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Abstract

Today we have different location based services available in a mobile phone or
mobile station (MS). These services include: direction finding to nearby ATMs,
locating favorite food restaurants, or finding any target destination. Similarly,
we see different applications of the positioning and navigation systems in fire-
fighting or other rescue operations. The common factor in almost all of the
location based services is the system’s ability to determine the user’s current
position, with reference to a floor plan or a navigation map. Current technolo-
gies are using sensor data measurements from one or more sensors, available
to the positioning device, for positioning and navigation. Typical examples are
radio based positioning such as global positioning system, inertial sensors based
inertial navigation system, or camera based positioning systems. Different ac-
curacy and availability conditions of the positioning and navigation solution
can be obtained depending on the positioning algorithms and the available
sensor information.

Nowadays, the focus of research in positioning and navigation has been
mostly on the use of existing hardware infrastructure and low-cost solutions,
such that the proposed technique can be deployed with ease and without extra
infrastructure requirements as well as without any expensive sensor equipment.
In this work, we investigate a novel idea for positioning using existing wireless
networks and low-cost inertial sensor measurements available at the MS. We
propose to use received baseband radio signal along with inertial sensor data,
such as accelerometer and rate gyroscope measurements, for direction of ar-
rival (DoA) estimation and positioning. The DoA information from different
base stations or access points can be used to estimate the MS position using
triangulation technique. Furthermore, due to size and cost restrictions it is
difficult to have real antenna arrays at the MS, the idea of DoA estimation and
positioning is proposed to be used with single antenna devices by using the
so-called virtual antenna arrays.

We have presented our research results in three different papers. We provide
measurement based results to perform a quantitative evaluation of DoA esti-
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vi Abstract

mation using arbitrary virtual antenna arrays in 3-D; where a state-of-the-art
high-resolution algorithm has been used for radio signal parameter estimation.
Furthermore, we provide an extended Kalman filter framework to investigate
the performance of unaided inertial navigation systems with 3-axis accelerom-
eter and 3-axis rate gyroscope measurements, from a six-degrees-of-freedom
inertial measurement unit. Using the extended Kalman filter framework, we
provide results for position estimation error standard deviation with respect
to integration time for an unaided inertial navigation system; where the effect
of different stochastic errors noise sources in the inertial sensors measurements
such as white Gaussian noise and bias instability noise is investigated. Also, we
derive a closed form expression for Cramér-Rao lower bound to investigate DoA
estimation accuracy for a far-field source using random antenna arrays in 3-D.
The Cramér-Rao lower bound is obtained using known antenna coordinates
as well as using estimated antenna coordinates, where the antenna coordinates
are estimated with an uncertainty whose standard deviation is known. Further-
more, using Monte-Carlo simulations for random antenna arrays, we provide
Cramér-Rao lower bound based performance evaluation of random 3-D antenna
arrays for DoA estimation.
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Chapter 1

Introduction

The field of positioning and navigation has been an interesting area of research
for a long time. Today there are a large number of location based services
available that require the users’ current location in order to connect them to
nearby points of interest (such as retail businesses, public facilities, or travel
destinations), to be able to advise them of current conditions (e.g. traffic and
weather), or to be able to provide routing and tracking services [1].

Depending on the user requirements, a complete navigation solution is re-
quired in applications where the user would be interested to find an optimal or
shortest route to the destination. While in some other scenarios it is enough
to determine one’s current position in a given map or in an environment to
enable any location based services. Whereas, for some other situations the
user’s tracking data might be crucial for any civil or military uses. The use
of different common terms in this thesis are mentioned in the following text
with their intended meaning. These terms might have been used for slightly
different meanings in the literature as well.

Positioning: It is the process of determining current position of a user or
a target in a given map or some reference frame, e.g., to identify the current
position of a person in a building.

Navigation: It is the process to locate a user in a map, also suggest
an optimal route for the user to reach a target position on the map, e.g., to
navigate a fire-fighter from a smoke-filled room in a building to an exit point
of the building, in a rescue operation.

Tracking: It is the process to do repeated positioning for a moving user or
target object. Tracking is most often used in conjunction with dead reckoning;
where user’s current position is calculated using previously estimated positions,
as well as, current measurements of speed and direction.
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4 Overview of the Research Field

There are two fundamental methods used in the literature for navigation
solutions, namely, position fixing and dead reckoning [2]. In position fixing,
the absolute position of the object is computed using sensor data from external
sources with known locations, e.g., global navigation satellite system (GNSS)
based positioning where external satellite signals from known locations are used
to estimate the position of the satellite receiver. Whereas in dead reckoning,
the relative position of the object is estimated based on the user’s initial posi-
tion, speed and heading information, e.g., an inertial navigation system (INS)
where accelerometers and gyroscopes are used to calculate the user’s transla-
tional motion and rotational motion respectively. A thorough description of
the subject concerning GNSS, INS, as well as their integration strategies can
be found in different text books, such as [2, 3, 4, 5].

In this thesis, we propose a novel idea of mobile station (MS) position esti-
mation for single antenna devices using direction of arrival (DoA) information
of different base station (BS) signals. We evaluate the performance of virtual
antenna arrays in terms of DoA estimation accuracy where the virtual array is
created by tracking measurements of the MS (which includes an inertial mea-
surement unit (IMU) and a receiver (Rx) antenna) in 3-D [6]. The antenna
position estimates are obtained by dead reckoning using inertial sensor mea-
surements, therefore, we investigate the performance evaluation of an unaided
inertial navigation system. Using an extended Kalman filter (EKF), we propose
a simple framework for calculating the error variance of the antenna positions
estimates [7]. Furthermore, by adjusting the noise parameters for the white
Gaussian noise and bias drift, the effect of different stochastic noise sources
present in the IMU measurements is investigated [8].

This thesis outline is as follows. An overview of different positioning tech-
niques, using radio signal measurements, is provided in section 1.1. A brief
overview of inertial navigation systems is provided in section 1.2. In section
1.3, different integrated navigation approaches are described using radio and
inertial sensor measurements. In Chapter 2, a detailed description about the
use of inertial sensors data from a low-cost Micro Electro-Mechanical Systems
(MEMS) based IMUs is provided, where the use of EKF is formulated for
the performance evaluation of an unaided inertial navigation system with six
degrees of freedom (6DoF). Chapter 3 provides necessary derivations to calcu-
late the Cramér-Rao lower bound (CRLB) for DoA estimation accuracy using
random antenna arrays in 3-D with known antenna positions. Also, a hybrid-
CRLB is derived for the random 3-D antenna arrays when the true antenna
positions are not known, but, the antenna positions are known with some a pri-
ori probability of the antenna positions about their nominal positions. Chapter
4 describes that the DoA estimates available at the MS can be directly employed
to calculate the MS position using ’triangulation’, a similar technique ’trilat-
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eration’ is used in the Global Positioning System (GPS). Finally, Chapter 5
concludes this thesis and also provides possible directions for future work.

1.1 Radio Based Positioning

Using radio signal parameters, along with GPS some other approaches have also
been proposed in the literature for positioning. The most common techniques
are based on Time of Arrival (ToA), Received Signal Strength (RSS), and
Direction of Arrival (DoA) measurements. All of these methods have their
own advantages, as well as limitations. These techniques are briefly described
below, while a more detailed discussion about these techniques can be found
in [5, 9].

GNSS Based

GPS is used for positioning and navigation by using direct line of sight (LOS)
radio signals from at least four satellites orbiting in the Earth orbit. Using
GPS, the position of the satellite receiver is determined in a global coordinate
system. Outdoors, GPS has proven to be a reliable solution with good accuracy.
However, indoors or in urban canyons, the performance of the GPS receiver
degrades as the received signal to noise and interference ratio deteriorates at the
GPS receiver due to multipath propagation and fading effects. Furthermore,
if the direct LOS signal to the GPS satellites is not available, then GPS data
might not be available for positioning and tracking. In those scenarios where
GPS signals are not available, some complementary sensor information, such
as an INS, is often used to improve the navigation system performance.

Time of Arrival (ToA) Based

In ToA based positioning methods, precise time synchronization at both the
transmitter (Tx) and receiver (Rx) clocks is required which demands the use
of very stable clocks at the MS and the BS. In practice, it is difficult to have
a high precision clock circuitry at the MS, as the device cost would then in-
crease significantly. Although, for Time Difference of Arrival (TDoA) based
positioning where difference of the different ToA measurements is used instead
of direct ToA measurements, constraints on the clock synchronization between
the MS and the BS can be relaxed. However, for better accuracy in TDoA
measurements, higher signal bandwidth is required. The requirement of large
bandwidth cannot be fulfilled in the current cellular systems and special hard-
ware infrastructure must therefore be installed for better accuracy using the
TDoA technique.
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Received Signal Strength (RSS) Based

In RSS based positioning methods, the distances between the Tx and Rx are
estimated using RSS measurements. Using three or more distance estimates
corresponding to the RSS measurements, trilateration can be applied which
gives position estimate. However, due to multipath fading (fast fading due
to multipath propagation) and shadow fading (due to obstacles between the
propagation paths), it is very hard to get reliable distance estimates using
the RSS measurements. Another approach using the RSS measurements is to
do fingerprinting. However, the use of large databases in fingerprinting based
approaches requires very high computational effort, as well as, a calibration
effort to get reliable fingerprints.

Direction of Arrival (DoA) Based

In DoA based techniques, using triangulation, DoA information of the LOS
signal from a MS to different BSs is used to determine the MS position. The
DoA information can be obtained by using an antenna array or through the
use of antenna gain pattern of the Rx antenna. Due to increased hardware
requirements in terms of multiple antenna elements and radio frequency (RF)
chains, work in this area assumes that the DoA information is available at the
BS only [10, 11, 12]. Subsequently, a central processing node which involves
mutual information exchange between different BSs is required for the MS
position estimation. Our work presented in this thesis also falls under the
category of DoA based positioning. However, the DoA estimates of different
BSs are obtained at the MS instead, where we propose to use a virtual antenna
array for DoA estimation. The idea of using virtual antenna arrays is used in
the field of wireless communication, especially for channel modeling and channel
characterization purposes. Where, the virtual array can be made using a single
antenna element and a single RF chain. In virtual antenna arrays, a single
antenna element is moved to different antenna locations whose coordinates are
known and the transmitted signal is then received at those locations, assuming
that the propagation environment remains static during the measurement time
(i.e., the time it takes to measure the transmitted signal at all the receive
antenna positions).

1.2 Inertial Navigation System

An inertial navigation system (INS) is a self contained system and comprises
of an IMU and a processing unit to process the inertial sensor measurements
[2]. A high level block diagram description of an INS is shown in Figure 1.1.
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3 Accelerometers

3 Gyroscopes

Navigation

Computer

Initial Conditions

Gravity Model

Position,

Velocity,

Attitue

IMU

Figure 1.1: A high level block diagram description of an inertial navi-
gation system.

The IMU usually has an accelerometer triad and a gyroscope triad, for 6DoF
measurements of acceleration and angular velocity in an orthogonal coordinate
system. In the navigation computer, dead reckoning is used to calculate the
user’s position and attitude estimates, where initial conditions of position and
attitude are used along with the current acceleration and angular velocity mea-
surements. To remove the gravity acceleration from the measured acceleration,
a gravity model is also needed to estimate the device’s net acceleration, i.e., the
acceleration which is caused by the actual movement of the device. Single inte-
gration of acceleration and angular velocity measurements can provide velocity
and attitude estimates. And further integration of velocity provides position
estimate. However, due to error accumulation in the position and attitude
estimates, it is important to note, that the use of INS alone is not a feasible
solution for positioning and navigation over a long period of time, especially
with low-cost MEMS based inertial sensors. A detailed description about the
use of inertial sensor measurements for an INS is given in Chapter 2.

1.3 Inertial and Radio Based Positioning

The errors in the position estimates grow over time from a stand-alone INS;
and the position estimates are reliable for a short period of time only. Whereas,
the position estimates from a satellite based navigation system (e.g., GPS) re-
lies on the direct path from the Earth orbiting satellites to obtain the position
estimates. In areas where the direct path from the satellites gets blocked due
to large buildings or other tall objects surrounding the GPS receiver, outage in
the GPS system can be observed. Furthermore, relatively slower update rate is
achieved with GPS as compared to INS, for the position estimates. Tradition-
ally, one common solution, known as GPS/INS integration, has been a popular
choice among researchers in the field of positioning and navigation due to the
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complementary features of these two techniques. Relatively slow updates of
the position estimates from a satellite based navigation system (GPS) are com-
bined with relatively fast updates of the position estimates from dead reckoning
(INS); in a loose, tight, or ultra-tight integration [2]. The position estimates
from the INS, which are relatively more accurate over short durations but drift
to large errors over longer period of time, are periodically corrected/updated
with more accurate absolute position estimates from the GPS.

We propose a novel approach to use the inertial and radio signal measure-
ments. For a short random movement in 3-D, inertial sensor measurements are
obtained along with the radio samples which are measured along the moved
trajectory. We use measured radio signal to calculate the channel impulse
response and the inertial sensor measurements provide estimated antenna ar-
ray coordinates using dead reckoning. Finally, using radio signal parameter
estimation algorithm, the DoA estimates are obtained at the MS side.

1.4 Thesis Objectives

Our thesis objective is to investigate positioning or localization solutions for
single antenna devices, such as a modern day mobile phone or MS, which also
includes a low-cost inertial measurement unit attached on to the device. In
this thesis, we have studied positioning or localization problem under the con-
text of using existing hardware infrastructure in the form of cellular network’s
base stations (BSs) or WLAN access points. Also, without using any external
sensor information except the sensor measurements from already installed in-
ertial sensors, which includes accelerometers and rate gyroscopes, and a radio
receiver to measure the radio signals in a MS. The following research questions
are addressed in the thesis to meet the above mentioned thesis objectives:

1. Using MEMS-based low-cost IMUs for the antenna array coordinates es-
timation and controlled scatterers for the different BSs, investigate mea-
surement based performance analysis of virtual 3-D antenna arrays for
DoA estimation.

2. Investigate the effect of stochastic errors noise sources, present in the
IMU measurements, on to the position estimation error in an unaided
INS for short integration times.

3. Study the effect of individual noise sources to determine the most sig-
nificant stochastic error source in the IMU measurements for antenna
position estimation using dead reckoning.
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4. Using Monte-Carlo simulations for random 3-D antenna arrays, investi-
gate the performance of random 3-D antenna arrays for DoA estimation
using CRLB.

5. Investigate the DoA estimation performance degradation for random 3-D
antenna arrays with antenna position errors where the errors are modeled
as independent and Gaussian distributed at each antenna position.

1.5 Contributions

In [6, 7, 8], we have presented our results and discussed the research questions
mentioned in section 1.4. Below is a brief summary of our contributions to the
area of positioning and localization, for single antenna devices coupled with
low-cost IMUs:

1. We perform a measurement based DoA estimation performance analysis,
using low-cost IMUs for making random virtual antenna arrays, in an
indoor environment [6]. The measurement results show that, using a high
resolution SAGE algorithm, reasonably good DoA estimation accuracy
can be achieved with random virtual antenna arrays [6].

2. We provide an EKF framework to estimate the position estimation er-
ror standard deviation for a 6DoF INS, where variance of the different
stochastic errors noise sources such as angle/velocity random walk and
bias instability noise, present in the IMU measurements, can be set to
any specific values [7].

3. By using the EKF framework we show that if simple dead reckoning is
used to estimate the antenna position coordinates, for averaging times of
about 4-6 seconds, then angle random walk is the dominant error source
in IMU measurements for a low-cost IMU [8].

4. To calculate the minimum achievable DoA estimation accuracy, we pro-
vide a closed form CRLB expression for a single far-field source [7]. Fur-
thermore, by using the CRLB and Monte-Carlo simulations, we show
that DoA estimation performance of a random 3-D antenna array im-
proves significantly with increased array length and/or with increased
signal to noise ratio [7].

5. We provide a closed form expression to calculate a hybrid-CRLB to cal-
culate the DoA estimation accuracy where the antenna array coordinates
are perturbed [7]. Furthermore, by using the hybrid-CRLB as well as
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the standard CRLB, we show that after a specific integration time of
about 3-4 seconds, the increase in the number of antenna elements does
not provide significant improvement in the DoA estimation accuracy, be-
cause the growing position estimation error standard deviation affects
more significantly on to the DoA estimation accuracy [7].



Chapter 2

Positioning Using Inertial
Measurement Units

2.1 Inertial Measurement Unit

An inertial measurement unit most often comprises of an accelerometer triad
and a gyroscope triad. The accelerometer triad provides acceleration measure-
ments a ∈ R3 along three Cartesian coordinate axes. Similarly, the gyroscope
triad measures angular velocity ω ∈ R3 with respect to the three coordinate
axes. Thus, the unit allows for a movement with 6DoF. Inertial measurement
units (IMUs) are an integral part of inertial navigation systems (INSs) and
are being used in different commercial and military applications, such as air-
craft, unmanned aerial vehicles, satellites, and guided missiles. To measure the
Earth’s magnetic field and to assist computing the IMU heading or bearing
angle, a magnetometer triad is also often installed on to the IMU platform
along with the accelerometer triad and the rate gyroscope triad [13].

Furthermore, modern day technology has allowed the development of
MEMS based IMUs which offer low weight and low-cost devices [13]. These
MEMS based IMUs are now being considered for applications requiring the use
of commercial or industry grade devices as well as where navigational grade or
military grade performance is required. A typical arrangement of components
of an IMU is shown in Figure 2.1.

11
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Platform (body)

Accelerometer Gyroscope

Figure 2.1: Arrangement of components of a strapdown inertial navi-
gation system.

2.2 Reference Frames

Below is a brief summary of the reference frames used in this thesis. Each frame
is an orthogonal, right handed coordinate frame. A more thorough description
about reference frames can be found in [2, 4].

Inertial Frame

The Inertial Frame is a frame of reference in which classical laws of physics are
in their simplest form, e.g., Newton’s law of motion can be used in this frame
assuming that all the fictitious forces (Coriolis force, centrifugal force, etc) are
zero. More specifically, an inertial frame of reference is one in which the motion
of a particle not subject to forces is in a straight line at constant speed. The
accelerometers measure linear accelerations of the moving object in the inertial
frame, while the gyroscopes measure angular velocity of the rotating object
with respect to an arbitrary navigation frame.

Body Frame

Body Frame is a reference frame that is fixed with some rigid body or a plat-
form. Figure 2.2 shows a body frame as (xb, yb, zb) that is attached to a moving
object or an IMU. The measurements from the IMU are then resolved in the
body frame or body coordinates. When the IMU rotates the body frame also
rotates with respect to a navigation frame (xn, yn, zn) as shown in Figure 2.2.

Navigation Frame

Navigation Frame is a reference frame that can be defined on or close to the
surface of earth such that its origin coincides with the origin of the inertial
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Origin

Mobile Station

(IMU+Radio)

xb

yb

zb

xn

yn

zn

yb

xb

zb Random trajectory in 3-D

Figure 2.2: MS having an IMU and a radio receiver is moved along
a random trajectory in 3-D with respect to a navigation coordinate
system. The IMU accelerometer data measured in the body coordi-
nates (xb, yb, zb) can be transformed into the navigation coordinates
(xn, yn, zn) by using a rotation matrix Rn

b ; where the rotation matrix
can be updated using IMU’s angular velocity measurements.

sensors triad in the IMU. For a right handed navigation coordinate system, the
z-axis points upward while the x-axis points towards east and the y-axis points
towards true north.

2.3 Coordinate Transformation

The measured acceleration data ab ∈ R3 is in the body frame and need to
transformed in to the navigation frame an ∈ R3 for position, velocity and
attitude estimation in the navigation coordinates. A rotation matrix Rn

b can be
used to transform vector measurements from the body frame to the navigation
frame as [4]

an = Rn
b ab, (2.1)

where the rotation matrix Rn
b can be parametrized using the Euler angles or

Quaternions as given below.
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2.3.1 Euler angles

Euler angles provide three parameter representation to describe the orientation
of a rigid body in a 3-D coordinate frame, and are typically denoted as (ψ, θ, φ),
yaw, pitch, and roll angles. The Euler angles can also be used to describe the
orientation of a reference frame with respect to another reference frame. Let’s
assume a reference frame that is considered to be fixed at some known or
initial orientation (e.g., a navigation frame) while a second reference frame is
assumed to be attached with a rigid body (e.g., a body frame). Also assuming
that both the body frame and the navigation frame are aligned at some initial
orientation, then any target orientation of the body frame, attached with a
rigid body, can be achieved by a sequence of three elemental rotations. One
possible rotation sequence, among twelve different rotation sequences, is z-y-x.
This implies that the sequence of the three elemental rotations consists of: first
rotation yaw (ψ) around the z-axis, second rotation pitch (θ) around the y-axis,
and third rotation roll (φ) around the x-axis. The combination of these three
rotation sequences will provide the moving body’s reference frame orientation,
represented as (ψ, θ, φ) yaw, pitch, and roll angles, with respect to the fixed or
navigation frame.

