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3.1.3 Allan Variance Formulation

Suppose that there are N consecutive data points in the measurements and each data
point having sample time of t0. A group of n consecutive data points τ0, 2τ0, ...nτ0 such
that n < N/2 can be former considering that each member of the group is a cluster and
is associated with the cluster time τ equal to nt0 as it can be depicted in figure 3.1. If the
instantaneous output rate of inertial sensor is Ω (t)[10], the cluster average can be defined
as

Ω̄k (τ) =
1

τ

∫︂ tk+τ

tk

Ω (t) dt, (3.4)

where ̄Ω (t) is the cluster average of the output rate for a cluster from kth data point to
n data point. The subsequent cluster average can be defined as

Ω̄next (τ) =
1

τ

∫︂ tk+1+τ

tk+1

Ω (t) dt, (3.5)

where tk+1 = tk + T . The difference between clusters can be formed by performing the
average operation for each consecutive cluster as shown in equation 3.6.

ξk+1,k = Ω̄next (τ)− Ω̄k (τ) (3.6)

The Allan variance of length T can be defined as in Equation 3.7 below

σ2 (τ) =
1

2 (N − 2n)

N−2n∑︂
k=1

[︁
Ω̄next (τ)− Ω̄k (τ)

]︁2
, (3.7)

where it can be noted that any finite number of data points N , can form a finite number of
clusters of fixed length τ .However, the variance σ2 (τ) is an estimate value and it’s quality
depends in the number of clusters that can be formed. In the case MEMS accelerometer
sensors, the Allan variance is formed in terms of velocity by integrating the acceleration
data according to Equation 3.8.

θ (t) =

∫︂ t

Ω (t) dt. (3.8)

As stated in [10],the lower integration limit is not specified because only the velocity are
employed in the definitions.

The measurements of velocity from IMU sensor can be provided in discrete time given
by t = kt0, where k = 1, 2, 3, ..., N This notation can be simplified as θk = θ (kt0), and
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therefor Equation 3.8 can be simplified to Equation 3.4

Ω̄k (τ) =
θk+n − θk

τ
(3.9)

and Equation 3.5 to Equation 3.10

Ω̄next (τ) =
θk+2n − θk+n

τ
. (3.10)

The Allan variance can be computed from Equation 3.7 as

σ2 (τ) =
1

2τ 2 (N − 2n)

N−2n∑︂
k=1

(θk+2n − 2θk+n + θk)
2 (3.11)

The relationship between the Allan variance σ2 (τ) and the two-sided power spectral
density (PSD) of random noise parameters in the original data set can be formulated
according to [18] as

σ2 (τ) = 4

∫︂ ∞

0

SΩ (f)
sin4 πfτ

(πfτ)

2

df, (3.12)

where SΩ (f) is the power spectral density of the random process SΩ (τ)

The power spectral density of any physically meaningful random process can be substi-
tuted in the integral, and an expression of the Allan variance σ2 (τ) as a function of cluster
length can be identified.

A log-log plot of the square root of the Allan variance σ2 (τ) with respect to time τ

provides a means of identifying and quantifying various noise terms that exist in the
MEMS sensor data[11]

3.1.4 Determination of sensor noise parameters using

Allan Variance

The key attribute of the method is that it allows for a finer, easier characterization and
identification of error source and their contribution to the overall noise statistics. In this
study focuses 3 stochastic noises namely:

• velocity random walk

• acceleration random walk

• bias instability

• Exponentially correlated
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Additionally,quantization noise, rate ramp, sinusoidal noise and exponentially correlated
or (Markov) noises can be identified through the same Allan variance method. Note that
any number of random noise components may occur in sensor data depending mostly on
the type of sensor and and frequently on the environment where the sensor is being used.
If the noise sources are statistically independent, then the overall Allan variance can be
taken as the sum of the squares of each noise source according to [11][10].

1. Angle/Velocity Random Walk (A/VRW) This noise can be refered as the
additive white noise of the output from MEMS sensors.As stated in [18], the main
source of this noise is the spontaneously emitted photons that are always present in
the output data. The velocity random walk is the high frequency noise that have
correlation time that is much shorter than the sample time can contribute to the
accelerometer velocity random walk. The noises are characterized by a white noise
spectrum on the IMU output rate. Most of these noise source can be eliminated
by improving the design. The associated rate PSD is:

SΩ (f) = N2, (3.13)

where N is the angle or velocity random walk coefficient. By substituting Equation
3.13 in Equation 3.7, the integration yields:

σ2 (τ) =
N2

τ
(3.14)

From the Figure 3.2 it can depicted that the log-log plot of σ (τ) versus τ has a
slope equal to −1/2. The numerical value of N can be obtained directly by reading
the slope line at τ = 1
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Figure 3.2. plot of angle random walk[18]

2. Bias instability (BI)

This noise is due to electronic or other components that are succeptible to random
flickering. The instability shows up as bias fluctuation in the data because of its
low frequency nature. The associated rate PSD is given as:

SΩ(f) =

⎧⎨⎩
(︂

B2

2π

)︂
1
f
, if f ≤ f0.

0, otherwise.
(3.15)

where B is the bias instability coefficient and f0 is the cutoff frequency.

Again by substituting the Equation 3.15 into Equation 3.7 the integration yields:

σ2(τ) =
2B2

π

[︃
ln2− sin3 x

2x2
(sinx+ 3x cosx) + Ci(2x)− Ci(4x)

]︃
, (3.16)

where x is πf0τ and Ci is the cosine-integral function as stated in [18] This can be
illustrated in Figure 3.3 as the log-log plot of the Equation 3.16 .It can be seen that
the Allan variance for bias instability reaches a plateau (the highest)for τ that is
much longer than the inverse cutoff frequency. In this case by examining the flat
region of the plot, the limit of the bias instability and the cutoff frequency of the
underlying flicker noise can be estimated [18]
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Figure 3.3. Bias instability for f0 = 1 [18]

3. Acceleration/Rate Random Walk (ARW) The rate random walk is the random
process of the uncertainty origin in the data. It is possibly a limiting case of an
exponentially correlated noise with a very long correlation time as stated in [18].
The associated rate PSD of rate random walk is:

SΩ(f) =

(︃
K

2π

)︃2
1

f 2
, (3.17)

where K denotes the rate random walk coefficient.

By substituting equation Eq.4.18 in to equation Eq.4.9 and performing the integra-
tion this yields:

σ2(τ) =
K2τ

3
(3.18)

The rate random walk is presented by a slope of 1/2 on a log-log plot of σ(τ) versus
τ . Figure 3.4 illustrates the rate random walk, where the magnitude of the noise
can be read off the slop line at τ = 3.
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Figure 3.4. Rate random walk plot[18]

4. Markov or Exponentially correlated noise

The Markov noise is characterized by an exponentially decaying function with a
finite correlation time. Its rate PSD is given by[18]

SΩ(f) =
(qcTc)

2

1 + (2πfTc)2
, (3.19)

where qc and Tc are the noise amplitude and the correlation time respectively. Sub-
stituting the above equation in Eq.4.9 gives:

σ2(τ) =
(qcTc)

2

τ

[︃
1− Tc

2τ

(︂
3− 4e−

τ
Tc + e−

2τ
Tc

)︂]︃
. (3.20)

The log-log plot of the Equation above can be seen in the figure Figure3.5. Various
limits of this equation can be examined for τ that is much longer than the correlation
time as it can be seen in Equation 3.20

σ2(τ) ⇒

⎧⎨⎩
(qcT−c)2

τ
, for τ ≫ Tc.

q2c
3
τ, for τ ≪ Tc.

(3.21)

It can be noted that for τ >> Tc the Allan variance in Equation id is the angle/ve-
locity random walk, where N = qcTc is angle/velocity random walk coefficient.
However for τ much smaller than the correlation time, Equation 3.20 gives the
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Figure 3.5. Markov (correlated) noise plot[18]

Allan variance for rate random walk [18]

From the peak of Figure 3.5 the parameters of the fist order Gauss-Markov process in
Equation 3.22[18] can be retrieved as: Tc = τpeak/1.89 and qc =

σ(τpeak)

0.437
√
Tc

ẋ(t) = − 1

Tc

x(t) + qcn(t) (3.22)

Figure 3.6 shows the overall plot of all noises defined above.Generally, any number of
random process noise can be present in IMU dataset, in that sense this plot the typical
plot that is seen in for the Allan variance. As it can be seen in the figure, different
noises terms appears in different noise region of τ , which helps in identifying different
random processes existing that in the data. By assuming that all the random noises are
statistically independent, the the Allan variance at any given cluster time τ is the sum of
all Allan variances caused by individual random process at the same time. In this case, in
order to estimate the amplitude of a given random noise in any region of τ will requires
a knowledge of the amplitudes of the random noises in the same region of τ [18].

σ2
tot(τ) = σ2

ARW (τ) + σ2
quant(τ) + σ2

BiasInst(τ) + ... (3.23)
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Figure 3.6. Overall plot of Allan variance analysis[18]

3.1.5 Allan Variance Estimation Accuracy

As stated in [10], there would exist a gradual transition between the different Allan
standard deviation slopes. As consequence a certain amount of noise or harsh would
appear in the plot curve due to the uncertainty of the measured Allan variance.

Having any finite data set, a finite number of clusters can be formed. The Allan variance
of any noise term can be estimated using the total number of clusters of a given length
that can be created. However, the Allan variance estimation accuracy at any given τ

depends on the number of independent clusters within the data set. While estimating
σ(τ), the percentage error σ for clusters containing K data points from a data set of N
points is given by [18].

