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Abstract

The demand for mobile communications has grown remarkably in the last years.

An efficient allocation of communications channels is essential for ensuring good

performance of cellular networks, given the limited spectrum available.

Previous work on analogue and second-generation mobile communications has led

to several channel allocation schemes being proposed in order to maximise the

channel usage and minimise the call blocking probability. However, most of those

solutions have an entirely reactive approach, which limits their efficiency. Techniques

for increasing flexibility in radio resource acquisition are needed to handle the

heterogeneity of services and bit rates to be supported in the forthcoming generations

of mobile communications.

This thesis proposes a distributed channel allocation scheme using intelligent

software agents for cellular mobile networks. The main reason for using intelligent

software agents is to give greater autonomy to the base stations; this autonomy allows

an increase in flexibility to deal with new situations in traffic load as well as a

decrease in centralised information.

The work in this thesis demonstrates that intelligent software agents acting

collaboratively in a multi-agent system are able to increase the robustness of the

cellular network as a whole, to distribute the knowledge and to allow negotiation of

radio resources.

The major contribution of this work is to exploit the ability of intelligent software

agents to perform autonomous and intelligent negotiation to improve resource

allocation in a cellular network. Intelligent software agents have not been used for that

purpose before.



3

To God and to my parents



4

Acknowledgement

I would like to express my gratitude to Professor Laurie Cuthbert for his

supervision and for all support and continuous encouragement he gave me in all

moments of my stay at Queen Mary and Westfield College.

I also would like to thank Dr. Suthaharan Sivagnanasundaram for his helpful

suggestions at the beginning of my research.

Many thanks go to the staff of the Electronic Engineering Department, lectures,

secretaries and technicians who helped me during these four years.

During my studies, for many times it was not easy to go on with the work being

away from my family, at these times the welcoming environment I found at QMW

was very important. I would like to thank the colleagues and friends I met at the

department, specially, Husam, Tijana, Lisa, Felicia, Babul, Steven, Sutha, Sammy,

Robert, Veselin, Andy and Ho for the good time and for the friendship. In particular, I

would like to thank Arif Sultan Al-Hammadi for his priceless friendship and support.

I also would like to acknowledge the financial support I received from CAPES and

from CEFET-PR, without which my research at QMW would not have been possible.

Finally, my love and gratitude go to my family for the support and encouragement,

specially, to my mother.



5

Contents

Abstract.......................................................................................................... 2

Acknowledgement......................................................................................... 4

Contents......................................................................................................... 5

List of Figures................................................................................................ 9

List of Tables ................................................................................................12

Glossary ........................................................................................................13

Chapter 1 Introduction .................................................................................16

1.1 Introduction ........................................................................................................... 16

1.2 Contribution........................................................................................................... 17

1.3 Organisation of the Thesis..................................................................................... 18

Chapter 2 Mobile Networks .........................................................................19

2.1 Introduction ........................................................................................................... 19

2.2 The Cellular Concept............................................................................................. 23

2.2.1 Frequency Reuse ............................................................................................. 25

2.2.1.1 Reuse Plan and Channel Grouping ........................................................... 31

2.2.2 Cell Splitting ................................................................................................... 33

2.2.3 Other System Parameters ................................................................................ 34

2.3 Traffic Engineering in Mobile Networks .............................................................. 35

2.3.1 Traffic Characteristics ..................................................................................... 36

2.3.2 Assigning the Appropriate Number of Channels per Cell .............................. 37

2.3.3 Estimating the Number of Subscribers in the Cellular System....................... 39

2.3.4 Estimating Total Number of Cells .................................................................. 39



6

2.4 Channel Assignment Strategies ............................................................................. 39

2.4.1 Performance of Different Channel Allocation Schemes ................................. 42

2.4.1.1 FCA with Channel Borrowing and Channel Locking Schemes ............... 42

Hybrid Channel Borrowing Schemes................................................................ 43

Distributed Channel Borrowing Schemes ......................................................... 44

2.4.1.2 DCA Schemes........................................................................................... 50

Centralised DCA Schemes ................................................................................ 51

Distributed DCA Schemes ................................................................................ 51

2.4.1.3 Flexible Channel Assignment Schemes.................................................... 53

2.4.1.4 Performance Summary of Channel Allocation schemes .......................... 53

Chapter 3 Agents and Multi-Agent Systems ..............................................55

3.1 Introduction ........................................................................................................... 55

3.2 Agent Architectures............................................................................................... 58

3.2.1 INTERRAP: a Hybrid Agent Architecture ..................................................... 59

3.2.1.1 Control Architecture ................................................................................. 62

3.3 Multi-Agent Systems............................................................................................. 67

3.3.1 Market-based Control...................................................................................... 68

3.4 Multi-Agent Systems Applicability....................................................................... 69

Chapter 4 Application of Intelligent Software Agents for Frequency
Channel Assignment in Cellular Networks ................................................71

4.1 Motivation ............................................................................................................. 71

4.2 Specification of the Multi-Agent Based Channel Allocation Scheme .................. 72

4.3 Functional Specification of the Agent ................................................................... 75

4.3.1 Reactive Layer................................................................................................. 75

4.3.1.1 Differences between D-LBSB and D-BA schemes .................................. 76

4.3.1.2 Description of the D-BA........................................................................... 77

Borrowing Algorithm Re-execution Criteria..................................................... 79

Channel Assignment.......................................................................................... 80

4.3.2 Local Planning Layer ...................................................................................... 80



7

4.3.3 Co-operative Planning Layer .......................................................................... 81

4.3.3.1. First Phase of Negotiation........................................................................ 83

4.3.3.2 Second Phase of Negotiation: the Joint Plan Execution ........................... 86

4.4 Summary................................................................................................................ 90

Chapter 5 Simulation Modelling..................................................................91

5.1 Introduction ........................................................................................................... 91

5.2 Basic Cellular Model Description ......................................................................... 92

5.2.1 OPNET Network Model.................................................................................. 94

5.2.2 Mobile Station.............................................................................................. 95

5.2.2.1 Radio Interface ...................................................................................... 96

5.2.2.2 Call Generator Source Model ................................................................ 96

5.2.2.3 Call Server Module................................................................................ 96

5.2.2.4 Filter Module ......................................................................................... 97

5.2.2.5 Trajectory Module ................................................................................. 98

5.2.3 Base Station ................................................................................................. 99

5.2.3.1 Handoff Module .................................................................................. 100

5.2.3.2 User Controller Module....................................................................... 101

5.2.3.3 BIS Module ......................................................................................... 102

5.2.4 MTSO ........................................................................................................ 103

5.2.4.1 Call Manager Module.......................................................................... 103

5.3 Cellular Network with D-BA Simulation Model ................................................ 104

5.3.1 D-BA Module................................................................................................ 104

5.3.1.1 Signalling Message Exchange for Channel Borrowing.......................... 106

5.4 Cellular Network and Multi-Agent System Simulation Model........................... 111

5.4.1 Agent Simulation Model ............................................................................... 112

5.4.1.1 Signalling Message Exchange in the Co-operative Planning Layer....... 116

5.4.2 Handoff Module Modifications..................................................................... 124

5.4.3 Call Manager Module Modifications ............................................................ 125

5.5 Simulation Modelling Summary ......................................................................... 125



8

Chapter 6 Simulation Results and Analysis.............................................126

6.1 Simulation Modelling Verification and Validation............................................. 126

6.1.1 Verification and Validation of FCA Cellular Network Simulation Model... 126

6.1.2 Verification and Validation of the Cellular Network using the D-BA scheme

and the Cellular Network using the Multi-Agent System...................................... 134

6.2 Simulation Model Parameters and Traffic Load Scenarios................................. 135

6.3 Simulation Results for the Traffic Load Scenario 1 ............................................ 137

6.4 Simulation Results for the Traffic Load Scenario 2 ............................................ 141

6.5 Simulation Results for the Traffic Load Scenario 3 ............................................ 146

6.6 Simulation Results for the Traffic Load Scenario 4 ............................................ 152

6.7 Analysis of Simulation Results ........................................................................... 158

Chapter 7 Discussions and Conclusion ...................................................162

7.1 Discussion............................................................................................................ 162

7.2 Evaluation of the Multi-Agent System................................................................ 165

7.3 Future Work......................................................................................................... 166

7.4 Applicability to Other Mobile Networks............................................................. 167

7.5 Conclusion........................................................................................................... 168

Appendix A - Author’s Publications .........................................................170

References ..................................................................................................171



9

List of Figures

Figure 2. 1: Cellular band allocation ........................................................................... 19

Figure 2. 2: Cellular band allocation ........................................................................... 24

Figure 2.3: Co-ordinates for hexagonal geometry....................................................... 28

Figure 2.4: Worst case of interference in a 120o directional antenna.......................... 30

Figure 2.5: Formation of 7-cell compact pattern in anti-clock wise rotation .............. 31

Figure 2.6: Avoidance of adjacent channel interference by channel set distribution.. 32

Figure 2.7: Seven-cell frequency reuse plan ............................................................... 33

Figure 2.8: Trunking efficiency................................................................................... 38

Figure 2.9: Classification of mobile users in a cell from [DSJA97] ........................... 46

Figure 2.10: Channel assignment algorithm from [DSJA97]...................................... 49

Figure 3.1: Definition of agent types based in their predominant features [Nwa96] .. 57

Figure 3.2: The conceptual agent model ..................................................................... 60

Figure 3.3: The architecture of the agent..................................................................... 62

Figure 3.4: INTERRAP control layer.......................................................................... 64

Figure 3.5: Generic control paths ................................................................................ 66

Figure 3.6: Instances of local planning path and co-operative path ............................ 66

Figure 4.1: The architecture of the agent..................................................................... 74

Figure 4.2: FIPA Contract-Net Protocol ..................................................................... 82

Figure 4.3: Negotiation Strategy ................................................................................. 83

Figure 4.4: Successful first phase agent negotiation ................................................... 86

Figure 4.5: Examples of unsuccessful region selection............................................... 87

Figure 4.6: Execution of a joint plan ........................................................................... 90

Figure 5.1: Cellular network frequency planning........................................................ 94

Figure 5.2: OPNET network model for the cellular model ......................................... 95



10

Figure 5.3: Mobile station node model........................................................................ 96

Figure 5.4: Examples of random movements.............................................................. 99

Figure 5.5: Base station node model ......................................................................... 100

Figure 5.6: MTSO node model.................................................................................. 103

Figure 5.7: Base station node in D-BA cellular network model ............................... 104

Figure 5.8: Signalling message exchange in D-BA module...................................... 106

Figure 5.9: Signalling message exchange in a successful channel borrowing .......... 110

Figure 5.10: Signalling message exchange in unsuccessful channel borrowings ..... 111

Figure 5.11: Implementation of the conceptual agent model .................................... 112

Figure 5.12: Agent module integrated in the base station node ................................ 113

Figure 5.13: Process hierarchy inside agent module ................................................. 114

Figure 5.14: Signalling message exchange in the agent module (CPL).................... 116

Figure 5.15: Successful joint plan negotiation .......................................................... 122

Figure 5.16: Different cases of unsuccessful joint plan negotiation ......................... 123

Figure 5.17: Signalling message exchanges during the execution of a joint plan..... 124

Figure 6.1: Call blocking rate versus simulation time............................................... 127

Figure 6.2: Overall call blocking rate with 90% confidence interval........................ 130

Figure 6.3: Comparison of overall call blocking rate given by the FCA network model

simulation and Erlang B formula........................................................................ 131

Figure 6.4: FCA network using OPNET negative exponential distribution with mean

180s and a minimum call duration of 2s versus Erlang B .................................. 132

Figure 6.5: FCA network using OPNET negative exponential distribution with mean

180s and a minimum call duration of 15s versus Erlang B ................................ 133

Figure 6.6: Traffic blocking rate for traffic load scenario 1...................................... 139

Figure 6.7: Handoff rejection rate in traffic load scenario 1 ..................................... 140

Figure 6.8: Call dropping rate in traffic load scenario 1 ........................................... 140

Figure 6.9: Expected behaviour of MA against D-BA for traffic blocking rate ....... 141



11

Figure 6.10: Cellular network layout for nonuniform load distribution scenario 2 .. 142

Figure 6.11: Traffic blocking rate for traffic load scenario 2.................................... 142

Figure 6.12: MA versus D-BA: Borrowing algorithm (BA) results ......................... 143

Figure 6.13: Handoff rejection rate in traffic load scenario 2 ................................... 144

Figure 6.14: Call dropping rate in traffic load scenario 2 ......................................... 144

Figure 6.15: Cells 0, 26 and 36: Traffic blocking rate for traffic load scenario 2..... 145

Figure 6.16: Cellular network layout for nonuniform load distribution scenario 3 .. 146

Figure 6.17: Traffic blocking rate for traffic load scenario 3.................................... 147

Figure 6.18: Handoff rejection rate in traffic load scenario 3 ................................... 147

Figure 6.19: Call dropping rate in traffic load scenario 3 ......................................... 148

Figure 6.20: Traffic blocking rate in cell 43 for traffic load scenario 3 with different

borrowed channel release thresholds .................................................................. 149

Figure 6.21:Traffic blocking rate in cell 0 for traffic load scenario 3 with different

borrowed channel release thresholds .................................................................. 150

Figure 6.22: Traffic blocking rate in cell 26 for traffic load scenario 3 with different

borrowed channel release thresholds .................................................................. 151

Figure 6.23: Cellular network layout for nonuniform load distribution scenario 4 .. 152

Figure 6.24: Traffic blocking rate for traffic load scenario 4.................................... 153

Figure 6.25: Traffic blocking rate for traffic load scenario 4 with different values for

the borrowing algorithm re-execution delays ..................................................... 154