Furthermore, to transform the body coordinates to the navigation coordi-
nates, a rotation matrix which combines three rotation sequences described by
the Euler angles can also be used. A rotation matrix Rn

b can e.g. be defined
as a function of Euler angles (ψ, θ, φ), using a z-y-x rotation sequence, as [4]

Rn
b =

cos θ cosψ − cosφ sinψ + sinφ sin θ cosψ sinφ sinψ + cosφ sin θ cosψ
cos θ sinψ cosφ cosψ + sinφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ
− sin θ sinφ cos θ cosφ cos θ

 .
(2.2)

However, with Euler angles representation, we have singularities when the
pitch (θ) approaches ± 90◦ (north/south pole); the Euler angles can not be
then uniquely determined with elemental rotations. To avoid these singularity
problems, quaternions can be used for the attitude representation as given
below.

2.3.2 Quaternions

A quaternion q = [q0, q1, q2, q3]T is a four parameter representation to describe
attitude of rigid body with reference to a 3-D coordinate system. A quaternion
can be defined as

q =


q0

q1

q2

q3

 =


cos(ϑ/2)
ux sin(ϑ/2)
uy sin(ϑ/2)
uz sin(ϑ/2)

 , (2.3)
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where ϑ is a rotation angle (measured in radians) and u = [ux, uy, uz]
T defines

the axis of rotation. Quaternions are initialized with the rotation angle ϑ and
rotation axis u as [14]

ϑ = cos−1

(
ab · gn

‖ab‖‖gn‖

)
(2.4)

u =
ab × gn

‖ab‖‖gn‖ sinϑ
, (2.5)

where ab ∈ R3 is the static acceleration in the body frame and gn = [0, 0, 9.82]T

is the gravity acceleration in the navigation frame, measured in m/s
2
. Also, (·)

and (×) represent dot product and cross product in (2.4) and (2.5), respectively.
Quaternions can also be used for rotation matrix parametrization to transform
the body coordinates to navigation coordinates as

Rn
b(q) =

q2
0 + q2

1 − q2
2 − q2

3 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q2
0 − q2

1 + q2
2 − q2

3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 q2
0 − q2

1 − q2
2 + q2

3

 . (2.6)

More details about quaternions for attitude representation can be found in [4].

2.4 Position Estimation using Dead Reckoning

2.4.1 Orthogonal Coordinate System

To perform inertial navigation system calculations, the acceleration and angu-
lar velocity measurements must be represented with respect to an orthogonal
coordinate system. Therefore, before using the IMU for any measurements, the
IMU coordinate axes are labeled as shown in Figure 2.3, where body coordinate
system (xb, yb, zb) for a Phidget-1044 IMU is shown following a right-handed
coordinate system.

With the Phidget-1044 IMU, a LabVIEW application has been used to
observe the sign of the measured acceleration and angular velocity. For ac-
celerometer measurements, orientation of the IMU was kept unchanged while
moving the IMU along the different coordinate axes. For movements along the
x-axis, positive acceleration is observed for the forward direction movements,
and negative acceleration values were observed while moving the IMU towards
the negative x-axis. For movements along the y-axis, negative acceleration
values ware noted for the forward movements towards the positive y-axis, and
vice versa. Similarly, For movements along the z-axis, positive acceleration val-
ues were noted for the forward movement towards the positive z-axis and vice
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xb

yb

zb

ωx

ωy

ωz

Figure 2.3: A MEMS based low-cost IMU used in our experiments,
PhidgetSpatial 1044 0 [13]. It comprises of a 3-axis accelerometer triad,
a 3-axis gyroscope triad, and a 3-axis magnetometer triad; installed onto
a printed circuit board along with other components. The IMU is assem-
bled into a plastic housing (chassis), which makes the IMU body coor-
dinates referred as (xb, yb, zb) which also corresponds to a right-handed
coordinate system.
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versa. In this work, all the calculations will be based on a right-handed coor-
dinate system. Therefore, the acceleration data from the IMU measurements
is translated using a translation matrix A1 as

A1 =

1 0 0
0 −1 0
0 0 1

 . (2.7)

Similarly, positive and negative rotation directions can be observed along
each of the three sensitivity axes. A translation matrix A2 can also be defined
to translate the measured data from the rate gyroscopes. From the Phidget-
1044 gyroscope observations, the matrix A2 would translate the gyroscope data
to a right-handed coordinate system.

A2 =

−1 0 0
0 1 0
0 0 −1

 . (2.8)

Once the matrices A1 and A2 have been determined, the below equations
can then be used to translate the measured acceleration ameas ∈ R3 and angular
velocity ωmeas ∈ R3 data to an orthogonal right-handed Cartesian coordinate
system, in the accelerometer cluster ãa = [ãax, ã

a
y, ã

a
z ]T and gyroscope cluster

ωg = [ωgx, ω
g
y , ω

g
z ]T coordinates.

ãa = A1ameas, (2.9)

ωg = A2ωmeas. (2.10)

2.4.2 Deterministic Errors

The acceleration measurements from a low-cost MEMS based IMU usually have
some deterministic (fixed) errors as well. These errors include constant bias
error, scale factor error, and cross axis-misalignment error. Figure 2.4 shows
small angle errors between acceleration cluster coordinates (xa, ya, za) and the
orthogonal body coordinates (xb, yb, zb). For small misalignment errors along
the accelerometer sensitivity axes, the measured acceleration signal from the
acceleration cluster coordinates can be transformed into the orthogonal body
coordinates following the relation ab = Tb

aa
a, where the transformation matrix

Tb
a can be defined as [15, 16]

Tb
a =

 1 −αyz αzy
αxz 1 −αzx
−αxy αyx 1

 , (2.11)
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xb

ya

zb
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yb
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αxz

αyx

αzy

αzx

Figure 2.4: Acceleration coordinates (xa, ya, za) - body coordinates
(xb, yb, zb).

where αij is the rotation angle of the ith accelerometer sensitivity axis around
the jth platform (body) axis. The observed signal from an accelerometer triad
ãa ∈ R3 can be modeled as [16, 3]

ãa = Ka(Tb
a)−1ab + ba + na, (2.12)

where Ka = diag(kxa , kya , kza) is the unknown scaling of the accelerometer
triad, ba = [bxa , bya , bza ]T is constant bias error in the acceleration measure-
ment, and na ∈ R3 models a random noise vector. Similarly, the measurements
from the rate gyroscope triad ωg ∈ R3 are also affected by sensor errors, such
as, constant bias, axis misalignment, and scale factor errors.

In [16], the authors have shown that the fixed errors in the accelerometer
measurements can be estimated by taking static IMU measurements in 18 dif-
ferent orientations. A constant speed rate table can be used for the estimation
of fixed errors in the rate gyroscope measurements and the calibration data is
obtained by placing the IMU in different orientations on a three-axis rate table
and the table is rotated at a constant speed.

In our work [6], we have used the same procedure as in [16] for accelerometer
data calibration. For the gyroscope data, because of unavailability of the rate
table at our premises, fixed errors in the rate gyroscope measurements are
not estimated. We have estimated the parameters for two different sets of
measurements. The calibration parameters are found to be negligible, for the
IMU used in our experiments, as compared to the ones reported in [16]. For
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the sake of completeness, one of the estimated set of parameters are mentioned
in Table 2.1. It can be noted from calibration parameters in Table 2.1, that
the scale factor values are close to the ideal value of 1. Also, the constant bias
errors and misalignment errors are found to be very small as well; where the
ideal case would be to have these values close to zero.

Table 2.1: Estimated calibration parameters for the deterministic errors of
Phidget-1044 IMU’s accelerometer triad.

scale factor

kx ky kz
1.0025 1.0022 0.9993

cross-coupling coefficient

αyz αzy αzx
-0.0014 0.0001 0.0001

constant bias

bx by bz
0.0080 -0.0135 0.0053

A detailed study to investigate the effect of these fixed errors, if they are
left uncalibrated, on to the position estimates has not been considered for this
thesis and is left for future work. Finally, using the estimates of constant
bias offset, axis misalignment errors, and the accelerometer triad scaling, the
accelerometer data in the body coordinates of the IMU can be computed as

ab = Tb
aK
−1(ãa − ba). (2.13)

Figure 2.5 shows the accelerometer sensitivity axes and gyroscope sensitivity
axes in a right-handed coordinate system. By using the calibrated scale-factor,
bias, and cross-axis misalignment values, using (2.13), the accelerometer mea-
surements in the body coordinates ab can be obtained. In this work, since no
calibration data is available for the rate gyroscope measurements, data ωg in
orthogonal gyroscope cluster coordinates will be used directly.

2.4.3 Outlier Rejection and Low-pass Filtering

To decrease effects of high frequency noise in the IMU measurements, the mea-
surements are filtered using a low-pass filter. It has been observed in the
measurements, that when an IMU is picked up from a static position from a



20 Overview of the Research Field

Accelerometer

Gyroscope

xa

ya

za

ωx

ωy

ωz

Figure 2.5: IMU sensor measurements in orthogonal coordinate system.

table or when it is put back on the table, very sharp peaks in the accelerometer
data are present. Such a change in position of the device can be considered as
an abrupt change and results in some sort of peakiness response in the mea-
sured accelerometer data, as experienced by the IMU’s sensitivity axes. Using
in-built functions in MATLAB, a direct-form finite impulse response filter is
implemented to remove those unwanted spikes in the measured data. The sam-
pling frequency, corresponding to the IMU data rate, is set as 250 Hz. Other
parameters of the filter are set as given in Table 2.2. The same filter parameters
are used for all the three coordinate axes measurements.

Table 2.2: Filter parameters for the accelerometer measurements.

Fs (sampling frequency of the data) 250 Hz
Fp (frequency at the end of pass band) 0.5 Hz
Fst (frequency at the start of stop band) 15 Hz
Ap (amount of ripple allowed in pass band) 0.0001 dB
As (attenuation in stop band) 40 dB

Similarly, measured data from the rate gyroscope is filtered using a low pass
filter as well. The filter parameters for rate gyroscope measurements are given
in Table 2.3. The same filter parameters are used for all the three coordinate
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Figure 2.6: Design parameters of a lowpass filter in MATLAB.
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Figure 2.7: Magnitude response of the low-pass filter using filter pa-
rameters from Table 2.2.
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axes measurements as well.

Table 2.3: Filter parameters for the gyroscope measurements.

Fs (sampling frequency of the data) 250 Hz
Fp (frequency at the end of pass band) 0.5 Hz
Fst (frequency at the start of stop band) 10 Hz
Ap (amount of ripple allowed in pass band) 0.01 dB
As (attenuation in stop band) 40 dB

2.4.4 Movement Detection

The estimated position error variance grows over integration time in an unaided
inertial navigation system. In dead reckoning, to minimize the accumulated er-
ror in the position estimates, it is important to start position estimation when
the actual movement starts. While the IMU is static, the gravity acceleration
gn = [0, 0, 9.82]T m/s2 is measured by the accelerometer triad where the grav-
ity acceleration is projected onto the different coordinate axes. Ideally, the
magnitude of the measured acceleration ab = [abx, a

b
y, a

b
z]
T in the body frame,

while the IMU is held static, is given as

‖a‖ =
√
a2
x + a2

y + a2
z = 9.82 m/s

2
. (2.14)

It is important to mention that the acceleration in (2.14) is in the body coor-
dinates, however, the superscript b has been omitted for simplicity. When the
IMU is moved along some path, the measured acceleration is the sum of the the
gravity acceleration and acceleration due to the applied force. By measuring
the device’s acceleration, the movement of the IMU can then be identified. A
threshold detector can be used to detect if the magnitude of the measured ac-
celeration is greater than the gravity acceleration. However, for robust estimate
of the movement, a mean value of the acceleration magnitude is used instead,
where mean of the acceleration magnitude is computed using N consecutive
samples of the measurements as given below

ām =
1

N

N+m−1∑
k=m

‖ak‖, (2.15)

where m defines the starting index of the samples in a given window of N sam-
ples, and k is the time index of the measurements. A sliding average ām can be
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computed using the measured accelerations, for m = 1, 2, · · · . A sliding win-
dow can provide better estimate of movement detection. The proposed scheme
ensures that outlier in the acceleration data would not lead to false detection
of the movement. After each iteration, the value of ām is compared with a
threshold to check if the IMU has moved or is static. In our measurements, it
has been observed that by setting the window length as N = 50 and a threshold
value of g + 0.2, movement detection can be made with good accuracy. The
movement detection can be performed, after each iteration, as given below

ām ≥ g + 0.2, (2.16)

For some value of m, when the above mentioned threshold is detected, the
movement start index ks is determined for the position estimation with dead
reckoning. The dead reckoning can be started from at-least ks = m, assuming
that am ≥ g + 0.2. However, to ensure that no data samples are discarded
which are related to the IMU movement, the movement start index is set as
ks = m−N where N is length of the sliding window.

2.4.5 Position and Attitude Initialization and Tracking

In device tracking using inertial sensor data, firstly initial position and attitude
values are defined and then any subsequent estimates of speed and heading are
used to estimate the device’s next position after the current time step.

Position Initialization

The position of a moving object can be tracked in a navigation coordinate
system using inertial sensor measurements. If the user’s initial position is
known, it can be used as the user’s initial position for tracking initialization.
However, in this work, we assume that no initial position is given and the
initial position of the IMU is assumed to be O(0, 0, 0), the origin of a navigation
coordinate system.

Attitude Initialization

Initial attitude of the IMU can be obtained using static accelerometer mea-
surements and magnetometer measurements. The accelerometer measurements
provide initial roll and pitch angles estimates and the magnetometer measures
the Earth’s magnetic field which can provide heading or yaw angle estimate.

In this work, initial attitude of the IMU is determined by using static ac-
celerometer data only, and no magnetometer measurements are used. There-
fore, no initial heading information of the IMU is known. Quaternions are
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initialized with the rotation angle ϑ and rotation axis u as given in (2.4)-(2.5),
respectively. Furthermore, assuming that IMU remains static before the start
of the movement, an average of the static acceleration in (2.4)-(2.5) provide a
more accurate estimate of the initial attitude. The acceleration data samples
can be averaged, starting from time index k = 1 to ks = N , as shown below

abavg =
1

N

N∑
k=1

abk, (2.17)

where N is total number of acceleration data samples before the movement
starts, abk ∈ R3 represents measured acceleration in the body coordinate system
at time index k, and abavg ∈ R3 is the average value of the measured acceleration
in the body coordinate system.

Position Update

Acceleration is defined as the rate of change of velocity and velocity is defined
as the rate of change of position. Mathematically, they are defined as

v =
dp

dt
; a =

dv

dt
=

d2p

dt2
(2.18)

Conversely, by integrating the measured acceleration, velocity can be com-
puted; and by integrating the velocity, position displacement can be computed.
This can also be expressed as

v =

∫
adt; p =

∫
v dt =

∫∫
adt2. (2.19)

Assuming an object is moving with a constant acceleration a along a straight
line. Also, assuming the initial velocity v0 of the object is known, then final
velocity vt at any time t can be found as

vt =

∫ t

t=0

adt = at+ v0. (2.20)

Similarly, assuming the initial position p0 is known, then position displacement
at any time t can be computed as

pt =

∫ t

t=0

vt dt =

∫ t

t=0

(at+ v0) dt =
1

2
at2 + v0t+ p0. (2.21)

The IMU position is calculated using initial conditions of position and veloc-
ity; and current measurement of acceleration data represented in the navigation
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coordinate system. Assuming the device is at rest in the beginning, then the
initial position p0 ∈ R3 and the initial velocity v0 ∈ R3 can be initialized as
zero vectors. Also, assuming the acceleration samples ank ∈ R3 are piecewise
constant during sample time Ts, discrete time velocity vnk+1 ∈ R3 and position
pnk+1 ∈ R3 samples can then be computed as

vnk+1 = ankTs + vnk , (2.22)

pnk+1 =
1

2
ankT

2
s + vnkTs + pnk . (2.23)

Also, before the time-integration, the acceleration data need to be defined
in the navigation coordinates. Using the rotation matrix Rn

b (qk), the measured
acceleration abk in the body coordinates can be transformed to the navigation
coordinates. Further, the net acceleration due to the movement is obtained by
subtracting the gravity acceleration gnk from the transformed acceleration as

ank = Rn
b (qk) abk − gnk . (2.24)

Attitude Update

The rotation matrix Rn
b (qk) is obtained after every time step k, with the

updated quaternion parameters qk. Let q = [1, 0, 0, 0]T represents orientation
of the device, with respect to navigation coordinate system, at time t. The
time derivative of quaternion parameters can be approximated as [2, 17]

dq

dt
=

1

2
q⊗

[
0
ω

]
, (2.25)

where ⊗ represents quaternion multiplication. In the matrix multiplication
form, the time derivative in (2.25) can be evaluated as

dq

dt
=

1

2
Ω̄(ω)q =

1

2
Q̄(q)ω, (2.26)

where

Ω̄(ω) =


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −wz 0 ωx
ωz ωy −ωx 0

 (2.27)

and

Q̄(q) =


−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

 . (2.28)
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Assuming the angular velocity is piecewise constant during the sample time
Ts and by using Taylor series expansion, a closed-form expression for the quater-
nion update calculation can be found as [2, 17]

qk+1 = e
Ts
2 Ω̄(ωgk)qk. (2.29)

Furthermore, first-order approximation to the quaternion update equation
can be found as [2]

qk+1 = qk +
Ts
2

Ω̄(ωgk)qk, (2.30)

which also requires normalization of the quaternions as

q ··=
q

‖q‖
. (2.31)

The normalized quaternions are then used for updating the rotation matrix,
and after each time step the updated rotation matrix is used to transform the
measured acceleration from body coordinates to navigation coordinates. More
details about the attitude tracking can be found in [18].

2.5 Positioning and Tracking using Extended
Kalman Filter

2.5.1 IMU Data Modeling

The use of an accurate motion model to describe the target movement is very
important in target tracking applications. Different motion models have been
used in the literature to describe the movement of a target or an object. An
overview of motion models, that can be applied for target tracking, can be
found in [19]. To model motion dynamics, a model can be used which simply
models the acceleration of the moving object as a zero-mean white Gaussian
noise sequence; or another motion model can describe the acceleration process
as a random walk process.

In our proposed application, the IMU coupled radio antenna device is as-
sumed to be moving by free hand following any random trajectory. To model
the said movement, we have considered the Singer acceleration model or sim-
ply the Singer model. The Singer model is defined as a target maneuvering
model and it describes acceleration as a time correlated process [19, 20]. In the
Singer model, the acceleration process can be generated as a first-order Gauss-
Markov process, where, different values of the correlation time-constant and
driving noise process variance can be used for the different movements. Using
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the Singer model, acceleration data samples can be generated independently,
for each of the three coordinate axes, in a navigation coordinate system. For
the Singer motion model, discrete time representation of the acceleration data
samples can be defined as

ank+1 = e−αaTsank +
1− e−αaTs

αa
νak , (2.32)

where ank ∈ R3 is the acceleration data at time index k, Ts is the sample time,
and αa = 1/τa where τa is time-constant value for the acceleration data. Also,
the driving noise process νak ∈ R3 is obtained, such that νa ∼ N (0, σ2

νaI3).
Similarly, angular velocity data is generated independently for the three

coordinate axes by using the Singer model. The discrete time representation
of the angular velocity data samples can be defined as

ωk+1 = e−αωTsωk +
1− eαωTs

αω
νωk , (2.33)

where ωk ∈ R3 is the angular velocity at time index k, Ts is the sample
time, and αω = 1/τω where τω is time-constant value for the angular veloc-
ity data. Also, the driving noise process νωk ∈ R3 is obtained, such that
νω ∼ N (0, σ2

νωI3).
Furthermore, a single time-integration of the angular velocity data can pro-

vide device orientation tracking in 3-D with respect to the navigation coordinate
system. Also, double time-integration of the simulated acceleration data sam-
ples can provide random 3-D trajectories in the navigation coordinate system.
Also, in [7, 8], details about the use of different model parameters, such as τa
and σ2

νa , can be found to generate different random trajectories in 3-D.

2.5.2 Stochastic Errors

Allan Variance

Stochastic (random) errors also corrupt the inertial sensor measurements. Sev-
eral authors have reported their work describing the error characterization and
analysis of IMU data, see, e.g., [21, 22, 23, 24]. In the literature two techniques,
namely Allan variance which is a time-domain analysis, and power spectrum
decomposition which is a frequency-domain analysis, are commonly used to
identify the stochastic noise sources in the IMU data. A brief overview of
the different techniques used for stochastic error analysis can also be found in
[21, 25].