σ =
1√︂

2
(︁
N
K
− 1

)︁ (3.24)

From Equation 4.29, it can be noted that the estimation errors in regions of short (long)
τ are small (large) as the number of independent clusters in these regions is large(small).
This equation is very useful in designing a test to observe a particular noise of certain
characteristics to within a given accuracy. For instance, in order to verify the existence of
random process within a characteristic time of 24h in a data set within an error of 25%
one can set σ = 0.25 in Equation 4.29 and get:

Kmax =
N

9
(3.25)
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Because the suspected characteristic time is 24h, clusters of the same length are created.
In this case, the total test length that is needed for such a test is 24× 9 = 216h. [18]

3.2 Gauss-Markov Autocorrelation
Various methods for stochastic modeling of inertial sensor error have been discussed in[26]
namely Random constant model, Random Walk Model, Gauss-Markov model, Autoregres-
sive Model and Allan variance. In this thesis, first-order Gauss-Markov model (GM) will
be used along with the Kalman filter to model the MEMS-accelerometer flicker noises.
More information on these methods can be found in [38][39]. For better understanding of
stochastic models, some terminologies have been defined in[38][26]:

• Continous time signals: signals described by an analytical function of time

• Discrete time signals: signals that have values only at discrete time instants or
in other words signal generated by sampling the continous time signal

• Stationary stochastic process: process whose joint probability distribution as
well as its mean and variance does not change when shifted in time or space.

• Autocorrelation function: expected value of a product of random signal with a
time-shifted version of itself.

As stated in [38], GM random process is one of the critical methods for modeling stochastic
errors. Its benefit is that it can represent large number of physical processes with a
reasonably high accuracy and its implementation being relatively simple. Gelb et al.[38]
defined a stationary Gaussian process that has an exponentially decaying autocorrelation
as the first-order GM process. The autocorrelation function can be given as:

R(τ) = E(x(t) · x(t+ τ)) = σ2e
−|τ |
Tc , (3.26)

where τ , Tc and σ2 denote the time shift, correlation time and the noise variance at τ = 0

respectively. An other important characteristic of GM process is it’s ability to represent
the bounded uncertainty, meaning that any correlation coefficient at any time shift is less
or equal to the correlation coefficient at zero time shift R(τ) ≤ R(0)[26][38].

The ideal first order GM autocorrelation function is illustrated in figure 3.7 below.
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Figure 3.7. first order Gauss-Markov process autocorrelation function[26]

The discrete time form Of fist-order GM process is defined in [39][26] as:

xk = e
−dt
Tc xk−1 + wk (3.27)

The associated variances are given as:

σ2
xk

=
σ2
wk

1− e
−2dtk

Tc

(3.28)

and
σ2
wk

= σ2
xk

(︂
1− e

−2dtk
Tc

)︂
, (3.29)

where σ2 is the variance and w normally distributed driven random noise.

Higher order GM random process have been studied in[26], but for simplicity, only the
first order model will be implemented. Equation 3.27 and the driven noise variance in
Equations 3.28 and 3.29 can be used as error compensation model in sctochastic modeling
of MEMS accelerometer. In this study, the bias instability will be modeled as First order
Gaus-Markov to tune the Kalman filter in stochastic error compensation. This is studied
more in details in the next section.

3.3 Kalman Filtering for Stochastic error tracking and

compesation
Kalman filter (KF ) was introduced by Rudolf Emil Kalman[20] in 1960 as a recursive
solution to discrete data linear filtering problem. Since that time the Kalman filter have
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been the subject to extensive research and application due to its advances in digital
computing. Kalman filter is widely used in areas such as autonomous, aerodynamics,
maritime and many others. [40]. More literature on background of Kalman filtering can
be found in [41][42]. An algorithmic based introduction to discrete Kalman Filter (DKF )

and extended Kalman filter (EKF ) is provided in[43]. KF states for linear processes and
EKF states for non-linear processes.

In next subsection a mathematical formulation of Kalman Filter estimation.

3.3.1 The process to be estimated

The general purpose of the Kalman filter is to try to estimate the state variable x ∈ ℜn

of the discrete-time process that is controlled by the linear stochastic difference equation
with measurement z ∈ ℜm [43]

xk = Axk−1 + Bukwk−1 (3.30)

zk = Hxk + vk, (3.31)

where k denotes the time step and the random variable wk and vk denote the process and
measurement noise, respectively. In many applications these noises are assumed to be
independent to each other, white and normally distributed as shown in equation below:

p(w) ∼ N(0,Q) (3.32)

p(v) ∼ N(0,R), (3.33)

where Q and R are the process and measurement noise covariance matrices. Practically,
these noise covariance matrices might change at each time step or measurement. At this
stage, it is assumed that they remain constant. Other matrices in the equation above are
denote[43]:

• The n×n matrix A denotes the state matrix. This relates the state variables at the
previous time step k − 1 to the current time step k in the absence of either driving
function or process noise. It is assumed here, that matrix A remain constant, but
in practice this might change with each time step.

• The n × l matrix B denotes the control matrix. This relates the optional control
inputs u ∈ ℜl to the state variables x
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Figure 3.8. Kalman filter operation principle[43]

• The m × n matrix H denotes the measurement matrix. This relates the state
variables to the measurement variables zk. This is assumed to remain constant
here, but in practice it might change at each time step.

Due to its name, Kalman filter is thought of as a filter like regular filters. However, in
reality Kalman filter is an optimal estimator, for instance in case where the process and
measurement noise are both zero-mean Gaussian noise.

In its operation, Kalman filter estimates the process state at some time and obtain the
feedback in the form of measurements. The measurements are full of noises due do the
imperfectness of the sensors. Because of that, Kalman filter equations are formed in to
time update and measurement update equations. The time update equations project
forward the current state and error covariance estimates in order to obtain the apriori

estimate for the next time step. The measurement update equations do the feedback
operation, which means that they incorporate new measurement into the apriori estimate
in order to improve the estimate, which is called aposteriori estimate. In other words the
time update equations are thought as predictor and the measurement update equations
as corrector equations[43].The complete picture of Kalman filter operation is illustrated
in the figure bellow.

For further investigation on Kalman filter equation derivation take a look at [43][23].
Other great work and application of Kalman filtering have been done in [44][45][46].
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3.3.2 Stochastic error compensation

In the previous section, it was mentioned that the bias instability can be be modeled using
the first order Gauss-Markov process. I this part the working of Kalman filter to model
the bias instability will be analysed. To do so, Equation 3.27 can be developed to model
the bias instability for three accelerometers that include in IMU unit as it was presented
in [17]. ⎡⎢⎢⎢⎢⎣

δBx

δBy

δBz

⎤⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

xk

=
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−dt
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, (3.34)

where A: State matrix, δB: bias instability at time k, δBk−1: bias instability at time
k − 1, Tc: correlation time, and dt: sampling time Equation 3.34 and 3.35 shows the
model used in Kalman filter algorithm.
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where zk the output, C is the measurement matrix and nk is the measurement error.
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4 EXPERIMENT SETUP

In this section, the characteristics of sensors used in this studies are presented. Relevant
information regarding sensors were retrieved from the data sheet of each sensor. This
helps to better analyse the differences between these sensors as well as evaluate their
noise performance.

4.1 Choosing the correct MEMS accelerometer for the

application
The choice of the correct sensor to be applied may become a big problem in many cases. In
some application this requires the consideration of several aspects and in sometimes very
conflicting parameters. Sensor performance is declared in most of the time by using dif-
ferent terminologies that are important to know. Below is summarized some terminology
that are used in MEMS- sensors[24].

• Noise: This the random fluctuations at the sensor output when there is no input
signal.

• Sensitivity: This is the ratio of a small change in electrical signal to a small change
in physical signal.

• Resolution: This is the minimum detectable signal change. In digital sensors, this
is considered as the smallest bit change.

• Dynamic range: This is considered as the span of physical input which may be
converted to electrical signal.

• Accuracy: Sensor accuracy is the largest expected error between the actual and
the ideal output signals. The inaccuracy is mostly due to the change in the sensor
characteristics over time, changes in temperature, initial offsets as well as nonlin-
earity.

• Stability: Sensor stability tells how constant the output is in the constant condi-
tions.

• Repeatability: Sensor repeatability refer the to it’s ability of to give the same
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output data when the conditions are identical.

• Reliability: This is the probability to have failure in the sensor operation.

• Drift: Sensor drift is the change of output over time. Zero drift is the change of
output over time when there is no input present or the input is constant.

• Cost: The cost of the sensor may come as the most important characteristics of
everyone but engineers[24].

• Random Walk A random noise is always present in measurement if a sensor mea-
sures a constant signal. This is the equivalent of the integral of white noise in the
accelerometer output. It is characterized by a slope of 1/2 and is contributed by
random fluctuations in the signal with correlation time much shorter that sample
rate. It’s value can be read for T = 1s and it directly represent the noise density in
mg/

√
Hz or m/s2/

√
Hz according to [47].A low noise density value is desired when

the low amplitude signals are of interest

• Bias instability or in-run bias This is also called in-run bias stability. The
initial bias of IMU changes over time when the IMU is powered on. Bias instability
is often caused by temperature change and mechanical stress on the IMU system.
It is represented by the flat portion at the bottom of the curve in Allan variance
analysis. This is explained more in Section 3. The values in that section is the
in-run bias instability of a accelerometer and indicates the minimum bias that can
be estimated.

• Scale factor The scale factor is the relation between the input and output. For
example if the input is 100%, then the expected output is 100%.In many of cases
the actual output is the result of linear effect, where the output is proportional to
the input but scaled. For instance if the input is 10m/s2, but the is a 2% scale
factor error,the output measurement would be 10.2m/s2.

• Non-Orthogonality or Misalignment In the case of 3-dimensional sensors where
the axis are orthogonal to each other, the mounting is not always perfect and con-
tains some errors. This leads to correlation between sensor individual sensors. For
example one axis of an accelerometer is pointing perfectly upward and the sensor
is on placed on perfectly horizontal level. The accelerometer on this axis is mea-
suring the gravity force. If the other two axis were perfectly orthogonal, they will
not experience any effect of the gravity, however if there is a non-orthogonality, the
other axis will have a portion of gravity in the output. This can lead to correlation
between sensors axes, especially when sensors are combined together to form a com-
pact set such as 6 − DOF or 9 − DOF - Imu sensors.The misalignment can occur
also between the sensor set and the enclosure. The misalignment can be minimized
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using careful manufacturing and sensor calibration

• Bandwidth: This the range of frequencies that can be measured by the sensor.
This is related to the sensor’s response time.