Figure 6.26: Number of borrowing algorithm runs for MA (left) and D-BA (right)

networks in scenario 4 versus Percentage of load increase (OPNET graphs) .... 155

Figure 6.27: Handoff rejection rate in traffic load scenario 4 ................................... 155

Figure 6.28: Call dropping rate in traffic load scenario 4 ......................................... 156

Figure 6.29:Traffic blocking rate in cell 0 for traffic load scenario 4 ....................... 156

Figure 6.30:Traffic blocking rate in cell 36 for traffic load scenario 4 ..................... 157



12

List of Tables

Table 4.1: Categories of communicative acts.............................................................. 82

Table 6.1: Simulation results and confidence interval calculations .......................... 130

Table 6.2: Average call holding time (simulated) ..................................................... 132

Table 6.3: Average call holding time (simulated) ..................................................... 134

Table 6.4: Simulated average call holding time ........................................................ 138

Table 6.5: Management handoff request performance.............................................. 159

Table 6.6: Output data for BA failure 4 of scenario 3............................................... 160



13

Glossary

ACO matrix Augmented Channel Occupancy matrix

AKB Assertional Knowledge Base

AMPS Advanced Mobile Phone System

ATM Asynchronous Transfer Mode

BBL Behaviour-Based Layer

BCO scheme Borrowing with Channel Ordering scheme

BDCL scheme Borrowing with Directional Channel Locking

scheme

BDI Beliefs, Desires and Intentions

BIS Busy/Idle Status

BS Base Station

C/I Carrier-to-Interference ratio

CBWL scheme Channel Borrowing Without Locking scheme

CC set Co-channel Cells set

CCS Circuit Centum Seconds

CDMA Code Division Multiple Access

CL process Co-operative Layer process

CNP Contract-Net Protocol

CP-based DCA scheme Compact Pattern-based DCA scheme

CPL Co-operative Planning Layer

CS scheme Channel Segregation scheme

DAI Distributed Artificial Intelligence

D-AMPS Digital AMPS

D-BA scheme Distributed Borrowing Algorithm scheme

DCA Dynamic Channel Assignment

DCS-1800 Digital Cellular System 1800

DECT Digital Enhanced Cordless Telephone

D-LBSB scheme Distributed Load Balancing with Selective

Borrowing scheme

DPS Distributed Problem Solvers



14

ES Extended Spectrum

ETSI European Telecommunication Standards Institute

FCA Fixed Channel Assignment

FCC Federal Communication Commission

FDMA Frequency Division Multiple Access

FIPA Foundation for Intelligent Physical Agents

FlCA Flexible Channel Assignment

FOCC Forward Control Channel

FPLMTS Future Public Land and Mobile Telecommunication

System

GOS Grade of Service

GSM Global System for Mobile Communications

HCC set Hot Co-channel Cells set

HLR Home Location Register

HNCC set Hot Non- Co-channel Cells set

IMT-2000 International Mobile Telecommunications at

2000MHz

INTERRAP INTEgration of Reactive behaviour and RAtional

Planning

LODA scheme Locally Optimised Dynamic Assignment scheme

LP-DDCA scheme Local Packing Dynamic Distributed Assignment

scheme

LPL Local Planning Layer

MA network Multi-Agent network

MAS Multi-Agent Systems

MIN Mobile Identification Number

MP scheme Maximum Packing scheme

MS Mobile Station

MSC Mobile Switching Centre

MT Mobile Terminal

MTSO Mobile Telephone Switching Office

NA-TDMA North American TDMA

NCC set Non-Co-channel Cells set

NES Non- Extended Spectrum



15

NMT Nordic Mobile Telephone

NTT Nippon Telegraph and Telephone Corporation

OPs Operational Primitives

PCN Personal Communication Network

PCS Personal Communication Services

PDC Personal Digital Cellular system

PoBs Patterns of Behaviour

PS process Planning, Scheduling & execution process

RECC Reverse Control Channel

RSS Received Signal Strength

SNR Signal-to-Noise Ratio

SB scheme Simple Borrowing scheme

SG process Situation recognition & Goal activation process

SHCB scheme Simple Hybrid Channel Borrowing scheme

TACS Total Access Communications System

TDMA Time Division Multiple Access

UMTS Universal Mobile Telephone System

VLR Visitor Location Register



16

Chapter 1 Introduction

1.1 Introduction

The first cellular networks were implemented using static frequency channel

assignment [MacD79]: after careful frequency planning, channels are assigned to cell

sites and these sets are not changed except for a new long-term reconfiguration. This

frequency channel assignment strategy is known as fixed channel assignment (FCA).

After configuration the fixed channel assignment is simple to use, but it does

constrain channel utilisation. If the traffic demand in a cell is greater than the number

of nominal channels, (i.e. the frequency channels assigned to that cell) all the excess

demand is blocked, regardless of the traffic conditions in other cells. This constraint is

too limiting for mobile networks and a more efficient allocation of communications

channels is vital for ensuring good network performance, given the limited spectrum

available.

Several strategies have been proposed to maximise frequency channel usage and

minimise the call blocking probability. The strategies have been divided into three

groups: variants of FCA, Dynamic Channel Assignment (DCA) and Flexible Channel

Assignment (FlCA).

Some channel assignment schemes presented in the literature have improved the

performance of FCA for different traffic densities (macro/micro/pico cellular

networks) over different traffic load conditions. However, most of the solutions

proposed have an entirely reactive approach: the response to a series of events follows

an algorithm that is prepared to react to specific situations. This limits their efficiency.

Even those schemes that contain adaptive features are not ideal: centralised versions

can become impractical because of high computational complexity and signalling

overhead; distributed versions can find local minima, unaware of global or even

neighbouring traffic situations, so degrading the global channel utilisation. The

schemes are not able to give sufficient autonomy and flexibility to base stations to

allow them to apply different ways of resource management for different situations.

This thesis proposes a distributed channel allocation scheme using intelligent

software agents for cellular mobile networks. The main reason for using intelligent
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software agents is to give greater autonomy to the base stations; this autonomy allows

an increase in flexibility to deal with new situations in traffic load as well as a

decrease in centralised information.

Agent technology is an interdisciplinary area of research that has received special

attention from the research community since the beginning of the 1990s. The

definition of an agent is controversial, but in general terms an agent can be described

as a hardware or software system with social ability that performs tasks with specific

aims in a complex and dynamic environment. Agents are capable of autonomous

actions to pursue their objectives, despite the occurrence of expected or limited

unexpected events.

This thesis applies agents to the problem of mobile resource allocation in such a

way that they do not work in isolation, but as a community. A community of agents is

a multi-agent system, such a system being defined as a group of agents with specific

roles in an organisational structure [Mül96]. The agents interact with the environment

and with each other in a co-ordinated way, as collaborators or competitors, seeking to

fulfil the local or global aims of the organisation.

The work in this thesis demonstrates that intelligent software agents acting

collaboratively in a multi-agent system are able to increase the robustness of the

network as a whole, to distribute the knowledge and to allow negotiation of resources.

1.2 Contribution

The major contribution of this work is to exploit the ability of intelligent software

agents to perform autonomous and intelligent negotiation to improve resource

allocation in a mobile network. This work is completely new: agents have not been

used for that purpose before.

A particular feature of the approach is to use the special internal architecture of the

agent inside each base station and the interaction between agents inside the multi-

agent system to perform reactive and planning operations.

Other contributions in this work are the development of a special utility function

and a new market-based control heuristic that are used during the agent negotiation

process.

Results justifying the value of the agent approach are presented.
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The author’s papers are listed in Appendix A.

1.3 Organisation of the Thesis

Chapter 2 gives a brief overview of the evolution of cellular mobile networks. It

shows how frequency planning is performed and how the frequency channels are

allocated to cells. This chapter also introduces important traffic engineering concepts

that are used throughout this thesis. It describes the different kinds of channel

allocation strategies and the features of the best-known channel allocation schemes

from the literature.

Chapter 3 is devoted to the theory of intelligent software agents. It describes their

main characteristics and the different agent architectures that have been proposed in

the literature. The particular agent architecture adopted in this work is then described

together with how it can be applied to telecommunications problems. Finally, the

chapter briefly describes the main properties of market-based control techniques.

Chapter 4 describes the functional specification of the multi-agent system as it is

applied to this problem. The abstract agent architecture described in Chapter 3 is

adapted to control the frequency channel assignment and the main functionality of

each part of the intelligent agent is fully described.

Chapter 5 discusses how simulation models for all the network control strategies

investigated were implemented in OPNET. Verification and validation of these

simulations are described in Chapter 6, which also includes the simulation results

comparing the multi-agent system implemented in this work with conventional FCA

and with a distributed channel allocation scheme described in the literature.

Chapter 7 gives a general discussion and evaluation of the work and also discusses

future work and the applicability of this approach in other types of cellular mobile

networks. Finally, a conclusion of the work is presented.
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Chapter 2 Mobile Networks

2.1 Introduction

In 1974, the Federal Communication Commission (FCC) allocated a 40 MHz band

in the 800 to 900 MHz frequency range for cellular communications. The Advanced

Mobile Phone Systems (AMPS) standard was introduced in 1979 and adopted by the

FCC. Licences were issued in the market in 1982. An additional 10 MHz band was

allocated in 1988 and called Expanded Spectrum (ES). The licences were divided into

two bands: Band A and band B. Cellular communication is full-duplex and the

frequency band is divided between both communication paths: 25 MHz is allocated to

the forward path or downlink, which is the path from the base station transmitter

towards the mobile terminal receiver. The other half is for the uplink or reverse path

in the opposite direction. The paths are separated by a 45 MHz guardband in order to

avoid interference between the transmission and reception channels. Figure 2.1

depicts the spectrum range occupied by AMPS.

A" A B A' B' A" A B A' B'

45MHZ

824

825 835 845

846.5

849

869

870 880 890

891.5

894

Figure 2. 1: Cellular band allocation

Bands A and B each occupy 12.5 MHz: 10 MHz is Non-Expanded Spectrum

(NES) and 2.5 MHz is ES. The 12.5  MHz bands are divided into 30kHz channels,

making a total of 416 channels per band. Twenty-one of these channels are used for

specific procedures like channel assignment, paging, messaging, etc. They are called

control channels. The remaining channels are used for conversation and called voice

channels. In AMPS, each frequency channel corresponds to a frequency carrier and

only one mobile can be assigned per channel. Therefore, AMPS is solely Frequency

Division Multiple Access (FDMA) and is an analogue cellular system.

In Europe, other analogue cellular systems were also introduced. The two cellular

systems mostly used in the European countries were Total Access Communications
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System (TACS) and Nordic Mobile Telephone (NMT). TACS was introduced in the

United Kingdom in 1982. The system operated at 900 MHz with a band of 25 MHz

for each path and a channel bandwidth of 25 kHz. Scandinavian countries in co-

operation with Saudi Arabia and Spain built NMT. The system operated at 450 MHz

and 900 MHz. The total bandwidth was 10 MHz with channel bandwidth of 25 kHz

and 200 channels. Both systems offered handoff and roaming capabilities. However

the cellular networks were totally incompatible between countries. Even countries like

Austria and Spain using the same NMT system were not compatible because of

different frequency allocation, channel bandwidth and protocols. The restriction of the

cellular service to mostly national territories made it clear that a future common

cellular system over Europe was required.

In Japan, Nippon Telegraph and Telephone Corporation (NTT) developed a system

at 800 MHz, similar to AMPS. Tokio received its first mobile telephone system in

1979. In 1985, the system operated over a spectrum of 30 MHz with 600 channels and

the channel bandwidth was 25 kHz.

The second generation of mobile communications, i.e. the digital cellular systems,

emerged in the 1990’s. In North America, additional standards were introduced for

digital cellular systems using the same frequency spectrum as AMPS. These standards

integrated other multiple access techniques in addition to FDMA.

The IS-54 standard, known as North American TDMA (NA-TDMA) or Digital

AMPS (D-AMPS), has integrated the Time Division Multiple Access (TDMA)

technique, where each frequency carrier is shared using time division by up to 6

mobile users (currently 3 mobile users).

In 1994, the IS-95 standard introduced the Code Division Multiple Access

(CDMA) technique. It is based on the spread-spectrum modulation in which multiple

users have access to the same band. Each mobile user is assigned a unique orthogonal

code, called a Walsh code. The 12.5 MHz of a band is divided in 10 CDMA bands of

1.25  MHz. Each CDMA band supports 64 Walsh codes. CDMA can offer about eight

times the capacity of analogue [Gar00].

In Europe, the Global System for Mobile Communications (GSM), the Pan-

European digital mobile telephony standards specified by the European

Telecommunication Standards Institute (ETSI) was introduced in 1982 [Meh96]. It is
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a TDMA system and operates at 890 MHz to 915 MHz for the uplink and from

935 MHz to 960 MHz for the downlink. The frequency carrier bandwidth is 200 kHz

which can be shared by 8 mobile users using time division. In 1992, the first GSM

system was deployed in Germany.

Personal Digital Cellular (PDC) is the digital cellular system standard in Japan.

The system is a TDMA cellular system operating at 800 MHz and 1.5 GHz. In

general, the PDC system is very similar to NA-TDMA. Three mobile users can share

each frequency carrier. For the 800 MHz range, the uplink bandwidth is between 810

and 826 MHz and the downlink between 940 and 956 MHz.

The success of the second-generation cellular technology, particularly with the

rapidly decreasing costs, has led to the prospect of capacity and service saturation.