We use the Allan variance to characterize the noise sources in the IMU data.
Allan variance analysis was initially proposed to characterize the behavior of
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Figure 2.8: Sample plot for the Allan variance analysis [27].

different frequency oscillators [26]. But lately, it has been successfully applied
to inertial sensor data [21, 27]. For the sake of completeness, a brief summary
of the Allan variance analysis is given here. For the Allan variance analysis,
measured data of acceleration and angular velocity is divided into N data bins,
where each bin has data samples recorded over a period of τ seconds. An
average value of data in each bin is then computed and can be denoted as aτi
for i = 1, 2, · · · , N . Subsequently, using the set of averages [aτ1 , aτ2 , · · · , aτN ],
Allan variance corresponding to the averaging time τ is computed as

AV(τ) =
1

2(N − 1)

N−1∑
i=1

(aτi+1
− aτi)2. (2.34)

By taking square-root of the Allan variance values AV(τ), Allan deviation
values AD(τ) =

√
AV(τ) are obtained, and then plotted in a log-log plot.

Figure 2.8 shows a sample Allan deviation plot, where the different noise sources
can be identified directly from the Allan deviation plot [27]. A brief overview
of the most common stochastic errors in IMU measurements is given below.

Angle (Velocity) Random Walk

From the Allan deviation plot, a slope of -0.5 corresponds to the white Gaussian
noise or constant power spectral density noise in the measured data. For the
accelerometer data, the value of the Allan deviation plot at averaging time
τ = 1 s is termed as velocity random walk (VRW). Whereas, for the rate
gyroscope data, the value of the Allan deviation plot at averaging time τ = 1 s
is termed as angle random walk (ARW). Furthermore, the white Gaussian noise
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for the accelerometer data ea ∈ R3 and the rate gyroscope data eω ∈ R3 can
be modeled as

ea,k ∼ N (0,Σa/Ts) (2.35)

eω,k ∼ N (0,Σω/Ts), (2.36)

where Ts is the sample time, Σa = diag(σ2
ax , σ

2
ay , σ

2
az ) represents a diagonal

covariance matrix for the accelerometer additive white Gaussian noise, and
Σω = diag(σ2

ωx , σ
2
ωy , σ

2
ωz ) represents a diagonal covariance matrix for the rate

gyroscope additive white Gaussian noise. Without any loss of generality, as-
suming independent and identically distributed white Gaussian noise in all the
three coordinate axes, the noise covariance matrix for the accelerometer data
and the rate gyroscope data is then given as

Σa = σ2
aI3 (2.37)

Σω = σ2
ωI3, (2.38)

where σa and σω represent the the value of the Allan deviation plots at τ = 1 s
for the accelerometer data and the rate gyroscope data, respectively.

Bias Instability

From the Allan deviation plot, a slope of zero suggests the presence of pink noise
or 1/f noise in the measured data. The source of this noise is the electronics
or flicker noise. This is also known as bias instability (BI), where the bias is
drifting over time. The bias instability is, however, bounded by the correlation
time-constant of a first-order Gauss-Markov process. In the Allan deviation
plot, slope of the plot becomes zero at the correlation time-constant of the
Gauss-Markov process.

Similarly, assuming independent and identically distributed driving noise
processes for all the three coordinate axes, without any loss of generality, the
acceleration bias ab,k+1 ∈ R3 and angular velocity bias ωb,k+1 ∈ R3 at time
index k + 1 can be found as

ab,k+1 = e−αabTsab,k +
1− e−αabTs

αab
νab,k (2.39)

ωb,k+1 = e−αωbTsωb,k +
1− e−αωbTs

αωb
νωb,k , (2.40)

where αab = 1/τab and αωb = 1/τωb is inverse of the correlation time-constant
for the acceleration bias and angular velocity bias drift processes, respectively.
Further, νab,k ∈ R3 and νωb,k ∈ R3 represent the driving noise vectors for
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the acceleration bias drift and angular velocity bias drift, at time index k,
respectively; and are given as

νab,k ∼ N (0, σ2
νab

I3) (2.41)

νωb,k ∼ N (0, σ2
νωb

I3), (2.42)

Also, by letting ad1 = e−αabTs , ad2 = (1 − e−αabTs)/αab from (2.39), and
ωd1 = e−αωbTs , ωd2 = (1 − e−αωbTs)/αωb from (2.40): the variances σ2

νab
and

σ2
νωb

can be found as

σ2
νab

=
1− a2

d1

a2
d2

σ2
aBI (2.43)

σ2
νωb

=
1− ω2

d1

ω2
d2

σ2
ωBI , (2.44)

The values of σaBI and σωBI can be obtained using the Allan deviation plots
of accelerometer and rate gyroscope data, respectively, as

σaBI =
σ(τ)

0.664

∣∣∣∣
(τ=τab )

(2.45)

σωBI =
σ(τ)

0.664

∣∣∣∣
(τ=τωb )

. (2.46)

Rate Random Walk

In the Allan deviation plot, a slope of +0.5 is present for relatively longer aver-
aging times which represents brown noise or noise with 1/f2 power spectrum.
This noise process can be modeled as a random walk process. For the stochas-
tic errors in the accelerometer and rate gyroscope data, a random walk process
can be defined as

ar,k+1 = ar,k + νar,k (2.47)

ωr,k+1 = ωr,k + νωr,k , (2.48)

where the variance of the driving noise processes νar,k and νωr,k can be de-
termined by using Allan deviation plots. Since the random walk process is
not bounded in time, so the presence of this noise source becomes very critical
in unaided inertial navigation systems performance. The effect of this type of
noise source is more significant for relatively long averaging times, and its effect
can be neglected for short averaging times.
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Figure 2.9: Allan deviation plot using measured accelerometer data
with Phidget-1044 IMU.

Measured Allan Deviation Plots

In this work, Allan variance analysis is used to identify the stochastic errors
present in the IMU measurements [7]. Static IMU data is recorded over a period
of 8 hours to compute the Allan variance values. An example of Allan deviation
plots using the static accelerometer data are shown in Figure 2.9. Similarly, for
the rate gyroscope data, examples of Allan deviation plots are shown in Figure
2.10. Using the Allan deviation plot for the x-axis accelerometer data, we can
identify that for short averaging times the slope of the curve is close to -0.5 and
the slope becomes 0 at around τ = 115 s, as shown in Figure 2.11. Similarly,
for the x-axis rate gyroscope data, we can observe similar results as shown in
Figure 2.11. Furthermore, the noise parameters for the stochastic error sources
obtained from the Allan deviation plots are given in Table 2.4.

2.5.3 IMU Data Generation

Using the simulated angular velocity data (2.33), and the stochastic errors such
as angle random walk (2.36) and bias instability (2.40), the angular velocity
data in the gyroscope cluster coordinates is generated as

ωgk = ωk + ωb,k + eω,k, (2.49)
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Figure 2.10: Allan deviation plot using measured rate gyroscope data
with Phidget-1044 IMU.

Table 2.4: Noise Parameters for the stochastic noise sources present in the
inertial sensor data. Noise parameters are obtained from static IMU data
measurements as shown in Figure 2.11.

Accelerometer

Velocity Random Walk 5.86×10−4 m/s/
√

s
Bias Instability 2.85×10−4 m/s2 (at 115 s)

Gyroscope

Angle Random Walk 1.63×10−2 deg /
√

s
Bias Instability 7.5×10−3 deg /s (at 115 s)
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Figure 2.11: Allan deviation plots of the x-axis accelerometer and x-
axis rate gyroscope data. A green line is plotted with a slope = -0.5 on
top of the Allan deviation plots, where the line’s y-intercept is located
at τ = 1 s. Also, at the minimum value of the Allan deviation plots,
another green line is plotted with a slope = 0. From the plots it can be
observed that the Allan deviation plots have a slope of approximately
-0.5 for short averaging times and the slope then becomes close to 0; and
finally the slope becomes positive for relatively long averaging times.
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By using the angular velocity data ωgk, the quaternion parameters qk can be
computed using (2.29) as well as the rotation matrix Rn

b (q) as shown in (2.6).
Finally, using the simulated accelerometer data in (2.32), and the stochastic
errors such as velocity random walk in (2.35) and bias instability in (2.39), the
accelerometer data in the body coordinates is generated as

abk = [Rn
b (qk)]

T
(ank + gn) + ab,k + ea,k, (2.50)

where [Rn
b (qk)]

T
is transpose of the rotation matrix, and gn = [0, 0, 9.82]T is

the gravity acceleration in the navigation coordinate system and is measured
in m/s

2
. The generated IMU data in (2.49)-(2.50) is used in the EKF frame-

work to determine the position estimation performance of an unaided inertial
navigation system.

2.5.4 Extended Kalman Filter

A Kalman filter can be used to estimate state parameters by minimizing the
mean squared error recursively, where a weighted average is used to update the
parameter’s estimates with new observations. The Kalman filter was proposed
in 1960 [28] and since then it has been a very popular choice for researchers
in state space based parameter estimation. The standard form of the Kalman
filter can be used to estimate the system parameters of a linear system where
the process noise and measurement noise are assumed to be Gaussian. Whereas,
for a nonlinear system where the system dynamics or measurement equation is
nonlinear, the state parameters can be estimated using an extended Kalman
filter (EKF) [29, 30]. A nonlinear discrete-time system can be described as

xk+1 = f(xk,uk,νk) (2.51)

yk = h(xk, ek), (2.52)

where xk and yk represent the state vector and measurement vector respectively
at time index k. f(xk,uk,νk) models the state dynamics and h(xk, ek) relates
the state parameters with the observations. νk is the process noise, ek is the
measurement noise, and uk is the control input defined at the time index k.

The filter operations can be performed iteratively after each time step. The
different filter operations can be categorized into two main steps, the measure-
ment update and the time update. A brief summary of the filter operations in
these two steps can be described as [30]

Measurement Update:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)−1 (2.53)

x̂k|k = x̂k|k−1 + Kk(yk − h(x̂k|k−1, 0)) (2.54)

Pk|k = (I−KkHk)Pk|k−1 (2.55)
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Time Update:

x̂k+1|k = f(x̂k|k,uk, 0) (2.56)

Pk+1|k = FkPk|kF
T
k + GkQkG

T
k , (2.57)

where Kk is the filter gain, Rk is the measurement noise covariance, and Qk is
the process noise covariance, at time index k. The initial states of the filter can
be configured as x̂1|0 = E(x0) and P1|0 = Cov(x0); where E(x0) is expected
value of the state vector, and is used to initialize the state vector estimate
at time index k = 1, when no measurements are available. Also, Cov(x0) is
covariance matrix of the state vector, and is used to initialize uncertainty in
the state vector estimate at time index k = 1. The other parameters Fk, Gk,
and Hk are Jacobians and can be computed as follows

Fk =
∂f(xk,uk,νk)

∂xk

∣∣∣∣
(x̂k|k,uk,0)

(2.58)

Gk =
∂f(xk,uk,νk)

∂νk

∣∣∣∣
(x̂k|k,uk,0)

(2.59)

Hk =
∂h(xk, ek)

∂xk

∣∣∣∣
(x̂k|k−1,0)

. (2.60)

2.5.5 State Dynamics

Using inertial sensor measurements to estimate the position, velocity, and at-
titude of the moving IMU, a state vector x = [p,v,a,ab,q,ωb]

T is defined.
The state vector comprises of position, velocity, acceleration, acceleration bias,
quaternion, and angular velocity bias states respectively, defined in the nav-
igation frame. Firstly, state dynamics for the different state parameters are
determined to compute the time update operation in the EKF.

Position, Velocity, and Acceleration States

In this work, as shown in (2.32), the Singer model is used to model the acceler-
ation process where an uncontrolled input νak drives the acceleration process
ak. Further, by using the acceleration process data in (2.22)-(2.23), estimated
position and velocity data at time index k+ 1 along with the acceleration data
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are obtained as shown below.

ak+1 = e−αaTsak +
1− e−αaTs

αa
νak (2.61)

vk+1 = vk +
1− e−αaTs

αa
ak +

αTs − 1 + e−αTs

α2
νak (2.62)

pk+1 = pk + vkTs +
αaTs − 1 + e−αaTs

α2
a

ak +

1− αaTs + (αaTs)
2/2− e−αaTs

α3
a

νak . (2.63)

Quaternion States

Similarly, quaternion parameters can also be estimated at time index k + 1 as
shown in (2.64). However, the angular velocity data ωg might be corrupted
by stochastic errors as shown in in (2.49). Assuming angle random walk and
bias instability errors in the rate gyroscope data, the quaternion update can
be computed as [7]

qk+1 = e
Ts
2 Ω̄(ωgk)qk −

Ts
2

Q̄(qk)ωb,k −
Ts
2

Q̄(qk)νω,k. (2.64)

Also note that, in the EKF framework, by using the measured angular
velocity ωg as a controlled input in the system model, the white Gaussian
noise eω,k in the angular velocity measurements is then used as an uncontrolled
process noise input νω,k, that is, νω,k = eω,k.

Acceleration and Angular Velocity Bias States

The state dynamics for the acceleration and angular velocity bias states are
used as given in (2.39)-(2.40).

State Update

Finally, using the state dynamics as defined in (2.61)-(2.64) and (2.39)-(2.40),
the time update of unaided inertial navigation system is computed. The time
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update for the EKF can be described as
p̂k+1|k
v̂k+1|k
âk+1|k
âb,k+1|k
q̂k+1|k
ω̂b,k+1|k

 =



I3 TsI3
αTs−1+e−αTs

α2
a

I3 0 0 0

0 I3
1−e−αaTs

αa
I3 0 0 0

0 0 e−αaTsI3 0 0 0
0 0 0 e−αabTsI3 0 0

0 0 0 0 e
Ts
2

Ω̄(ω
g
k

) −Ts
2
Q̄(q̂k|k)

0 0 0 0 0 e−αωbTsI3




p̂k|k
v̂k|k
âk|k
âb,k|k
q̂k|k
ω̂b,k|k

 .

(2.65)

In the time update step, estimation error covariance matrix P is updated as
well along with the state parameters. To calculate the matrix Pk+1|k, process
noise covariance matrix Qk is calculated as shown below

Qk =


σ2
νaI3 0 0 0
0 σ2

νab
I3 0 0

0 0 σ2
νωI3 0

0 0 0 σ2
νωb

I3

 , (2.66)

where σ2
νa , σ

2
νab
, σ2
νω , and σ2

νωb
represent variance of the noise process that

drives the acceleration data, variance of the noise process that drives the accel-
eration bias drift, variance of the white Gaussian noise in the angular velocity
measurements, and variance of the noise process that drives the angular veloc-
ity bias drift, respectively. Further, using the state dynamics in (2.61)-(2.64)
and (2.39)-(2.40), the scaling matrix Gk that translates effect of the process
noise on to the parameter estimates is given as

Gk =



1−αaTs+(αaTs)2/2−e−αaTs
α3
a

I3 0 0 0
αaTs−1+e−αaTs

α2
a

I3 0 0 0
1−e−αaTs

αa
I3 0 0 0

0 1−e−αabTs
αab

I3 0 0

0 0 −Ts
2
Q̄(q̂k|k) 0

0 0 0 1−e−αωbTs
αωb

I3


.

(2.67)
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Also, the state transition matrix Fk is found as

Fk =



I3 TsI3
αaTs−1+e−αaTs

α2
a

I3 0 0 0

0 I3
1−e−αaTs

αa
I3 0 0 0

0 0 e−αaTsI3 0 0 0
0 0 0 e−αabTsI3 0 0

0 0 0 0 e
Ts
2

Ω̄(ω
g
k

) −Ts
2
Q̄(q̂k|k)

0 0 0 0 0 e−αωbTsI3


.

(2.68)

2.5.6 Measurement Equation

The measurement data vector yk ∈ R3 contains accelerometer measurements,
in the body frame, at time index k. The measurement function h(xk, ek) relates
the state vector parameters with the measurement data vector as shown below

yk = (Rn
b (qk))

T
(ak + gn) + ab,k + ea,k, (2.69)

where ak ∈ R3 is the movement based acceleration in the navigation frame,
gn ∈ R3 is gravity acceleration in the navigation frame, ab,k ∈ R3 repre-
sents the bias drift in the accelerometer measurements in the body frame, and
ea,k ∈ R3 is the additive noise in the accelerometer measurements in the body

frame, at time index k. The rotation matrix (Rn
b (qk))

T
, parametrized with

the quaternions qk, transforms acceleration from the navigation frame to the
body frame, at time index k.

The measurement noise is modeled such that ea ∼ N (0, diag(σ2
ax , σ

2
ay , σ

2
az )),

where, σ2
ax , σ

2
ay , and σ2

az represent additive white Gaussian noise variance in
the accelerometer measurements for the xyz-coordinate axes. Also note that,
as described in Section 2.5.2, variance of the white Gaussian noise in the
accelerometer measurements can be estimated from the Allan deviation plot.
Furthermore, without any loss of generality, assuming similar additive white
Gaussian noise variance σ2

a for each of the three coordinate axes, the measure-
ment noise covariance matrix can be set as Rk = σ2

aI3.
The measurement residual yk − h(x̂k|k−1, 0) is computed by calculating

the difference between the measured data yk and the predicted measurement
h(x̂k|k−1, 0), where the latter can be obtained using (2.69) as
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h(x̂k|k−1, 0) = (Rn
b (q̂k|k−1))

T
gn +

(
03 03 (Rn

b (q̂k|k−1))
T

I3 03×4 03

)


p̂k|k−1

v̂k|k−1

âk|k−1

âb,k|k−1

q̂k|k−1

ω̂b,k|k−1

 .

(2.70)

Similarly, using the measurement function described in (2.69), the matrix
Hk can be computed as

Hk =
(
03 03 (Rn

b (q̂k|k−1))T I3 R′(âk|k−1, q̂k|k−1,g
n) 03

)
, (2.71)

where

R′(âk|k−1, q̂k|k−1,g
n) ,

∂h(xk, 0)

∂q

∣∣∣∣
(x̂k|k−1,0)

. (2.72)

The matrix R′(âk|k−1, q̂k|k−1,g
n) is computed as

R′(âk|k−1, q̂k|k−1,g
n) = 2

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

 , (2.73)

where the different matrix elements are found as

r11 = q̂0(âx + gnx ) + q̂3(ây + gny )− q̂2(âz + gnz ) (2.74)

r12 = q̂1(âx + gnx ) + q̂2(ây + gny ) + q̂3(âz + gnz ) (2.75)

r13 = −q̂2(âx + gnx ) + q̂1(ây + gny )− q̂0(âz + gnz ) (2.76)

r14 = −q̂3(âx + gnx ) + q̂0(ây + gny ) + q̂1(âz + gnz ) (2.77)

r21 = −q̂3(âx + gnx ) + q̂0(ây + gny ) + q̂1(âz + gnz ) (2.78)

r22 = q̂2(âx + gnx )− q̂1(ây + gny ) + q̂0(âz + gnz ) (2.79)

r23 = q̂1(âx + gnx ) + q̂2(ây + gny ) + q̂3(âz + gnz ) (2.80)

r24 = −q̂0(âx + gnx )− q̂3(ây + gny ) + q̂2(âz + gnz ) (2.81)

r31 = q̂2(âx + gnx )− q̂1(ây + gny ) + q̂0(âz + gnz ) (2.82)

r32 = q̂3(âx + gnx )− q̂0(ây + gny )− q̂1(âz + gnz ) (2.83)

r33 = q̂0(âx + gnx ) + q̂3(ây + gny )− q̂2(âz + gnz ) (2.84)

r34 = q̂1(âx + gnx ) + q̂2(ây + gny ) + q̂3(âz + gnz ). (2.85)
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The subscript (̂·)k|k−1 with acceleration and quaternion parameters estimates
have been omitted for simplicity, i.e., âk|k−1 = [âx, ây, âz]

T and q̂k|k−1 =
[q̂0, q̂1, q̂2, q̂3]T .



Chapter 3

Direction Of Arrival
Estimation

Sensor array signal processing has been an active area of research for many
years [31]. Estimation of signal parameters by using an array of sensors has
enabled many applications in the field of mobile communications, radar, sonar,
astronomy, seismology, and medical imaging. Antenna arrays at Rx can be
employed for received radio signal parameter estimation, e.g., DoA, time delay,
Doppler shift, and complex signal amplitude [32]. Using the estimated values
of the DoA and other signal parameters, the LOS path and other reflected
paths for the received radio signal can be identified for radio channel modeling
and characterization purposes. Accurate channel models are used to improve
the network capacity, to increase the mobile user data rates, and to increase
the overall Quality-of-Service for the mobile users in a wireless communication
network [33]. Furthermore, DoA estimates can also be used for MS position
estimation in a wireless communication network, see [12] for a review of the
different techniques for MS positioning. For a straightforward solution, DoA
information from at least two LOS base stations is required to estimate the
MS position in 2-D, and three base stations can provide the position in 3-D
[10, 11, 34].

In order to have the DoA measurements at the Rx side, the need for extra
hardware in terms of antenna elements and RF chains demands a complex as
well as a costly solution for positioning. Our focus in this work is to estimate
the DoA at the MS side by employing a virtual antenna array. A virtual an-
tenna array can be made by moving the antenna element to different positions
along with measuring the received radio signal at those locations, assuming

41
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that the propagation environment remains static during the whole measure-
ment time [33]. The antenna locations are usually controlled with the help of
a controller to have precise movements, because, the antenna position coordi-
nates will be used to compute the array response vector or the array steering
vector. We propose that the Rx antenna could be coupled with an IMU, such
a setup is commonly available in modern day’s cell phones. A virtual antenna
array could then be realized, where the antenna positions will be tracked us-
ing inertial sensors of the IMU. Consequently, an appropriate array processing
at the Rx can provide the DoA estimates of the incoming radio signals. We
have provided measurement results in an indoor environment, where three Tx
antennas and one Rx antenna attached with an IMU are used, to investigate
the DoA estimation errors with virtual 3-D antenna arrays [6]. Furthermore,
in [7, 8], a CRLB is used to investigate the DOA estimation performance of
random 3-D antenna arrays.