Other important parameters for characterizing the sensor to be used are the accuracy,
dynamic range, noise, resolution as well as the stability. However, the system level spec-
ifications may define the product performance. according to [24], the biggest difference
between the consumer grade and automotive or aerospace level sensors may sometimes
be a single parameter such as guaranteed stability of a certain temperature range.

4.2 Specification of sensor used in this work
Relevant characteristics of sensors related to vibration monitoring were of concern while
making the choice of sensors. Those characteristics are such as: acceleration range, noise
density, frequency bandwidth and resolution. However, the choice of these characteristics
can vary according to the application area. Table 4.2 summarizes the characteristics of
the sensors used. More information is can be found in Appendix A.1 as well as in sensor
data sheets.

Sensors used in this work
Module Name Manufacturer Seller Price AC
MTI-300 Xsens Xsens 2500
LSM9DS1 ST Microelectronics Ozzmaker 22.20
MPU-9250 Invensense Amazon 12.99
BNO055 Bosch Amazon 47.07
LSM303DLHC ST Microelectronics Amazon 7.99
MTN-1100 Monitran Monitran 250

Table 4.1. Sensor used in this thesis

Sensors used in this work
Name range max (g) Sensitivity (LSB/g) Bandwidth (Hz) Noise density (µg/

√
Hz) A/D resolution (bits) 0-g level offset (mg)

MTI-300 ±15 - 375 150 16
LSM9DS1 ±16 1366 404 - 16 ±90
MPU-9250 ±16 384 260 300 16 ±60XY,±90 Z
BNO055 ±16 1000 1000 190 14 ±150

LSM303DLHC ±16 83 2688 220 16 ±60
MTN-1100 ±80 100 (mV/g) 10k - Analog -

Table 4.2. Sensor used in this thesis
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It is important to note that MEMS sensor units used in this work are all multipurpose
sensors since, which means that several sensors are gathered together to form one unit.
All these sensor used contain an 3DOF Accelerometer, 3DOF Gyroscope and a 3DOF

Magnetometer as well as an internal thermal sensor. Since the use case of this study was
about vibration monitoring, only the accelerometer data was found more informative for
this motion. Therefore only Accelerometer was used the whole study. However, the same
methodologies used can be applied to characterise gyroscope mounted on the same sensor
chip. In vibration monitoring applications, transducers characteristics such as operation
range, frequency bandwidth and sensor resolution and of course sensor price play an
important role while making while choosing the sensor to use. A big difference is to be
noted while comparing piezoelectonic sensors and MEMS-based sensors in this usecase.
Even though piezoelectonic sensors are known to be quite good in terms of sensing range
higher frequency ranges, there still exist many limitation for using these type of sensors
and that is key factor for considering the utilization of MEMS-based sensor in condition
monitoring. MEMS-accelerometers have relatively low operation range and low frequency
bandwidth compared to piezoelectronic sensor as it can be noted in Table 4.2. However,
one must not that the choice of these characteristics depend well upon the application.
For instance what is the maximun vibration and what frequency range is to be measured.
The maximun acceleration range of these low cost sensors used in this thesis is ±16g or
±157m/s2 which is more that enough for this purpose low vibration motion. The maximun
frequency to measure is expected to be less than 200Hz. MEMS-accelerometers are not
limited only to ±16g, because higher ranges and higher frequency bandwidth even up to
5kHz can be found already in the market.

The reason why MEMS-sensors produce lower frequency bandwidth is due to relatively
high noises in the data. To clarify, internaly MEMS-sensor are sampled with high fre-
quency clock when converting analog signal to digital (ADC). After that the signal is
passed through low and high frequency filters in order to filter out noises before it can be
sent to digital registers before it can be sent to serial buses such as I2C and SPI. Figure
4.1 shows an example digital block of ST Microelectronic LSM9DS1 Accelerometer and
Gyroscope sensors.
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Figure 4.1. LSM9DS1 Accelerometer and Gyroscope digital block diagram [48]

4.3 Data Acquisition System
The system used to get data from sensors is presented below. The components of hardware
and software utilized are explained more in details. Additionally, the methods utilized to
analyze all sensor data are presented in this section.

4.3.1 Hardware

In order to acquire the data from different MEMS-Accelerometers, a simple aluminium
plate of size 40× 27× 5 cm was done. All sensors were placed on that plate at different
location such that the axes direction matches for all sensors. The sensors were screwed
on the plate with a stainless screw, where a small plastic tube was placed between the
plate and the sensor to isolate metallic parts. Figure 4.2 shows all the sensors mounted
on the plate.

All small sensors were connected to a raspberry Pi3 model B+ [49] via a breadboard.
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Figure 4.2. Sensor comparison platform

This allowed all sensors run at the same time and measure the same phenomenon. The
arduino in the mounted on the plate was not used in this purpose.

4.3.2 Robot Operating System (ROS)

Robot operating system (ROS) is a collection of software frameworks for robot software.
ROS provides services such as hardware abstraction, low-level device control, implemen-
tation of functionalities, the ability perform communication between different devices as
well as package management functionality.[50] The benefit of ROS is that it is open source
and running on linux systems.In its new features ROS can be integrated to run in real
time. However, this functionality was not used in this thesis. The integration of ROS and
MATLAB gives the ability to have communication between windows and linux operating
system.

The basic concept of ROS is illustrated in the figure below.

As it can be seen in the Figure 4.3 above, ROS processes are represented as nodes that are
connected by topics.Trough topics, nodes can send messages to one another, make service
call or provide services to other nodes. Nodes can set or retrieve shared data from a
communal database called parameter server. For the communication to work, ROS nodes
must be registered to the ROS Master Node. The task of ROS master node is to establish
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Figure 4.3. ROS working concept

the communication between nodes and control the parameter server updates.[50] Some
useful commands used in ROS are listed bellow:

• roscore: to establish the ros master

• rostopic: when combined with other keywords such as list, show, echo, one can get
the state of a topic in case.

• roslaunch: ROS tool that can be used to start several nodes at the same time

• rosrun: ROS tool that is used to start a single node.

• rosbag: This tool provide useful functionalities such as recording and replaying the
data in the file format called rosbags.

• rviz: A powerfull tool for performing the visualization in real time.

In this thesis, ROS was used as working environment in order to have all sensors running
on same platform. To put all together, firstly, ROS was installed on raspberry pi3 model
B+ running Ubuntu Mate as operating system and on linux laptop running ubuntu 16
lts.

The overview of how the hardware connection was done can be seen in the Figure 4.4
below. Due to clock stretching issues with raspberry raspberry Pi, BNO055 sensor was
not able to work properly on i2c bus, and therefore this sensor was required to use SPI
bus connection. In order to read data from sensor vias ROS environment, For every
sensor, a ROS node was created. The existing open sources C codes for each sensor were
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Figure 4.4. Data acquisition overview

Figure 4.5. MATLAB Simulink data acquisition block
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used to create a ROS driver for each sensor exept for the MTI-300 where the driver was
already provided by the sensor manufacturer. After creating the drivers ROS nodes were
made in which every sensor publish all Acceleration, Gyroscope and Magnetometer data
through topics. Note that only the Accelerometer topics were used in this study since
only the acceleration information was needed. After all this, data was recorded using
rosbag−command and visualized in real time using ROS functionalities such as rviz. For
further information on these command, see [50].

During data acquisition, data was acquired from ROS environment by using he command
rosbag − record. I was also possible to aquires that data from an other environment
such sus MATLAB, since MATLAB/Simulink support ROS functionalities. Figure 4.5
illustrate a Simulink block that were used to acquired MEMS sensor data from ROS
topics published from a raspberry Pi.

4.4 Data Analysis methodologies
The importance of data analysis is crucial especially when working this sensor data. It
is common that data produced by sensors contain noises and other information that is
irrelevant to what is being studied. In order to have reliable results, data must be pro-
cessed by utilising different methodologies depending on what is the goal to be achieved.
In this thesis data from sensors was processed using simple and commonly used meth-
ods. As the purpose is to work with vibration data, the first thing to do was to remove
the constant value from all sensor data produced by MEMS- accelerometers.The effect of
constant value can be high while integrating accelerometer data. For piezoelectric sen-
sors, the constant value was very small due to it’s nature as an analog sensor. However,
there noises in analog sensors might be high depending on the data acquisition system.
Removing the constant component from data can be done applying a high pass filter or
removing the mean from sample data. In this thesis both methods was used as it will
be seen in Section 5 High pass filter remove unwanted low frequency noises from data
and low pass filter remove unwanted high frequency noises. However, the choice of the
filter design is also important in order to achieve certain results. Additionally, the filter
performance highly depends on the sampling sampling rate of data being filtered. In this
work Matlab designfilt tools was used to design filters and to process data.

4.4.1 Vibration analysis using MEMS accelerometer

MEMS sensors are well known for applications involving inertial navigation and position-
ing, dead reckoning and other applications as it was discussed in Section 2.1. However,
in order to apply MEMS based accelerometer as vibration monitoring, data from these
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Figure 4.6. Structure of a simple 60 Hz sine wave principle[51]

sensors must be preprocessed such that it reflect the vibration phenomenon. This pre-
processing included the filtering of low/high frequency noises according to the system
requirement. An important thing to do at first is to filter out constant acceleration due
to the gravity. The simplest approach is high pass filtering the acceleration data. The
vibration representation in terms of velocity and displacement may be crucial especially
when working with low frequency ranges. This can be done by integrating the accelerom-
eter data for velocity or double integrating this to get the displacement accordingly, as it
was illustrated in inertial equations showed in Chapter 2.