Not only the growth of the cellular systems, but also the customers’ expectations of

using a multi-application terminal handset, providing voice, data and multimedia

services have made clear the limitations of the available spectrum. In order to supply

the personal communications needs of mobile users and in-building communications,

another range of the spectrum was allocated, and satellite systems for mobile

communication started being developed. In 1989, the United Kingdom promoted a

system called “Personal Communication Network” (PCN) to operate at 1.8 GHz. PCN

uses a version of GSM originally known as Digital Cellular System 1800 (DCS-1800)

and now called GSM-1800. In 1991, the FCC allocated 120 MHz of spectrum into

seven bands for the so-called wideband Personal Communication Services (PCS) at

1.85 GHz and narrowband PCS at 900 MHz. In Japan, the 1.5 GHz PDC was in

service in Osaka in 1994. In this high spectrum frequency, the wide-area mobility is

served by the TDMA or CDMA systems. Low-mobility systems can be served by

proprietary radio access technologies [Meh96].

The drastic growth in the use of mobile communications by public and business

sectors increased the pressure to integrate fixed and mobile networks. Now, mobile

networks are expected to have the same diversity of services offered by fixed

networks with the same quality of service and security. Also, full mobility capability

is expected. The mobile system needs to have the flexibility to integrate world-wide

the different types of mobile communication systems available today, such as public

and private cellular systems, data radio and satellite systems. These demands are

beyond the technological capabilities of the second generation of mobile
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communications. These pressures and developments in component technology,

network management and service engineering made inevitable the emergence of a

third generation of mobile communications. The aim of third generation systems is to

provide communication services from any person to any person at any place and at

any time through any medium using a compact light-weight terminal with guaranteed

quality of service and security. Two systems are being developed: Universal Mobile

Telephone System (UMTS) and Future Public Land and Mobile Telecommunication

system (FPLMTS) also called International Mobile Telecommunications at

2000 MHz (IMT-2000). The deployment of these systems will be in stages during the

first decade of the 2000’s.

UMTS will offer a common air interface covering home, office, car, train,

aeroplane or as a pedestrian. UMTS will integrate in one service all the services

offered by different mobile communications systems such as mobile telephone,

cordless telephone, public air radio, satellite radio, etc. It will allow users to roam

during an existing connection between different types of communication networks.

UMTS will offer broadband services, i.e. it will be possible to transmit voice, text,

data and images over one connection.

FPLMTS covers the same aspects as UMTS, however with uniform frequencies

world-wide. FPLMTS defines four air interfaces for dealing with different

requirements of densely or sparsely populated areas.

One of the key requirements of UMTS/FPLMTS is to have high spectral efficiency

and to achieve this requirement there is a need for flexible frequency management and

flexible management of radio resources. Frequency management in mobile networks

has been a hot topic for research in the past 20 years and the solutions proposed still

present a lack of intelligence and flexible behaviour. The technological advances

made in software and hardware in the last decade are providing the means to

introduce intelligence in control and management of networks. The introduction of

more intelligence and flexible behaviour in the management of channel allocation is

the objective of the work in this thesis.

The remainder of this chapter provides an understanding of the important aspects

involved in frequency channel assignment in mobile networks as introduced by the

cellular concept [Mac79]. The description of this approach is necessary because it
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was used in this work and in most of the schemes proposed in the literature. The main

characteristics of a cellular system (concerning frequency channel allocation) are

described and the different frequency channel assignment strategies are discussed; the

main schemes proposed in the literature are also described. Finally, the advantages

and disadvantages of the schemes concerning network performance are discussed.

2.2 The Cellular Concept

The cellular concept, conceived by Bell Systems under the AMPS standard in 1979

[MacD79], is a mobile network architecture composed ideally of hexagonal cells. The

cells represent geographic areas. Inside the cells, the users, called mobile stations

(MS) are able to start/receive communications while moving inside the cellular

network. Each cell has a base station (BS) which supplies frequency channels to the

mobile stations. Base stations in AMPS are known as cell sites. The cell sites are

linked to a mobile switching centre (MSC) called mobile telephone switching office

(MTSO) responsible for controlling the calls and acting as a gateway to other

networks. When an active user (i.e. a mobile station using a frequency channel)

reaches the boundary of the cell, it needs to change its current frequency channel for

another belonging to the neighbouring cell. This network procedure is known as

handoff or handover. An illustration of the AMPS mobile system architecture is given

in Figure 2.2.

The main objectives of AMPS for supplying a large-scale mobile-telephone service

were [Mac79]:

! Large subscriber capacity

! Efficiency use of spectrum

! Nationwide compatibility

! Widespread availability

! Adaptability to traffic density

! Service to vehicles and portables

! Regular telephone services and special services

! Quality of service in telephony

! Affordability
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Figure 2.2: Cellular band allocation

The essential features of the cellular system that made possible the achievement of

the above objectives were frequency reuse and cell splitting.

Frequency reuse refers to the use of the same frequency carrier in different areas

that are distant enough so that the interference caused by the use of the same carrier is

not a problem. The reason for the application of frequency reuse is twofold:

To reduce the cost of the land transmitter/receiver site by placing several moderate

power land sites to cover sub-areas (cells) of the designated area for use of the

network operator.

To greatly increase the number of simultaneous calls that can be covered by the

same number of allocated channel frequencies.

Cell splitting is the reconfiguration of a cell into smaller cells. This feature makes

it possible for the same network to service different densities of demand for channels.

Larger cells can serve low demand areas and smaller cells high demand areas. Cell

splitting is a long-term configuration planning that allows the system to adjust to a

growth in traffic demand in certain areas, or in the whole network, without any

increase in the spectrum allocation.
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2.2.1 Frequency Reuse

The distribution of the frequency channels in a cellular network is dependent on

several parameters, such as cellular geometry, signal propagation characteristics and

signal interference.

The assignment of frequency channels in the cellular concept is fixed, i.e. a set of

frequency channels is statically allocated to a cell. This same set is reused in another

cell distant enough to allow the use of the frequency channels with acceptable signal

interference. Cells that use the same set of frequency channels are called co-channel

cells and the distance between them is called co-channel reuse distance. The total

number of frequency carriers allocated to a network operator is divided in sets and

each set is assigned to a cell inside a cluster of cells. The cluster of cells forms a

pattern. The pattern is reused according to the co-channel reuse distance. The choice

of the number of cells per cluster is mainly governed by co-channel interference

considerations. A better understanding about signal propagation and cellular geometry

is needed in order to understand how frequency assignment is performed in a mobile

cellular system (e.g. AMPS).

The propagation path loss of a signal is a function of several factors, such as

environment, antenna type, antenna height, location, etc. Considering onmidirectional

antennas, the propagation path loss in a mobile radio environment is normally taken

as 40 dB per decade, i.e. the signal will suffer a 40 dB loss each 10 km [Lee95]. The

difference in power reception at two different distances d1 and d2 would be:

4

1

2
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2

−







=

d

d

C

C
(2.1)

where

C1 is the received carrier power at receiver 1

C2 is the received carrier power at receiver 2

d1 is the distance measured from the transmitter to receiver 1.

d2 is the distance measured from the transmitter to receiver 2.

Therefore, the signal strength is inversely proportional to the distance to the power

4. In decibel expression Equation 2.1 becomes:
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C
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C ==∆ (2.2)

In the same conditions, but in free space, the propagation path loss would be of

20 dB/10 km. In a real mobile radio environment the propagation path loss will vary

as:

γγγγαααα −=∆ dC (2.3)

Or in decibel:

dC log10log10 γγγγαααα ⋅−=∆ (2.4)

where

γγγγ  is the propagation path loss factor.

αααα  is a constant

d is the distance from the transmitter to the receiver

The γγγγ  parameter usually lies between 2 and 5; it cannot be lower than 2, the free-

space condition.

Co-channel interference occurs as a result of multiple uses of the same frequency

carrier. The carrier-to-interference ratio (C/I) is used to measure the amount of

interference over a specified carrier.

∑
=

=
IK

k
kI

C

I

C

1

(2.5)

where KI is the number of co-channel cells interfering in the first tier (the

interference of the second tier of co-channel cells can be neglected, see [Lee95]).

Assuming the local noise is much less than the interference level and can be

neglected, then the C/I can be expressed by Equation 2.6:

∑
=

−
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γ

γ

(2.6)

where
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γγγγ  is the propagation path loss factor.

D is the frequency reuse distance

R is the radius of the cell, defined as the distance from the centre of the cell to any

of its vertices.

Assuming, for simplicity, that Dk = D for all KI, the C/I of a cell site radiating in

all directions (omnidirectional antenna) can be represented (dB) by [Far96]:
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log10 (2.7)

After evaluation of the effect of co-channel interference on perceived quality of

service, it was decided that to obtain a good transmission quality for a channel, the

AMPS system must provide an C/I of 17dB or greater over 90% of its coverage area.

Solving the Equation 2.7 for D/R, with C/I equals to 17dB and taking the general

case of γγγγ  equal to 4 and the worst case of interference with KI equal to 6, the result is:

1642598.4
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(2.8)

A distance between the border of the cell and the cell site of the co-channel cell

greater than 4.17 cell radii will be enough to guarantee a good transmission quality.

After other signal propagation considerations (like Rayleigh fading in UHF), the

system designers of AMPS conclude that a radio frequency signal-to-noise ratio

(SNR) of 18 dB or higher should be applied for a working system. Practical

simulations, taking into consideration the specified 75% of the mobile users saying

that the voice quality is good or excellent in 90% of the coverage area, led a value of

D/R of 4.6 as illustrated in the Bell lab publication [Mac79].
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Figure 2.3: Co-ordinates for hexagonal geometry

Assuming the ideal case of hexagonal cells, the frequency reuse distance (D/R) can

be related to a finite set of cells N in a hexagonal cellular network. In [Mac79] a

convenient set of co-ordinates for hexagonal geometry was introduced. The positive

halves of the two axes intersect at a 60-degree angle, and the unit distance along either

axis is 3  times the radius of the cell (R), that corresponds to the distance between

the centre of two hexagonal cells (in cell radii) as illustrated in Figure 2.3. The

distance between the origin to any cell centre is given by:

22 jijiD ++= (2.9)

The vectors from the centre of any arbitrary cell and the six adjacent cells are

separated from each other by 60 degrees, this same observation is valid for the vectors

from a cell to its co-channel cells. Therefore, a cluster of contiguous cells can be

visualised as a large hexagon. It is not claimed that all kind of clusters will have a

hexagon shape, but a large hexagon can have the same area as any valid cluster. As

the distance between centres of adjacent cells is unity, the distance between centres of

the large hexagon is 22 jiji ++ . The pattern of large hexagons can be visualised as

an enlarged replica of the original cellular pattern with a scale factor of 22 jiji ++ .

Therefore, the number of cell areas contained in the area of the large hexagon is:

22 jijiN ++= (2.10)

From Equation 2.10, valid number of cells per cluster are 3, 4, 7, 9, 12, 13, 19, etc.
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Finally, the relation between the co-channel reuse distance (D/R) and the number

of cells per cluster can be found by combining the equations 2.9 and 2.10 and

replacing the unity by R3 :

N
R

D ∗= 3 (2.11)

Now, the minimum number of cells per cluster that is needed to meet the system

performance requirements can be determined. When considering omnidirectional cell

sites and a flat terrain, a cluster with 7 cells gives a 4.58 frequency reuse distance,

enough to comply with the performance requirements.

However, in practical systems when onmidirectional antennas are used a cell

cluster of 9 or 12 cells are implemented to guarantee the system performance

requirements and the reason for that is explained as follows.

A 7-cell cluster does not provide a sufficient frequency reuse distance separation

even when an ideal condition of flat terrain is assumed. This happens when the worst

case scenario for the mobile station is analysed. In the worst case, the mobile station

is at the boundary R, where it would receive the weakest signal from its own base

station. The distances from all six co-channel cells are: two distances of D – R, two

distances of D, and two distances of D + R.

Following the mobile radio propagation rule of 40 dB/10 km, [Lee95] explains

that:

C ∝ R-4 I ∝ D-4

Then

( ) ( ) 444
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R

I

C
(2.12)

For a D/R of 4.6, the value of C/I is 54 or 17 dB, which is lower than 18 dB. In real

systems as the site locations are imperfect and the terrain is not flat, the C/I received

is always worse than 17 dB and could be lower than 14 dB. Therefore, in an

omnidirectional-cell system, a cell cluster of 9 or 12 would be a correct choice,

because, even considering the shortest distance of D-R for all six interferes as worst

case, the values of C/I would be greater than 18 dB.
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The use of directional antennas can improve the C/I without the need to increase

the number of cells in the cluster. Figure 2.4 illustrates the worst case situation for a

cell site with three 120-degree directional antennas. The front-to-back ratio of a

sectored antenna is at least 10 dB, therefore the interference can be considered in only

one direction. For the 3-sector cell, the number of interfering cells is reduced to two.

Assuming the values of the distance of the interfering cells to the mobile station are

D+0.7R and D, then:

( ) 44

4

7.0 −−

−

++
=

DRD

R

I

C
(2.13)

Applying in Equation 2.13 the reuse distance for a 7-cell cluster of 4.6 results in a

C/I of 24.5 dB that greatly exceeds 18 dB. In real systems, the C/I could be 6 dB

weaker in a heavy traffic area as a result of irregular terrain contour and imperfect site

locations [Lee95], but in this case the C/I still would be adequate.

D

D + 0.7R

Mobile station

Figure 2.4: Worst case of interference in a 120o directional antenna

For a 4-cell cluster the frequency reuse distance is 3.46, applying to Equation 2.13

gives a C/I of 20 dB that may be unacceptable in situations where the C/I can become

6 dB weaker. A 6-sector antenna may be more appropriate for a 4-cell cluster, because

only one interferer at D+07R needs to be considered (Equation 2.14), giving a C/I of

26 dB when a frequency reuse distance of 3.46 is applied.