3.1 Cramér-Rao Lower Bound

The CRLB provides a lower bound on the achievable estimation error accuracy
of an unbiased estimator, provided that such an estimator exists [35]. The
CRLB can be used to evaluate the performance of any unbiased estimator in
terms of its mean square error (MSE) performance. The closer the MSE for any
unbiased estimator is to the CRLB, the better the estimator is and vice versa.
Furthermore, a classical or standard CRLB can be derived for deterministic
unknown parameters and a stochastic or Bayesian-CRLB can be derived for
random unknown parameters [36]. Similarly, if the unknown parameters are
both deterministic and random, then a hybrid-CRLB can be derived for the
joint processing of the unknown parameters [36, 37].

In the literature [38, 39], a CRLB is derived and different DoA estimators
are proposed for the problem of source signal parameter estimation, where the
superimposed signal of multiple narrowband far-field sources is received at an
antenna array. In this work, in Section 3.1.1, we provide a closed form expres-
sion to compute the CRLB for a random 3-D antenna array to estimate the
2-D DoA(φ, θ) of an incoming radio signal, where φ is the azimuth and θ is the
elevation as shown in Figure 3.1. A narrowband radio signal from a far-field
source is received at an antenna array of N isotropic antenna elements. The
derived expression for the CRLB can be used for any fixed source location to
determine the 2-D DoA(φ, θ) estimation performance. Using Monte-Carlo sim-
ulations, where each simulation creates a random array in 3-D, we investigate
the performance statistics of random 3-D antenna arrays for 2-D DoA(φ, θ)
estimation.
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Figure 3.1: Received radio signal direction vector projected on X-, Y-,
and Z-axis.

3.1.1 Arbitrary 3-D Antenna Arrays

We are using virtual antenna arrays where the IMU data is used to estimate
the antenna position coordinates in 3-D. The IMU and the receive antenna
can be moved freely to have a random trajectory, therefore, it is of interest
to study the performance of arbitrary or random 3-D antenna arrays for DoA
estimation. For the analysis, we use a simplified scenario where only a single
plane wave source is considered.

Signal Model

The signal model used in the derivation of the CRLB for DoA estimation is
given as

yr = αrs(φ, θ) + er, (3.1)

where yr ∈ CN×1 is the received signal vector, αr=ae
jb is the complex ampli-

tude of the received radio signal (where a is the amplitude and b is the phase),
er ∈ CN×1 is the additive complex Gaussian noise having covariance matrix
Rr=σ2

rIN , and s(φ, θ) ∈ CN×1 is the array response vector and is given by

s(φ, θ) = ejk0(x cos(φ) sin(θ)+y sin(φ) sin(θ)+z cos(θ)), (3.2)

where k0 = 2π
λ and λ is the wavelength of the radio signal. The above expres-

sions (3.1)-(3.2) show that the received signal amplitude is assumed constant
while its phase varies with the change in antenna position coordinates repre-
sented as (x, y, z). We have considered that all of the signal parameters are
unknown, i.e., the signal amplitude a, its phase b, DoA in azimuth φ, and DoA
in elevation θ. Having N i.i.d samples of the complex radio signal measured,
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the probability density function (pdf) of the received signal can be described
as [40]

p(yr; Θ) =
1

πNdet(Rr)
e−[yr−αrs(φ,θ)]HR−1

r [yr−αrs(φ,θ)], (3.3)

where Θ is a vector of unknown signal parameters and is defined as

Θ = [Θ1,Θ2,Θ3,Θ4]T = [a, b, φ, θ]T . (3.4)

The variance of an unbiased estimator for each element in Θ is bounded by
[35]

var(Θi) ≥ [I−1(Θ)]ii, (3.5)

where i = 1, 2, 3, 4 and I(Θ) is the Fisher information matrix and is given by

I(Θ) =
−E

[
∂2 ln p(yr ;Θ)

∂a2

]
−E

[
∂2 ln p(yr ;Θ)

∂a∂b

]
−E

[
∂2 ln p(yr ;Θ)

∂a∂φ

]
−E

[
∂2 ln p(yr ;Θ)

∂a∂θ

]
−E

[
∂2 ln p(yr ;Θ)

∂b∂a

]
−E

[
∂2 ln p(yr ;Θ)

∂b2

]
−E

[
∂2 ln p(yr ;Θ)

∂b∂φ

]
−E

[
∂2 ln p(yr ;Θ)

∂b∂θ

]
−E

[
∂2 ln p(yr ;Θ)

∂φ∂a

]
−E

[
∂2 ln p(yr ;Θ)

∂φ∂b

]
−E

[
∂2 ln p(yr ;Θ)

∂φ2

]
−E

[
∂2 ln p(yr ;Θ)

∂φ∂θ

]
−E

[
∂2 ln p(yr ;Θ)

∂θ∂a

]
−E

[
∂2 ln p(yr ;Θ)

∂θ∂b

]
−E

[
∂2 ln p(yr ;Θ)

∂θ∂φ

]
−E

[
∂2 ln p(yr ;Θ)

∂θ2

]

 .

(3.6)

The Fisher information matrix elements can be determined using natural
logarithm of the likelihood function of the observations as

ln p(yr; Θ) = −N lnπ− ln det(Rr)−
1

σ2
r

[yr−αrs(φ, θ)]H [yr−αrs(φ, θ)]. (3.7)

By computing the derivatives with respect to the unknown parameters

∂ ln p(yr; Θ)

∂a
=

1

σ2
r

[ejbyHr s(φ, θ) + e−jbsH(φ, θ)yr − 2asH(φ, θ)s(φ, θ)] (3.8)

∂2 ln p(yr; Θ)

∂a2
=

2

σ2
r

sH(φ, θ)s(φ, θ) (3.9)

∂2 ln p(yr; Θ)

∂a∂b
=

1

σ2
r

[jejbyHr s(φ, θ)− je−jbsH(φ, θ)yr] (3.10)

∂2 ln p(yr; Θ)

∂a∂φ
=

1

σ2
r

[ejbyHr s′φ(φ, θ) + e−jb[s′φ(φ, θ)]Hyr

−2a[s′φ(φ, θ)]Hs(φ, θ)− 2asH(φ, θ)s′φ(φ, θ)] (3.11)

∂2 ln p(yr; Θ)

∂a∂θ
=

1

σ2
r

[ejbyHr s′θ(φ, θ) + e−jb[s′θ(φ, θ)]
Hyr

−2a[s′θ(φ, θ)]
Hs(φ, θ)− 2asH(φ, θ)s′θ(φ, θ)], (3.12)
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where

s′φ(φ, θ) ,
∂s(φ, θ)

∂φ
(3.13)

s′θ(φ, θ) ,
∂s(φ, θ)

∂θ
. (3.14)

By taking negative expectation with respect to the observations, the elements
of the Fisher information matrix can be found as

−E
[
∂2 ln p(yr; Θ)

∂a2

]
=

2N

σ2
r

(3.15)

−E
[
∂2 ln p(yr; Θ)

∂a∂b

]
= 0 (3.16)

−E
[
∂2 ln p(yr; Θ)

∂a∂φ

]
= 0 (3.17)

−E
[
∂2 ln p(yr; Θ)

∂a∂θ

]
= 0. (3.18)

Similarly other elements of the Fisher information matrix can be found and
(3.6) can be written as

I(Θ) =



2N
σ2
r

0 0 0

0 2Na2

σ2
r

− 2a2k0
σ2
r

N∑
n=1

An
2a2k0
σ2
r

N∑
n=1

Bn

0 − 2a2k0
σ2
r

N∑
n=1

An
2a2k20
σ2
r

N∑
n=1

A2
n − 2a2k20

σ2
r

N∑
n=1

AnBn

0 2a2k0
σ2
r

N∑
n=1

Bn − 2a2k20
σ2
r

N∑
n=1

AnBn
2a2k20
σ2
r

N∑
n=1

B2
n


, (3.19)

where

An = xn sin(φ) sin(θ)− yn cos(φ) sin(θ), (3.20)

Bn = xn cos(φ) cos(θ) + yn sin(φ) cos(θ)− zn sin(θ). (3.21)

The matrix I(Θ) is evaluated at the true values of Θ, and the diagonal
values of the inverse of the Fisher information matrix provides the lower bound
on the estimation error variance for each element in Θ as defined in (3.5).

To investigate the effect of random array shapes on the DoA estimation ac-
curacy, performance statistics of arbitrary 3-D antenna arrays can be obtained
using the CRLB, where Monte-Carlo simulations can be used to generate ran-
dom 3-D antenna arrays and the CRLB values are obtained for different source
locations in 2-D DoA (φ, θ).
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3.1.2 Optimal Array Length

One of the fundamental limitation with the approach of making virtual antenna
arrays using IMU measurements is the growing position estimation error. In
unaided inertial navigation systems, having no other sensor information, the
position coordinates will have growing estimation errors; the standard devia-
tion of the estimation error values can be obtained utilizing a Kalman filter
framework as discussed in Section 2.5. The estimation error covariance matrix
in the EKF is useful to analyze the effect of different IMU sensor noise pa-
rameters on the growing standard deviation of the position estimation error.
Also, a suitable time to make virtual antenna arrays can be determined utiliz-
ing the position estimation error standard deviation values. Furthermore, as
described in Section 3.1.1, the matrix I(Θ) in (3.19) can be used to calculate
the CRLB for deterministic unknown radio signal parameters, where the true
antenna position coordinates are given. However, if the antenna position co-
ordinates are estimated with an estimation error associated with each antenna
position, e.g., assume the true antenna position coordinates are (xn, yn, zn) for
the nth antenna location, but the estimated antenna position coordinates are
(xn + ∆xn, yn + ∆yn, zn + ∆zn). In this case, because some parameters in the
signal model are known with a priori probability, a CRLB would be required
by using the pdf of the antenna position errors.

3.1.3 Hybrid-CRLB

A classical or standard CRLB is used to calculate the minimum variance achiev-
able with an unbiased estimator for deterministic unknown parameters. For
random unknown parameters, the lower bound on the estimation error vari-
ance can be found using a Bayesian approach and is often referred to as the
Bayesian-CRLB. The Bayesian-CRLB illustrates the minimum variance of the
estimation error that can be achieved on the average using a minimum mean
square error estimator. If the parameter set includes both random and deter-
ministic unknown parameters, then the lower bound on the estimation error
variance is defined as a hybrid-CRLB. More detailed descriptions can be found
in [36, 37] about the use of different CRLBs. In our work, we also have both
deterministic and random unknown parameters, the set of unknown parameters
Θ is given as

Θ = [a, b, φ, θ,︸ ︷︷ ︸
Θdet

∆x1,∆y1,∆z1, · · · ,∆xN ,∆yN ,∆zN︸ ︷︷ ︸
Θrandom

]T . (3.22)

The deterministic part of the parameter set Θdet consists of unknown radio
signal parameters. While Θrandom consists of unknown parameters modeling
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random position errors in the estimated antenna positions. Therefore, a lower
bound on the estimation error variance can be found as a hybrid-CRLB, where
prior information about the random unknown parameters is known. The Fisher
information matrix for the hybrid-CRLB is given as [36]

I(Θ)ij = I1(Θ)ij + I2(Θ)ij , (3.23)

where

I1(Θ)ij = −Eyr,Θ

[
∂2 ln p(yr; Θ)

∂Θi∂Θj

]
(3.24)

I2(Θ)ij = −EΘ

[
∂2 ln p(Θ)

∂Θi∂Θj

]
. (3.25)

The diagonal elements of matrix I1(Θ) can be determined as

−Eyr,Θ

[
∂2 ln p(yr; Θ)

∂a2

]
= EΘ

[
2N

σ2
r

]
(3.26)

−Eyr,Θ

[
∂2 ln p(yr; Θ)

∂b2

]
= EΘ

[
2Na2

σ2
r

]
(3.27)

−Eyr,Θ

[
∂2 ln p(yr; Θ)

∂φ2

]
= EΘ

[
2a2k2

0

σ2
r

N∑
n=1

A2
n

]
(3.28)

−Eyr,Θ

[
∂2 ln p(yr; Θ)

∂θ2

]
= EΘ

[
2a2k2

0

σ2
r

N∑
n=1

B2
n

]
, (3.29)

where

An = (xn + ∆xn) sin(φ) sin(θ)− (yn + ∆yn) cos(φ) sin(θ) (3.30)

Bn = (xn + ∆xn) cos(φ) cos(θ) + (yn + ∆yn) sin(φ) cos(θ)

−(zn + ∆zn) sin(θ). (3.31)

The expectation with respect to the prior pdf p(Θ) of the unknown parameters
can be computed as

EΘ

[
2N

σ2
r

]
=

2N

σ2
r

(3.32)

EΘ

[
2Na2

σ2
r

]
=

2Na2

σ2
r

(3.33)
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EΘ

[
2a2k2

0

σ2
r

N∑
n=1

A2
n

]
=

2a2k2
0

σ2
r

N∑
n=1

EΘ

[
A2
n

]
(3.34)

EΘ

[
2a2k2

0

σ2
r

N∑
n=1

B2
n

]
=

2a2k2
0

σ2
r

N∑
n=1

EΘ

[
B2
n

]
, (3.35)

where

EΘ

[
A2
n

]
=

∫
A2
n p(Θ)dΘ (3.36)

EΘ

[
B2
n

]
=

∫
B2
n p(Θ)dΘ. (3.37)

The prior pdf of the unknown parameters can be defined as

p(Θ) = p(∆x1,∆y1,∆z1, · · · ,∆xN ,∆yN ,∆zN ). (3.38)

Assuming that the antenna position errors are independent and zero-mean
Gaussian distributed, then the joint pdf p(Θ) and antenna position error co-
variance matrix Σ can be defined as

p(Θ) = p(∆x1) p(∆y1) p(∆z1) · · · p(∆xN ) p(∆yN ) p(∆zN ), (3.39)

Σ =



σ2
x1

0 0 · · · 0
0 σ2

y1 0 · · · 0

0 0 σ2
z1

...
...

...
. . .

σ2
xN 0 0
0 σ2

yN 0
0 0 · · · 0 0 σ2

zN


. (3.40)

Also, for m = x, y, z and i = 1, 2, · · · , N representing different coordinate axes
and different antenna positions, respectively, the following integrals can also be
found. ∫

∆mi

∆mi p(∆mi) d∆mi = 0 (3.41)∫
∆mi

∆m2
i p(∆mi) d∆mi = σ2

mi (3.42)∫
∆mi

p(∆mi) d∆mi = 1. (3.43)
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Using the integrals in (3.41)-(3.43), the following results can be obtained

EΘ

[
2a2k2

0

σ2
r

N∑
n=1

A2
n

]
=

2a2k2
0

σ2
r

N∑
n=1

((x2
n + σ2

xn) sin2φ+ (y2
n + σ2

yn) cos2φ

−2xnyn sinφ cosφ) sin2θ (3.44)

EΘ

[
2a2k2

0

σ2
r

N∑
n=1

B2
n

]
=

2a2k2
0

σ2
r

N∑
n=1

((x2
n + σ2

xn) cos2φ+ (y2
n + σ2

yn) sin2φ) cos2θ

+(z2
n + σ2

zn) sin2θ + 2xnyn cosφ sinφ cos2θ

−2(ynzn sinφ cos θ + xnzn cosφ cos θ) sin θ (3.45)

Using similar derivations as above, other elements of the matrix I1(Θ) can be
obtained. A complete summary of results for the matrix I1(Θ) is also given
in Appendix A. The following derivation provides matrix elements for I2(Θ).
Firstly, taking natural logarithm of the pdf of unknown parameters

ln p(Θ) = ln p(∆x1) + ln p(∆y1) + ln p(∆z1) + · · ·
+ ln p(∆xN ) + ln p(∆yN ) + ln p(∆zN ), (3.46)

By taking the derivative of (3.46) with respect to ∆x1, the following results
can be obtained

∂ ln p(Θ)

∂∆x1
=
∂ ln p(∆x1)

∂∆x1
= − 1

σ2
x1

∆x1, (3.47)

where ln p(∆x1) is given as

ln p(∆x1) = −1

2
ln 2πσ2

x1
− 1

2σ2
x1

∆x2
1. (3.48)

Negative expectation of the second derivative results the following expression

−EΘ

[
∂2 ln p(∆x1)

∂∆x2
1

]
=

1

σ2
x1

. (3.49)

For l,m = 1, 2, · · · , N , elements of the matrix I2(Θ) can be summarized as

−EΘ

[
∂2 ln p(Θ)

∂∆xl∂∆xm

]
=


1

σ2
xl

if l = m,

0 if l 6= m.

(3.50)

−EΘ

[
∂2 ln p(Θ)

∂∆yl∂∆ym

]
=


1

σ2
yl

if l = m,

0 if l 6= m.

(3.51)
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−EΘ

[
∂2 ln p(Θ)

∂∆zl∂∆zm

]
=


1

σ2
zl

if l = m,

0 if l 6= m.

(3.52)

Using the results in (3.50)-(3.52), the matrix I2(Θ) can also be described as

I2(Θ) =

[
04×4 04×3N

03N×4 Σ−1
3N×3N

]
. (3.53)

3.2 DoA Estimation Methods

This section provides a brief overview of DoA estimation methods used in the
array processing literature. DoA estimators can be categorized into three main
categories.

Spectrum Based

To locate the direction of the incoming radio signal, classical DoA estimation
methods make use of the angular power spectrum, by identifying the peaks in
the spectrum. The most common examples of spectrum based methods is the
Bartlett beamforming method [31]. Furthermore, Bartlett beamforming is an
optimal method for DoA estimation for single multipath signal in white Gaus-
sian noise. However, for two or more multipath components, high resolution or
sub-space based methods perform better as compared to the classical methods
for the DoA estimation.

Sub-Space Based

Several sub-space methods are available in the literature for DoA estimation.
The most known technique is the MUltiple SIgnal Classification (MUSIC)
method [41]. The sub-space based methods offer better resolution in DoA
estimation at the expense of added complexity. One of the limiting factor in
the use of sub-space methods is their sensitivity to the signal model errors
[42, 43].

Maximum Likelihood Based

High-resolution methods based on the maximum likelihood (ML) principle out-
perform other sub-space based methods especially in low SNR conditions and
for highly correlated or coherent signals; but they are also the most compu-
tationally expensive ones [31]. SAGE [32] is an ML based algorithm and it
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has been used by many researchers in the field of radio signal parameter es-
timation and radio channel modeling. The ML estimator can asymptotically
achieve the CRLB using large data samples and is an asymptotically efficient
estimator. Furthermore, instead of using the CRLB the ML-based estimator
performance can be used to compare with other estimators in terms of accuracy
and complexity; where Monte-Carlo simulations can provide MSE results for
comparison purposes.

3.3 Robust DoA Estimation

Signal model errors such as incorrect antenna gain, phase, or antenna positions
in the assumed signal model lead to imprecise antenna array response, which
further results in degraded DoA estimation performance. Different robust DoA
estimation algorithms are proposed in the literature that address the issue of
signal model errors or antenna array perturbations. The following text briefly
describes some robust beamforming methods available in the literature.

3.3.1 Maximum A Posteriori Estimation

In the array processing literature, the effect of signal model errors on the DoA
estimation accuracy has been studied by several authors, for different esti-
mation algorithms [42, 44, 43, 45]. The performance of high resolution DoA
estimation algorithms degrades significantly if the true array response in the de-
sired look direction is not known. One approach, that has often been employed
for robust parameter estimation, uses the joint estimation of source signal pa-
rameters and signal model errors or antenna array perturbations [46, 47, 48],
where, the former can be treated as deterministic unknown parameters and the
latter as random unknown parameters with a priori information. This scheme
can also be termed as antenna array self-calibration or auto-calibration.

In [46], the authors have introduced the use of a hybrid-CRLB which sets a
lower bound on the variance of unbiased estimates of the deterministic param-
eters and on the mean squared errors of the random parameters. Numerical
results in the paper illustrate that a conventional delay-and-sum beamformer
is optimal for single source bearing and range estimates for small and inde-
pendent antenna position errors, because these errors offer no structure for the
estimator to exploit and the maximum a posteriori (MAP) estimation can not
be applied [46, 49]. Furthermore, when more than one source is present, an
approximate hybrid-CRLB was provided by assuming that the array perturba-
tions are small [47]; and the authors also discussed the identifiability conditions
for the joint estimation of antenna array parameters and source signal param-
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eters. The results in the paper suggest that if the location of one sensor and
direction to another is known and three sources disjoint in time or frequency are
present, then with high SNR or large observation times array calibration can
be performed to arbitrary accuracy. Similar to our work described in Section
3.1.3, in a recent article [37], the authors have provided an exact form of the
hybrid-CRLB by relaxing the assumption on small (or moderately large) errors.
Furthermore, the authors have claimed that if the hybrid-CRLB is tight, then
the array self-calibration can be done and the least number of sources required
for array self-calibration is two.

