148 research outputs found

    Soft Handoff in MC-CDMA Cellular Networks Supporting Multimedia Services

    Get PDF
    An adaptive resource reservation and handoff priority scheme, which jointly considers the characteristics from the physical, link and network layers, is proposed for a packet switching Multicode (MC)-CDMA cellular network supporting multimedia applications. A call admission region is derived for call admission control (CAC) and handoff management with the satisfaction of quality of service (QoS) requirements for all kinds of multimedia traffic, where the QoS parameters include the wireless transmission bit error rate (BER), the packet loss rate (PLR) and delay requirement. The BER requirement is guaranteed by properly arranging simultaneous packet transmissions, whereas the PLR and delay requirements are guaranteed by the proposed packet scheduling and partial packet integration scheme. To give service priority to handoff calls, a threshold-based adaptive resource reservation scheme is proposed on the basis of a practical user mobility model and a proper handoff request prediction scheme. The resource reservation scheme gives handoff calls a higher admission priority over new calls, and is designed to adjust the reservation-request time threshold adaptively according to the varying traffic load. The individual reservation requests form a common reservation pool, and handoff calls are served on a first-come-first-serve basis. By exploiting the transmission rate adaptability of video calls to the available radio resources, the resources freed from rate-adaptive high-quality video calls by service degradation can be further used to prioritize handoff calls. With the proposed resource reservation and handoff priority scheme, the dynamic properties of the system can be closely captured and a better grade of service (GoS) in terms of new call blocking and handoff call dropping probabilities(rates) can be achieved compared to other schemes in literature. Numerical results are presented to show the improvement of the GoS performance and the efficient utilization of the radio resources

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    Analytical modeling of HSUPA-enabled UMTS networks for capacity planning

    Get PDF
    In recent years, mobile communication networks have experienced significant evolution. The 3G mobile communication system, UMTS, employs WCDMA as the air interface standard, which leads to quite different mobile network planning and dimensioning processes compared with 2G systems. The UMTS system capacity is limited by the received interference at NodeBs due to the unique features of WCDMA, which is denoted as `soft capacity'. Consequently, the key challenge in UMTS radio network planning has been shifted from channel allocation in the channelized 2G systems to blocking and outage probabilities computation under the `cell breathing' effects which are due to the relationship between network coverage and capacity. The interference characterization, especially for the other-cell interference, is one of the most important components in 3G mobile networks planning. This monograph firstly investigates the system behavior in the operation of UMTS uplink, and develops the analytic techniques to model interference and system load as fully-characterized random variables, which can be directly applicable to the performance modeling of such networks. When the analysis progresses from single-cell scenario to multi-cell scenario, as the target SIR oriented power control mechanism is employed for maximum capacity, more sophisticated system operation, `feedback behavior', has emerged, as the interference levels at different cells depend on each other. Such behaviors are also captured into the constructed interference model by iterative and approximation approaches. The models are then extended to cater for the features of the newly introduced HSUPA, which provides enhanced dedicated channels for the packet switched data services such that much higher bandwidth can be achieved for best-effort elastic traffic, which allows network operators to cope with the coexistence of both circuit-switched and packet-switched traffic and guarantee the QoS requirements. During the derivation, we consider various propagation models, traffic models, resource allocation schemes for many possible scenarios, each of which may lead to different analytical models. All the suggested models are validated with either Monte-Carlo simulations or discrete event simulations, where excellent matches between results are always achieved. Furthermore, this monograph studies the optimization-based resource allocation strategies in the UMTS uplink with integrated QoS/best-effort traffic. Optimization techniques, both linear-programming based and non-linear-programming based, are used to determine how much resource should be assigned to each enhanced uplink user in the multi-cell environment where each NodeB possesses full knowledge of the whole network. The system performance under such resource allocation schemes are analyzed and compared via Monte-Carlo simulations, which verifies that the proposed framework may serve as a good estimation and optimal reference to study how systems perform for network operators

    Optimisation of server selection for maximising utility in Erlang-loss systems

    Get PDF
    This paper undertakes the challenge of server selection problem in Erlang-loss system (ELS). We propose a novel approach to the server selection problem in the ELS taking into account probabilistic modelling to reflect a practical scenario when user arrivals vary over time. The proposed framework is divided into three stages, including i) developing a new method for server selection based on the M/M/n/n queuing model with probabilistic arrivals; ii) combining server allocation results with further research on utility-maximising server selection to optimise system performance; and iii) designing a heuristic approach to efficiently solve the developed optimisation problem. Simulation results show that by using this framework, Internet Service Providers (ISPs) can significantly improve QoS for better revenue with optimal server allocation in their data centre networks