( ) 4

4

7.0 −

−

+
=

RD

R

I

C
(2.14)

Real systems deployed in less populated areas use onmidirectional antennas and

normally have a 12-cell cluster. In more populated areas, systems using 120-degree
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directional antennas use 7-cell or 4-cell clusters or 60-degree directional antennas

with 3-cell or 4-cell clusters.

2.2.1.1 Reuse Plan and Channel Grouping

When the number of cells per cluster is defined it is then necessary to determine

which channel set should be assigned to each cell. The frequency reuse layout of the

cellular system is easily assembled following a scheme that finds the nearest co-

channel cells of any cell of the network.

The scheme uses the hexagonal co-ordinates of Figure 2.3. In the scheme, i and j

are called shift parameters. Depending on their values different patterns are formed.

The chosen cell and its N-1 surrounding cells form a pattern known as a compact

pattern. The steps of the schemes are as follow:

! Choose any cell as reference;

! For each side of the hexagon: move i cells along that side, turn counter-clockwise

60 degrees and then move j cells on this new direction.

! Repeat the scheme to the surrounding cells of the initial reference cell which are

not found co-channel cells.

Figure 2.5 shows seven compact patterns in a 7-cell cluster cellular network (where

i=2 and j=1).

A

A

A

A

A

A

A

Figure 2.5: Formation of 7-cell compact pattern in anti-clock wise rotation



32

The co-channel cells can also be found by turning 60 degrees clockwise.

Therefore, two different frequency reuse configurations can be achieved when (i�0

and j�0) or (i�j).

The second phase is the channel grouping i.e. to determine what channels will

compose each set. When planning this distribution other signal interference needs to

be considered: the adjacent channel interference. In general, frequency filters require

a substantial spectral guard band to reject adjacent frequencies adequately. The

spacing of 30 kHz and peak deviation of 12 kHz in AMPS are not enough to do this.

Therefore, the assignment of channels for the same cell site is kept as far apart as

possible. The channels are numbered from 1 upward and the frequency difference

between channels is then proportional to the difference of their channel numbers. If N

disjoint channel sets are to be deployed, for example seven as in Figure 2.5, the nth set

would contain channels n, n + N, n + 2N, etc. For example, if N=7, the first set would

contain channels 1, 8, 15, etc. However, there is still a second source of adjacent

channel interference produced when adjacent channels are used in geographically

adjacent cell sites. Sets with adjacent set numbers have adjacent channels. In order to

avoid this source of interference, the sets in the cluster are located in a way that

minimises adjacent channel interference. Figure 2.6 shows the set distribution for a

12-cell cluster and for 7-cell cluster.
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Figure 2.6: Avoidance of adjacent channel interference by channel set distribution

As illustrated in Figure 2.6, it is impossible in a 7-cell cluster (or smaller) not to

have adjacent channels at adjacent cell sites. However, the use of directional antennas

allows each set be divided in sub-sets and distributed in the cell in such a way that
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channel adjacent interference is attenuated by the front-to-back ratio of the cell site

directional antennas. For more details see [Mac79] and [Far96].

In AMPS, from the 416 available frequency channels, 21 are assigned to be control

channels. For a 7-cell frequency plan, it was decided to divide all available

frequencies into 21 groups with one control channel assigned to each group. Three

groups were assigned to each one of the seven sets.
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Figure 2.7: Seven-cell frequency reuse plan

Different kinds of frequency reuse plans can be adopted in systems with other

numbers of cells per cluster. Other standards are more restricted regarding frequency

reuse plans. For example, GSM applies a 4-cell reuse plan and normally uses 120-

degree directional antennas [Meh96]. However, the aim of this section is to give a

general idea of the principal issues involved in frequency channel assignment in

AMPS, more detailed information about this subject can be found in the references.

2.2.2 Cell Splitting

Cell splitting allows the system to grow gradually in response to a growing demand

of traffic. It takes place by reducing the radius of a cell by half and splitting the old

cell into four new small cells. The reuse frequency can be used more often allowing

the traffic to grow four times in the same area where an old cell was placed. The ideal

location for new cells is the midway points between neighbouring existing cells.

Considering cell splitting in a 7-cell cluster system, the new cluster will present a

rotation of 120-degree counter-clockwise in relation to the larger cluster [Mac79]. The

channel set assigned to a new cell is the one that makes the new cell lie at a midway

distance between two of its nearest co-channel cells in the larger cluster, each one

situated approximately a larger cell diameter away from the new cell.
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When two or more sizes of cells co-exist in a mobile network, special attention

needs to be taken in order to guarantee that the minimum frequency reuse distance is

being respected. The use of channels in the new cell sites will not cause interference

problems in the larger system because the strength of the signal is smaller and

designed to comply with the constant D/R, but taking the radius of the small cell. The

problem comes with the channels of the co-channel cell in the larger system, because

the small cell is within the frequency reuse distance of the larger cell. One way to deal

with this problem is to use the overlaid-cell concept. In the overlaid-cell concept the

cellular network is seen as a superposition of the smaller cell pattern on top of the

complete larger cell pattern, and not only where the smaller pattern is in reality

deployed. Each cell face will divide its channels between a larger-cell group and a

smaller-cell group. The selected channels in the larger-cell group will be used in all

coverage area of a larger cell. The selected channels installed in the smaller cell will

compose the smaller-cell group of its larger co-channel cells. The formation and use

of the channel groups is then governed by the presence, or not, of real smaller cell

neighbours. For example, the use of any channel installed in a small cell must be

restricted to the smaller-cell overlay area in the nearest larger co-channels. If a mobile

user using a smaller-cell channel goes out of the perimeter of the small cell overlay on

the larger cell, it needs to handoff to a channel of the larger-group or to a

neighbouring cell if this is the case. Therefore, the presence of two sizes of cells in a

network reduces the capacity of some of the larger cells and can force their cell to

split even if they would not be split if only the growth of traffic in their areas would

had considered.

2.2.3 Other System Parameters

Other important parameters in a cellular network are cell-site position tolerance,

and maximum and minimum cell radius [Mac79]. The recommended values for these

parameters are based on best tradeoffs between customer capacity, cost restraints and

good transmission quality.

In a perfect cellular network the spacing of cell sites should be regular. However,

the installation of a cell site in the ideal position is generally not possible. AMPS

systems are allowed to position their cell sites up to one-quarter of the nominal radius

away from the ideal location [Mac79]. This decision was based on studies of the

impact of the cell site position on transmission quality. In general terms, the C/I falls
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at 10% of the overall C/I distribution. This level decreases gradually as the position of

the cell site goes from zero to one-quarter of the ideal position, but it decreases

sharply beyond this point. This is the main reason for the imposition on the position

tolerance limit.

The value for the maximum cell radius is a decision that needs to be taken in the

start up phase of the cellular system. It is a compromise between cost, forecast of

ultimate capacity and transmission quality. The transmission quality is defined as a

SNR of at least 18 dB in 90% of the coverage area. The maximum power level for

mobile terminals does not exceed 20 W (car portable). Considerations of the cost of

transmitter power and antenna height, the expected number of cell sites in mature

cellular system, signal propagation characteristics of the region being considered and

the maximum power level of mobile terminal will define the maximum radius of the

cell.

The minimum cell radius in a mature cellular system will have little effect on the

system cost per customer or on transmission quality, but it will significantly affect the

system capacity. The practical obstacles involved in small cells are the cell-site

position tolerance and, most importantly, the processing capacity of the system in

dealing with the burden of frequent handoffs.

There are other parameters that influence the frequency planning and cell site

engineering of cellular networks; however a deeper study in both subjects is beyond

the scope of this thesis.

2.3 Traffic Engineering in Mobile Networks

This section gives a basic understanding of traffic engineering and engineering

aspects of cell site provisioning in cellular communication systems.

Telecommunication network resources are limited and they need to be shared by

all the network users. The problems that arise from the necessity of sharing resources

are addressed by traffic engineering which tries to bring a balance between customer

satisfaction and revenue for network operators, i.e. to serve the greatest number of

customers with a specified system quality. Traffic engineers need to have a good

understanding of traffic distribution, traffic growth and customer requirements. In

mobile cellular networks, the results of their calculations will show how many
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customers will be served in a busy hour, how many subscribers can be taken by the

cellular system, how many cells are needed and how many channels per cell are

needed.

2.3.1 Traffic Characteristics

The intensity of two kinds of traffic can be measured: the offered traffic (the traffic

the network receives) and the carried traffic (the traffic the network successfully

carries).

The offered traffic varies during the day. It is normally low during the night, rises

in the opening business hours, goes down during lunchtime and rises again in the

afternoon. The two peaks in traffic, measured over an hour, represent the busiest

periods and are called busy-hour traffic. The daily variation in offered traffic intensity

is known as hourly variations. The intensity of the busy-hour traffic varies also

depending on the day of the week (month of the year) and these variations are known

as daily variations. The network operator needs to meet the demands of the average

busy-hour traffic if it is to be credible to its customers.

Traffic intensity can be measured using two dimensionless units: Erlang and

Circuit Centum Seconds (CCS).

The Erlang is a unit named in memory of Anders K. Erlang, the founder of traffic

theory. One Erlang is equivalent to one circuit (or trunk) in continuous use, and it can

be translated as the number of calls (made in one hour) multiplied by the duration of

these calls (in hours). Each call has a different duration or a different call holding

time; for traffic intensity measurements the average call holding time is taken into

account. This has different values for business or private subscribers, but the typical

values for average call holding time vary between 120 and 180 seconds. Therefore,

the traffic intensity in Erlangs can be defined as:

3600

 time(s))holding call (averagehour)an in  calls of(number 
)(

∗=inErlangsT  (2.15)

Traffic intensity can also be measured in CCSs. One CCS is equivalent to one

circuit in continuous use for 100 seconds. The traffic intensity measured in CCS is:

100

 time(s))holding call (average100s)in  calls of(number 
)(

∗=inCCSsT (2.16)
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If a call attempt is made when all circuits (channels in cellular networks) are

serving other calls, the call attempt will be blocked. The probability of call blocking

in a telecommunication network is called grade of service (GOS). The GOS of a

telecommunication network varies between zero and one. A GOS of 0.02 is normally

taken as acceptable for communication systems.

2.3.2 Assigning the Appropriate Number of Channels per Cell

In 1917, Erlang developed a very important equation, which express the

probability of a call being blocked (Pb), as a function of the offered traffic (T), and a

number of circuits (or trunks) (C).
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Using Equation 2.17 it is possible to determine the number of channels required to

support a certain offered traffic given the desirable GOS. Equation 2.17 is called the

Erlang B formula. It assumes that blocked calls are cleared and the caller will try

again later. Erlang developed another call blocking probability equation assuming that

a blocked call will be queued until it is established. That equation is known as Erlang

C formula.

Another important assumption made in Equation 2.17 is about the pattern of the

call attempts or call arrivals. The calls occur “individually and collectively at

random” [PS96]. The statistical distribution that can be used as a mathematical model

for this kind of arrival is the Poisson distribution. The Poisson distribution gives the

probability that a certain number of events will occur randomly during a particular

time interval. Experience over many years shows that this is a good approximation to

what happens in practice.

As an example of the use of the Erlang B formula in the determination of the

number of channels, assume that the average number of calls per hour in the busy-

hour is 880, the average call holding time is 180 seconds and the GOS of 0.02. The

offered traffic intensity by Equation 2.15 is 44 Erlang. Looking at Erlang B table for a

GOS of 2% (as found in [Lee95]), it is found that 54 channels are needed for an



38

offered traffic of 44 Erlang. Therefore the cell site should have at least 54 channels to

cope with an offered traffic intensity of 44 Erlang.

However, special attention needs to be paid to the channel utilisation efficiency

when assigning the number of channels per cell. Channel utilisation efficiency or

trunking efficiency (TE%) is defined as the percentile ratio of the offered traffic T in

Erlang and the number of channels C.

100(%) ∗=
C

T
TE (2.18)

The graph below shows the trunking efficiency curve in relation to the number of

trunks and the correspondent capacity in Erlangs of offered traffic that the system can

take care of, considering a grade of service of 0.02.

Given a GOS, the trunking efficiency increases as the number of trunks (channels)

increases. A cell with less than 15 channels has poor channel utilisation efficiency and

consequently is less cost effective and generates less revenue.
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Figure 2.8: Trunking efficiency

When a cell is divided in sectors there is a degradation of channel utilisation

efficiency. For example, a cell with 48 channels can receive traffic of 38.4 Erlang

(GOS 2%): its efficiency is 80%. If the cell is now divided in three sectors each one

having 16 channels, each sector can receive traffic of 9.83 Erlang. The total traffic

that the cell can cope now is 29.49 Erlang and the trunking efficiency is only 61.4%
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(29.49*100/48). Therefore, it is necessary to allocate more channels to cope with the

given offered traffic if the cell is divided in sectors.

2.3.3 Estimating the Number of Subscribers in the Cellular System

The number of subscribers in the system can be estimated assuming the relation

between the number of subscribers in the busy hour ( cηηηη ) and the number of calls per

hour per cell [Lee95]. The maximum number of calls per hour that a cell can take

depends on the number of channels allocated for that cell based on traffic conditions

under its geographic area. As an example, assume a system with seven cells, the

maximum number calls per hour in each cell is 2000, 1500, 500, 1000, 1200, 900,

800. Assuming that 60% of the subscribers will be using their mobile terminals during

the busy hour traffic ( cηηηη  = 0.6) and one call is made per mobile. The estimated

number of subscribers in the system M is:

166,13
6.0

7900 === ∑
c

cell per calls of number maximum
M

η
(2.19)

2.3.4 Estimating Total Number of Cells

The first step in the deployment of a cellular system is the acquisition of the traffic

distribution over the chosen service area. Firstly, the population density per square

kilometre is translated into traffic intensity (Erlang). The estimated offered traffic per

square kilometre is called bin. A grid of bins with different colours or patterns

overlays the service area. Each colour or pattern of a bin represents a different level of

offered traffic. The system designers superimpose hexagonal cell grids over the entire

service area already mapped into bins. The traffic intensity in each cell will be the

sum of the contained traffic bins. In this way, traffic engineers and system designers

can make all the calculations and select the hexagonal cell grid that provides the best

cost/benefit cellular system for the network operator.