Using a Bayesian framework, following the work of [47] for small perturba-
tions ρ around the known nominal value ρ0 having known covariance matrix
Σ−1, an optimal estimator using MAP estimation can be formulated as [48, 50]

VMAP (θ,ρ) = VML(θ,ρ) +
1

2
(ρ− ρ0)TΣ−1(ρ− ρ0) (3.54)

where the above cost function is minimized with respect to the signal parame-
ters θ and nuisance parameters ρ for optimal parameter estimation. VML(θ,ρ)
is the negative log-likelihood function and VMAP (θ,ρ) can be considered as
a local regularization of the ML cost function. Furthermore, in [50, 51], the
authors have proposed different subspace-based algorithms which are numeri-
cally simpler to implement and have equivalent asymptotic performance as can
be obtained with the optimal estimator in (3.54). Simulation results in these
references show that hybrid-CRLB can be asymptotically achieved for small
perturbations in the array response due to antenna gain, phase, or antenna
position errors.

3.3.2 Robust Capon Beamforming

The performance of the standard Capon beamformer (SCB) is very sensitive
to signal model errors. However, the advantages of the SCB as compared to
standard beamformers (data-independent beamformers), in terms of better res-
olution and interference suppression capabilities, has motivated the researchers
in the field of array processing to introduce robustness in the SCB. In [52],
the problem to estimate the beamforming weights and desired signal power is
reformulated, such that the desired signal power is maximized by calibrating
the estimated or nominal steering vector within an uncertainty ellipsoid. The
proposed formulation is different from the other robust Capon beamforming
approaches, because it provides a direct estimate of the desired signal power
estimate as well as the beamforming filter weights.
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The proposed robust Capon beamformer (RCB) is defined as [52]

max
σ2,a

σ2 subject to R− σ2aaH ≥ 0

for any a satisfying (a− ā)HC−1(a− ā) ≤ 1, (3.55)

where a represents the steering vector, σ2 is variance of the desired signal, and
R is the observed signal covariance matrix. Furthermore, ā is the nominal or
estimated steering vector, C is a positive definite error covariance matrix for
steering vector errors. In [53], the authors have suggested that the solution to
the above mentioned problem can be determined as

min
a

aHR−1a subject to (a− ā)HC−1(a− ā) ≤ 1. (3.56)

The derivation in [52] leads to an algorithm for calculating a diagonal loading
parameter which is further used along with the the received signal covariance
matrix, to compute the steering vector estimate â. Finally, instead of using
the steering vector â, the estimated steering vector â is used to calculate the
beamforming weights ŵ by using the SCB algorithm as

ŵ =
R−1â

âHR−1â
. (3.57)

In [52], the authors have also mentioned that the proposed methodology can be
considered as another diagonal loading approach for SCB. However, depend-
ing on the steering vector uncertainty set, this approach of diagonal loading
precisely calculates the loading parameter.

Signal power and DoA estimation: In one of the numerical examples
shown in [52], the authors have shown that the proposed RCB and SCB have
similar performance in terms of DoA estimation. However, the power of the
impinging signal at the antenna array can be accurately estimated using RCB,
whereas, SCB fails to estimate the signal power if the true steering vector is
not known. Also, the results show that the delay-and-sum beamformer cannot
be used for DoA estimation due to poor resolution capability. Also, false peaks
can be observed in the angular spectrum of delay-and-sum beamformer due to
higher side lobes.

Steering vector errors and uncertainty set: The proposed RCB as-
sumes that the steering vector errors can be handled such that the nominal
steering vector lies within an uncertainty set, where an uncertainty ellipsoid
can be used to constrain the uncertainty set using the steering vector error
covariance matrix. However, no direct method is provided to calculate the
steering vector error covariance matrix based on the knowledge of antenna po-
sition estimation errors. Furthermore, in terms of DoA estimation performance,
the RCB offers similar performance as compared to the SCB.
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3.3.3 Robust Iterative Estimators

Assuming that the identifiability conditions as mentioned in [47] are fulfilled,
iterative schemes have also been proposed in the literature to jointly estimate
DoA and antenna array perturbations [54, 55, 56].

In [54], an iterative ML technique has been utilized, where the proposed
algorithm consists of two steps. In the first step, using nominal values of the
antenna positions, DoA estimation is performed. In the second step, using the
DoA estimates from the first step, antenna positions are estimated. The algo-
rithm iterates between the two steps until convergence is achieved. The pro-
posed algorithm assumes that the sensor position errors are small and are close
to the nominal values. In [55], the authors have suggested the use of the SAGE
algorithm to jointly estimate the DoA and antenna position errors. Simulation
results in the paper are given for small and large sensor position errors. The
results in the paper suggest that both the ML and the SAGE algorithm have
comparable performance for small antenna position errors. However, for large
antenna position errors and closely spaced sources, the SAGE algorithm out-
performs the ML algorithm. In [56], several existing techniques are combined
together for more robust array self-calibration and improved DoA estimation
as compared to the subspace-based MAP algorithms proposed in [51] and the
ML algorithm proposed in [54].

The different robust DoA estimation algorithms available in the literature
are mentioned to provide a brief summary of these methods and also to provide
some references for the interested reader. In our work, we have not used any
of these methods and this is left for the future work.



Chapter 4

Positioning Using Angular
Power Spectrum

Triangulation is an approach that can be used to find the location of a mobile
target when two or more angle measurements from the target to the base
station are available. In [10, 11, 12], the authors have analyzed estimation
of the mobile target using angle of arrival (AoA) measurements, which might
be corrupted by noise, at the different base stations or receiving units. Also,
different estimation methods have been utilized, such as the iterative approach
for maximum likelihood estimation and closed form solutions such as least
squares (LS) and weighted least squares (WLS).

In [10], the authors have suggested to use the ML estimator assuming Gaus-
sian noise in the AoA measurements. The estimator convergence is not guaran-
teed and a nonlinear relationship between the measured angles and the target
position is utilized. In [11], the authors have used another approach where the
AoA measurements are linearly mapped to the target position in the Cartesian
coordinates and noise statistics are not required in this estimation framework.
This approach suggests that, using an overdetermined system where AoA mea-
surements are available at two or more base stations, LS estimation framework
can be utilized. Furthermore, in [12], the authors have extended the work of
LS estimation to further improved performance using WLS; where, the weigh-
ing matrix is computed using noise variance values in the AoA measurements.
However, assuming identical noise in the different AoA measurements, both
the LS and the WLS estimators would be the same as the weighting matrix in
the WLS would become an identity matrix.
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4.1 Position Estimation Using Least Squares

Similar to the work in [11], the MS position can be estimated in a local coor-
dinate system using DoA information available at the MS from two or more
BSs. In this work, it has been assumed that the DoA estimates are obtained
such that the heading information is available at the IMU and is used to align
the x-axis of the IMU with the x-axis of the local coordinate system; while the
tilt in the IMU with respect to the local coordinate system can be estimated
using static accelerometer data measurements from the IMU. Furthermore, if
no heading information is available at the MS, Section 4.2 provides a method
to estimate the MS position using DoA measurements.

Assuming the Cartesian coordinates (xi, yi, zi) of the different BSs in a
local coordinate system are given along with the corresponding DoA(φi, θi)
estimates available at the MS, then the following relationship is valid for the
different DoA measurements√

(xi − x)2 + (yi − y)2

(zi − z)
= tan θi, (4.1)

where (xi, yi, zi) corresponds to the ith BS position coordinates and (x, y, z)
represents the MS position coordinates in the 3-D Cartesian coordinate system.
Also,

tan θi =
sin θi
cos θi

, (4.2)

φi

θi
yi

xi

zi BSi

MS

(xi,yi,zi)

(x,y,z)

X

Y

Z

Figure 4.1: BS and MS position in the local coordinate system.
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√
(xi − x)2 + (yi − y)2 = (xi − x) cosφi + (yi − y) sinφi. (4.3)

Therefore, (4.1) can be written as

(xi − x) cosφi + (yi − y) sinφi
(zi − z)

=
sin θi
cos θi

, (4.4)

or

xi cosφi cos θi + yi sinφi cos θi − zi sin θi =

x cosφi cos θi + y sinφi cos θi − z sin θi. (4.5)

Assuming N LOS measurements from different BSs are available, then for
i = 1, 2, · · · , N , the above expression can be written in matrix form as

x1 cosφ1 cos θ1 + y1 sinφ1 cos θ1 − z1 sin θ1

x2 cosφ2 cos θ1 + y2 sinφ2 cos θ2 − z2 sin θ2

...
xN cosφn cos θN + yN sinφN cos θN − zN sin θN


︸ ︷︷ ︸

b

=


cosφ1 cos θ1 sinφ1 cos θ1 − sin θ1

cosφ2 cos θ2 sinφ2 cos θ2 − sin θ2

...
...

...
cosφN cos θN sinφN cos θN − sin θN


︸ ︷︷ ︸

A

xy
z


︸︷︷︸

x

. (4.6)

Equivalently,
b = Ax, (4.7)

and the LS estimate x̂ = [x̂, ŷ, ẑ]T of the MS position can be determined as

x̂ = (ATA)−1ATb. (4.8)

4.2 Position Estimation Without Heading In-
formation

DoA of an incoming radio signal at the MS can be estimated using a virtual
antenna array [6], where the virtual antenna array is made by moving the sin-
gle antenna coupled with an IMU, arbitrarily in 3D. Assume that the starting
position of the moving antenna is at position (x, y, z) in a local coordinate sys-
tem (X,Y,Z), as shown in Figure 4.2. Also, assume that the DoA estimates
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are given in the MS coordinate system (Xm,Ym,Zm). The MS is located at
position (x, y, z) in the local coordinate system and at (0, 0, 0) in the MS co-
ordinate system. It is assumed that no heading information is available at the
MS to align the coordinate axes of the MS coordinate system with the local
coordinate system. This implies that the azimuth angle estimates at the MS
can have an arbitrary offset that is added into each of the estimated azimuth
angles as compared to the case where the coordinate axes of the two coordinate
systems are aligned. From Figure 4.2, we can have the following relationships

a2
13 = b21 + b23 − 2b1b3 cosψ13 (4.9)

a2
12 = b21 + b22 − 2b1b2 cosψ12 (4.10)

a2
23 = b22 + b23 − 2b2b3 cosψ23. (4.11)

Using the known BS position coordinates (xi, yi, zi) in the local coordinate
system and the DoA(φi, θi) from the ith BS to the MS in the MS coordinate
system, the following results as shown in (4.12)-(4.18) can be computed and uti-
lized in (4.9)-(4.11) to estimate the MS position (x̂, ŷ, ẑ) in the local coordinate

X

Y

Z

(x2,y2,z2)

(x1,y1,z1)

(x3,y3,z3)

(x,y,z)

O(0,0,0)

ψ13

ψ12

MS

BS1

BS2

BS3

a13

a12

a23

b1
b2

b3

ψ23

Xm
Ym

Zm

Figure 4.2: MS position estimation with three base stations whose
directions from the MS and their positions in a local coordinate system
are known.
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system.

a2
13 = (x1 − x3)2 + (y1 − y3)2 + (z1 − z3)2 (4.12)

a2
12 = (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (4.13)

a2
23 = (x2 − x3)2 + (y2 − y3)2 + (z2 − z3)2 (4.14)

b21 = (x1 − x)2 + (y1 − y)2 + (z1 − z)2 (4.15)

b22 = (x2 − x)2 + (y2 − y)2 + (z2 − z)2 (4.16)

b23 = (x3 − x)2 + (y3 − y)2 + (z3 − z)2 (4.17)

ψ13 = cos−1(cosφ1 sin θ1 cosφ3 sin θ3

+ sinφ1 sin θ1 sinφ3 sin θ3 + cos θ1 cos θ3) (4.18)

ψ12 = cos−1(cosφ1 sin θ1 cosφ2 sin θ2

+ sinφ1 sin θ1 sinφ2 sin θ2 + cos θ1 cos θ2) (4.19)

ψ23 = cos−1(cosφ2 sin θ2 cosφ3 sin θ3

+ sinφ2 sin θ2 sinφ3 sin θ3 + cos θ2 cos θ3). (4.20)

It can also be observed from (4.9)-(4.11) that we have a set of non-linear equa-
tions. In the literature, there are multiple methods available to solve non-linear
system of equations. This thesis will not describe about these methods in much
detail. In our work, we have opted to use the MATLAB function ’fsolve’ which
utilizes non-linear least squares approach to solve multivariate non-linear equa-
tions.

Furthermore, if there are more than three BSs present whose LOS signal
is being received at the MS, then the number of equations will be increased.
E.g., by increasing the number of BSs by one from three to four BSs, we will
have three more equations in our system of non-linear equations. To find the
MS position coordinates, along-with the previously mentioned equations (4.9)-
(4.11), further three equations can be described as

a2
14 = b21 + b24 − 2b1b4 cosψ14 (4.21)

a2
24 = b22 + b24 − 2b2b4 cosψ24 (4.22)

a2
34 = b23 + b24 − 2b3b4 cosψ34, (4.23)

where a14, a24, and a34 represent distance between BS4 and BS1, BS2, and
BS3 respectively. Also, b4 represents distance between the BS4 and the MS.
Similarly, ψ14, ψ24, and ψ34 represent angle between b1 and b4, b2 and b4, and
b3 and b4 respectively.
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4.3 Positioning in Non-Line of Sight

The techniques described in the preceding sections assume that there is a direct
link available between the MS and at least three base stations, such that the
DoA information available at the MS can be directly used for MS position
estimation. However, in practice, the direct path might be blocked between
the BS and the MS due to shadowing by some large objects. In addition,
multiple copies of the transmitted signal might also arrive at the MS after
reflection and scattering through different objects in the environment. The
problem of MS positioning in the mixed LOS/NLOS propagation has been
studied extensively by different authors. It has been identified that the major
source of error in the MS position estimation is caused by NLOS propagation.
Different techniques have been proposed to identify and mitigate the NLOS
errors in the MS position estimation. Below, we have summarized some of the
related work in this area.

In [57, 58], it has been reported that the variance of the range measurements
is higher in NLOS propagation as compared to the LOS scenarios; and a simple
hypothesis test can be used to identify the NLOS propagation. In [59], the au-
thors have provided algorithms to identify LOS/NLOS propagation using time
history of the range measurements corrupted by noise. The paper presents the
application of a binary hypothesis test on the range measurements to identify
the LOS or NLOS. Noise in the measurements is assumed to follow distinct
probability distribution corresponding to LOS and NLOS errors. An NLOS
error mitigation technique is proposed for range measurements corrupted by
NLOS errors where no a priori information is available about the statistics of
the LOS and NLOS errors in the range measurements. Several authors have
used the idea of calculating residual errors with estimated MS position and the
known BSs positions [60, 61].

In [60] the authors have shown that if the NLOS BSs are present along
with the LOS BSs, different sets of the BSs can be made to estimate the MS
position. At least three BSs are, e.g., required to estimate the MS in 2D using
range measurements. A residual weighting technique for MS position estimates
has been used. The residues are computed as the sum of the squares of the
difference between the measured ranges and the estimated ranges where the
estimate ranges can be obtained using the MS position and the known BS
positions. The residue would be large if the BS set has any NLOS BS as
compared to the set which has only LOS BSs. The total number of BSs in the
set can also be used to normalize the residues. Finally, the estimate with a
lesser residue will be weighted more than the estimate with a higher residue.
The proposed technique performs well in the situations where NLOS BSs are
unidentifiable. The results in the paper show that best performance is achieved
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when only LOS BSs are used, and worst performance is observed when all the
BSs are used without any residual weighting.

In [61], the authors have presented a method to identify the NLOS base
stations in mixed LOS/NLOS ToA measurements. The algorithm is similar
to the one that is presented in [60], however, no residual weighing has been
used for MS position estimation. Instead, the authors have proposed a method
to identify the NLOS BSs in the measurements and a residual test has been
suggested. The NLOS base stations can be identified by measuring the statistics
of the residuals. The residuals are computed for the different BS sets, where
each set will have at-least three or more BSs, to estimate the MS position. A
non-central chi-square distribution can be observed if any of the BS set has one
or more NLOS BSs whereas a central chi-square distributions can be observed
if all the sets of the BSs have LOS BSs. Simulation results are provided in the
paper that show the efficacy of the proposed algorithm. An example scenario
with five or more LOS base stations in a total of seven base stations shows
that the algorithm attains a performance that is close to the CRLB. However,
for three or four LOS base stations, the performance degrades and does not
attain the CRLB. According to the authors, the overall performance of the
proposed algorithm outperforms the existing state of the art methods found in
the literature.

To mitigate the NLOS errors in DoA based positioning, a technique has been
suggested in [62] to selectively identify and remove the NLOS base stations.
By using known BS positions and the estimated MS position, the authors have
proposed a technique to estimate angular errors in the DoA measurements.
Simulation results in the paper show that the proposed technique performs
well if the LOS errors are relatively small and there are more than enough (for
position estimation in 2D, a minimum of two LOS BSs are required.) LOS BSs
measurements are available. The algorithm performance with more than one
NLOS base stations has not been demonstrated in the paper.
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Chapter 5

Conclusions and Future
Work

5.1 Conclusions

The work performed in this thesis demonstrates the use of a novel approach for
DoA estimation in single antenna devices using virtual antenna arrays. Using
inertial sensor data from IMU measurements, antenna location coordinates are
tracked using dead reckoning. We have shown that, using a high resolution
algorithm for DoA estimation, reasonably good accuracy of DoA estimation
results can be achieved with low-cost IMUs for making virtual antenna arrays
in single antenna devices coupled with IMUs.

We have further demonstrated that, for an unaided inertial navigation sys-
tem the standard deviation of the position estimation error grows over time.
Using an extended Kalman filter, we compute the estimation error covariance
matrix for the different parameters in the state vector. It has been observed
that, for an unaided inertial navigation system white Gaussian noise in the rate
gyroscope measurements is the main source of error in the estimated position
using low-cost MEMS based IMUs.

We have also derived a hybrid-CRLB to calculate the DoA estimation error
variance for a single plane wave source located in the far field of the array
where the antenna positions are perturbed with random antenna position er-
rors. A closed form expression is derived to calculate the numerical value for
the minimum variance that can be achieved with a minimum mean square er-
ror estimator. The results of CRLBs using known antenna locations as well
as the estimated antenna locations are compared for different array lengths
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of the virtual antenna array. The results suggest that, after integration times
of about 3-4 seconds, the two CRLBs diverge from each other and the array
performance degrades significantly with the estimated antenna positions. It
can also be noted that the use of hybrid-CRLB proves to be a vital tool to
investigate the DoA estimation performance of antenna arrays with perturbed
antenna positions.

Furthermore, theoretical results of DoA estimation performance with ran-
dom 3-D antenna arrays are analyzed. Using Monte-Carlo simulations, we
have shown that the performance of random 3-D antenna arrays improves sig-
nificantly with increase in signal to noise ratio as well as with increased array
size or number of antenna elements. The simulation results also suggest that
for random antenna arrays, the array resolution for DoA estimation accuracy
may vary for different source location directions and an antenna array with
optimum DoA estimation accuracy for all source directions could be devised.

5.2 Future Work

In the future work, by placing transmitter antennas at known locations in an
indoor environment in a similar measurement setup as described in [6], the
receiver antenna location will be estimated. Both, experimental as well as
theoretical evaluation of the positioning accuracy, will be investigated using
the proposed setup.

Furthermore, by having channel impulse response at the receiver side for
the different cellular networks, such as, GSM, WCDMA, or an LTE network,
DoA estimates of the incoming signals can be obtained using the virtual an-
tenna array. In the future work, a software radio can be utilized to obtain
baseband radio signals from one or more of the commercial cellular networks,
and consequently the MS position will be estimated using the virtual antenna
array, where the array coordinates are tracked using a low-cost IMU.