4.4.2 Time Domain Analysis

The time domain analysis of sensor data comprises of time history data visualization in
xy-plot. In vibration analysis some parameters such as peak-to-peak, peak amplitude and
root mean square (RMS) are often the variable of interest.Figure 4.6 shows a simple time
domain plot of a 60 Hz sine wave. The most important vibration parameters are shown
in this figure. As stated in [51], the peak and peak-to-peak does not take time duration of
the signal into consideration. However these parameters are useful when the displacement
information and severity is of concern.On the other hand, the root mean square parameter
takes into consideration the time duration of the signal. This value is the most useful
in time domain analysis as it is related to the energy content of the vibration signal. In
other term it gives the information on the destructive capability of the vibration.

Vibration analysis in time domain using MEMS-accelerometers can be done after pre-
processing the acceleration data. Figure 4.7shows a simple schema of time domain vibra-
tion analysis using MEMS- accelerometer.
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Figure 4.7. MEMS- accelerometer vibration analysis schema in time domain

4.4.3 Frequency domain analysis

The idea behind vibration frequency analysis is to determine the rate or frequency of os-
cillation of a certain pattern about an equilibrium point. By vibration frequency, one refer
to the number of times a complete motion cycle occurs during a period of one second[51].
In frequency analysis Fast Fourier Transform (FFT) or Discrete Fourier Transform (DFT)
is the most commonly used method for vibration analysis. An introduction to discrete
Fourier Analysis theory can be found in [52]. Basically, Fourier analysis or spectrum
analysis is a method used to deconstruct a signal to its individual sine wave components.
As results amplitude of the signal versus frequency can be be studied in more details.
This gives more understanding on the signal content as well as their effect in terms of
harmonics.

• Fast Fourier Transform (FFT)

A fast Fourier transform is an algorithm that is widely used to compute the discrete
Fourier transform (DFT) of a sequence of data. The main idea behind this is
that FFT converts a signal from its original time domain to a frequency domain
and vice versa by decomposing the this sequence of values into different frequency
components[53].

The general form of DFT can be seen in Equation 4.4.3

Xk =
N−1∑︂
n=0

xne
−i2πkn/N , k = 0, ..., N − 1, (4.1)

where ei2π/N is the Nth root of unity. More mathematical background of FFT and
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Figure 4.8. MEMS- accelerometer vibration analysis schema in frequency domain

DFT can be found in[54]

• Power Spectral Density (PSD)

While FFT is good at analysing vibration when the data contains a finite number
of dominant frequency components,PSD method is used to characterise the random
frequency. PSD is calculated by computing each frequency bin in FFT by its complex
conjugate. The amplitude of PSD is the normalized to the frequency bin in order to
get rid of frequency on bin width. This is useful especially when one need to compare
signals of different length[51]. More details on PSD was explained in Section 2.3

• Spectrogram A spectrogram is an other powerful method used in frequency domain
to analyse the change for frequency with respect to time. This more important
especially if the vibration is being analysed in an environment that may change
over time. This change may be caused by environmental issues such as temperature
and humidity[51]. Other information on spectrogram analysis can be found in [55]

While using MEMS-accelerometers as the vibration monitoring, same method used in time
domain to pre-process the acceleration data can be applied. However, before applying the
Fourier transform, data must go through a window function in order to reduce spectral
leakage and frequency attenuation problems. Figure 4.8shows a simple schema of MEMS-
accelerometer vibration analysis in frequency domain.

4.4.4 Characterization of vibration motion

Since MEMS accelerometers are capable of capturing information of a particle in motion,
spectral analysis can be used to characterize this motion as it was defined previously. In
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machine condition monitoring application the form of vibration motion is predominantly
linear. Hence, the direction of this motion is crucial. Figure 4.9 show the spectral analysis
of a vibration profile. Each moving equipment or machine produces a vibration profile
as this Figure show. In the figure it can be seen that the profile has both broadband
and narrow-band frequency components. The natural frequency is the frequency at which
the vibrating device vibrates when no damping force is imposed. This frequency is also
known as fundamental frequency,Eigen frequency or first harmonic. Harmonics are higher
frequencies that are superimposed onto the fundamental frequency.The frequencies are
formed of a integer multiple of fundamental frequency. As an example, given a natural
frequency of 12Hz, the 2nd and 3rd harmonics would be 24Hz and 36Hz. In rotating
machines, the malfunctioning of bearing system and other faults can be detected from the
presence of high order harmonics in the vibration profile.

One of the main focus of this work was to compare the performance of low cost sensors
when monitoring the vibration of wheel loader machine base. This machine is powered
by a diesel engine with four cylinders. All measurements were done when the machine is
running at idle. To calculate the natural frequency of a rotating engine, the Equation 4.2
can be used.

Fnatural =
speed(rpm)

60
(4.2)

A four cylinder engine running at idling speed of 800rpm will be characterized by a
dominant frequency of 26.667Hz. This is equivalent to twice the crank shaft speed. In
this type of engine two ignitions are performed during one engine revolution. In the
vibration profile produced by FFT, the characteristic frequencies will appear at 26.67

and 53.33Hz corresponding to the frequency of combustion and frequency of strike for
exhaust and intake valves respectively. Further investigation on diesel engine vibration
have been studied in [56], where biodiesel and petrodiesel fuel blends were used. A basic
understanding on how a four-stroke engine works can be found in [57]
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Figure 4.9. Vibration frequency harmonics[1]
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5 EXPERIMENT RESULTS

5.1 Test Results of Sensor Static Measurements
In this section, the experiments performed on static data are presented. These experiments
included the analysis of noises presented in sensor data when sensors are in stable state.

5.1.1 Sensor Noise comparison on stationary data

The purpose of this phase was to illustrate the differences in sensor data while no input
is applied to the sensors. This was done by acquiring data while the comparison platform
is lying on horizontal table.

• Procedure: The data was acquired for 20 seconds while no motion is applied to
the comparison platform. The static bias was removed by subtracting the mean (dc
component) from the data set.

• Results: minimum, maximum, peak to peak, standard deviation and static bias.

Table 5.1 shows the results from the 20 minutes data set, where the minimum, maximum,
peak to peak, standard deviation and static bias was retrieved for all axis in all sensors.

Figure 5.1 illustrates the noises plotted from all sensors while the comparison platform is
placed on a horizontal table. From the figures it can be seen that the noises are highly
dependent on the sampling rate of the sensor. By looking only at the figures, the difference
in performance is not obvious, but there is a clear difference in terms of amplitudes. This
is illustrated in Figure 5.1f, which shows high spikes in the stationary data. These spikes
are outliers and are a symbol of a malfunctioning LSM303D sensor. While plotting the
data from this sensor, it was discovered that the acceleration values are frequently zero
on x and y axes, which was different to other sensors on the same platform. The origin of
this error may stem from a failure during the soldering process or in other case defective
sensor installation. Nonetheless, by solely narrowing our focus on the time history of the
stationary data, we cannot get sufficient information about the sensor’s performance. To
extend this analysis, Table 5.1 illustrating the numerical values of stationary data was
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(a) MTN-1100 noise (b) Xsens Mti-300 noise

(c) lsm9ds1 noise (d) bno055 noise

(e) mpu9250 noise (f) lsm303dlhc noise

Figure 5.1. Stationary data of piezoelectric accelerometer vs MEMS-Accelerometers

created. In this table minimun, maximun, peak-to-peak, standard deviation and the static
bias of the sensor were retrieved from all sensors. The table indicates that the LSM303D
sensor shows higher values compared to other sensors. Looking at the standard deviation
of the data it is found that the the piezoelectric sensor taken as reference has the lowest
deviation of 0.0001m/s2.

In order to classify the performance of the MEMS-accelerometers with respect to the
piezoelectric accelerometer (MTN-1100), the ratio of standard deviations was utilized.
This was achieved by dividing the standard deviation (std) of MEMS-accelerometer with
that of the piezoelectric sensor. As this sensor is a single-axis sensor, this comparison
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could only be done for z-axis. The same methodology can be used also for other axes.
From the table it can be seen that MTI-300 give the lowest result of 116 which means a
better performance compared to other MEMS-accelerometer.The high value of LSM303 is
due to the existence of outliers/spikes in the data as it is seen in Figure 5.1f. BNO055 is
the second in performance giving a ratio of 140. The reason for MTI-300 and BNO055 to
have better performance is due to better built-in signal conditioning and higher calibration
level of these sensors.

Accelerometer data output [m/s2]

metric axis MTN-1100 MTI-300 MPU-9250 LSM9DS1 BNO055 LSM303DLHC

min
X - -0.0460 -0.0784 -0.1516 -0.0273 -15.30
Y - -0.0437 -0.0899 -0.1540 -0.0460 -1.70
Z -0.7358 -0.0525 -0.1265 -0.1985 -0.0464 -16.50

max
X - 0.0461 0.0709 0.1539 0.0327 1.90
Y - 0.0537 0.0722 0.1394 0.0440 1.80
Z 0.5559 0.0426 0.1199 0.1797 0.0436 2.0

p2p
X - 0.0921 0.1494 0.3056 0.0600 17.20
Y - 0.0974 0.1621 0.2934 0.0900 3.50
Z 1.4017 0.0951 0.2464 0.3782 0.0900 18.50

std
X - 0.0116 0.0189 0.036 0.0097 0.20
Y - 0.0120 0.0189 0.0349 0.0112 0.20
Z 0.0788 0.0116 0.0318 0.0383 0.0140 0.30

static bias
X - -0.0537 0.0515 -0.2064 0.0173 0
Y - 0.0631 0.0472 -0.1918 -0.2740 0
Z 0 9.8230 9.9171 9.9118 9.7664 9.90

std-ratio Z - 116 318 383 140 3000

Table 5.1. Stationary data output

The time history data analysis performed above does not give enough information on the
sensor characteristics, bringing the need to analyse the performance in terms of noises.
The measured noise characteristic of these sensors were compared to the values in data
sheets provided by the sensor manufacturer. To clarify the characteristic difference of all
sensors, additional information were provided. This information includes the sample rate,
bandwidth and the total noise of the sensor.