2.4 Channel Assignment Strategies

The frequency channel assignment in the cellular concept is static, i.e. after careful

frequency planning, channels are assigned to cell sites and these sets will not change

except for a new long-term reconfiguration. Cell sites will only make use of the

assigned channel set or individual assigned channel sets per sector. This frequency
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channel assignment strategy is known as fixed channel assignment (FCA). After the

cellular system has been configured, the fixed channel assignment is simple to use.

However, it does constrain channel utilisation. If the traffic demand in a cell is greater

than the number of nominal channels, (i.e. the frequency channels assigned to that

cell) all the excess demand is blocked, regardless of the traffic conditions in other

cells. This constraint is very limiting for mobile networks and several strategies have

been proposed to maximise frequency channel usage and minimise the blocking

probability. The strategies have been divided into three groups: those based on FCA,

Dynamic Channel Assignment (DCA) and Flexible Channel Assignment (FlCA)

Two FCA variant strategies have been proposed: load sharing and channel

borrowing (with or without channel locking).

It is assumed in the load sharing strategy [Ekl86] [KE89] that there is an

overlapping coverage area between cells where mobiles can obtain a quality of

transmission from the neighbouring cell almost as good as that in their own. When

there is a call attempt and no more available channels [Ekl86], or when the channel

occupancy reaches a pre-defined threshold [KE89], the MSC may advise some mobile

users of the cell to check the transmission quality of channels in neighbouring cells.

For each one of them that can get acceptable transmission quality from a

neighbouring cell, a handoff request will be made to that cell and the mobile moved,

provided the cell has enough available channels to allocate one to the requesting

mobile user. In this way, the congested cell can have some of its nominal channels

freed and use them in the new call requests. This load sharing strategy is also known

as directed retry.

Schemes using a channel borrowing strategy differ from the original FCA concept

by allowing a cell to use some of the channels of other channel sets apart from its

own. The channel borrowing is performed when there are no more nominal channels

to serve call requests (new calls or handoffs) or when the channel occupancy reaches

a pre-defined threshold. Borrowed channels normally belong to other sectors of the

cell, neighbouring cells and in some cases from the cells of the compact pattern which

are not neighbours of the borrowing cell site [DSJ97] [DSJA97]. Channel borrowing

with channel locking strategy [TJ91] [ZY89] [DSJ97] [DSJA97] borrows a channel

from an adjacent cell, but prevents (totally or partially) the use of the borrowed

channel in the co-channel cells of the lender that are near to the borrower, taking into
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account the co-channel interference constraints. Channel locking reduces the traffic

capability of the network. To overcome this penalty, the schemes have also adopted

channel reassignment strategies. Channel reassignment is an intracellular handoff, i.e.

a mobile user is asked to change its current frequency channel for another one under

the control of the same base station. The channel reassignment is performed in such a

way that the blocking probability is decreased and the channel reuse maximised.

Channel borrowing without locking (CBWL) [JR94] [PAS96] strategy proposes the

use of a channel of a neighbouring cell. However, the borrowed channel is used with

reduced transmission power to avoid interference with the co-channel cells of the

lender that are near the borrower (inside the co-channel reuse distance).

In the DCA strategy [ZY89] [OL97] [YY94] [D-RFR96], there is no pre-

assignment of frequency channels to the cells of the cellular network. All frequency

channels are kept in a central pool. When there is a channel request in one base

station, the MSC chooses the appropriate frequency channel that gives maximum

channel efficiency taking into account all the signal interference constraints. The

channels are assigned for the duration of a call; after the call has finished, the channel

is returned to the central pool or reallocated to a mobile user inside the same cell site

that was controlling the channel before.

Finally, the FlCA strategy combines aspects of FCA and DCA strategies.

Some channel allocation schemes, using different channel assignment strategies,

have special features. There are schemes that have special policies to prioritise

handoff requests over new call requests. Handoff has direct impact on the perceived

quality of service. One of the important factors to improve the quality of cellular

service is to make handoffs nearly invisible to the user and successful. Unsuccessful

handoff requests are one of the main causes of forced call termination. Therefore,

some network operators select schemes that reduce the probability of forced call

termination at the expense of an increase in the blocking probability of new calls.

Other channel assignment schemes are specially designed for hierarchical cellular

networks [E-DWS89] [O-GA98]. A hierarchical cellular network is an overlaid

cellular system where clusters of microcells are covered by macrocells. The number

of channels is divided between the cluster of microcells and the macrocell. In

microcells, handoffs occur very often. If there are no available channels in the

microcells to perform a handoff, then a channel from the macrocell can be used. The
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borrowed channel is released as soon as possible, or for call release or for channel

reassignment. The drawback of using channel reassignment is an even higher increase

in intracellular handoffs.

There is a family of channel allocation schemes that are based on the reuse-

partitioning concept [KN96]. In the reuse-partitioning concept, each cell in the

cellular network is divided into two or more concentric sub-cells called zones. The

base station is located in the middle of the cell. The power level delivered to the zone

increases proportionally to the distance of the zone from the base station. Therefore,

the channel reuse distance for inner zones is smaller than outer zones, resulting in

higher spectrum efficiency. With reuse partitioning, the two main design issues are

how many channels to allocate to each zone and how the actual channel assignment is

performed. Based on these issues, fixed and adaptive reuse partitioning schemes have

been proposed [Hal83] [FA93]. Fixed reuse partitioning schemes allow up to three

times more traffic as FCA. However, they suffer the same kind of problem than FCA

when handling time-variant traffic conditions, so that adaptive schemes have been

proposed to try to overcome this drawback. Reuse partitioning schemes prove to be

unsuitable for microcellular systems because of the high frequency of handoffs

between zones and the separation of the microcell in zones is difficult due to

complicated deformed cell shapes.

2.4.1 Performance of Different Channel Allocation Schemes

The performance of a channel allocation scheme, using a determined channel

assignment strategy, is measured by the following network characteristics: blocking

probability of new call requests, probability of forced termination of ongoing calls,

number of handoff requests, delay in channel assignment and total carried traffic.

“In selecting a channel assignment strategy, the objective is to achieve a high

degree of spectrum utilisation for a given quality of service with the least possible

number of database lookups and simplest possible algorithms employed at the base

station and/or MSC” [TJ91].

2.4.1.1 FCA with Channel Borrowing and Channel Locking Schemes

The first proposed scheme in this category was the Simple Borrowing (SB) scheme

[KN96] [TJ91]. In this scheme, when an incoming call request arrives in the cell and

there are no more available nominal channels, the base station can borrow a channel
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from a neighbouring cell to serve the call request, provided this frequency channel

does not interfere with the existing calls. The MSC supervises the borrowing

procedure, following an algorithm that favours channels of cells with less traffic

demand. The cells (within a distance of one or two cell units away from the borrower

cell) that have a nominal channel of the same frequency as the borrowed channel will

not be able to use it because of the co-channel interference. Therefore, the MSC

“locks” the frequency channel in those cells. The MSC keeps a record of free, serving,

borrowed and locked channels. The SB scheme gets a lower call blocking probability

than FCA under light and moderate traffic conditions of the expense of additional

storage requirement at the MSC and the need for database lookups. In heavy traffic

conditions, the channel utilisation efficiency in SB is very much degraded because the

locked channels reduce the available capacity.

Some variations of SB tried to reduce the number of locked channels by applying

an exhaustive and complex search method to find the cell with the best candidate

channel. However, the performance results of these schemes proved to be comparable

to a much simpler SB variant scheme [KN96].

Hybrid Channel Borrowing Schemes

The main problem with the SB scheme is the absence of control in the number of

channels that can be lent by a cell; this is taken into account in the hybrid channel

borrowing schemes. In the Simple Hybrid Channel Borrowing Scheme (SHCB)

[KG78] the set of channels assigned to a cell is divided into two groups, A and B.

Group A channels are local channels that can only be used to serve call requests

inside the cell. Neighbouring cells can borrow channels of group B which are

“borrowable” channels. The ratio A:B is determined a priori, the optimum ratio

depends on the percentage increase in the traffic density.

The Borrowing with Channel Ordering (BCO) scheme [ESG82] also divides the

assigned nominal channels into two groups, but the local to borrowable ratio varies

dynamically according to the current traffic conditions. The channels of the cell are

ordered such that the first channel has the highest priority to be assigned to the next

local call, and the last channel is given the highest priority to be borrowed by

neighbouring cells. Each time a call is attempted, the most appropriate channel among

all free channels is chosen. If the base station performs this functionality, then the
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MSC needs to be informed about the resulting assignment. The MSC uses an adaptive

algorithm to calculate and update each channel probability of being borrowed, based

on traffic conditions. If the channel frequency is free in the three nearest co-channel

cells, only then the channel is suitable for borrowing. In order to increase the

availability of channels for borrowing or locking, some versions of BCO offer

channel reassignment. When a high-priority channel is released, this channel is

reallocated to an existing mobile user using the least-priority serving channel.

Borrowing with Directional Channel Locking (BDCL) [ZY89] is similar to BCO

with channel reassignment. However, BDCL uses an efficient way to lock channels.

When a channel is locked, it is locked only in the directions that would cause co-

channel interference. Cells located toward the free directions can borrow or lock the

channel.

The SHCB scheme performs better than FCA with light and moderate traffic.

Under heavy traffic load, the point where SHBC still outperforms FCA will be

dependent on the A:B ratio. BCO and BDCL schemes outperformed FCA in all kind

of traffic conditions under the simulation tests realised in [ZY89]. BDCL outperforms

BCO and also a dynamic channel allocation scheme called Locally Optimised

Dynamic Assignment Strategy (LODA). By incorporating directional locking and

channel reassignment BDCL obtains maximum packing of channels, increasing

channel reuse. To the knowledge of the author, BDCL is still the best FCA variant

scheme described in the literature.

Distributed Channel Borrowing Schemes

The FCA variant schemes with the best results (BCO and BDCL) use centralised

control inside the MSC. The MSC has to keep a record of free, serving, borrowed and

locked channels and to label them with updated priority. The need for a continuous

up-to-date global knowledge of the entire mobile network can lead to a slow response

and a heavy signalling load. To alleviate this problem, several authors have proposed

modifications to make the schemes more distributed. One example is the Distributed

Load Balancing with Selective Borrowing (D-LBSB) scheme [DSJA97] that performs

better than its centralised version [DSJ97] and also outperforms other existing

schemes like direct retry [Ekl86] and CBWL [JR94]. A further description of the D-

LBSB scheme is given below, because in the work of this thesis, the channel



45

allocation algorithm implemented inside the agent’s reactive layer is based on this

scheme.

D-LBSB scheme

The D-LBSB scheme migrates channels from a cell with available channels (called

“cold cell”) to an overloaded cell called a “hot cell”. Together with the borrowing

channel algorithm a channel assignment strategy is used, as described later.

Initially, C channels are allocated to each cell in the network. The classification of

a cell as hot or cold depends on its degree of coldness (dc), i.e., the ratio between the

number of available channels and C. If dc is less or equal than a determined threshold

h, then the cell is hot, otherwise it is cold. The determination of h depends on the

average call arrival and termination rates of the entire cellular network, C and also the

probability of channel borrowing rates from other cells. Typical values of h are 0.2, or

0.25. The mobile user in a cell is classified as new, departing or others according to

the rules shown in Figure 2.9.

The base station periodically monitors the quality of the received signal strength

(RSS) from each user through special control channels. If RSS of the user is less than

a certain threshold, the user is within one of the shaded peripheral regions in the

boundary of a cell.

It is supposed that the cell site transmitter is capable of transmiting information in

any of the frequencies of the available spectrum. A cold cell cannot borrow channels

and a hot cell cannot lend channels. Three parameters determine the suitability of a

cell to be a lender, L: degree of coldness dcL, nearness DBL and hot cell blockade

HBL. Nearness is the cell distance between the borrower cell B and the lender cell L.

The hot cell blockade is the number of hot co-channel cells of the lender that are non-

co-channel cells of the borrower.
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Figure 2.9: Classification of mobile users in a cell from [DSJA97]

The best lender is the cold cell in the compact pattern that maximise the value of

the following function [DSJ97]:
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Rcp is the radius of the compact pattern in terms of cell distance, which implies

pcBL RD ≤≤1 , also 60 ≤≤ BLH for hexagonal cellular geometry. The factors Rcp and

7 are used for normalisation. The value of the function is proportional to the degree of

coldness of the cell and inversely proportional to DBL and HBL. Another criterion is

the lender L should not be hot after lending a channel.

The base station stores the number of departing users heading towards the ith cell

in the ith element of the array NumDepart. The objective of this information is to

possibly borrow a channel from the neighbouring cell i and assign it to a departing

user heading towards that cell. The benefits of this strategy would be: low time of



47

channel locking, a soft handoff (a user would not have to select a different channel)

and DBL would have the minimum value, i.e. 1.