    Analytical modeling of HSUPA-enabled UMTS networks for capacity planning

    Get PDF
    In recent years, mobile communication networks have experienced significant evolution. The 3G mobile communication system, UMTS, employs WCDMA as the air interface standard, which leads to quite different mobile network planning and dimensioning processes compared with 2G systems. The UMTS system capacity is limited by the received interference at NodeBs due to the unique features of WCDMA, which is denoted as `soft capacity'. Consequently, the key challenge in UMTS radio network planning has been shifted from channel allocation in the channelized 2G systems to blocking and outage probabilities computation under the `cell breathing' effects which are due to the relationship between network coverage and capacity. The interference characterization, especially for the other-cell interference, is one of the most important components in 3G mobile networks planning. This monograph firstly investigates the system behavior in the operation of UMTS uplink, and develops the analytic techniques to model interference and system load as fully-characterized random variables, which can be directly applicable to the performance modeling of such networks. When the analysis progresses from single-cell scenario to multi-cell scenario, as the target SIR oriented power control mechanism is employed for maximum capacity, more sophisticated system operation, `feedback behavior', has emerged, as the interference levels at different cells depend on each other. Such behaviors are also captured into the constructed interference model by iterative and approximation approaches. The models are then extended to cater for the features of the newly introduced HSUPA, which provides enhanced dedicated channels for the packet switched data services such that much higher bandwidth can be achieved for best-effort elastic traffic, which allows network operators to cope with the coexistence of both circuit-switched and packet-switched traffic and guarantee the QoS requirements. During the derivation, we consider various propagation models, traffic models, resource allocation schemes for many possible scenarios, each of which may lead to different analytical models. All the suggested models are validated with either Monte-Carlo simulations or discrete event simulations, where excellent matches between results are always achieved. Furthermore, this monograph studies the optimization-based resource allocation strategies in the UMTS uplink with integrated QoS/best-effort traffic. Optimization techniques, both linear-programming based and non-linear-programming based, are used to determine how much resource should be assigned to each enhanced uplink user in the multi-cell environment where each NodeB possesses full knowledge of the whole network. The system performance under such resource allocation schemes are analyzed and compared via Monte-Carlo simulations, which verifies that the proposed framework may serve as a good estimation and optimal reference to study how systems perform for network operators

    STOCHASTIC MODELING AND TIME-TO-EVENT ANALYSIS OF VOIP TRAFFIC

    Get PDF
    Voice over IP (VoIP) systems are gaining increased popularity due to the cost effectiveness, ease of management, and enhanced features and capabilities. Both enterprises and carriers are deploying VoIP systems to replace their TDM-based legacy voice networks. However, the lack of engineering models for VoIP systems has been realized by many researchers, especially for large-scale networks. The purpose of traffic engineering is to minimize call blocking probability and maximize resource utilization. The current traffic engineering models are inherited from the legacy PSTN world, and these models fall short from capturing the characteristics of new traffic patterns. The objective of this research is to develop a traffic engineering model for modern VoIP networks. We studied the traffic on a large-scale VoIP network and collected several billions of call information. Our analysis shows that the traditional traffic engineering approach based on the Poisson call arrival process and exponential holding time fails to capture the modern telecommunication systems accurately. We developed a new framework for modeling call arrivals as a non-homogeneous Poisson process, and we further enhanced the model by providing a Gaussian approximation for the cases of heavy traffic condition on large-scale networks. In the second phase of the research, we followed a new time-to-event survival analysis approach to model call holding time as a generalized gamma distribution and we introduced a Call Cease Rate function to model the call durations. The modeling and statistical work of the Call Arrival model and the Call Holding Time model is constructed, verified and validated using hundreds of millions of real call information collected from an operational VoIP carrier network. The traffic data is a mixture of residential, business, and wireless traffic. Therefore, our proposed models can be applied to any modern telecommunication system. We also conducted sensitivity analysis of model parameters and performed statistical tests on the robustness of the models’ assumptions. We implemented the models in a new simulation-based traffic engineering system called VoIP Traffic Engineering Simulator (VSIM). Advanced statistical and stochastic techniques were used in building VSIM system. The core of VSIM is a simulation system that consists of two different simulation engines: the NHPP parametric simulation engine and the non-parametric simulation engine. In addition, VSIM provides several subsystems for traffic data collection, processing, statistical modeling, model parameter estimation, graph generation, and traffic prediction. VSIM is capable of extracting traffic data from a live VoIP network, processing and storing the extracted information, and then feeding it into one of the simulation engines which in turn provides resource optimization and quality of service reports

    Bandwidth allocation for wireless multimedia systems.