• Procedure: Same data acquired for 20 seconds while no motion is applied on the
platform used. The static bias was removed by subtracting the mean (dc component)
from the data.

• Results: Noise density of sensor was computed in time and frequency domain,
additionally, the data rate and total noise of the sensors were analyzed. Additional
analysis were done using statistical methodologies in order to make a comparison
to the piezoelectric sensor.

In this section, the influence of software utilized to the measurement is also discussed.
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Firstly, the noise density of the sensor was computed and validated using the values
obtained from each sensor data sheet. The noise density was computed in time domain
using the equation 5.1 below

ND =
σ√
f3dB

, (5.1)

where the σ and f3dB are the signal standard deviation and the frequency bandwidth
respectively. In this case the bandwidth from the sensor data sheet was used in order
to make comparison to the values from the data sheet. To get the total noise, the noise
density was multiplied by the square root of bandwidth. Table 5.2 illustrates the results
from this analysis. As results it was noticed that the noise density was different from
all axis of each sensor, whereas in the data sheet it is not specified on which axis the
computation was done. In this case the value from the data sheet is assumed to hold for
all axes. In LSM9DS1 data sheet the noise density is not specified at all, which gives no
chance for comparison of measured and data sheet value.

It can be seen that the noise density of MTI-300 is lower than other sensors, which may
explain the high cost of this sensor, however still the choice of using a high cost sensor
for vibration monitoring was further studied and will be clarified later.

From the Table 5.2, it can be noticed that the measured noise densities are lower than
the ones in the data sheet, except for LSM303DLHC. In some cases the noise density of
Z-axis is significantly higher than X and Y -axes, which can be caused by different sources
such as axis misalignment issues. Additionally, it must be noticed that the noise density
is independent on the sampling frequency of the sensor, but somewhat depends on the
bandwidth which is consistent with Equation 5.1.

Other analysis done here was the output data rate. In the table, the data rate indicated
in the data sheet is computed and compared to the data rate at which the data was
acquired. This gave a chance to see whether a single board computer such as Raspberry
Pi could handle fast samples coming from sensor.

As it is seen in table 5.2, the measured output data rate was lower than the data rates in
the that was configured in the sensor register. The reason for this to happen is probably
not related to the sensor performance itself, but the performance of acquisition system.
Raspberry Pi may not be able to pull data from sensor registers at the same speed there
are written due to the I2C-bus clock. This is because several sensors are connected on
same I2C-bus, which make the bus become busy.
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Accelerometer noise density

Sensor
noise densityµg/

√
Hz data rate[Hz] band width[Hz] noise[µg]

data sheet measured data sheet measured
X Y Z

MTN-1100 803.77 8033.7
MTI-300 88.8 60.9716 63.1657 61.1195 400 399.8 375 1719.6
MPU-9250 300 89.8376 89.6624 151.0355 1000 740 460 6434.2
LSM9DS1 - 210.0844 202.9551 222.6298 952 1012 408 4241.7
BNO055 150 125.2382 144.0657 180.5340 100 171 62.5 1185.8
LSM303DLHC 220 841.20 733.0 1099.0 1344 1260 672 5703

Table 5.2. Sensor noise density and bandwidth

Other reason is due to the software used at which ROS messages are read from all sensors
and published in ROS topics at same time as explained in chapter 4. In order to work on
I2C-bus BNO055 sensor was used only in the fused mood, which was able to give data
only up to 100 Hz. According to the sensor data sheet[58], BNO055 can sample data up
to 5kHz and reach a bandwidth of 1kHz, but this experiment this was not achieved. Since
I2C-bus on BNO055 uses a method called clock stretching in order to get ready to send
data faster to I2C master device (in this case the Raspberry Pi). This functionality is
however not supported by Raspberry Pi I2C hardware. To get data from this sensor, a
software based I2C bus was used at first, but this did not improve the performance. At
the end an SPI bus was used to read this sensor data.

For all sensors, it was rather impossible to achieve the sampling rate that was configured
in the register. The higher rate was achieved by LSM303D sensor reaching 1.26kHz while
the configuration was set at 1.344kHz according to the sensor data sheet. An alternative
solution for this is to use more powerful acquisition system such as Texas Instrument data
acquisition boards.

5.1.2 Allan Variance test results

The analysis done above was purely deterministic, and though does not give information
on how the noise performance in long time period. To do so, the stochastic noise analysis
must be done in order to understand more the the noises affected by the MEMS sensors.
As it was explained in section 3. Allan variance method was used as the main noise
analysis method together with the power spectral density. The objective of this analysis
was firstly to understand the noise behaviour of low cost MEMS- accelerometer sensors
compared to high cost sensor, secondly to define the color of the noises present in the
sensor data. To compute the Allan Variance of MEMS- accelerometers, a set of procedure
is summarized below. 3.
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• Procedure: Data was acquired for 14h while the comparison platform is on an
horizontal table and no input is applied. Static bias bias and constant value was
removed by subtracting the mean from the data. By doing this, we insure that the
remaining data is composed only with wight Gaussian noise. Additionally the effect
of other errors such as scale factor and misalignment are minimized. Allan variance
was computed using the method presented chapter 3.1.1.

• Results: Allan variance(Allan deviation)

The Allan Variance results of XYZ-axes for all sensors are illustrated in figures 5.2 It can
be noted that the shape of these plots is similar to the shape the overall Allan variance plot
in figure 3.6 presented in chapter 3. This indicates the existence of random noises in the
stationary data. Additionally, the figures shows that the noises present are mainly velocity
random walk (VRW) bias instability (BI) and acceleration random walk (ARW).Surely,
Other noise components such as acceleration ramp and quantization noise might exist,
but for simplicity, in this analysis, only VRW, BI, and ARW were the main focus in this
work.

In order to obtain the noise parameters, the relationship between the Allan variance and
the two-sided power spectral density was utilized as it was shown in equation 3.12

In Figure 5.2d it is summarized how noise parameters were identified. For instance the
velocity random walk coefficient (N) was identified by drawing a straight line of the slop
−1/2 in the log-log plot of the Allan deviation. This line is moved such that it coincide
with the straight section of the Allan deviation plot. VRW can be read at the point
of intersection between the line and Allan deviation plot at the time average τ equal
1 second. The same procedure was done to other noise parameters, but with different
slopes. Table 5.3 summarizes the slope and time constant at which the parameter is read.

MEMS- accelerometer noises
Noises Coefficient slope value
VRW N −1

2
σ(1)

BI B 0 σ(f0)
0.664

ARW K 1
2

σ(3)

Table 5.3. MEMS accelerometer noise coefficients

Velocity random walk coefficient N

To compare the velocity random walk noise of all sensors, the velocity random walk
coefficient (N) was extracted from the log-log plot of Allan deviation shown in figure 5.2.
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It can be seen from the figures that VRW is the most dominant at noise in short cluster
time, while the ARW is dominant at more longer cluster time. Table ?? shows the results
of VRW coefficients (N) estimated for all sensors at a cluster time equal to one hour.
The estimation accuracy was computed using the Equation 3.24 presented in chapter 3.In
this test the maximum data points of 100 points in a cluster was used. In this case the
accuracy is in order of 0.3%.The results from table 5.4 shows that VRW varies from sensor
type to an other. Additionally it was seen that all sensors experience a higher VRW on
its z-axis than on x and y-axes. This was recognized more for Xsens Mti sensor. LSM303
performs worst in all sensor as it is seen also in the Allan deviation curves in figures 5.2.
further analysis

Velocity random walk (VRW)

Sensor
Xsens Mti MPU-9250 LSM9DS1 BNO055 LSM303 Unit

N e N e N e N e N e
X 0.0833 ± 0.00026 0.1277 ±0.0004 0.0825 ±0.00025 0.0743 ±0.00023 0.7554 ±0.0024 [m/s/h1/2]

Y 0.0852 ± 0.00026 0.1274 ±0.0004 0.0723 ±0.00022 0.0840 ±0.00026 0.8139 ±0.0026 [m/s/h1/2]

Z 1.19599 ± 0.0062 0.2565 ±0.0008 0.0977 ±0.0003 0.1032 ±0.00032 0.8776 ±0.0028 [m/s/h1/2]

Table 5.4. Accelerometer velocity random walk

Bias instability coefficient B

The bias instability also known as pink noise or flicker noise can be defined from PSD as
stated in equation 3.16. This equation was simplified to Equation 5.2 for the time τ much
longer than the cut-off frequencyf0.

σ2(τ) =
2B2

π
ln(2), (5.2)

which is a line with a slope equal to 0 as it is seen in figure 5.2d. Table 5.5 shows the results
of the bias instability test and the corresponding accuracy for each MEMS-accelerometer.

Bias Instability

Sensor
Xsens Mti MPU-9250 LSM9DS1 BNO055 LSM303 Unit
B e B e BI e B e B e

X 1.4273 ±0.0045 4.4881 ±0.0141 1.7619 ±0.0055 0.8039 ±0.0025 2.6671 ±0.0084 [m/s/h]

Y 1.9474 ±0.0061 4.4140 ±0.0139 1.6712 ±0.0053 2.9657 ±0.0093 4.2955 ±0.0135 [m/s/h]

Z 2.7729 ±0.0087 4.2605 ±0.0134 2.3084 ±0.0073 3.9984 ±0.0126 6.7863 ±0.0157 [m/s/h]

Table 5.5. Accelerometer Bias instability

The results shows that the bias instability is less dominant in Xsens Mti and more effective
in MPU-9250. It can be seen again that the performance of this high cost sensor is better
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than low cost sensors since the accuracy of this sensor is away greater than low cost
sensors.