Also, WiFi access points can be considered for MS position estimation. The
positioning estimates can be obtained in the global coordinate system if the
cellular network base station coordinates are known in the global coordinate
system. Similarly, for the WiFi access points, the MS position can be estimated
in the coordinate system where the WiFi access points are located.
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Appendix A

FIM for the hybrid-CRLB

By omitting the detailed derivations, the different elements of the FIM I1(Θ)
are given as

−Eyr,Θ

[
∂2 ln p(yr; Θ)

∂a2

]
=

2N

σ2
r

(A.1)

−Eyr,Θ

[
∂2 ln p(yr; Θ)

∂b2

]
=

2Na2

σ2
r

(A.2)

−Eyr,Θ

[
∂2 ln p(yr; Θ)

∂φ2

]
=

2a2k2
0

σ2
r

N∑
n=1

((x2
n + σ2

xn) sin2φ+ (y2
n + σ2

yn) cos2φ

−2xnyn sinφ cosφ) sin2θ (A.3)

−Eyr,Θ

[
∂2 ln p(yr; Θ)

∂θ2

]
=

2a2k2
0

σ2
r

N∑
n=1

((x2
n + σ2

xn) cos2φ+ (y2
n + σ2

yn) sin2φ) cos2θ

+(z2
n + σ2

zn) sin2θ + 2xnyn cosφ sinφ cos2θ

−2(ynzn sinφ cos θ + xnzn cosφ cos θ) sin θ (A.4)

−Eyr,Θ

[
∂2 ln p(yr; Θ)

∂b∂φ

]
= −2a2k0

σ2
r

N∑
n=1

An (A.5)

−Eyr,Θ

[
∂2 ln p(yr; Θ)

∂b∂θ

]
=

2a2k0

σ2
r

N∑
n=1

Bn (A.6)

71



72 Overview of the Research Field

−Eyr,Θ

[
∂2 ln p(yr; Θ)

∂φ∂θ

]
= −2a2

σ2
r

k2
0

N∑
n=1

(x2
n + σ2

xn) sinφ cosφ sin θ cos θ

−(y2
n + σ2

yn) sinφ cosφ sin θ cos θ

+xnyn sin2φ sin θ cos θ − xnyn cos2φsin θ cos θ

−xnzn sinφ sin2θ + ynzn cosφ sin2θ. (A.7)

Further elements of the matrix I1(Θ) can be evaluated as shown below for
l = 1, 2, · · · , N and m = 1, 2, · · · , N . Also, C1 = cosφ sin θ, C2 = sinφ sin θ,
and C3 = cos θ are evaluated at the true values of φ and θ to calculate the FIM
I1(Θ).
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Below equations can be evaluated for n = 1, 2, · · · , N .
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All the remaining elements in I1(Θ) are found to be zero.
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In this paper, we have investigated the use of virtual antenna arrays at the receiver to

do single antenna direction-of-arrival estimation. The array coordinates are obtained

by doing simple dead reckoning using acceleration and angular speed measurements

from a low cost micro-electro-mechanical system inertial measurement unit (IMU).

The proposed solution requires no extra hardware in terms of receiver chains and

antenna elements. Direction-of-arrival estimation results are obtained using a high

resolution SAGE algorithm. Measurement results show that the direction-of-arrival

can be estimated with a reasonable accuracy in an indoor environment.
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1 Introduction

In radio communications, direction-of-arrival (DoA) estimation of the radio
wave has been an interesting area of research as it offers several interesting
benefits in terms of improved Quality-of-Service, such as, better coverage, more
reliable communication, and higher data rates [1]. Furthermore, by triangula-
tion, the DoA information can also be used for positioning or localization in a
wireless cellular network.

One of the biggest challenges to get the direction-of-arrival at a mobile
handheld terminal is the extra hardware, e.g., the additional antenna elements
and/or receive chains that are required to form real antenna arrays or switched
arrays. Due to these practical issues, as it will increase the size and weight of
the device, it has not been considered to be a feasible solution to form a larger
antenna array at the mobile terminal side. To solve these issues, a virtual
antenna array technique can be used by moving the receiver antenna to various
locations and then measuring the radio signal at those locations, one by one,
assuming that the radio channel remains constant during the measurement
time. In the literature, an effort is made to employ virtual antenna arrays for
DoA estimation using single antenna devices as presented in [2, 3].

In [2], a virtual array was formed using a rotating arm controlled by a
motor. The rotating arm provide a uniform circular array which was used to
perform high resolution DoA estimation of the radio channel. Similarly, in [3],
with the help of a personal computer and a motor, the authors have used a
controlled movement of the antenna where the antenna was also coupled with
an inertial measurement unit (IMU). From the IMU measurements of rotational
speed and lateral acceleration, the radius of the circle was estimated to form a
virtual uniform circular array for further processing.

In this paper, we demonstrate DoA estimation using virtual antenna arrays
where the array coordinates are estimated from raw IMU measurements for
arbitrary free movements carried out in 3D. The contribution of this work is
that we have demonstrated a method to perform DoA estimation with single
antenna devices using virtual arrays and random movements. Indoor measure-
ments are performed to measure the radio signal synchronously with the IMU
data while moving the Rx antenna, attached with an IMU, in 3D. The results
obtained from these measurements are very promising and allows for further
research work in the DoA based localization in wireless cellular networks, where
single antenna devices are used at the receiver.

The rest of the paper is organized as follows. A brief overview of virtual
antenna arrays is provided in section 2, which is followed by the description
of array coordinate estimation using IMU measurements in section 3. Then,
the DoA estimation algorithm (SAGE) is introduced in section 4 where it is
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also used to compute DoA estimates. The measurement setup is explained in
section 5, and measurement results are provided in section 6. Finally, the paper
is concluded in section 7.

2 Virtual Antenna Array

The virtual antenna array is based on one Rx antenna to receive the incoming
radio signal and one Rx chain for down conversion and signal processing. Array
coordinates corresponding to the different antenna locations are used in the
DoA estimation algorithm where the phase and amplitude differences among
antenna elements are used to estimate the DoA of the incoming radio wave
in the azimuth (φ) as well as in elevation (θ). Figure 1 shows a virtual array
where the radio signal is received at N different locations. The radio signal
received at antenna position pm has the following signal model [1],

rpm(t) = s(t) ∗ hpm(t, τ, φ, θ) + npm(t), (1)

where ∗ denotes convolution, and s(t) is the transmitted signal and is assumed
to be known. Without loss of generality, we assume s(t) = 1, and npm(t) is
assumed to be additive white Gaussian noise measured at the mth antenna po-
sition. The channel impulse response hpm(t, τ, φ, θ), assuming that the received
signal is a sum of finite number of plane waves, is given by

hpm(t, τ, φ, θ) =
∑
i

αi(t)δ(t− τi)δ(φ− φi)δ(θ − θi), (2)

where αi, τi, φi and θi are the complex signal amplitude, delay, DoA in azimuth,
and DoA in elevation of the ith multi-path component (MPC), respectively.

p
1

p
2

p
m

p
N

Figure 1: Virtual antenna array for N receive antenna positions.



Direction of Arrival Estimation with Arbitrary Virtual Antenna Arrays using
Low Cost Inertial Measurement Units 83

Figure 2 shows how the incoming radio signal at different Rx antenna loca-
tions in a 3D space can be projected onto the different coordinate axes. The
steering vector of the virtual array formed by the measurements at positions
pm can thus thus be expressed as

a(φ, θ) = exp(−jk(x sin(θ) cos(φ) + y sin(θ) sin(φ) + z cos(θ))), (3)

where x,y, and z are the position coordinate vectors of the antenna array for
x-, y-, and z-axis respectively.

3 Array Coordinates

For conventional virtual antenna arrays, array coordinates are precisely con-
trolled through controlled robotic movements and these coordinates are used
for virtual array processing in DoA estimation. However, by attaching an IMU
with the Rx antenna, the array coordinates for any arbitrary movement can be
estimated from the IMU measurements. The IMU measurements provide raw
acceleration and rotational speed in the three axes, i.e., the x-, y-, and z-axis.
Local array coordinates are then obtained by computing an attitude estimate
followed by a position estimate of the IMU.

3.1 Attitude Estimation

When the device is static, the only force acting upon the device is gravity. The
acceleration due to gravity has to be subtracted to compute the net accelera-

X

Y

Z

θ

φ
sin(θ)cos(φ)

sin(θ)sin(φ)

cos(θ)

Figure 2: Received radio signal direction vector projected on X-, Y-
,and Z-axis.
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tion that is experienced by the device for any movement. Also, the measured
acceleration from the device is in body coordinate system (b), which is chang-
ing with the device movement. Position displacement of the device has to be
determined in the earth coordinate system (e), which is fixed.

The device orientation determines the projection of gravity acceleration
onto the different axes in a coordinate system. Firstly, when the device is
static, the initial orientation of the device is determined. The device orientation
is represented in the form of a unit quaternion [4] which is initialized as follows

q =


q0

q1

q2

q3

 =

[
cos(ϑ/2)

u · sin(ϑ/2)

]
, (4)

where q is the unit quaternion, ϑ is the rotation angle between the earth
coordinate system and the body coordinate system, and u is an orthonormal
axis vector which is orthogonal to the two coordinate systems. The axis vector
u is given by,

u =
b× e

|b| · |e| · sinϑ
. (5)

Figure 3 shows how the measurements in body coordinate system are con-
verted to earth coordinate system through a rotation matrix defined as Reb as
given in (6).

X

Y

Z

e

b

X

Y

Z

R
eb

Figure 3: Body coordinate system to earth coordinate system.
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Reb(q) =

q2
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3
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Furthermore, during any movement, the measured rotational speed from
the gyroscope measurements provide the orientation update information for the
IMU. The quaternions are updated using (7) which assumes that the rotation
speed is constant during the sample time Ts

qn = qn−1 +
Ts
2
S(qn−1)wn, (7)

where w is the 3-axis gyro measurement and S(q) is defined as,

S(q) =


−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

 . (8)

3.2 Position Estimation

Once the device acceleration in the earth coordinate system is determined, then
by doing double integration of the acceleration values, we can estimate the posi-
tion displacement in the x-, y-, and z-axes respectively. Figure 4 shows a block
diagram for determining the array coordinates from the IMU measurements.

In Figure 4, wb is the rotational speed and ab is linear acceleration measure-
ment from the IMU, ge is the acceleration due to gravity defined in the earth
coordinate system, and pe contains the x-, y-, and z-axis position estimates
in the earth coordinate system. The figure shows that gravity acceleration is
subtracted from the IMU measurements to compute net acceleration due to
movement which further provides the position estimates.

4 DoA Estimation

Using the local array coordinates and the received wideband radio signal at
these locations, high resolution parameter estimation of the multi-path com-
ponents (MPCs) can be performed using, e.g., SAGE [5]. By using an iter-
ative method, the SAGE algorithm provide maximum likelihood estimate of
the MPC parameters. For each MPC, the estimated channel parameters are
complex amplitude, delay, and DoA (φ, θ). The number of iterations in SAGE
is set to 30 and 50 MPCs are estimated.
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5 Measurement Setup

Channel measurements are performed using the RUSK Lund channel sounder.
The channel sounder measures the complex transfer function of the radio chan-
nel between the Tx and Rx antennas at different frequency points. In the mea-
surements, three panel antennas are used as three different access point anten-
nas, transmitting a channel sounding signal with center frequency at 2.44 GHz
and a bandwidth of 80 MHz. The channel sounder is based on a switched array
architecture and it selects one of the Tx antenna at one time to transmit the
sounding signal. The panel antennas have a gain of 10 dBi in the main direction
and having a beam width of 60◦ in the horizontal plane and 45◦ in the vertical
plane.

To synchronize the recordings of the IMU and channel sounder, a TTL
trigger signal is used to trigger the measurements at the channel sounder and
the IMU measurements. A LabVIEW application is used to generate the trigger
signal using the NI-9401 Digital Input/output module.

At the receiver side, a monopole antenna that has uniform antenna gain in
the azimuth plane, is used to receive the incoming radio signal. The receiver
antenna is also attached with a low cost inertial measurement unit, Phidget-
-1044. The IMU sampling rate was set to 250 Hz for the data recording. The
IMU has a 3-axis accelerometer, gyroscope, and magnetometer installed on it.
For our measurements, only acceleration and gyro measurements are used to
estimate the local coordinates of the array. The IMU can provide acceleration
values upto ±2g and rotation speed upto ±300◦/s for z-axis and ±400◦/s for
x-, and y-axis measurements.

Since low cost IMUs are prone to static bias and offset errors static bias
errors in the acceleration measurements are calibrated out using the Newton’s
method [6], along-with cross-axis misalignment errors before applying the dead
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Figure 4: Position estimation from the IMU measurements.
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Figure 5: Room layout with antenna locations.

reckoning solution.
The measurements are performed in an indoor environment at one of the

lecture theater halls in the E-building of LTH, Lund University, Sweden. The
layout of the room in terms of antenna positions is shown in Figure 5. This is a
rich scattering environment as many different objects can contribute to different
reflection paths for the radio wave from the transmitter to the receiver. To show
some details about the setup, a photo is given in Figure 6. Our main interest in
this measurement campaign was to identify the line-of-sight (LOS) path from
the incoming radio signal at the receiver.

Multiple free movements are carried out where the Rx antenna is moved
freely in an arbitrary path. The true movement path is not tracked for these
measurements, but the only validation for the suggested method is the DoA
estimation results for the different LOS paths from different Tx antennas.

6 Results

The array coordinates are estimated from the IMU measurements of acceler-
ation and angular speed. Figure 7 shows the estimated location of the Rx
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Tx1

Tx2

Rx

Figure 6: An indoor, rich scattering environment.

antenna at different time instants during the movement. Here we have selected
one of the measurement (Mov #2) from our data set of 43 different measure-
ments that we have recorded during the measurement activity.

As the integration error in position estimates grows unboundedly over inte-
gration time [7], initial four seconds of the movement data is used for position
estimation. Furthermore, to reduce the computation time of the SAGE algo-
rithm, every 4th data sample is used from the estimated position values. The
mean distance between two consecutive array positions is about λ/10 while
maximum distance is observed to be around λ/4, where λ is the wavelength.

Using the estimated values of the array coordinates, DoA estimation is per-
formed using 250 Rx antenna locations to form the virtual antenna array. As
we have three independent radio links between the transmitter and receiver
antennas, the SAGE estimates for these three links are determined indepen-
dently.

Table 1 shows a comparison of the estimated values for DoA. The estimated
DoA for the LOS path is determined by comparing the estimated delay values
of the significant MPCs with each other. The significant MPCs are selected
based on the criterion that it can have upto 6 dB lower power as compared to the
strongest MPC. The significant MPC which has the smallest estimated delay
is selected as the LOS path. Figure 8 shows the estimated DoA for different
movements. Solid lines represent the true values for the DoA, while different
markers on the dashed lines represent the estimated values for the DoA from
different movements. Also, standard deviation values are computed for the
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Figure 7: Array coordinates estimates using dead reckoning.

DoA estimates in different measurements. A standard deviation of about 20◦

is observed for the estimates. But, for Tx2, a high value of standard deviation
in azimuth could be the result of 2-3 outliers in the data as shown in Figure 8.

Table 1: SAGE estimates for DoA(φ, θ)

Tx Ant #
True Angle Estimated Angle Estimated Angle St.

(φ, θ) Mov #2 (φ, θ) Deviation (φ, θ)

1 (127◦, 90◦) (120◦, 89◦) (14◦, 21◦)
2 (47◦, 80◦) (44◦, 78◦) (33◦, 21◦)
3 (223◦, 71◦) (220◦, 71◦) (20◦, 23◦)

The estimated DoA results for Mov #2 are shown in Figs. 9 - 11, where
a polar plot is used to represent the estimated angles in the azimuth plane
together with their respective estimated powers. Different points in the plot
represent different MPCs. The dynamic range for this plot is set to 15 dB
which will discard all those MPCs whose power is 15 dB lower than the power
of the strongest MPC. The distance from the center of the circle represents the
associated power with each MPC. The power of the MPCs is scaled such that
the strongest MPC has power of 15 dB, and is located on the outer circle in the
plots.

Future work includes detailed investigation about the size and shape of the
antenna array such that the DoA(φ, θ) estimation error could be minimized.
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Figure 9: DoA estimates for Mov #2 using SAGE algorithm: Tx1-Rx.
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Figure 10: DoA estimates for Mov #2 using SAGE algorithm: Tx2-Rx.
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Figure 11: DoA estimates for Mov #2 using SAGE algorithm: Tx3-Rx.
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Also, less complex estimation algorithms to identify the LOS path in an indoor
scenario will be investigated. Furthermore, the application of this antenna
array technique would be tested with commercial cellular networks, such as, the
GSM network. For cellular networks, positioning/localization will be performed
using DoA information of multiple base station antennas.

7 Conclusion

In this paper, we have demonstrated a method to perform DoA estimation
with single antenna devices using virtual arrays and random movements. It is
shown that simple dead reckoning solution can be used for position estimation
with low cost MEMS based inertial measurement units for short duration of
the movement (for around 3-4 seconds). The position estimates are utilized
for making virtual antenna arrays with single antenna devices for directional
channel estimation. It has further been shown that the direction of arrival
estimation by using a high resolution SAGE algorithm provides reasonably
good accuracy with random virtual antenna arrays.

Acknowledgment

This work is supported by the Excellence Center at Linköping-Lund in Infor-
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[6] I. Skog and P. Händel, “Calibration of a MEMS inertial measurement unit,”
in XVII IMEKO World Congress, Rio de Janeiro, Brazil, 2006, pp. 1–6.

[7] J. H. Wall and D. M. Bevly, “Characterization of inertial sensor measure-
ments for navigation performance analysis,” in ION GNSS, Fort Worth,
TX, 2006, pp. 2678–2685.



94 PAPER I







On the Performance of Random

Antenna Arrays for Direction of Arrival

Estimation

Abstract

A single antenna based virtual antenna array at the receiver can be used to find di-

rection of different incoming radio signals impinging at the receiver. In this paper,

we investigate the performance of random 3D virtual antenna arrays for DoA estima-

tion. We have computed a Cramér-Rao Lower Bound (CRLB) for DoA estimation

if the true antenna positions are not known, but these are estimated with an uncer-

tainty. Position displacement is estimated with an extended Kalman filter (EKF) by

using simulated data samples of acceleration and rotation rate which are corrupted

by stochastic errors, such as, white Gaussian noise and bias drift. Furthermore, the

effect of position estimation error on the DoA estimation performance is evaluated

using the CRLB. The results show that the number of useful elements in the antenna

array is limited, because the standard deviation of the position estimation error grows

over time.
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1 Introduction

In this paper, we investigate the performance of random 3D antenna arrays
for direction of arrival (DoA) estimation. The array is formed using a single
antenna element that is moved to different locations to form a so-called virtual
antenna array. An inertial measurement unit (IMU) can be used to track the
antenna positions as shown in [1, 2], where it has also been demonstrated that
DoA estimation can be performed using such virtual antenna arrays. Since the
antenna position is estimated from IMU measurements which are corrupted
by noise, the antenna positions are known with an uncertainty associated with
each antenna location. This work will describe that using such random antenna
arrays, the number of useful antenna elements in the virtual antenna array is
limited; because, the standard deviation of the antenna position estimation
error grows over time. For a fixed antenna array geometry and signal to noise
ratio (SNR), the variance of any unbiased DoA estimator can be lower bounded
by a well known bound known as Cramér-Rao Lower Bound (CRLB). Different
types of antenna arrays (linear arrays, 2D, and 3D arrays) have been suggested
in the literature for different applications and their performance is evaluated
with the help of CRLB [3]. Similarly, Cramér-Rao Bound can be used to have
a lower bound on the performance of any unbiased estimator in the presence
of antenna location uncertainties [4].

The contribution of this paper is to determine the performance limits of
DoA estimation using low cost IMUs to make random antenna arrays. In the
first part, we have simulated a six degrees of freedom (6DoF) navigation system
performance using an IMU for random movements in 3D space. Acceleration
and rotation rate data samples are simulated for a random 3D movement and
the simulated data is then corrupted by stochastic errors, such as, white Gaus-
sian noise and bias drift. Position displacement is estimated in the presence
of these stochastic errors using an extended Kalman filter (EKF). In the sec-
ond part, the effect of position errors on the DoA estimation performance is
evaluated and the results are shown in the form of CRLB.

The paper is organized as follows. Firstly, a brief overview of inertial mea-
surement unit (IMU) is given in section 2. Section 3 describes the state space
model to estimate the position displacement from the IMU measurements us-
ing the EKF. The Cramér-Rao lower bound on the DoA estimates is given in
section 4. Results and discussion on the results is given in section 5. Finally,
conclusion is drawn in section 6.
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2 Inertial Measurement Units

Inertial measurement units (IMUs) are often used as an integral part of naviga-
tion systems. An IMU today usually has orthogonal 3-axis accelerometers and
3-axis rate gyroscopes and it can provide inertial measurements of acceleration
and rotation rate which are corrupted by noise. From the IMU measurements,
by performing so-called double integration of the acceleration, also known as
deadreckoning, the position displacement can be estimated. However, the IMU
measurements should not directly be used for longer integration times as the
different noise sources present in the measurements give rise to accumulated
error upon integration. This requires that the position errors should be cor-
rected periodically after a certain amount of integration time. Alternatively,
the estimated position can be used for small integration times for which the
uncertainty of the estimated position remains within a specified limit.

The noise/error sources in IMU measurements can be categorized into two
main categories. The first category covers fixed or deterministic error sources
and the second covers random or stochastic error sources. The first type of
errors, such as cross-axis misalignment, scale factor, and non-linearity errors,
can be determined by calibration before using the IMU for measurements, as
suggested in [5]. Stochastic error sources can be quantified by using a time
domain analysis technique called Allan variance (AV) or a frequency domain
analysis using power spectral decomposition (PSD) analysis [6, 7].