    Get PDF
    Chen Chung-Shue.Thesis (M.Phil.)--Chinese University of Hong Kong, 2001.Includes bibliographical references (leaves 100-102).Abstracts in English and Chinese.Chapter 1. --- Introduction --- p.1Chapter 1.1 --- Evolution to 3G Mobile --- p.2Chapter 1.1.1 --- First Generation --- p.2Chapter 1.1.2 --- Second Generation --- p.3Chapter 1.1.3 --- Third Generation --- p.3Chapter 1.2 --- UTRA Framework --- p.5Chapter 1.2.1 --- FDD and TDD --- p.6Chapter 1.2.2 --- Channel Spreading --- p.6Chapter 1.2.3 --- OVSF Code Tree --- p.8Chapter 1.3 --- Cellular Concepts --- p.10Chapter 1.3.1 --- System Capacity --- p.10Chapter 1.3.2 --- Multiple Access --- p.11Chapter 1.3.3 --- Resource Management --- p.15Chapter 1.4 --- Organization of the Thesis --- p.16Chapter 2. --- Analysis on Multi-rate Operations --- p.18Chapter 2.1 --- Related Works in Multi-rate Operations --- p.18Chapter 2.1.1 --- Variable Spreading Factor --- p.19Chapter 2.1.2 --- Data Time-multiplexing --- p.20Chapter 2.1.3 --- Multi-carrier Transmission --- p.21Chapter 2.1.4 --- Hybrid TDMA/CDMA --- p.23Chapter 2.2 --- Problems in Multi-rate Operations --- p.24Chapter 2.2.1 --- Conventional CDMA --- p.24Chapter 2.2.2 --- Data Time-multiplexing --- p.25Chapter 2.2.3 --- MC-CDMA --- p.25Chapter 2.2.4 --- TD-CDMA --- p.27Chapter 2.3 --- Multi-user multi-rate Operations --- p.28Chapter 3. --- Bandwidth Allocation --- p.29Chapter 3.1 --- Most Regular Binary Sequence --- p.30Chapter 3.1.1 --- Properties of MRBS --- p.31Chapter 3.1.2 --- Construction of MRCS --- p.32Chapter 3.1.3 --- Zero-one Sequence under MRBS --- p.33Chapter 3.2 --- MRBS in TD-CDMA --- p.35Chapter 3.2.1 --- Time Slot Optimization --- p.36Chapter 3.2.2 --- Sequence Generator --- p.37Chapter 3.3 --- Most Regular Code Sequence --- p.38Chapter 3.3.1 --- Properties of MRCS --- p.38Chapter 3.2.2 --- Construction of MRCS --- p.41Chapter 3.3.3 --- Fraction-valued Sequence under MRCS --- p.42Chapter 3.3.4 --- LCC and UCC --- p.45Chapter 3.4 --- MRCS in WCDMA --- p.46Chapter 3.4.1 --- Spreading Factor Optimization --- p.46Chapter 3.4.2 --- Code Generator --- p.48Chapter 3.4.3 --- Uplink and Downlink --- p.50Chapter 4. --- Multi-access Control --- p.52Chapter 4.1 --- Conflict and Resolution --- p.53Chapter 4.1.1 --- Conflicts in MRBS and MRCS --- p.53Chapter 4.1.2 --- Resolution with Buffering --- p.55Chapter 4.2 --- MRBS Transmission Scheduling --- p.56Chapter 4.2.1 --- Slot Scheduling on MRBS --- p.56Chapter 4.2.2 --- Properties of Scheduling Algorithm --- p.59Chapter 4.2.3 --- Scheduled MRBS --- p.71Chapter 4.3 --- MRCS Transmission Scheduling --- p.73Chapter 4.3.1 --- Slot Scheduling on MRCS --- p.73Chapter 4.3.2 --- Properties of Scheduling Algorithm --- p.75Chapter 4.3.3 --- Scheduled MRBS --- p.76Chapter 4.4 --- Performance Evaluation --- p.78Chapter 4.4.1 --- Simulation on Algorithm --- p.78Chapter 4.4.2 --- Resource Utilization and Delay Bound --- p.79Chapter 4.4.3 --- Blocking Model and System Capacity --- p.80Chapter 4.4.4 --- Numerical Analysis --- p.86Chapter 5. --- Conclusions and Future works --- p.92Appendix A --- p.94Appendix B --- p.98Bibliography --- p.10

    Queueing models for capacity changes in cellular networks

    Get PDF
    With the rapid development of cellular communication techniques, many recent studies have focused on improving the quality of service (QoS) in cellular networks. One characteristic of the systems in cellular networks, which can have direct impact on the system QoS, is the fluctuation of the system capacity. In this thesis, the QoS of systems with capacity fluctuations is studied from two perspectives: (1) priority queueing systems with preemption, and (2) the M/M/~C/~C system. In the first part, we propose two models with controlled preemption and analyze their performance in the context of a single reference cell that supports two kinds of traffic (new calls and handoff calls). The formulae for calculating the performance measures of interest (i.e., handoff call blocking probability, new call blocking and dropping probabilities) are developed, and the procedures for solving optimization problems for the optimal number of channels required for each proposed model are established. The proposed controlled preemption models are then compared to existing non-preemption and full preemption models from the following three perspectives: (i) channel utilization, (ii) low priority call (i.e., new calls) performance, and (iii) flexibility to meet various constraints. The results showed that the proposed controlled preemption models are the best models overall. In the second part, the loss system with stochastic capacity, denoted by M/M/~C/~C, is analyzed using the Markov regenerative process (MRGP) method. Three different distributions of capacity interchange times (exponential, gamma, and Pareto) and three different capacity variation patterns (skip-free, distance-based, and uniform-based) are considered. Analytic expressions are derived to calculate call blocking and dropping probabilities and are verified by call level simulations. Finally, numerical examples are provided to determine the impact of different distributions of capacity interchange times and different capacity variation patterns on system performance

    A distributed channel allocation scheme for cellular network using intelligent software agents

    Get PDF
    PhDAbstract not availabl
    • …
    corecore