A hot cell needs to borrow channels until it reaches the average degree of coldness

(dcavg). When a cell becomes hot, the number of available channels is h C× , the

number of channels to be borrowed (X) to reach dcavg can be calculated by solving the

equation:

C

XCh
dcavg

+×= (2.21)

As seen in Figure 2.9, it can be assumed that r << R and the shaded portion of the

cell has an area approximately given by the product of the perimeter (p) of the cell

times r. The rate of call arrivals is assumed to follow a uniform spatial distribution

within the cell. Supposing K is the average density of mobile users making calls in a

cell, it is easy to derive that the number of departing users is K p r× × . If the use of

the borrowed channel is confined to departing users only, then K p r X× × ≥  and an

approximation to r is given by:

( )
pK

hdcC
r

avg

×
−×

≥ (2.22)

The algorithm is only initialised when the cell becomes hot. The data structure

needed for the execution of the algorithm is:

Each cell site keeps as local parameters its NCC (set of non-co-channel cells,

considering its compact pattern), CC (set of co-channel cells), dc, HNCC (set of hot

non-co-channel cells), HCC (set of hot co-channel cells). The cell knows the first two

parameters by the configuration of the network; dc is updated internally according to

the current availability of channels. HCC is updated independently of the algorithm as

a cell informs all its co-channel cells when it changes its state (hot or cold). HNCC is

computed at the beginning of the algorithm execution.

! As global parameters the cell sites use dcavg, h and C. As soon as the cell becomes

hot, it computes dcavg, by requesting for all cells in the system their dc. The

parameter h is computed once by the MSC for all cells. C is known at the

configuration phase. These global parameters will be used in the computation of

the number of channels to be borrowed and the width of the shaded area.
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Algorithm Body

Initialisation:

! The cell B that has just become hot inquires the other cells about their dc, by

broadcasting a request message and computes dcavg and HNCC.

! With C, dcavg, h and K, it computes X and r.

! With r, it computes the array NumDepart.

Main body:

1. B sends messages to the cold neighbouring cells L for which NumDepart[L] is

greater than zero. The message contains NCC, HNCC, DBL = 1 and requests the cell

to compute FBL. Each L cell computes HBL and FBL and sends the information

back to B.

2. B orders the L cells by decreasing values of FBL and selects the cell with highest

FBL. The selected lender computes the set of its co-channels, which are non-co-

channel with B by comparing NCC with its own CC.

3. Channels start to be borrowed from the lender cell until the number of borrowed

channels is equal to NumDepart[L] or the basic criteria is violated, i.e., the lender

become nearly hot. After lending the channel, the lender cell instructs its co-

channel cells, which are non-co-channel cells of B, to lock that frequency channel.

The same procedure is executed for the other cells in the listed order until the

number X of borrowed channels is reached and the algorithm is terminated, or the

list of cells is exhausted, whereupon it gives to step 4.

4. B sends messages requesting FBL. to the L’ cells (all cells in its compact pattern

excluding the neighbouring cells). The cold L’ cells will answer.

5. B selects L’ with highest FBL, if the basic criteria is not violated. L’ computes the

set of its co-channels which are non-co-channel with B. Steps 4 and 5 are repeated

until X is reached.

Channel Reassignment Strategy

! The set of available channels can be divided into local and borrowed channels.

Hot cells have both, cold cells only local channels. The channel demand in this

scheme is classified into four classes:

! Class 1 requests have the highest priority to receive a channel; these are handoff

requests. This strategy tries to minimise the probability of disrupting ongoing

calls.



49

! Class 2 requests are the channel requests by originating calls.

! Class 3 requests are requests for channel re-assignments; they are requested by a

cell site function that monitors the state of the channels. The re-assignments are

divided in two types: The reassignments of type 1 are for re-assigning a new or

other user using a borrowed channel to a local channel, if this local channel is not

used to satisfy class 1 and 2 demands. The reassignments of type 2 are for

reassigning a departing user using a local channel to a borrowed channel, if the

borrowed channel is not used to satisfy class 1 and 2 demands. Requests of class 3

are for reassignment of type 1.

! Class 4 requests are re-assignments requests of type 2.

The channel assignment algorithm prioritises the channel requests according to the

class that they belong to. The flow of the algorithm can be seen in Figure 2.10. In case

of multiple requests of the same class, the algorithm selects one randomly to receive

the channel.

Incom ing  R eques t

C lass 1  dem and  ?

C lass 2  dem and  ?

C lass 3  dem and  ?

C lass 4  dem and  ?

A ssign  loca l o r borrow ed  channel.
If unava ilab le, b lock  request.

A ssign  loca l o r borrow ed  channel.
If unava ilab le, b lock  request.

R e-assign  a loca l channel to  a
borrow ed  channel.

R e-assign  a borrow ed  channe l to  a  
local channel.

Figure 2.10: Channel assignment algorithm from [DSJA97]

Although the authors of the D-LBSB scheme claim the channel assignment

strategy prioritises handoff requests and channel requests are classified differently, the

execution of the channel assignment algorithm does not prioritise handoff requests.

Each request is treated independently and discarded if blocked. Therefore handoff
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requests and incoming call requests have the same priority, because they are treated

equally inside the algorithm.

In D-LBSB, the borrowing algorithm is not executed every time a call or handoff

request is made and there are no more available channels to accommodate the request

as is done in BCO and BDCL schemes. It is triggered before the nominal channels are

all used, once h is reached. Moreover, it does not get only one channel, but a certain

number of channels (X), the actual number depending on the average traffic load of

the whole network. The authors of the D-LBSB scheme claim that this is a load

balancing strategy.

D-LBSB does not perform as well as BCO or BDCL, however it is less complex

and it proves to be much faster as the load of traffic increases compared with its

centralised version [DSJA97].

2.4.1.2 DCA Schemes

The main idea of DCA schemes is to assign a channel to a call request with

minimum cost, but respecting the signal interference constraints. The cost is evaluated

by a cost function. The cost function can be formulated taking into account the future

blocking probability in the vicinity of the cell, the usage frequency of the candidate

channel, the reuse distance, channel occupancy distribution under current traffic

conditions, radio channel measurements of individual mobile users, average blocking

probability of the system and so on [KN96]. The differentiation factor in DCA

schemes is the formulation of the cost function.

Most DCA schemes work on a call-by-call basis, searching the minimum cost

channel for the current call request, based on the current traffic conditions. Some

DCA schemes are adaptive, i.e. the assignment decision also takes into consideration

past traffic conditions. DCA schemes can also be centralised or distributed.

Centralised DCA schemes can produce near-optimum channel assignment, but the

complexity and the high centralisation overhead can seriously compromise their

applicability in real systems. Distributed DCA schemes that provide near optimum

channel assignment also present excessive exchange of status information between

cells. The distributed DCA schemes, which offer sub-optimum channel assignment

and present smaller message exchange overhead, are those based on signal strength

measurements with inter-cell information sharing. They are applicable to
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microcellular systems where inter-cell information sharing by interference

measurement is possible.

Centralised DCA Schemes

Locally Optimised Dynamic Assignment (LODA) scheme is a DCA scheme

[ZY89] whose cost function is based on the future blocking probability in the vicinity

of the cell. In [ZY89] simulation results comparing LODA with BDCL shows that

BDCL has better performance.

Several DCA schemes formulate a cost function that maximises the channel

efficiency by optimising the reuse channel distance packing. These schemes perform

well in light and moderate traffic conditions, but in heavy traffic load they are not able

to maximise the channel reuse because the best candidates most probably are already

serving call requests. Channel reassignment can be used to pack the co-channels cells.

Everit and Manfield [EM89] proposed an ideal DCA scheme called Maximum

Packing (MP). In MP, a new call will be blocked only if there is no possible

reallocation of channels to allow the call to be carried. The MP scheme is impractical

for implementation because it requires system-wide information and the complexity

of searching all possible reallocations is computationally hard. The Compact Pattern

Based Dynamic Channel Assignment (CP-based DCA) scheme [YY94] does reduce

the complexity of the search and limits the number of channel reassignments, but still

presents high centralised overhead. CP-based DCA keeps the co-channel cells of any

channel to a compact pattern whenever possible. CP-based DCA consists of two

phases: channel allocation and channel packing. Channel allocation is used to assign

an optimal idle channel to a new call. Channel packing is responsible for the

restoration of the compact pattern and is performed only when a compact pattern

channel is released. The number of channels reassigned per released call in channel

packing is at most one. CP-based DCA shows better performance than FCA and

BDCL in the simulations performed in [YY94].

Distributed DCA Schemes

The distributed DCA schemes are normally cell-based schemes or signal strength

measurement based schemes [KN96].
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In cell based schemes, the channel assignment is performed by the base station.

The base station (and not the MSC as in the centralised schemes) is responsible for

keeping information about current available channels in the vicinity. The Local

Packing Dynamic Distributed Channel Assignment (LP-DDCA) scheme [LC93] uses

an augmented channel occupancy (ACO) matrix for channel assignment. The ACO

matrix contains all the local and vicinity information needed for the selection of a

channel. The base station keeps the ACO matrix updated. The LP-DDCA with

Adjacent Channel Interference Constraint [LC94] takes into account this kind of

channel interference when selecting a channel from the ACO matrix. Both schemes

provide near optimum channel assignments, but cause excessive exchange of status

information between cells.

The signal strength measurement based schemes, also known as interference

adaptation schemes, use the location of the mobile users to maximise the packing of

channels. The reason for that is because depending on the location of the mobile user,

the reuse channel distance used for the selection of the channel may be greater than

that actually needed. The mobile users are able to measure the amount of co-channel

interference to determine the reusability of a channel. When mobile users and base

stations offer this functionality maximum channel packing could be achieved. The

former Digital European Cordless Telecommunication and now known as Digitally

Enhanced Cordless Telephone (DECT) system uses this principle [KN96].

Another signal strength measurement based scheme is the Channel Segregation

(CS) scheme [FA91] [AA93]. This scheme is a self-organised DCA. Each base station

scans channels when selecting an available channel with acceptable signal

interference. Each base station will attribute to each channel a probability of channel

selection, P(i). The channel “selectability” order is performed independently by each

base station and is reviewed through learning methods. For each call request, the base

station selects the channel with highest P(i). Then, the base station needs to check if

the use of that channel is possible by measuring its power level. If the power level is

good enough (acceptable interference) then this channel is considered idle, allocated

to serve the call request and its “selectability” increased. If not, the channel is busy

and P(i) is decreased. If all channels are busy the call is blocked. The CS scheme is

autonomous and adaptive to changes in traffic load. Simulation results [FA91] shows

that blocking probability is greatly reduced compared to FCA and DCA schemes and
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quickly reach a sub-optimum channel allocation. The presence of many local

optimum allocations makes the convergence to an optimum channel allocation

prohibitive. CS uses the channels efficiently and reduces the need for channel

reallocation due to interference. CS is a good solution for TDMA/FDMA

microcellular networks [AA93].

2.4.1.3 Flexible Channel Assignment Schemes

In [TI88], the cell sites have a sufficient number of pre-assigned nominal channels

to accommodate light traffic. The remaining channels are kept in a central pool and

assigned to cell sites in need. The dynamic assignment can have a scheduled or

predictive approach. In the scheduled approach, the assignment of channels is made at

determined peaks of traffic, following a determined traffic distribution. In the

predictive approach, the traffic intensity is measured constantly at all cells and the

MSC can reallocate the channels at any time. The ratio of fixed and dynamic channels

is a significant parameter that defines the performance of the system. For heavy traffic

loads FCA gives better blocking probability than FlCA schemes, again the

explanation coming from the fact that FCA will make better use of the minimum

reuse distance than FLCA schemes.

Another possible combination of FCA and DCA strategies is to use a DCA scheme

for light and moderate traffic loads and FCA in heavy traffic conditions [KN96].

2.4.1.4 Performance Summary of Channel Allocation schemes

Fixed channel assignment (FCA) is too limiting for mobile networks and several

strategies have been proposed to maximise frequency channel allocation and minimise

call blocking probability. DCA schemes perform better under low traffic intensity;

modified FCA schemes have superior performance in high traffic loads. DCA

schemes use channels more efficiently (better trunking efficiency) and for the same

blocking rate have a lower forced call termination than FCA-based schemes.

However, the near-optimum channel allocation is at the expense of high overheads

through its use of centralised allocation schemes. This overhead means that such

schemes are not practicable for large networks. Distributed DCA schemes with

limited inter-cell communication suffer less overhead, but lead to sub-optimum

allocations. Such schemes are being proposed for microcellular systems as this cell

structure allows inter-cell information sharing by interference measurements and
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passive non-intrusive monitoring at each base station (busy/idle status of the carriers)

[WS94]. For macrocellular systems, where explicit communication is needed, FCA

with channel borrowing offers good results and less computational complexity than

DCA. However, those FCA variant schemes with best results use centralised control

inside the Mobile Switching Centre (MSC). Although they are less complex than

DCA schemes, there is still a need to maintain an up-to-date global knowledge of the

entire mobile network, leading to a slow response and a heavy signalling load. To

alleviate this problem, several authors have proposed modifications to make the

schemes more distributed.
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Chapter 3 Agents and Multi-Agent Systems

3.1 Introduction

Agent based technology is an interdisciplinary area of research and it has received

special attention from the research community since the beginning of the 1990’s. The

definition of an agent is controversial, but in general terms, an agent can be described

as a hardware or software system with social ability that performs tasks with specific

aims in a complex and dynamic environment. Agents are capable of autonomous

actions to pursue their objectives, despite the occurrence of expected or limited

unexpected events. This thesis interests in the application of intelligent co-operative

software agents.

The earliest concept of a software agent was dated in the 1970s with the concurrent

Actor model of Carl Hewitt, 1977 [Hew77]. The Actor model was defined as a self-

contained, interactive and concurrently executing object with some encapsulated

internal state and capable of answering messages from other similar objects (actors)

[Nwa96].

The characteristics of software agents have inherited aspects from distributed

computing, such as; modularity, speed (parallelism) and reliability (redundancy), and

from Artificial Intelligence (AI) in the knowledge level; easier maintenance,

reusability and platform independence.