The Allan variance is a time domain technique originally developed by
David W. Allan in 1966 to investigate the frequency stability of oscillators
[8]. It has been successfully applied to model the different measurement errors
in rate gyroscope and accelerometer measurements [6]. More details about Al-
lan variance can be found in [9, 10]. In this work we will be using Allan variance
analysis to quantify the stochastic errors present in the IMU measurements as
shown in section 3.3.

3 Extended Kalman Filter

The Kalman filter has remained a popular choice for navigation solutions since
its inception in 1960 [11]. Over time, various extensions have been proposed
to the standard Kalman filter for specific applications. In this work we are
using an extended Kalman filter, as the process dynamics and the measurement
relationship to the process that is to be estimated is nonlinear. A brief overview
of Kalman filters is given in [12].

The state vector that is to be estimated using the extended Kalman filter
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is given as:
x = [p,v,a,ab,q,wb]T , (1)

where p=[px, py, pz]
T is the position displacement estimated in the world coor-

dinate system. Similarly, v ∈ R3 and a ∈ R3 represent the three axis estimated
velocity and acceleration in the world coordinate system. q=[q0, q1, q2, q3]T is
the unit quaternion that represents the orientation of the device w.r.t. the
world coordinate system. Also, ab ∈ R3 and wb ∈ R3 are used to estimate
the acceleration and rotation rate bias in the acceleration and rotation rate
measurements, respectively.

3.1 State Update

The acceleration state in the world coordinate system is here modeled as a first
order Gauss-Markov process. Let x̃=[p,v,a]T , then the process dynamics for
the position, velocity, and acceleration states defined in the world coordinate
system are given by [13]:

x̃k+1 = F̃x̃k + G̃νa,k, (2)

where F̃ and G̃ are defined as

F̃ =

I3 TsI3 (αTs − 1 + e−αTs)/α2I3

03 I3 (1− e−αTs)/αI3

03 03 e−αTsI3

 , (3)

G̃ =

(1− αTs + α2 T
2
s

2 − e
−αTs)/α3I3

(αTs − 1 + e−αTs)/α2I3

(1− e−αTs)/αI3

 , (4)

where Ts is the sample time, I3 is a 3×3 identity matrix, 03 is a 3×3 matrix of
all zeros, α=1/τa is the inverse of the time correlation of the acceleration, and
νa is a zero mean white Gaussian noise sequence, which drives the acceleration
process, with variance σ2

νa .
The state dynamics for the quaternion can be expressed as [14, 15]

qk+1 = e
Ts
2 Sw(wtrue

k )qk, (5)

where wtrue is the actual rotation rate.The measured rotation rate from the
IMU is modeled as

wmeas = wtrue + wb + ew, (6)
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where wmeas ∈ R3 is the measured rotation rate that is the sum of actual
rotation rate wtrue, bias in the sensor measurement wb, and measurement noise
ew. The latter is modeled as zero mean white Gaussian noise with variance
σ2
w. Thus, the state dynamics for the quaternion is [14, 15]

qk+1 = e
Ts
2

Sw(wmeask )qk −
Ts
2
Sq(qk)wb,k −

Ts
2
Sq(qk)ew,k, (7)

The bias states for acceleration and rotation rates are modeled as first order
Gauss-Markov processes. In discrete-time they can be modeled as

ab,k+1 = ad,aab,k + bd,aνab,k, (8)

wb,k+1 = ad,wwb,k + bd,wνwb,k, (9)

where ad,a = e
− Ts
τab and bd,a =

∫ Ts
0
e
− t
τab dt. τab is the time constant for

the acceleration bias drift process. Furthermore, νab and νwb
represent white

noise processes with variances σ2
νab

and σ2
νwb

, respectively. These white noise

processes drive the bias processes and their variances are given by

σ2
νab

=
1− a2

d,a

b2d,a
σ2
ab
, (10)

σ2
νwb

=
1− a2

d,w

b2d,w
σ2
wb
, (11)

where σ2
ab

and σ2
wb

represents the variances of the accelerometer and rate gy-
roscope bias drift processes respectively.

3.2 Measurement Update

The acceleration state is related to the measurement through a nonlinear func-
tion as

ameask = Rq(qk)(ak + g) + ab,k + ea,k, (12)

where ameas ∈ R3 is the measured acceleration in the body coordinate sys-
tem, Rq(q) is the rotation matrix to transform the estimated acceleration that
is in the world coordinate system to the body coordinate system, and g is
acceleration in the world coordinate system due to gravity and is defined as
g=[0, 0, 9.82]T . Also, the measured acceleration contains bias ab as modeled in
(8) and white Gaussian noise ea with variance σ2

a.
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3.3 Simulation Parameters and Position Estimation

Using the Allan variance analysis, the stochastic error sources present in the
IMU measurements are determined by recording static IMU data over a period
of 8 hours. Figure 1 shows the measured Allan deviation (AD) curve for x-axis
accelerometer and for x-axis rate gyroscope, where Allan deviation is computed
as the square root of the Allan variance.

For modeling the white noise and bias drift processes used in the EKF, it is
assumed that errors on the y-axis and z-axis accelerometer are similar to the x-
axis accelerometer. The same is assumed for the rate gyroscope measurements.
Furthermore, it is also assumed that the deterministic errors are completely
removed by calibration while the effect of stochastic errors is present on the
position estimates.

From the Allan deviation plot of the accelerometer and rate gyroscope data,
we can identify that white Gaussian noise and bias instability are the domi-
nant error sources for short averaging times. The standard deviation for the ac-
celerometer white noise is determined as σa=VRW/

√
Ts, where VRW is defined

as the velocity random walk parameter and its numerical value can be obtained
from the Allan deviation plot when the averaging time equals to 1. The slope
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Figure 1: Measured Allan deviation (AD) plot for x-axis accelerometer
and x-axis rate gyroscope data. AD is measured in m/s2 for accelerom-
eter data and ◦/s for rate gyroscope.



104 PAPER II

of the Allan deviation plot equals to zero when the averaging time is 115 s.
This sets the time constant for the bias drift as τab=115 s and the standard
deviation for the process noise for bias drift is found as σab=AD(τab)/0.664,
where AD(τab) represents the numerical value of the Allan deviation plot when
the averaging time equals to τab . Similarly, from the Allan deviation plot of
the gyroscope data, we can obtain the standard deviation of the white noise
process as well as the time constant for the bias drift process and the standard
deviation for the white noise that drives the bias drift process. The sam-
pling time (Ts) is set as 20 ms and the numerical values for the noise processes

are obtained as: σa=4.15×10−3 m/s
2
, σw=0.115 ◦/s, σab=2.85×10−4 m/s

2
, and

σwb=7.5×10−3 ◦/s. Also, τwb is estimated as 115 s.
To simulate a random antenna array in 3D, acceleration as well as rotation

rate data samples are generated using the Singer model [13]. This model is
a maneuver model often used to model target maneuvering. As the antenna
is moved by holding it in a hand to follow any random trajectory, the Singer
model can be used to model such a movement. The Singer model states that
the acceleration or rotation rate follows a first order Gauss-Markov process.

In discrete time, it can be described as ak+1=adak + bdνak , where ad=e
−Tsτa
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Figure 2: Position estimation error standard deviation from the EKF,
x- and y-axes have similar position estimation error std. deviation vs
time while z-axis has smaller std. deviation values as compared to the
x- and y-axes.
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and bd=
∫ Ts

0
e−

t
τa dt. τa is the maneuver time constant for the accelerometer

data. Also, νak
is a white noise sequence with variance σ2

νa=
1−a2d
b2d

σ2
acc, where

σ2
acc=

a2max

3 (1 + 4Pmax − P0). amax is the maximum acceleration/deceleration
during the maneuver, whereas, Pmax and P0 models the probability of having
maximum acceleration/deceleration and zero acceleration during the maneu-

ver [13]. We have used τa=2.5 s, amax=1 m/s
2
, P0=0.99, and Pmax=0.01 for

the acceleration data samples. For rotation rate data, the parameter for max-
imum rotation rate is set to wmax=600 ◦/s, while the other parameters are
the same as for the acceleration. Acceleration and rotation rate data samples
are then added with noise which is simulated using the values obtained from
Allan deviation plots as described above. Position displacement is then esti-
mated along-with the other states mentioned in (1) using an EKF. Figure 2
shows a typical plot for the position estimation error standard deviation that
is estimated using the EKF. From Figure 2, it can be noted that the standard
deviation in the estimated antenna position, as expected, grows over time.
Also, the uncertainty in the x- and y-axes is similar while the z-axis has lower
uncertainty as compared to the x- and y-axes. For any small tilt error (ζ)
in the device orientation, the residual acceleration due to gravity on x- and
y-axis would be approximated by sin(ζ) and along z-axis it would be cos(ζ).
Using small angle approximation, sin(ζ) = ζ and cos(ζ) = 1. Therefore, as the
gravity acceleration is along the z-axis, the residual acceleration after removing
acceleration due to gravity would be larger along the x- and y-axes as compared
to the z-axis.

4 Cramér Rao Lower Bound for DoA Estima-
tion

In this section we will determine the CRLB for an antenna array where the
antenna elements are defined in 3D space using Cartesian coordinates. Two
different scenarios are considered to compute the CRLB. In section 4.1, the
CRLB is computed when true antenna positions are known and section 4.1
provides the derivation of the CRLB when the antenna positions are estimated
with an uncertainty associated with each antenna position.
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4.1 CRLB with Known Antenna Positions

An incoming radio signal received from a narrowband far-field source at an
antenna array comprising of N isotropic antenna elements can be defined as:

yr = αrs(φ, θ) + er, (13)

where yr ∈ CN×1 is the received signal vector, αr=ae
jb is the complex ampli-

tude of the received radio signal (where a is the amplitude and b is the phase),
er ∈ CN×1 is the complex Gaussian white noise having covariance matrix
Rr=σ2

rI, and s(φ, θ) is the array response vector and is given by:

s(φ, θ) = ejk(x cos(φ) sin(θ)+y sin(φ) sin(θ)+z cos(θ)), (14)

where x, y, and z are position coordinate vectors defining the antenna elements
in 3D space. Also, φ is the DoA of the incoming radio signal in the azimuth
whereas θ is the DoA in the elevation, and k=2πλ .

The probability density function of the received signal can be expressed as
[3]

p(yr; Θ) =
1

πNdet(Rr)
e−(yr−αrs(φ,θ))HR−1

r (yr−αrs(φ,θ)), (15)

where Θ=[a, b, φ, θ] are the unknown parameters. The Fisher information ma-
trix I(Θ) can then be found as:

I(Θ)ij = −Eyr [
∂2 ln p(yr; Θ)

∂Θi∂Θj
], (16)

where I(Θ)ij represents the (i, j)th element of the 4 × 4 Fisher information
matrix and i, j ∈ [a, b, φ, θ]. The expressions for the different entries in the
Fisher information matrix I(Θ) are determined as shown in (17)-(23):

−Eyr [
∂2 ln p(yr; Θ)

∂a2
] =

2N

σ2
r

, (17)

−Eyr [
∂2 ln p(yr; Θ)

∂b2
] =

2Na2

σ2
r

, (18)

−Eyr [
∂2 ln p(yr; Θ)

∂φ2
] =

2a2

σ2
r

k2
N∑
n=1

A2
n, (19)

−Eyr [
∂2 ln p(yr; Θ)

∂θ2
] =

2a2

σ2
r

k2
N∑
n=1

B2
n, (20)

−Eyr [
∂2 ln p(yr; Θ)

∂b∂φ
] = −2a2

σ2
r

k

N∑
n=1

An, (21)
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−Eyr [
∂2 ln p(yr; Θ)

∂b∂θ
] =

2a2

σ2
r

k

N∑
n=1

Bn, (22)

−Eyr [
∂2 ln p(yr; Θ)

∂φ∂θ
] = −2a2

σ2
r

k2
N∑
n=1

AnBn, (23)

where

An = (xn sin(φ)− yn cos(φ)) sin(θ), (24)

Bn = (xn cos(φ) + yn sin(φ)) cos(θ)− zn sin(θ). (25)

The remaining elements of the Fisher information matrix are computed to be
zero. The CRLB can then be obtained as the inverse of the Fisher information
matrix.

4.2 CRLB with Estimated Antenna Positions

If the true antenna positions are not known but we have an estimate of the
antenna position, e.g., for the nth antenna element where n=1, 2, · · · , N , let’s
assume (xn, yn, zn) corresponds to the true antenna position represented in the
3D space and ∆xn,∆yn,∆zn are the position errors along the x-, y-, and z-
axis respectively. Then, the estimated position coordinates can be represented
as (xn+∆xn, yn+∆yn, zn+∆zn). Furthermore, the position errors for the nth

antenna element are modeled as independent zero mean white Gaussian noise
processes with variances σ2

xn , σ2
yn , and σ2

zn , for the x-, y-, and z-axis, respec-
tively. In this case, the unknown parameters would become 4 + 3N , and are
shown in (26)

Θ = [a, b, φ, θ,

∆x1,∆y1,∆z1,∆x2,∆y2,∆z2, · · · ,∆xN ,∆yN ,∆zN ]
(26)

Therefore, we will have deterministic unknown parameters as well as random
unknown parameters. With random unknown parameters, the Fisher informa-
tion matrix is defined as [4]

I(Θ)ij = I1(Θ)ij + I2(Θ)ij , (27)

where i, j ∈ Θ, set of unknown parameters as shown in (26), and the two
different elements of the Fisher information matrix are expressed as

I1(Θ)ij = −Eyr,Θ[
∂2 ln p(yr; Θ)

∂Θi∂Θj
] (28)

I2(Θ)ij = −EΘ[
∂2 ln p(Θ)

∂Θi∂Θj
]. (29)
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The elements of the Fisher information matrix in I1(Θ) can be found as shown
in (30)-(51), where l,m=1, 2, 3, · · · , N . Also, A1= cos(φ) sin(θ), A2= sin(φ) sin(θ),
and A3= cos(θ).

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂a2
] =

2N

σ2
r

(30)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂b2
] =

2Na2

σ2
r

(31)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂φ2
] =

2a2

σ2
r

k2
N∑
n=1

[(x2
n + σ2

xn) sin2(φ)

+(y2
n + σ2

yn) cos2(φ)− 2xnyn sin(φ) cos(φ)] sin2(θ)

(32)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂θ2
] =

2a2

σ2
r

k2
N∑
n=1

[{(x2
n + σ2

xn) cos2(φ)

+(y2
n + σ2

yn) sin2(φ)} cos2(θ) + (z2
n + σ2

zn) sin2(θ)

+2(xnyn cos(φ) sin(φ) cos(θ)− ynzn sin(φ) sin(θ)

−xnzn cos(φ) sin(θ)) cos(θ)] (33)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂b∂φ
] = −2a2

σ2
r

k

N∑
n=1

An (34)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂b∂θ
] =

2a2

σ2
r

k

N∑
n=1

Bn (35)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂φ∂θ
] = −2a2

σ2
r

k2
N∑
n=1

[{(x2
n + σ2

xn)

−(y2
n + σ2

yn)} sin(φ) cos(φ) sin(θ) cos(θ)

+xnyn(sin2(φ)− cos2(φ)) sin(θ) cos(θ)

−zn(xn sin(φ)− yn cos(φ)) sin2(θ)] (36)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂∆xl∂∆xm
] =


2a2

σ2
r

k2A2
1 if l = m,

0 if l 6= m.

(37)
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−Eyr,Θ[
∂2 ln p(yr; Θ)

∂∆yl∂∆ym
] =


2a2

σ2
r

k2A2
2 if l = m,

0 if l 6= m.

(38)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂∆zl∂∆zm
] =


2a2

σ2
r

k2A2
3 if l = m,

0 if l 6= m.

(39)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂∆xl∂∆ym
] =


2a2

σ2
r

k2A1A2 if l = m,

0 if l 6= m.

(40)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂∆xl∂∆zm
] =


2a2

σ2
r

k2A1A3 if l = m,

0 if l 6= m.

(41)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂∆yl∂∆zm
] =


2a2

σ2
r

k2A2A3 if l = m,

0 if l 6= m.

(42)

−Eyr,Θ[
∂2 ln p(yr; Θ)

∂b∂∆xn
] =

2a2

σ2
r

kA1 (43)

−Eyr,Θ[
∂2 ln p(yr; Θ)
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] =
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The remaining elements of I1(Θ) are found to be zero. The other part of the
Fisher information matrix, i.e., I2(Θ) can be found as shown in (52), where the
position errors are modeled as independent zero mean white Gaussian noise
processes at each antenna location and also for the x-, y-, and z-axes as well.

I2(Θ) =

[
04×4 04×3N

03N×4 Σ−1
3N×3N

]
(52)

where 04×4 is a 4×4 matrix of all zeros for the deterministic unknown parame-
ters and Σ3N×3N is a diagonal matrix representing the variance of the position
errors along its diagonal and is defined as Σ3N×3N = diag(σ2

x1
, σ2
y1 , σ

2
z1 , · · · ,

σ2
xN , σ

2
yN , σ

2
zN ), where the first three diagonal elements represent the position

error variance of the first antenna element and the last three elements define
the position error variance of the last antenna element, for x-, y-, and z-axis
respectively.
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Figure 3: An antenna array in 3D where different points in the plot
represent the antenna positions. The array is used to analyze the perfor-
mance of DoA estimation with known and estimated antenna positions
through CRLB plots.
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Figure 4: CRLB for estimating (φ) for a given DoA(30◦, 30◦) using the
antenna array shown in Figure 3. 1 s corresponds to 50 antenna elements
array obtained from IMU data samples where the IMU is sampled at a
rate of 20 ms.
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5 Results and Discussion

In this section, using the position estimation error standard deviation values
as shown in Figure 2, we have computed two CRLB plots for the two cases
mentioned in section 4, i.e., when the antenna positions are known and when
the antenna positions are estimated with an uncertainty. Radio signal centre
frequency is set as fc=2.4 GHz, and signal to noise ratio at the receiving an-
tenna elements is assumed to be 0 dB. An antenna array geometry as shown
in Figure 3 is defined in 3D where the origin is at the center of gravity of the
array. The CRLB plots are then obtained and are shown in Figure 4 for a given
DoA(30◦, 30◦). In the CRLB plots, x-axis represents the number of antenna ele-
ments that span the antenna array for different movement times. The sampling
time is used as 20 ms to simulate the IMU as well as radio samples. The given
sampling rate provides 50 antenna positions after 1 second of the movement
time and so on. In order to analyze the effect of growing standard deviation of
the position estimation error onto the DoA estimation accuracy, different move-
ment times are used such that each movement covers the same trajectory but
with different time by changing the speed of the movement. Thus, the number
of antenna elements that span the whole trajectory are varied but the array
shape is kept the same. The CRLB values are then calculated corresponding to
different movement times. From the plot when antenna positions are known it
can be seen that as time increases, i.e., more antenna elements are used to rep-
resent the antenna array, then the CRLB decreases because with the increase
of antenna elements the SNR is improved and the array resolution is enhanced
as well. Thus, the DoA estimation could be performed with better accuracy.
However, if the antenna positions are not known and are estimated with an
uncertainty whose standard deviation is also growing, then, in this case the
CRLB first decreases with increasing antennas. But, as time goes more than
3 second, we can observe that the CRLB plot starts to deviate from the plot
where the antenna positions are known and the difference between the two
CRLB plots grows over time. The growing standard deviation of the antenna
position estimation error plays a significant role in limiting the performance
of the DoA estimation as we observe for the case when antenna positions are
known. The standard deviation of the position estimation error is relatively
small in the beginning or for short integration times, but the standard deviation
grows over time and we can observe that the gap between the two CRLB plots
also grows over time as well. Therefore, it is found that an optimal time limit
should be determined in order to make the virtual antenna array where the
antenna positions are obtained with relatively small position estimation errors.
For the given standard deviation of the antenna position estimation errors, as
shown in Figure 2, the optimal time in terms of DoA estimation performance
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is found to be approximately 3-4 seconds, and after this time limit we can see
significant difference of the DoA estimation accuracy between the two CRLB
plots. Similar results can be seen when the SNR is set as 10 dB.

As described above, similar analysis can be performed to estimate the per-
formance of any random 3D antenna array if the antenna positions are known
with an uncertainty. Figure 5 shows an example of a random 3D antenna ar-
ray and in Figure 6 CRLB plots are shown. The two examples of 3D antenna
arrays illustrate the usefulness of the given framework to compute the CRLB
with known and estimated antenna positions. More detailed analysis of the
results in terms of DoA estimation accuracy w.r.t. the different array shapes
will be treated in our future work.