Acceleration random walk coefficient K

Acceleration random walk

Sensor
Xsens Mti MPU-9250 LSM9DS1 BNO055 LSM303 Unit
K e K e K e K e K e

X 4.052 ±0.0128 4.9431 ±0.0156 2.1911 ±0.0069 1.866 ±0.0053 3.306 ±0.0104 [m/s/h3/2]

Y 1.5527 ±0.0049 5.1879 ± 0.0163 2.8486 ±0.0090 12.7052 ±0.040 6.7863 ±0.0454 [m/s/h3/2]

Z 8.3062 ±0.0262 8.8999 ±0.0375 4.8661 ±0.0153 2.3612 ±0.0074 14.4080 ±0.0454 [m/s/h3/2]

Table 5.6. Accelerometer Acceleration Random Walk

The overall results of this analysis showed deeply that there was larger VRW and ARW
in the sensor LSM303 than other sensors. Other low cost sensors showed low VRW if
compared to Xsens Mti sensor. LSM9DS1 showed to have less BI if compared to all
other sensors. According to this results, it is worthy to say that even low cost sensors
can perform better than high cost sensor in terms of stockastic noises, however, there are
several other functionalities that make them to be different.

(a) X-axis Allan deviation (b) Y-axis Allan deviation

(c) Z-axis Allan deviation (d) Allan deviation noise parameters analysis

Figure 5.2. Allan deviation plots of 14h data set for MEMS- accelerometers
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5.1.3 Gauss-Markov Autocorrelation and Kalman filter

test Results

In this section the results on stochastic error modeling using Kalman filter are presented.
As it was stated in Section 3.2 that the bias instability of MEMS error can be modeled
using the first order Gauss-Markov process and Kalman Filter. The purpose of this test
was to found out if this methodology is applicable to MEMS sensors used in this study. In
order to process to this goal firstly, it was verified visually that noises in MEMS sensor are
white Gaussian by plotting the noise histograms of each sensor. Secondly to get the bias
instability from measurement noise, a simple running average filter was used to filter out
high frequency noises. Figure 5.3 shows MEMS sensor white noise and noise histogram
for X axis.

• Procedure: In order to compute the bias instability, the static data acquired for
14 hours was used. Firstly, the static bias was removed by removing the constant
component from the data set, secondly, the outliers in the data was removed from
the data set and thirdly, the data was filtered using a moving average filter.

• Results: White noise and histogram plot was visualised as shown in Figure 5.3.
The bias instability was computed and compared to estimated bias instability using
the first-order Gauss-Markov process and Kalman filter model.

In order to model the bias instability using Gauss-Markov process in Kalman filter model
shown in Equations 3.34 and 3.35, the auto-correlation function of the bias instability
was computed using Matlab function xcorr. Allan variance plots analysed earlier was
used to verify the presence bias instability or flicker noise. It was seen from the plots in
Figure 5.2 that bias instability spans in a section from a cluster time equal to 10-2000
seconds. This means that in this section bias instability can be modeled as a first order
Gauss-Markov process. The results of the auto-correlation analysis of bias instability is
shown in Figure 5.4. From the figure, it can be seen that MEMS sensors have different
correlation times. The shapes of auto-correlation of MEMS sensor were compared to the
ideal function in Figure 3.7 such that if shape looks similar, it means that the noises are
well correlated and therefore the first order Gauss markov process can be used to model
this error. From the figure, it was seen that noise correlation of LSM303 X and Y axes
as well as BNO055 X and Z ases are highly un-correlated, therefore Gaus-Markov proces
cannot be applied. Using the information above, time parameter Tc and noise standard
deviation σ was retrieved from the auto-correlation analysis. The variance value σ2 was
taken as the peak value autocorrelation results and the correlation time was computed
by finding the time corresponding to σ2/e as it was done in[26]. Table 5.7 shows the
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correlation time and the standard deviation of bias instability for MEMS-accelerometers.

Figure 5.3. MEMS white noise histogram and bias instability

MEMS accelerometer BI correlation time and variance

Sensor
Xsens Mti MPU-9250 LSM9DS1 BNO055 LSM303 Unit
Tc σ Tc σ Tc σ Tc σ Tc σ

X 69 0.0015 88 0.0027 69 0.0015 71 0.0013 58 0.0104 s−m/s2

Y 97 0.0018 1445 0.0032 86 0.0015 20163 0.0027 59 0.0122 s−m/s2

Z 75 0.0018 93 0.0018 96 0.0018 439 0.0018 63 0.0018 s−m/s2

Table 5.7. Bias instability correlation time and standard deviation
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Figure 5.4. MEMS Bias instability correlation time and Variance

Other parameter used to initialized the Kalman filter was the sensor noise uncertainty,
which is the standard deviation of the sensor noise. To compute this, the measured noise
spectral density shown in Table 5.2 was used. The noise standard deviation σ can be found
by multiplying the noise density by square root of the sampling rate used to acquire the
data as σ = ND ×

√
Fs The results of bias instability estimation with Kalman filter are

presented in Figure 5.5. For the sake of simplicity, only the x-asis results is presented. The
results showed that the estimated bias instability track well the measured bias instability
in MTI-300, LSM9DS1 and MPU250. The performance was really poor for BNO055 and
LSM303. This could be probably due to the non Gaussian noise present in the data, as
it can be reflected in the histograms presented in figure 5.3. The root-mean-square error
(RMSE) between then the measured and estimated bias instability can be seen in Table
5.8, where LSM9DS1 showed the best results of 5.7× 10−4m/s2.
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RMSE of real and estimated bias instability (m/s2)

sensor MTI-300 LSM9DS1 MPU-9250 BNO055 LSM303DLHC
RMSE 7.1×10−4 5.7×10−4 11×10−4 20×10−4 28×10−4

Table 5.8. Acceleration bias instability RMSE

Figure 5.5. MEMS-accelerometer measured and Kalman filter estimated Bias instability

5.2 Test Results of Elevator vibration
In this phase, data from all sensors is presented. The main purpose this test was to
evaluate the performance between different level MEMS accelerometers and a piezolec-
tric accelerometer while measuring an elevator car vibration. Other objectives were to
understand the behavior of these sensors while performing in low frequencies motion. To
achieve this goal, a set of procedure were done as explained below:



54

• procedure: The data was acquired while the comparison platform is on the elevator
floor. The elevator was moved from floor 0 to floor 2. In the data it is included the
part when the door closes before movement and the part when the door opens after
the elevator has stopped. Before doing the analysis, the data preprocessed using
filtering tool. These methods include the removing of the static bias and applying a
moving average and high pass filters to remove measurement noises, high frequency
noises and the effect constant gravity acceleration.

• results: The plots from all sensors are studied in time and frequency domain. The
results from MEMS accelerometers are compared to piezo accelerometer.

To analyse the data, firstly the data was filtered with a 10- step moving average filter, and
secondly a high pass filter with the cut-off frequency of 2Hz to remove the slow movement
noises. Thirdly, a low pass filter with a cut-off frequency of 50Hz was used. This ensure
the analysis of frequency between 2 − 50Hz. Figure 5.6 illustrates the raw unfiltered
signal of each sensor Z- axis. In analysis only downward motion (Z- axis component) were
studied. It can be seen that MEMS-accelerometers sensors share the same shape, but
piezolectric sensor is different. This is due to the fact that MEMS- accelerometer can sens
the acceleration due to gravity that is pointing downward. It can also be seen that all
sensors produces quite much noise that can have impacts in the data analysis.More noises
are detected in sensors with high sampling rate.To reduce the effects of these noises, data
was low pass filtered using the filter described above. To illustrate the noises in the data,
signal-to-noise ratio method. This will be explained more in detail in this section.

After high pass filtering the data, the shape of MEMS- accelerometers look nearly the
same as piezolectric sensor, this can be seen in figure 5.7. It can be seen from the figures
that all sensors were able to capture the motion of elevator car. From left to right, highest
peaks appear when the elevator starts to move and when the elevator stops. The motion
of the elevator was sensed by the user notably at the peaks represented in the figure. This
could simply indicate that this elevator produce vibration detectable by the user or in
other way that this elevator in not a modern one. In the figures it can be seen that the
highest peaks that each sensor have sensed from the elevator motion is different in terms
of magnitudes.

As it was seen from the static data of the sensor, again LSM303 sensor showed not work
properly in sensing the elevator motion. This is seen in bottom right of Figure ?? the
presence noise in the acceleration data. As result, this sensor cannot be used for this
purpose and tho it was excluded from comparison in this phase. From these time domain
figures shown above, it can be seen that the peaks of MEMS- accelerometers sensors are
nearly the same in magnitude with a deviation from piezolectric sensor in the order of
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Figure 5.6. Elevator raw unfiltered data of all sensors

0.3m/s2 of acceleration. However, this does not give much information because the sensors
output the data at different rates. As there are relatively more noises in the piezolectric
sensor than in MEMS sensor as it can be seen in the figure.

Frequency domain analysis were done study the vibration characteristics of the elevator.
Firstly, the signal-to-noise (SNR) ratio of the sensor signal was studied. This was done by
utilizing available Matlab functions for spectrogram analysis. A Kaiser window function
of size equal to the length of the data and a beta parameter equal to 38 was applied.

The signal-to-noise ratio of the sensor data before and after filtering is summarized in the
table 5.9 below.

It can be seen that the noise present in the data was somewhat reduced in all sensors
except for LSM303 sensor, where the noises have increased.
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signal-to-noise ratio (SNR) (dB)
Name MTN-1100 MTI-300 LSM9DS1 MPU-9250 BNO055 LSM303DLHC

SNR before -8.6 -6.7 -7.0 -8.9 -6.6 -5.2
SNR after -6.4 -3.5 -5.7 -3.9 -4.5 -5.9

Table 5.9. Acceleration signal to noise ratio before and after filtering

Figure 5.7. Acceleration, velocity and displacement of elevator vibration

Fast Fourier Transform (FFT) and Power Spectral Density of filtered data was analyzed
in order to have more frequency clue of the elevator vibration while in motion. In figure
5.8 it is shown the FFT, PSD and SNR plots of each sensor. It can be noted that LSM303
is not well suited for comparison since it produced very noisy data. However, all other
MEMS- accelerometer show a peak at 4.6 and 48.7Hz. Looking at the piezolectric sensor
plot, it can be seen that there are the presence of other frequencies harmonics in the
data, which are clearly an from unknown noise source. For clarification, it is noticed
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(a) f

Figure 5.8. Accelerometer FFT and PSD analysis on elevator

that this study is mainly related to the sensor comparison and not focused in the overall
elevator ride quality analysis as this is an other topic. Nonetheless, in order to analyse
performance of an elevator an international standard ISO-18738-1 is available and must
be applied. This standard defines well how the elevator ride quality should be analysed
in more precise way.