Agents can present different degrees of complexity, normally known as

granularity. Simple agents with little or no intelligence regarding their behaviour are

called reactive agents. More complex agents such as those possessing symbolic

internal models, capable of knowing their environment and able to reason about their

goals are called cognitive or deliberative agents. As the complexity of agents can be

so broad, it is difficult to find the boundary between an agent and other types of

control software. However, agents do present special properties that distinguish them

from other software systems. The main properties that software agents exhibit are

autonomy, social ability and reactivity.
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! Autonomy is the ability to have control over its own actions and states. An agent is

able to make decisions and complete actions based on its internal representation of

the world without direct intervention of a human or a central entity [WJ95a].

! Social Ability is the ability to interact with other agents (humans or other

homogeneous or heterogeneous software agents) via some kind of communication

language in a co-ordinated manner. Agents may co-operate in order to solve a

problem or to achieve a task. The terms and conditions of the co-operation may be

negotiated at runtime.

! Reactivity is the ability to perceive changes in the environment and react timely

and appropriately.

Software agents may also present other properties such as pro-activity, learning,

adaptability or mobility.

! Pro-activity is the ability to plan ahead and take the initiative to perform actions

that will contribute to the goal achievement without waiting for external

instructions or only responding to events in the environment.

! Learning, ideally, would be the ability to improve its awareness and to alter

actions as the agent reacts with the environment and/or with other agents, in order

to avoid past mistakes or increase performance over time.

! Adaptability is the ability to adapt to changes in the environment, in order to

continue to pursue its objectives. Learning is one of the factors that allow agents

to have an adaptive behaviour.

! Mobility is the ability to move around a network [WJ95a].

Nwana [Nwa96] has a different approach to defining agents by classifying them

using different criteria: mobility, granularity, predominant attributes and roles. In the

first two criteria, the agents can be mobile or static and deliberative or reactive. Co-

operation, autonomy and learning are the three basic attributes of agents and from

them three♣ types of agents can be identified: collaborative agents, interface agents

and smart agents, as can be seen in Figure 3.1. Each type giving more emphasis to

some attributes. Ideally, agents should be smart agents emphasising the three

attributes equally, but the applicability of the agent to certain problem will dictate

which type of agent is more suitable for each case.

                                                          
♣ In Nwana’s classification there is one more type of agent: collaborative learning agent, however it does not present the
attribute of autonomy and therefore it is not considered in this thesis as a type of agent.
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cooperate learn

  autonomous interface agents

smart agents

collaborative agents

Figure 3.1: Definition of agent types based in their predominant features [Nwa96]

The last criterion to classify agents is by their roles, for example, World Wide Web

information agents, which usually exploits Internet search engines such as

WebCrawlers, Lycos and Spiders.

Of course, the total classification of an agent would be a combination of these

criteria. For example, an agent could be a mobile deliberative information agent or a

static reactive interface agent, etc. Moreover, agents can present more than one

feature of the same criterion, for example, the existence of a reactive part and a

deliberative part inside a single agent. These agents would be classified as hybrid

agents.

Nwana’s classification [Nwa96] demonstrates the broad spectrum that agents can

fit in. However, his classification is informal and more related to intelligent

collaborative agents, which are the type applied in this thesis. Most of the recent

research in multi-agent systems considers the application of self-interested agents.

Self-interested agents are not willing to collaborate or be benevolent with each other,

but they may negotiate and interact in a co-ordinated way in order to maximise their

own expectations or goals and the global behaviour may achieve an optimised

solution.
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3.2 Agent Architectures

All the properties that have been described that an agent must or may have are

embedded inside its architecture. Architecture represents the move from specification

to implementation. Agent architecture has also been evolving since the 1970’s.

Most of the precursor agent architectures were based on Artificial Intelligence (AI)

planning systems like STRIPS [FHN71]. The agent models were based on Simon and

Newell’s physical symbol system hypothesis [NS76]. The physical symbol system is a

physically realisable set of symbols that can be combined to form structures. Symbols

represent physical entities. Processes inside the system operate on the symbols

according to defined sets of instructions. In this way, the physical symbol system

hypothesis states that the system is capable of general intelligent action. The physical

symbol system hypothesis is the step stone towards deliberative agents whose

complete definition is, now, easier to understand. A deliberative agent or agent

architecture possesses an explicitly represented, symbolic model of the world, in

which decisions (for example about what actions to perform) are made via logical (or

at least pseudo-logical) reasoning, based on pattern matching and symbolic

manipulation [WJ95b]. Over the past few years, research has explored a deliberative

model of agents based on beliefs, desires and intentions (BDI) The architectures

following this paradigm are known as BDI architectures [Bra87] [RG91].

The capability of general intelligent action towards a goal is very attractive, with it

the agent’s behaviour could be optimal and highly adaptable to different

contingencies. However, logical representation of belief, desire, time and so on tends

to be difficult and the reasoning hardly tractable. Symbol manipulation in general

demands high computational complexity and consequently long response time.

Response time is a key factor in real time systems.

To overcome the problems of deliberative architectures, a new school of thought

emerged in mid-1980’s, that denies the need of symbolic representation of the world

and symbolic reasoning to achieve specific goals. In these architectures, agents have

very limited amount of information and their run-time decisions are based on sensory

input and simple situation-action rules. Agents and architectures of this type are called

reactive, situated or behaviour-based. The aim of reactive architectures is to have fast

response and robust behaviour instead of optimal behaviour. Implementations of
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reactive architectures were very successful in building robots for room explorations,

map building, route planning [Bro90], simple games [AC87] or puzzles [FJ91].

However, these architectures present a limited scope, and they are not able to execute

complex tasks that depend on long-term goals or co-operation.

Looking at the drawbacks of reactive and deliberative architectures, researchers

have suggested that a combination of both architectures would be more suitable for

building agents. Hybrid architectures, as they are known, are designed to respond

rapidly to changes in the environment and also to provide means to achieve long-term

goals. Most of the hybrid architectures proposed are layered architectures. The

different functionalities and goals are arranged in different layers that interact in a

well-defined control interface. Ferguson developed the Touring Machines architecture

[Fer95]. The internal architecture of the agent consists of a reactive layer, a planning

layer and a modelling layer. The layers operate concurrently and perform constrained

navigation in a dynamic environment. The reactive layer gives fast response to

specific environment stimuli. The planning layer is responsible for the generation and

execution of the goal of the agent. The modelling layer enables the agent to change its

plans when conflict arises, for example, to avoid collision with other agents. This

layer includes information about other agents in the environment. However, the

knowledge about other agents is used to guide local decisions of the agent. Touring

Machine architecture does not support co-operation based on communication.

INTEgration of Reactive behaviour and RAtional Planning (INTERRAP) [Mül96] is

another hybrid architecture, similar to the Touring Machines. It is also composed of

three layers, but it supports co-operative planning and problem solving and presents a

more elaborate layer control interface. INTERRAP was designed to have proper and

timely reaction to unexpected events, long term actions based on goals and to cope

with other agent interactions, i.e. to fulfil efficiently the real time requirements of a

dynamic environment that can be adapted to the channel allocation problem in mobile

networks, as this thesis will later describe. In the next sub-section INTERRAP

architecture is described in more detail.

3.2.1 INTERRAP: a Hybrid Agent Architecture

INTERRAP [Mül96] is an agent architecture composed of a set of hierarchical

control layers, a knowledge base that supports the representation of different

abstraction levels of knowledge and a well defined control architecture that ensures
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coherent interaction among the control layers. Each layer has different functionality

which working concurrently completes the global behaviour of the agent. The three

layers in INTERRAP are:

! Behaviour-Based Layer (BBL): responsible for reactivity and procedural

knowledge for routine tasks.

! Local Planning Layer (LPL): produces goal directed behaviour. This layer

provides the means to reason about local goals and how to achieve them.

! Co-operative Planning Layer (CPL): enables reasoning about global goals and

about other agents and supports co-ordinated action with other agents.

Figure 3.2 from [Mül96] assembles the mental state of the agent, which is

composed, from different components. The agent’s perception of the environment is

performed by sensors whose information is manipulated by a belief generator /reviser

that transforms the current perception in new beliefs, or changes the attribute values of

existing beliefs.

Cooperative goals

Local  goals

Reactions

Cooperative situations

Local  planning  situations

Routine/emergency
situations

Social  model

Mental model

World  model

Goals

Situations

PERCEPTION

Belief

generation/revision

Goal  activation

Situation  recognition

Options

Joint  plans

Local plans

PoBs

Selection

Planning
     and
scheduling

Intentions

ACTION

ENVIRONMENT

Operational  primitives

Execution

Figure 3.2: The conceptual agent model

The informational state of the agent is its set of beliefs. The knowledge base in

which the beliefs are placed is divided in three different levels of abstraction: the



61

world model, the mental model and the social model. The world model contains

beliefs about the environment. The mental model has beliefs about the agent itself.

The social model holds beliefs about other agents.

Beliefs can be suitable for describing the relationship between the informational

state and the motivational state of the agent, i.e. what the agent knows and what the

agent wants to achieve, however beliefs can be numerous and too unstructured. As

actions are taken when specific situations happen, a situation recognition function

analyses the current beliefs and extracts the subsets of the agent’s beliefs that

correspond to relevant situations. The situation recognition function enables the agent

to identify the need for activity.

Situations are better structured because they take into account physical aspects of

the environment and they make the computation of the link between agent’s

perception and goal easier. Situations are also divided in three layers:

routine/emergency situations, local planning situations and co-operative situations.

The agent’s goals are distinctly classified as reaction goals, local goals and co-

operative goals. Reaction goals are short-term goals triggered by external events.

Local goals are the local desires or long term goals that the agent pursues. Co-

operative goals are the goals of the agent when it is interacting with other agents and

normally these goals are shared among agents.

When a situation is recognised the motivational state of the agent changes. The

goal activation function extracts the goals of the agent, which are the current options

given determined situations. In the case of the behaviour-based layer, the options are

basic execution procedures called patterns of behaviour (PoBs). PoBs are hard-wired

situation-action procedures highly dependent of the environment domain. For the

local and co-operative layers, the options are more complex and the goal activation

function may need to construct a goal state based on a combination of situations. The

goal state is used by the planning mechanism.

The planning mechanism is responsible for deciding what to do to achieve the

goals. It relies on the execution of operational primitives (OPs) for the achievement of

the goals. OPs inside the behaviour-based layer are the body of PoBs. At the local

planning layer the OPs enable the means-ends reasoning about how to achieve the
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goal and the consequent generation of the local plan. Similarly, at the co-operative

layer OPs generate the joint plan whose execution satisfies the agents’ shared goals.

The scheduler decides when to do what. It merges sub-plans into one executable

schedule. One of the problems in this stage is to cope with the limitations of

computational and physical resources and resolve the incompatibilities and constraints

among plans. The scheduler uses a priority mechanism to execute PoBs, to assure fast

response to urgent reactions. At the Local Planning Layer, it involves the sequencing

of non-linear plans, assigning time constraints for the execution of plan steps and

modifying plans in case of incompatibility. At the Co-operative Planning Layer, it

schedules concurrent negotiations.

The execution function is responsible for a correct and timely implementation of

the tasks. It also interacts with the situation recognition function to guarantee a

consistent evolution of the system. The execution function activates the PoBs that

make access to the resources in the environment. Plan steps are mapped into PoBs and

executed. It is also responsible for the correct execution of negotiation protocols and

commitments of joint plans.

3.2.1.1 Control Architecture

The INTERRAP architecture is based on a layered control, a layered knowledge

base, bottom-up activation and a top-down execution as showed in Figure 3.3.

Social Model

Mental Model

World Model

Hierarchical Agent Knowledge Base                 Agent Control Unit

Sensors Communication Actors

world interface

SG PS

SG

SG PS

PS

CPL

LPL

BBL

ENVIRONMENT

Figure 3.3: The architecture of the agent
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The world interface is composed of three subsystems: sensorial subsystem, actor

subsystem and communication subsystem.

An object represents the sensorial subsystem: the “sensor”. Its functionality is

sensing the environment. The sensorial subsystem has methods to calibrate the sensor,

enable and disable sensor activity and for reading the current values in the perception

buffer.

All the actions performed in the environment are done by the actor subsystem. The

actors control the atomic and continuous physical actions of the agent. Atomic actions

are single tasks terminated by success or failure. Continuous actions are control

processes that run until they are explicitly finished, suspended or deactivated. An

object class called “actor” represents the actor subsystem. Actors have methods to

calibrate actions, execute atomic actions and activate, suspend or deactivate

continuous actions.

Finally, the communication subsystem provides the functionality of sending

messages to or receiving from other agents. It is represented by two classes:

send_queue, which is a subclass of actor, because sending a message is considered an

action on the environment. Receive_queue is a subclass of sensor. Receive a message

is considered a sensing process. Messages are represented by tuples:

Msg = (Id, Sdr, Recp, Ref, Type, Content)

where Id is a unique identifier, Sdr denotes the sender, Recp denotes the recipient,

Ref (optional) is a reference to a message-id, Type is one of the message types,

Content is the actual content of the message.

The knowledge base is layered and represents the structured informational state of

the agent with situations, beliefs and goals. It can be represented by an Assertional

Knowledge Base (AKB). The elements of AKB are: Concepts (classes of individuals),

types, attributes, features (attributes of a concept that cannot be changed, but can be

assigned an initial value) and relations (relating concepts each other by cross-product

operator #). The AKB offers assertional, retrieval and active information services.

Assertional services allow asserting new beliefs into the knowledge base, creating

instances of concepts and relations, but it can change attributes of concepts too.

Retrieval services provide access to beliefs stored in the AKB. Active information

services access information upon demand. When an active information service is
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requested, it starts a monitoring process that recognises specific changes in the

knowledge base and sends this information to the requesting process.