6 Conclusion

In this paper, we have shown that the performance of virtual antenna arrays
using inertial measurement units is limited by the growing standard deviation
of the antenna position estimation errors. The effect of stochastic error sources,
such as, white Gaussian noise and bias drift in the IMU measurements is in-
vestigated using EKF, which shows that the standard deviation of the position
estimation error grows over time. Furthermore, we have computed Cramér-Rao
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Figure 5: Example of a random 3D antenna array.
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lower bound (CRLB) if the antenna positions are known and if the antenna
positions are estimated with an uncertainty. Using these two CRLB values,
it has been shown that after a specific integration time, the increase in the
standard deviation of the position estimation error plays a significant role and
the increase in the number of antenna elements does not provide significant im-
provement in the performance of DoA estimation. For a low cost MEMS based
IMU making a typical 3D movement, the optimal integration/movement time
in terms of DoA estimation performance has been found to be approximately
3-4 seconds.
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Source Localization Using Virtual

Antenna Arrays

Abstract

Using antenna arrays for direction of arrival (DoA) estimation and source localization

is a well-researched topic. In this paper, we analyze virtual antenna arrays for DoA

estimation where the antenna array geometry is acquired using data from a low-cost

inertial measurement unit (IMU). Performance evaluation of an unaided inertial nav-

igation system with respect to individual IMU sensor noise parameters is provided

using a state space based extended Kalman filter. Secondly, using Monte Carlo sim-

ulations, DoA estimation performance of random 3-D antenna arrays is evaluated by

computing Cramér-Rao lower bound values for a single plane wave source located in

the far field of the array. Results in the paper suggest that larger antenna arrays can

provide significant gain in DoA estimation accuracy, but, noise in the rate gyroscope

measurements proves to be a limiting factor when making virtual antenna arrays for

DoA estimation and source localization using single antenna devices.
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1 Introduction

Direction of arrival (DoA) information at an antenna array of a mobile station
is very useful for positioning purposes. DoA information can be directly used
for triangulation to find the position of the mobile station in a given frame
of reference. In [1], a random 3-D antenna array is used for DoA estimation,
where, a virtual antenna array is formed by moving a single receive antenna in 3-
D and estimating the antenna position coordinates from inertial measurement
unit (IMU) measurements. Furthermore, in [2, 3], the effect of IMU sensor
noise on the allowable time-duration of the virtual antenna trajectory, and
consequently, on DoA estimation is provided. It has been shown that the length
of the virtual antenna arrays is limited by the growing standard deviation of the
antenna position errors. For an unaided inertial navigation system the standard
deviation of the position estimation error grows over time if there is not any
periodic correction made to the estimated position. However, the estimated
position with small to moderately large position errors can be obtained for
small integration times for which the uncertainty of the estimated position
remains within a specified limit [2, 4].

Several authors have made contributions in the literature for DoA esti-
mation with antenna arrays having antenna position perturbations. In [5],
the authors have provided a discussion on the optimality of a delay-and-sum
beamformer for antenna arrays with random antenna position perturbations.
If the antenna position errors are assumed to be random at different antenna
positions, their influence can be considered as if the signal to noise ratio (SNR)
of the received radio signal is decreased. It has been shown that, for small
to moderately large errors, conventional delay-and-sum beamforming would be
optimal to estimate DoA of a single source located in the far field of the array.
In [6, 7, 8], the authors have considered a scenario where more than one source
is present transmitting the radio signal and the array is perturbed with small to
moderately large antenna position errors. In those references, the authors have
suggested that antenna array calibration and DoA estimation can be performed
simultaneously with some underlying assumptions to fulfill the identifiability
criterion for the joint estimation of antenna position errors and DoA of the
incoming radio signal.

Our first main contribution in this paper is to investigate the effect of each
individual IMU noise source on the performance of an unaided inertial nav-
igation system. For this purpose, using the extended Kalman filter (EKF)
that has been formulated in [2], we provide a detailed study of the effect of
individual IMU noise sources on the unaided navigation system performance.
Acceleration and rate gyroscope measurements from the IMU are used allow-
ing six degrees of freedom inertial navigation system. In [9], the authors have
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analyzed mean drift in the static IMU position using Monte Carlo simulations
where the IMU was considered static and stochastic errors in the IMU data
are used as measurements from the IMU. Another approach in the literature is
to derive complex analytical expressions to determine the effect of IMU noise
sources on the navigation system performance [4]. We provide a direct and
simple approach to analyze the results of position estimation error standard
deviation vs. time of an unaided inertial navigation system w.r.t the different
IMU sensor noise parameters using an EKF.

It is also of interest to study how the DoA estimation or source localization
problem is affected by the shape of a virtual antenna array. In this regard, our
second contribution is to provide a detailed Cramér-Rao lower bound (CRLB)-
based study of DoA estimation from random 3-D antenna arrays assuming
perfect knowledge of the antenna elements. We provide mean standard devia-
tion of the DoA estimation error for random 3-D antenna arrays using Monte
Carlo simulations. Different SNR values and different array lengths in terms
of allowed time-duration for making virtual antenna arrays are considered for
the simulations.

Our idea is to to make virtual antenna array where the antenna location is
tracked using IMU measurements of acceleration and angular speed for short
integration times; and then doing DoA estimation for positioning and source
localization purposes. The paper discusses fundamental limitations of this tech-
nique and brief results about the achievable accuracy of DoA estimation using
such antenna arrays are provided. The results from the first part of the study
helps us to identify the allowed time-duration for making the virtual antenna
array using the IMU measurements. While, the second part discusses about
the mean DoA estimation performance that can be achieved using random 3-D
antenna arrays if a single source is present in the far field.

The paper is organized as follows. Section 2 demonstrates how the IMU data
is simulated for random trajectories in 3-D. The effect of IMU measurement
noise on the unaided inertial navigation system performance is determined in
Section 3. A brief description on the use of CRLB followed by Monte Carlo sim-
ulation results for DoA estimation are given in Section 4. Finally, a summary
of results, and conclusion are given in Section 5.

2 IMU Data Generation

Using the Singer motion model, which can be used to model maneuvering of a
moving object having time correlated acceleration, a random trajectory can be
made in 3-D as described in [2, 10, 11]. With the Singer model, acceleration
and rotation rate data samples are generated with a first-order Gauss-Markov
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process. The discrete-time equivalent for the acceleration data samples is given
as [10, 11]

ak+1=adak + bdνak , (1)

where ak ∈ R3 is the acceleration at time index k, ad=e
−Tsτa , bd=

∫ Ts
0
e−

t
τa dt,

νak is white Gaussian noise at time index k, Ts is the sample time, and τa is
the maneuver time constant. The variance of the moving object’s acceleration
σ2
acc can be defined as [10]

σ2
acc =

a2
max

3
(1 + 4Pmax − P0), (2)

where amax is the maximum acceleration during object’s maneuver; Pmax and
P0 model the probability of having maximum acceleration and zero acceleration
during the maneuver. σ2

νa , the variance of the white Gaussian noise process
that drives the Gauss-Markov process in (1) is computed as

σ2
νa =

1− a2
d

b2d
σ2
acc. (3)

Similarly, rotation rate data samples are generated as well using the Singer
model.

2.1 Random 3-D Antenna Array Coordinates

Using the Singer model, acceleration and rotation rate data is generated for
each of the three coordinate axis. For a typical movement by holding an IMU in
hand (e.g. a smart phone equipped with an IMU and a single antenna receiver),
values of the different parameters in the Singer model are set as τa=2.5 s,
amax=1 m/s

2
, P0=0.99, and Pmax=0.01. For rotation rate data, the maximum

angular speed is set as wmax=600 deg/s while the remaining parameters are
the same as are used for the acceleration data. Similar parameter settings for
each of the three coordinate axis are used for the acceleration as well as for
the angular speed. A sample realization of the simulated acceleration during
10 seconds is shown in Figure 1 for each of the three coordinate axes. Simple
double integration of the acceleration along each of these three coordinate axes
provides the position displacement in each axis as shown in Figure 2. A 3-D
plot of the same position displacement data is shown in Figure 3, where the
origin is defined at the center of gravity of the array.
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Figure 1: Example plot of acceleration data in Cartesian coordinates
using the Singer model.
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Figure 2: Position displacement calculated by double integration of the
acceleration data shown in Figure 1.



Source Localization Using Virtual Antenna Arrays 125

−2

0

2

−4

−2

0

2
−0.5

0

0.5

1

X−axis [m]Y−axis [m]

Z
−

a
x
is

 [
m

]

Figure 3: Trajectory from position estimates shown in Figure 2 plotted
in 3-D. Origin is defined at the center of gravity of the array.

3 IMU Sensor Noise and Inertial Navigation
System Simulation

For a low cost MEMS based IMU, white Gaussian noise and bias instability in
the IMU measurements are the main sources of errors in the position estimates
in an unaided inertial navigation system for short integration times [2]. These
stochastic errors are typically quantified using Allan variance analysis [12, 13].
Using static IMU data as shown in [2], their numerical values are calculated
and are given in Table 1. The IMU used in the measurements is a Phidget-1044
which is a low cost MEMS based IMU and it provides 3-axis acceleration and
rotation rate measurements [14].

Table 1: Noise Parameters for Accelerometer and Gyroscope [2]

VRW / ARW Bias Instability

Accelerometer 5.86×10−4 m/s/
√

s 2.85×10−4 m/s2(at 115 s)
Gyroscope 1.63×10−2 deg /

√
s 7.5×10−3 deg /s(at 115 s)

The sensor noise parameters in Table 1 are used as nominal noise parame-
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ters to simulate noise in the acceleration and rotation rate data samples in the
following subsections. Using the state space model in the EKF, antenna posi-
tion coordinates are estimated along-with other parameters in the state vector.
After each iteration of the EKF, the estimation error covariance matrix is also
obtained for the parameters in the state vector. Position estimation error stan-
dard deviation results from the EKF are then used to investigate the effects
of stochastic errors in the accelerometer and rate gyroscope measurements, as
given in the following sections 3.1, 3.2 and 3.3.

3.1 Accelerometer Noise

In order to investigate the effect of accelerometer noise on the position estima-
tion error, it is assumed that the device’s initial orientation is known and that
there is no noise in the gyroscope measurements.

Velocity Random Walk (VRW)

By using the nominal value of the VRW noise parameter given in Table 1
and setting the bias instability noise in the accelerometer measurements to
zero, the state vector is estimated from the EKF along-with the estimation
error covariance matrix. Figure 4 shows the standard deviation of the position
estimation error vs. time for each of the three coordinate axes. It can be
noted from the plots that all of the three coordinate axes overlap each other.
This suggests that if the accelerometer white Gaussian noise is the only noise
source in the IMU measurements, then similar position estimation error will
be observed for each of the three coordinate axes. Furthermore, by changing
the VRW noise parameter to twice and half of the nominal value, the position
estimation error standard deviation results from the EKF are obtained as shown
in Figure 4. These results indicate that the standard deviation of the position
estimation error is directly proportional to the VRW noise parameter.

Acceleration Bias Drift

By using the nominal value of the bias instability noise parameter for the
accelerometer measurements given in Table 1 and setting the VRW noise pa-
rameter to zero, the state vector is estimated from the EKF along-with the
estimation error covariance matrix. Figure 5 shows the standard deviation of
the position estimation error vs. time for each of the three coordinate axes.
The plots show that the position estimation error for the three coordinate axes
is different in each axis. Due to the fact that the bias drift is a time correlated
process and it is independent in each axis, different position estimation error
standard deviation results are observed for each axis. Further, by varying the
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the nominal value given in Table 1 to study its effect on the navigation
system performance.
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standard deviation of the white Gaussian noise that drives the accelerometer
bias drift process, results for the standard deviation of the position estimation
error are also obtained from the EKF as shown in Figure 5. These results il-
lustrate that the standard deviation of the position estimation error is directly
proportional to the bias instability noise parameters.

VRW and Acceleration Bias Drift

By using the nominal values of the VRW and bias instability noise parame-
ters for the accelerometer measurements given in Table 1, the state vector is
estimated from the EKF along-with the estimation error covariance matrix.
Figure 6 shows the standard deviation of the position estimation error vs. time
for each of the three coordinate axes. From the plot it can be noted that the
VRW is the dominant error source as compared to the acceleration bias drift
in unaided inertial navigation system for short integration times of about 4-6 s.
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Figure 5: Plot of the standard deviation of the position estimation
error for the three coordinate axes vs. time with bias instability noise
only. Bias instability noise parameter is also changed from the nominal
value given in Table 1 to study its effect onto the navigation system
performance.
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Figure 6: VRW and bias instability noise in the accelerometer mea-
surements is considered using nominal values as given in Table 1. Plot
of the standard deviation of the position estimation error for the three
coordinate axes vs. time with accelerometer noise only.
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3.2 Gyroscope Noise

In order to investigate the effect of gyroscope noise on the position estimation
error, it is assumed that the device’s initial orientation is known and that there
is no noise in the accelerometer measurements.

Angle Random Walk

By using the nominal value of the ARW noise parameter given in Table 1 and
setting the bias instability noise in the gyroscope measurements to zero, the
state vector is estimated from the EKF along-with the estimation error covari-
ance matrix. Figure 7 shows the standard deviation of the position estimation
error vs. time for each of the three coordinate axes. From the plot, it can
be observed that the estimation error standard deviations in the horizontal
axes are larger as compared to the vertical axis. Any tilt error ζ in the orien-
tation estimate of the IMU projects the gravity acceleration incorrectly onto
the horizontal axes and vertical axis. The component of gravity acceleration
onto the horizontal axes is projected as g sin(ζ), while the component that is
projected onto the vertical axis is g(1 − cos(ζ)). Using small angle approxi-
mation, sin(ζ) ≈ ζ and cos(ζ) ≈ 1, which means that the residual acceleration
due to gravity along the horizontal axes is larger as compared to the vertical
axis. This leads to larger position estimation errors along the horizontal axes
as compared to the vertical axis. Similar results can be found in [9]. Further-
more, by changing the ARW noise parameter to twice and half of the nominal
value, the position estimation error standard deviation results from the EKF
are obtained as shown in Figure 7. These results indicate that the standard
deviation of the position estimation error is directly proportional to the ARW
noise parameter.

Rotation Rate Bias Drift

By using the nominal value of the bias instability noise parameter for the
gyroscope measurements given in Table 1 and setting the ARW noise parameter
to zero, the state vector is estimated from the EKF along-with the estimation
error covariance matrix. Figure 8 shows the standard deviation of the position
estimation error vs. time for each of the three coordinate axes. Due to the bias
drift, tilt errors result in the orientation estimate and consequently residual
accelerations due to gravity in each of the coordinate axes. Figure 8 shows
that the position estimation error standard deviations in the horizontal axes
are also larger as compared to the vertical axis due to the bias drift in the
gyroscope measurements. The explanation is similar as given in Section 3.2.
Further, by varying the standard deviation of the white Gaussian noise that
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Figure 7: Plot of the standard deviation of the position estimation error
for the three coordinate axes vs. time with ARW noise only. The x-
and y-axis plots overlap each other while the z-axis has smaller standard
deviation as compared to the horizontal axes. The ARW noise parameter
is also changed from the nominal value given in Table 1 to study its effect
on the navigation system performance.
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drives the gyroscope bias drift process, results for the standard deviation of the
position estimation error are also obtained from the EKF as shown in Figure
8. These results indicate that the standard deviation of the position estimation
error is directly proportional to the bias instability noise parameters.

ARW and Rotation Rate Bias Drift

By using the nominal values of the ARW and bias instability noise parameters
for the gyroscope measurements given in Table 1, the state vector is estimated
from the EKF along-with the estimation error covariance matrix. Figure 9
shows the standard deviation of the position estimation error vs. time for each
of the three coordinate axes. From the plot it can be noted that the ARW is
the dominant error source as compared to the gyroscope bias drift in unaided
inertial navigation system for short integration times of about 4-6 s.
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Figure 8: Plot of the standard deviation of the position estimation
error for the three coordinate axes vs. time with bias instability noise.
The bias instability noise parameter is also changed from the nominal
value given in Table 1 to study its effect onto the navigation system
performance.
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Figure 9: Plot of the standard deviation of the position estimation
error for the three coordinate axes vs. time with gyroscope noise only
when ARW and bias instability noise in the gyroscope measurements is
considered.
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3.3 Both Accelerometer and Gyroscope Noises

By using the nominal values of the accelerometer and the gyroscope noise
parameters given in Table 1, the state vector is estimated from the EKF along-
with the estimation error covariance matrix. Figure 10 shows the standard
deviation of the position estimation error vs. time for each of the three co-
ordinate axes. The plot shows how the standard deviation of the position
estimation error grows over time for an unaided inertial navigation system. It
can be noted that the noise in the gyroscope measurements or more specifi-
cally the white Gaussian noise or ARW in the rate gyroscope measurements
is the dominant error source in unaided inertial navigation systems for short
integration times of about 4-6 s.
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Figure 10: Plot of the standard deviation of the position estimation
error for the three coordinate axes vs. time. Accelerometer and gyro-
scope noise in the IMU measurements is considered using nominal values
given in able 1. The plot shows the effect of all the noise sources in the
accelerometer and rate gyroscope measurements.
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4 DoA Estimation using Monte Carlo Simula-
tions

Using a minimum variance unbiased estimator, the direction of arrival estimate
of an incoming radio signal received at an antenna array will be an optimal es-
timate in the maximum likelihood sense. The CRLB provides us such lower
bound on the minimum variance that can be achieved with a maximum like-
lihood estimator. We will use the same formulation as in [2] to calculate the
CRLB for a random antenna array of N isotropic antenna elements whose lo-
cations are known and are placed randomly in 3-D. In the calculations, the
radio signal carrier frequency is set to 2.4 GHz.

Monte Carlo simulation results are used to analyze the performance of ran-
dom antenna arrays in 3-D for DoA estimation. Firstly, this section provides
a brief illustration of DoA estimation performance using random 3-D antenna
arrays. Using 10 Monte Carlo simulations, random 3-D antenna array coordi-
nates are obtained for 10 different antenna arrays. As described in Section 2.1,
acceleration data is generated for 4 seconds using the Singer model and direct
double integration of the acceleration data is performed to obtain the true an-
tenna locations of the virtual array. Using the generated antenna arrays, CRLB
results for DoA estimation are then computed for different source locations and
the results are shown in Figure 11. In Figure 11, different colors are used for 10
different antenna arrays. Without any loss of generality, the source Elevation
angle is fixed at θ = 30 ◦ while the Azimuth angle φ is varied from 10 ◦ - 360 ◦

with a step of 10 ◦. The plots in Figure 11 show lower bound on the achievable
DoA estimation accuracy for a single plane wave source located in the far field
of the array at different source locations, for 10 different antenna arrays. It
can be noted that the effect of antenna array aperture w.r.t the source location
plays a significant role in DoA estimation accuracy. It is also worth mention-
ing that the model used to make random array shapes puts no constraint on
the volume spanned by the antenna array coordinates. Furthermore, using
500 Monte Carlo simulations, the mean standard deviation σavg of the DoA
estimation error is calculated for random 3-D antenna arrays as

σavg =
1

500

500∑
i=1

σi, (4)

where σi describes the mean DoA estimation performance for the ith antenna
array in the Monte Carlo simulations. σi is found by computing the CRLB val-
ues for different source locations, where the Elevation angle is fixed at 30 ◦ and
the Azimuth angle is varied from 10 ◦ - 360 ◦ with a step of 10 ◦. By averaging
the CRLB values corresponding to different source locations, the mean CRLB
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Figure 11: Plot of CRLB values w.r.t the source location angles for
10 different 3-D antenna arrays. Different colors correspond to different
antenna arrays.
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value σi is then determined. Table 2 shows the results of σavg for different
array lengths in terms of time-duration for making virtual antenna arrays and
for different SNR values.

Table 2: Mean standard deviation σavg of the DoA estimation error using
random 3-D antenna arrays.

SNR [dB] 0 10
Array Length [s] 4 6 4 6

σavg [deg] 8.8 3.1 2.8 1.0

The results in Table 2 illustrate the mean or the average performance of
random 3-D antenna arrays for DoA estimation. One antenna array could
have better DoA estimation accuracy in certain source location directions and
worse DoA estimation accuracy in some other source directions. An array
shape in 3-D might be devised for optimum DoA estimation for all azimuth-
elevation source directions. The results in Table 2 further show that the array
performance for DoA estimation improves significantly with increased array size
as compared to the increase in SNR. Similarly, for other values of the Elevation
angle, the mean standard deviation of the DoA estimation error results can be
obtained using the Monte Carlo simulations.

5 Summary and Conclusion

In this paper, we have shown the application of a state space based extended
Kalman filter to study the effect of individual IMU sensor noise parameters on
the performance of an unaided inertial navigation system. We have observed
that, for a typical low cost MEMS based IMU, noise in the rate gyroscope
measurements is the dominant error source for the position estimation error
for short integration times of about 4-6 s. Whereas, the accelerometer noise is
observed to be less significant as compared to the rate gyroscope noise. We
have also used Monte Carlo simulations to analyze the mean standard deviation
of the DoA estimation error for random 3-D antenna arrays. Simulation results
show that the array performance for DoA estimation improves significantly with
increased array size as compared to the increase in signal to noise ratio. The
results in the paper suggest that larger antenna arrays can provide significant
gain in DoA estimation accuracy, but, noise in the rate gyroscope measurements
proves to be the limiting factor when making virtual antenna arrays for DoA
estimation or source localization using single antenna devices.
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