5.3 Test Results of M12 Wheel Loader Vibration
The second use case studied in this thesis was vibration analysis of a wheel loader ma-
chine. The purpose of this test was to study the performance of different level MEMS-
accelerometers compared to a piezolectric sensor while measuring the vibration of a ma-
chine. For this purpose, M12 wheel loader machine of the laboratory of Hydraulics and
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Automation was utilized. Figure, 5.9 shows the comparison platform attached on the base
of M12 machine.

• procedure: While attached to the base of M12, the engine was started and left
running at idle. The speed of this engine at idle is 800 rpm as it was mentioned
before in section 4. Data was acquired from MEMS- accelerometers sensors using
rosbag record - command for 20 seconds. For piezoelectroninc sensor, data was
acquired in three steps in order to get data for all X, Y and Z−axes. To do so,
the sensor was removed from the platform and then attached in different direction
according to what direction the vibration is being measured. Data was acquired in
several sets in different days. As all data sets was showing the same results, this
report is based on one data set and not the combination. In this phase, data was
prepared in similar way as it was done for elevator case, A high pass filter was used
to filter out lower frequencies and a moving average filter was used to remove high
frequency noises.

• results: Again the performance of sensors is compared in time and frequency do-
main. The behavior of different level MEMS- accelerometer is compared to the
piezolectric accelerometer in all 3- axes in order to determine difference behavior.

Time domain signal of all sensors is plotted after removing high frequency measurement
noises with the moving average filter.

Figure 5.9. Accelerometer comparison platform attached on base of M12 wheel loader
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Figure 5.10. A 2 second time history of acceleration data for all sensors after moving
average filter

Removing measurement noise in the data is crucial especially when time domain analysis
is being done.In this study, it was seen that noises in data of vibrating machine are
significantly lower compared to the noises in elevator case. This can seen in table 5.10,
where signal-to-noise ratio of the vibrating machine is illustrated for all sensors. Again
filtering the data have reduced the SNR in all sensors except for LSM303 X-axis. Based
on the signal-to-noise ration in the table 5.10 it can be seen that Y− axis is less noisier
than X and Z− axes. This is studied more in time history data in all sensors.

Figure 5.10 shows time data of all sensors for all 3 axes. By viewing the figures, it is
not straightforward to identify the differences in the figure plot in Y− axis, except for
BNO055 sensor, which is different from others.
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signal-to-noise ratio (SNR) (dB)

sensor
MTN-1100 MTI-300 MPU-9250 LSM9DS1 BNO055 LSM303

X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z
Before -0.7 20.1 6.3 8.9 18.1 -1.5 14.0 23.9 -4.0 9.6 20.6 -0.2 4.0 4.2 -3.8 -0.6 15.8 -6.4
After 4.8 28.3 12.3 12.6 20.6 0.1 17.5 25.8 -1.2 14.8 23.4 1.7 6.5 6.7 -2.5 -1.9 20.0 -3.1

Table 5.10. Sensor signal-to-noise ratio of wheel loader before and after filtering

Further analysis was done in time domain, by analysing the vibration in terms of root
mean square and peak to peak of acceleration signal. The purpose of this study was to
give the overall vibration severity comparison for all sensors in this use case. For each
sensor, data of all axes were combined together using the root sum squared method as in
Equation 5.3 in order to account for the total vibration.

A =
√
X2 + Y 2 + Z2 (5.3)

Additionally, the standard deviation and power of vibration signal was computed for
further comparison. Table 5.11 summarizes the results of this test for acceleration data.

M12 vibration acceleration (m/s2)

name rms p2p std power
MTN-1100 3.55 5.39 1.35 12.65
MTI-300 2.98 4.92 1.17 8.91
LSM9DS1 3.35 5.33 1.26 11.23
MPU-9250 2.98 4.63 1.18 8.91
BNO055 3.50 8.72 1.67 12.29
LSM303DLHC 3.21 5.90 1.31 10.31

Table 5.11. Acceleration quantitative results

In some cases when the vibration is being analysed, the vibration in terms of velocity
and displacement tell more about the severity in of vibration. Table 5.12 summarizes the
vibration of M12 machine base in terms of velocity and displacement.

As time domain analysis does not give all information about the data, frequency domain
analysis may be more indicative especially in machine condition monitoring. For the
purpose of this study, frequency domain analysis was performed using same methodologies
as used in the elevator case. Fast Fourier Transform and power spectral density was
performed along with spectrogram for all sensor. In order to reduce ambiguity, the Fourier
transform was performed before signal filtration. Figures 5.11, 5.12 and 5.13 show the



61

M12 vibration velocity (mm/s)

Name rms p2p std power
MTN-1100 20.70 31.33 8.75 428.59
MTI-300 17.24 28.36 6.68 297.36
LSM9DS1 19.05 30.09 7.16 362.99
MPU-9250 17.09 25.23 6.38 292.19
BNO055 21.58 53.82 10.90 465.8
LSM303DLHC 18.16 30.50 6.81 329.89

M12 vibration displacement (µm)

Name rms p2p std power
MTN-1100 122.8 188.8 52.3 15080
MTI-300 103.2 190.0 41.9 10654
LSM9DS1 112.8 186.8 44.2 12746
MPU-9250 101.3 168.3 39.9 10280
BNO055 151.6 442.9 85.2 22990
LSM303DLHC 108.1 187.3 42.4 11699

Table 5.12. Velocity and Displacement quantitative results

frequency domain analysis of all sensors for all axes. FFT, PSD and a spectrogram plots
are showed. As the machine running speed was kept constant at idle, the fundamental
frequency was calculated according to Equation 4.2. In this case, a four cylinder engine
running at 800rpm will produce the fundamental frequency at (800/60)× 2 = 26.67Hz.

It can be seen from Figure 5.12 that the fundamental frequency is present with high
amplitude in FFT plot and with high energy in the PSD.

In figure 5.11 it is shown the vibration in the longitudinal axis of the engine rotation speed.
In this axis, it was noticed that there is clearly the presence of the second harmonic
in MTN-1100 used as reference sensor. Additionally, it can be seen that there is high
frequency noises present in the data. The source of this noise could be probably caused by
the acquisition system made from the picoscope. MEMS sensors showed three dominant
frequencies of the engine, except BNO055 which is driven by low and high frequency
noises from external source. Additionally,it was seen also that LSM303 sensor whose
performance was poor in the elevator case was able to track well the vibration signal. In
X-axis it can be seen that there are presence 2-order harmonics.

Figure 5.12 shows the vibration in Y-axis, which is the transversal axis to the engine
rotation direction. The frequency components present in this axis were analysed. As
results, the natural frequency component was reflected in all sensors with with high energy
in the PSD. The second harmonic was represented accordingly, but with a low energy
compared to the first harmonic. Low frequency noises were detected in BNO055 as it was
seen previously for X-axis.
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Figure 5.11. Accelerometer X- axis frequency analysis on wheel loader
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Figure 5.12. Accelerometer Y- axis frequency analysis on wheel loader



64

Figure 5.13. Accelerometer Z- axis frequency analysis on wheel loader
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5.4 Discussion on results
The application of MEMS based accelerometer sensors instead of traditional piezoelec-
tric sensors in machine condition monitoring have been a subject of concern for many
users. However, choosing the sensor that meets the requirement is not a simple task es-
pecially when sensor price is a critical aspect. Several other aspects that may influence
the choice of sensor including price are application environment, acquisition system and
sensor performance characteristics. Accelerometer characteristics such as frequency band-
width, noise density, analog-to-digital resolution, resonance frequency and temperature
dependency are mostly taken into consideration when choosing the right sensor. MEMS
based accelerometers have gained wide interest due to their functionalities that defers
from traditional piezoelectric sensors. Stochastic noise analysis of MEMS sensors may
give information that are useful when planning an building algorithm for inertial applica-
tions such as inertial navigation, when these information are not provided in the technical
data sheets. The validation of sensor noise were performed by studying the most common
stochastic noises in MEMS sensors namely: velocity random walk, bias instability and
acceleration random walk. It was seen that these noises are present in all sensors at some
levels. However, there was a clear difference of noise between different sensor axes. Other
results showed that the measured noise densities of sensors were lower than ones ones
expressed in the sensor data sheets, which is good thing for the application.

Raspberry Pi is one of the cheapest devices that can be used as Edge device due to
it’s multipurpose functionalities. This devices can give several opportunities to integrate
sensors in IoT loop when it is used as part of the acquisition system. The benefit of using
Raspberry Pi in this case is that in addition to data acquisition, some Edge analytics can
be done at same time while sensor data is being read. However, using this single board
computer have some drawbacks due to the limitation of Raspberry Pi itself. Moreover, it
must be noted that the software used have also some disadvantages that may cause the
raspberry Pi performance to be slow when several sensors are running at same time. As
results, the maximum rates at which data was read from sensor registers and published
to ROS topics were different from the output data rate mentioned in the data sheet.
Additionally, it was seen that the time interval between samples was not accurate. This
is also due to the fact that neither ROS nor raspberry Pi has real time functionalities.
To get reliable results in data analysis, all data must be resampled in order to make the
sampling time interval to be constant for all data set. As advantage, data resampling
reduces problem of aliasing. The signal to noise ratio was one of the methods used to
evaluate the noise characteristics of sensors. The results showed that the ratio of noise
is highly dependent on the quality of sensor. This is also due to the different level of
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calibration and the signal conditioning between sensors.

The performance of sensors when working in low vibration motion (elevator case) showed
good results for all sensors except for LSM303, which contained a lot of outliers in the
data. As result, this this sensor cannot be trusted in this application case. Despite
this malfunction of LSM303 sensor in low motion application, this sensor worked well in
detecting the wheel loader vibration. Among all MEMS sensors, Xsens Mti-300 showed
to work the best. According to the experiments, it was found that Bosch BNO055 was
not suitable for working with raspberry Pi due to the clock stretching issues. Due to that,
higher sampling rates could not be achieved.

The results from frequency domain analysis showed that the vibration frequencies present
in the data were restricted to the sampling rate and bandwidth characteristics of each
sensor. Moreover, it was found a slight disagreement in the signal amplitudes for all
sensors. This is due to the fact that MEMS sensors have different built-in vibration
damping factor that may affects the signal amplitudes.

The overall results from experiment in this work showed that a simple low cost vibra-
tion monitoring system can be build using a single board computer such as raspberry
Pi. Nonetheless, the choice of sensor to be utilized will depend not only on the physical
characteristics of the sensor, but also on the budget limit and application environment.
Some sensors used in this work are well suitable when using for experiment purposes in
lab environments. The applicability of these sensors in industrial environment is not pos-
sible since they do not complete the requirements and standards of this application area.
However, since in recent year there have been a large interest in MEMS sensor application
in machine condition monitoring applications, different manufacturer have offered good
solution that are suitable in industrial applications for fairly low prices. Sensor man-
ufacturers such as Analog Devices, ST Microelectronics and Bosch offers already good
solutions for MEMS accelerometers that could fit well in critical environments.
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6 CONCLUSION AND FUTURE WORK

In this thesis the applicability of MEMS- based accelerometer sensors for machine vi-
bration monitoring was studied, Additionally, the stochastic behavior of these MEMS
accelerometers was analysed. The capability of a raspberry Pi to process this sensor data
was evaluated respectively. The study was conducted firstly by analyzing the static data
from sensor output and secondly by measuring the vibration of an elevator car and a
wheel loader machine. The analysis was done by comparing several MEMS accelerome-
ter sensor output.To have more critical results, a piezoelectric based sensor was used as
reference in order to enhance the comparison process. To study the noise characteristics
of MEMS- accelerometers the combination of power spectral density and Allan variance
methods was utilized. As result it was seen that Allan Variance analysis is powerful in
analysing these stochastic noises. Allan variance plots showed that these MEMS sensors
are highly dominated by Velocity Random walk, Bias Instability and Acceleration Ran-
dom Walk. The stochastic noise modeling using the first-order Gauss-Markov process and
the Kalman filter functionalities were also tested giving positive results. Other analysis
related to sensor performance such as noise density and signal-to-noise ratio in the sensor
data was studied. The signal-to-noise ratio analysis showed that noises are more effective
in signal that contain low vibration motion compared to high vibration motion.

Vibration monitoring system based on MEMS- accelerometer sensors might be beneficial
in several applications. However, the capability of each single sensor must be analyzed
before the application. This is due to the fact that in some applications the requirement
are high, so that using the low level sensors would not an option. Nevertheless, it must
be put in mind that building a cheap acquisition system is not always a simple task,
since not all MEMS sensors that are capable to work with single board computers or
low cost acquisition system. Due to the nature and characteristics, their application
in condition monitoring systems have been a study of interest for many. However, in
industrial applications, one need to be more precise while making the choice of sensors.
In future work, a wide investigation of sensor market in industrial application point of
view could be beneficial and for the purpose of EDGE computing, all analysis will be
done on the Raspberry Pi at same time while the sensor is reading the data and then the
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analysed results could be monitored in cloud through a data base.
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A APPENDIX

A.1 Sensor datasheet specifications
Figures A.1,A.2,A.3,A.4,A.5,A.6,A.7,A.8 below illustrate the characteristics of the sensors
used in this study. Additional information related to each sensor can be found from the
manufacturer websites or in reference attached to the figures.
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Figure A.1. Mti-300 accelerometer specification [47]
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Figure A.2. MPU-9250 accelerometer specification [59]
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Figure A.3. MTN/1100 accelerometer specification[60]
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Figure A.4. LSM9DS1 accelerometer specification [48]
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Figure A.5. LSM303 accelerometer specification [48]
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Figure A.6. LSM303 accelerometer specification [48]
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Figure A.7. BNO055 accelerometer specification [58]
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Figure A.8. BNO055 accelerometer specification [58]
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A.2 Other noises present in sensor data
• Quantization Noise

The quantization noise is errors that are introduced into an analog signal by en-
coding it in digital form. It is caused by small differences between actual ampli-
tudes of the point being sampled and the bit resolution of the analog-to-digital
converter[18][10][32]

Taking the gyroscope data as an example, the angle PSD for such a process [18] is:

Sθ (f) = τ0Q
2

(︃
sin2 (πfτ0)

(πfτ0)
2

)︃
≈ τ0Q

2,∀f <
1

2τ0
,

(A.1)

where Q is the quantization noise coefficient.

Theoretically, the limit of Q is equal to S/
√
12, where S is the gyroscope scale

factor in case of test that have a fixed and uniform sampling times. The relationship
between rate PSD and the angle PSD can be obtained through the equation

SΩ (2πf) = (2πf)2 Sθ (2πf) (A.2)

which can be transformed to

SΩ (f) =
4Q2

τ0
sin2 (πfτ0)

≈ (2πf)2 τ0Q
2,∀f <

1

2τ0

(A.3)

By substituting Eq.4.12 into Eq.4.9 and performing the integration the Allan vari-
ance yields:

σ2 (τ) =
3Q2

τ 2
, (A.4)

which indicates that the quantization noise is represanted by a slope of −1 in a
log-log plot of the Allan deviation

√︁
σ2 (τ), with respect to τ as it is illustrated in

Fig.
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Figure A.9. Plot for quantization noise [18]

• Rate/Acceleration Ramp The presence of the rate ramp noise in IMU data
may indicate a very slow monotonic change of data source intensity that persist
over a long time period. However it can be caused also by very small acceleration of
the platform in the same direction and persisting over a long time period. Due to
fact[18], for a long but finite time interval, the rate ramp noise is rather deterministic
than stochastic noise. This given by:

Ω = Rt, (A.5)

where R denotes the rate/acceleration ramp coefficient. Performing the operation
on the clusters of the data that contains the input given by the equation above
fives[18]

σ2(τ) =
R2τ 2

2
, (A.6)

which indicates that rate ramp noise has a slop of +1 in the log-log plot of σ(τ)
versus τ . Figure (fig.number) shows that the magnitude of the rate ramp R can
be obtained from the slop line at τ =

√
2 This noise is associated with a rate PSD

of:
SΩ(f) =

R2

(2πf)2
. (A.7)
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Figure A.10. Rate ramp plot[18]

It should be noted that there may be a flicker acceleration noise with 1/f 2 that can
lead to the same Allan variance τ dependence [18]

• Sinusoidal Noise

This noise can be characterized in PSD as one or more distinct low frequencies
and can be seen as low motion of the platform caused by periodic environmen-
tal changes.The PSD of a single and multiple frequencies are given in Equation
(equation number) and (equation number). This later obtained by substituting the
Equation(first) in Equation4.9 and performing the integration.

SΩ(f) =
1

2
Ω2

0 [δ(f − f0) + δ(f + f0)] , (A.8)

where Ωo is the amplitude, f0, the fundamental frequency and δ(x) is the Dirac
delta function.

σ2(τ) = Ω2
0

(︃
sin2 πf0τ

πfoτ

)︃2

(A.9)

The log-log plot of the Equation above is shown if figure A.11. As it seen in the
figure, in order to identify and estimate these noises in IMU data, several peaks
must be analyzed. It also be noted the the amplitudes of consecutive peaks fall off
rapidly and may be masked by higher order peaks of other frequencies which make
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Figure A.11. Sinusoidal noise plot[18]

the observation more complex[18].

A.3 Allan deviation plot of all sensors

Figure A.12. Allan variance plot of all sensors

A.4 Code for Allan Variance calculation
The code for the overlapped Allan Variance calculation

function [ tau , adev , accur ] = over lapped_al lan_var iance ( data , Fs )
%Function to compute the overlapped allan variance of given dataset

% based on Matlab code

% Inputs
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% data: accelerometer or gyroscocope data

% fs: Sampling frequency

% outputs:

% Overlapped cluster time, allan deviation and accuracy

t0 = 1/Fs ;
theta = cumsum( data , 1)∗ t0 ;
maxNumM = 100 ;
L = s ize ( theta , 1 ) ;
maxM = 2.^ f loor ( log2 (L/ 2 ) ) ;
m = logspace ( log10 ( 1 ) , log10 (maxM) , maxNumM) . ’ ;

m = unique ( ce i l (m) ) ; % m must be an integer.Remove duplicates

tau = m∗ t0 ;

avar = zeros ( numel (m) , 1 ) ;
for i = 1 : numel (m)

mi = m( i ) ;
avar ( i , : ) = sum( . . .

( theta (1+2∗mi :L) − 2∗ theta (1+mi : L−mi) + . . .
theta ( 1 : L−2∗mi ) ) . ^2 , 1 ) ;

end

avar = avar . / (2∗ tau .^2 .∗ (L − 2∗m) ) ;
adev = sqrt ( avar ) ;
accur = 1/ sqrt (2∗ (L/maxNumM)−1);% accuracy interval

end

A.5 m12 velocity and displacement time history

A.5.1 m12 velocity time history
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Figure A.13. A 2 second time history of velocity data for all sensors after moving
average filter

A.5.2 m12 displacement time history
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Figure A.14. A 2 second time history of displacement data for all sensors after moving
average filter
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