The agent control unit is composed of three layers. Each layer has a uniform

structure as illustrated in Figure 3.4. Each layer implements a generic control cycle

performing functions of situation recognition, goal activation, planning, scheduling

and execution.
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Figure 3.4: INTERRAP control layer

As seen in Figure 3.4, the process SG covers the situation recognition function and

goal activation function; the process PS covers the planning, scheduling and

execution functions. An object defines the generic control cycle of INTERRAP. The

main method of the object describes the sense-recognise-decide-act cycle. In each

loop of the cycle, the current beliefs are scanned for new situations, the situations and

the activation request by the next lower layer computes the new options. The

planning, responsible for the decision making, selects operational primitives and

updates the intention structure, finally it decides if the goal will be dealt within this

layer or an activation request will be issued to the next higher layer to take care of the

goal. If the goal is being dealt within the layer, the planning function decides what

commitments need to be made to achieve the goal and passes to the scheduling

function. After the commitments being scheduled it starts the execution phase. The
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effects of the actions taking place in the execution phase are monitored by a primitive

in the situation-recognition function, as can be seen in Figure 3.4 by the link between

execution function and the situation recognition function.

Also planning and scheduling are interleaved. If the planner has created an

intention that cannot be scheduled, the scheduler forces re-planning. INTERRAP has

two links between situation recognition and planning to deal with the cost of sensor

information and disagreement between situation recognition and planning. First from

the execution module to the situation recognition, which serves to enable and disable

monitoring conditions (in SGi and SGi+1); second, there is a link from the planner to

situation recognition, which allows the planner to order additional information from

SG when, is necessary.

The behaviour of the agent results from the interplay among individual control

layers. INTERRAP presents a bottom-up control direction and a top-down control

direction. The first type of control flow is performed by the upward activation request

mechanism. This mechanism ensures that situations requiring fast response are

handled by the Behaviour-Based Layer, whereas other situations that need more

complex planning are shifted upward until they reache a competent layer to solve the

problem. Following the representation in Figure 3.4, if PSi decides not to be

competent for dealing with the SGi pair; it sends an upward activation request to the

next higher layer. The information provided by layer i and the additional information

available in layer i+1 can produce a suitable goal description for PSi+1. The advantage

of the bottom-up approach is that lowers layers do not need to know about the

capabilities of higher layers. The top-down control flow corresponds to the acting of

the agent. The PSi process co-ordinates its activities by posting commitments to the

next lower layer. If the commitments can be incorporated in the scheduling process of

the lower layer, a successful acknowledgement is sent to the higher layer; if not, a

failure report is sent to the higher layer indicating that a re-plan needs to be

performed. Commitments between the Co-operative Planning Layer and the Local

Planning Layer are partial plans describing the role of the agent in the joint plan. The

Local Planning Layer commits to the execution of procedures of PoBs posted to the

Behaviour-Based Layer and finally, the Behaviour-Based Layer commitments cause

the execution of actions in the world interface.
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The two basic control directions determine three generic control paths to deal with

different classes of problems or tasks: the reactive path, the local planning path and

the co-operative path (Figure 3.5). The reactive path deals with emergency situations

and those ones recognised and handled by routine PoBs. The local planning path

treats more complex situations that cannot be dealt with the Behaviour-Based Layer.

The co-operative control path deals with situations that require co-ordination with

other agents.

CPL

LPL

BBL

a) Reactive path

CPL

LPL

BBL

b) Local planning path

CPL

LPL

BBL

c) Co-operative path

CPL – Co-operative Planning Layer

LPL – Local Planning Layer

BBL – Behaviour-Based Layer

Figure 3.5: Generic control paths

Normally, the activities between layers are neither clearly separated nor follow the

strict temporal ordering. There are interleavings of planning and execution as

illustrated in Figure 3.6. Planning is an ongoing incremental process, and future

planning decisions depend on the outcome of current PoB calls.

             CPL  CPL

             LPL  LPL

             BBL  BBL

Figure 3.6: Instances of local planning path and co-operative path

INTERRAP has additional inter-layer co-ordination. The Local Planning Layer can

enable and disable PoBs as a mechanism to control the activity of the Behaviour-

Based Layer, for example, in the case where the plan has changed. Another possibility

is for the Behaviour-Based Layer to the Local Planning Layer to devise a plan for a

goal-situation pair, to evaluate or interpret a given plan and to stop activity regarding

an earlier request. The Co-operative Planning Layer can ask the Local Planning Layer
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to interpret or evaluate a plan or stop activity. In the same way the Local Planning

Layer can ask the Co-operative Planning Layer to devise a plan given a goal situation

description and to evaluate and interpret a joint plan, maybe proposed by other agent.

The brief overview of INTERRAP agent architecture can explain why agents have

been applied in the solutions of telecommunication problems. Some interesting

problems being investigated are related to network management of ATM

(Asynchronous Transfer Mode) networks [Som96] [HB98], congestion control and

load balancing in switched networks using mobile agents [AS94] [SHB97],

reestablishment of interrupted connections in telecommunication networks [GM96].

The application of agents in telecommunication problems is an emerging area of

research, which is having great repercussions not only in the academic environment

but also in industry [WV98].

3.3 Multi-Agent Systems

This thesis is concerned with the application of agents within telecommunications

systems that do not work in isolation, but as a community. A community of agents

composes a multi-agent system. A multi-agent system can be defined, therefore, as a

group of agents with specific roles in an organisational structure [Mül96]. The agents

interact with the environment and with each other in a co-ordinated way, as

collaborators or competitors, seeking to fulfil the local or global aims of the

organisation.

A multi-agent system applied to a specific environment needs to be seen on two

levels:

! The first is the co-ordination level of the system and defines how the agents

communicate between themselves, co-ordinate their activities and negotiate in a

joint plan or when conflict occurs.

! The second is the internal level of the components of the system and is related to

the internal agent architecture.

Distributed Artificial Intelligence (DAI) has studied the behaviour of groups of

intelligent systems. More precisely DAI has originated a sub-area for the study of

groups of agents: the multi-agent systems (MAS). However, the study of the

behaviour of a group of agents interacting among each other in a system demands the
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consideration of other research areas; like cognitive psychology, control theory and

economy studies in market-control. All these areas can be considered as parental

disciplines of multi-agent systems.

Distributed Problem Solvers (DPS) can also be considered a parental discipline of

multi-agent systems, because many of the features presented in distributed problem

solving techniques are also applied to multi-agent systems. However, some

researchers make a clear separation between DPS and MAS, considering parallel

disciplines derived from DAI. In the point of view of those researchers DPS are only

composed of collaborative autonomous software and MAS composed of self-

interested agents. Whatever is the case, the fact is that several co-ordination

techniques and algorithms used in distributed problem solving have been used in the

co-ordination level of multi-agent systems.

Market-based control is a co-ordination technique developed for distributed

problem solving and is now being applied in co-ordination of multi-agent systems

involved in task and resource allocation in distributed environments. The precursor

co-ordination technique is the Contract-Net Protocol (CNP) [Smith88]. In the

Contract-Net Protocol the agents can play two different roles: manager or contractor.

When an agent has a task to perform, but is not capable of doing so, it becomes a

manager and looks for the most suitable contractor by announcing a contract to other

agents and selecting the best one according to the bids received. The interesting

feature is that a contractor can ask for sub-contractors (becoming a manager) to help it

to perform its task.

The Contract-Net Protocol when applied to a specific domain can use several

different kinds of algorithms to solve a problem or to solve different parts of a

problem.

3.3.1 Market-based Control

In the past 40 years, economists have studied how resources in an economy can be

optimally shared. They have developed normative models to describe the economy

and decentralised optimisation methods to balance the economy. Distributed systems

present several similarities with economic systems and several researchers started to

apply the models and methods developed within the field of mathematical economics

to construct similar models for distributed problem solving [Clearw96] [HSS80]
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[FNY89] [KS89] [YA96]. The microeconomic approach is commonly known as

market-based control. In a market-based control system, the resources to be allocated

are the commodities of the economy. The stakeholders are now trading agents. Each

agent presents certain preferences and behaviour, agents trade between each other in

order to maximise their preferences. The algorithm that agents use to adjust their

resource allocation is the auction protocol. Market-based approaches can be divided

into two categories: price-oriented and resource-oriented. In a price-oriented

approach the resources are associated with prices. An initial allocation of resources is

made and an initial price is chosen. In each iteration of the algorithm, prices change to

accommodate the demand for resources. The iterations continue until the total demand

reaches the total amount of resource available, at which the resulting final allocation

is provably Pareto optimal. In a resource-oriented approach, the agent knows how

much resource they need each iteration. Each agent computes the marginal value of

resource it requires given its current allocation of the resource (mathematically, the

agent computes the partial derivative of its utility function with respect of its current

amount of resource). The agents send their marginal values to all other agents or to an

auctioneer. The agents with an above average marginal utility receive resource, the

agents with a below average marginal utility, transfer resource. The price and

resource-oriented approaches have different properties. For distributed systems, the

most important property is the feasibility of allocation during the convergence

process. Price-oriented algorithms may not present feasible intermediate allocations

until equilibrium is reached; therefore the pricing process must converge before the

resources can be allocated. In resource-oriented the intermediate allocations are

feasible if the initial allocation is feasible. Moreover, successive iterations of the

algorithm result in increasing system wide utility [KS89], if the formulated problem is

feasible and monotonous.

3.4 Multi-Agent Systems Applicability

Frequency channel allocation in mobile networks is a control problem of a

complex system with specific goals (minimising the blocking probability of the

network and minimising the delay in channel assignment). As described in

[HBWC99] the control features of a complex system are commonly agreed to be the:

! Co-ordination of multiple and sometimes conflicting goals.
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! Management of multiple inputs some of that may be incomplete or inconsistent.

! Adaptation of the control strategy when the environment changes drastically or

parts of its physical or control structure ceases to work normally.

Therefore, this thesis proposes a multi-agent system implementation to control

frequency channel allocation in cellular networks. The internal agent architecture is

based on INTERRAP because of its model that accomplishes properties of reactive,

deliberative and interacting agent architectures. The co-ordination level of the multi-

agent system is based on Contract-Net Protocol using resource-oriented algorithms for

the co-ordination of joint plans.
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Chapter 4 Application of Intelligent Software
Agents for Frequency Channel Assignment in
Cellular Networks

4.1 Motivation

As the demand for mobile services grows, techniques for increasing the efficiency

of channel usage in cellular networks become more important. Resource flexibility is

needed to cope with the limited frequency spectrum available for network operators.

The work described in Chapter 2 led to several algorithms being proposed to

maximise the channel usage and minimise the call blocking probability. As discussed

there, some of the channel assignment schemes presented in the literature have

improved the performance of the basic fixed channel assignment strategy for different

traffic densities (macro/micro/pico cellular networks) over different traffic load

conditions. However, most of those solutions have an entirely reactive approach: the

response to a series of events follows an algorithm that is prepared to react to specific

situations. This entirely reactive approach limits the efficiency.

The aim of the work in this thesis is to propose a channel allocation scheme that

improves the efficiency of the frequency channel assignment through a more flexible

radio resource acquisition, but also has a sufficiently distributed nature to make its

implementation feasible for real systems. The approach adopted is to use a multi-

agent system to provide more autonomy and flexibility to the base stations and to

increase the robustness of the whole mobile network by allowing base stations to

negotiate resources. This work exploits the ability of intelligent agents to perform

autonomous and intelligent negotiation in order to improve the acquisition of radio

resources in congested areas.

The scenario here is assumed to use macro-cells where base stations are not able to

share information by interference measurements, but only by explicit exchange of

information; the resources are complete frequency carriers. However, the agent

concept applied in this work is generic and can be extended to other types of mobile

networks (Chapter 7).
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The remainder of this chapter describes the specification of the new channel

allocation scheme within the functional agent architecture.

4.2 Specification of the Multi-Agent Based Channel Allocation
Scheme

The objective of any frequency channel allocation scheme is to achieve a high

degree of channel usage and a low rate of call blocking. However, there will be a

trade-off between the network performance and the cost of the network. The cost of

the network is normally measured by the signalling load caused by the execution of

the channel allocation scheme and by the response time under a defined quality of

service. Signalling load and response time are important parameters within the design

of a new channel allocation scheme.

In cellular systems, when explicit exchange of information is necessary, the

network cost is directly related to the complexity of the scheme. Simple algorithms

with the smallest possible number of database lookups are desirable. However, as

described in Chapter 2, the schemes that present higher channel efficiency and lower

call blocking rates are complex and generate a high signalling load, so increasing their

response time. One approach to alleviate this problem is to divide the functionality of

the scheme into different layers. The lowest layer allocates channels using a less

complex algorithm and leads to a fast response time. The other layers with longer

time scales try to maximise the channel usage and decrease the blocking rate, but

controlling the signalling load. The interaction between layers can become very

complex with the possibility of inconsistent results. The implementation of a layered

scheme needs to rely on architecture developed to support layered control.

Channel allocation schemes are implemented to be autonomous and with

consistent behaviour; this is done through carefully designed algorithms. However,

most of the algorithms in the literature are reactive with a single strategy for

adaptation to traffic changes. They lack flexibility because they are not able to

monitor their own performance or to change strategies to continue to pursue their

objectives efficiently, or to negotiate resources within a group of cells. Flexibility can

be achieved through pro-active logical planning and through co-ordinated negotiation.



73

The desired features of complexity separation, fast response, autonomy, pro-

activity and negotiation for a real-time application have been objectives of multi-

agent systems research as described in Chapter 3.

Several multi-agent frameworks have been proposed for control management in

telecommunication networks. For example, adaptive routing control applying ant-like

mobile agents have been studied by [SHB97] [WP98] among others. Also,

hierarchical layering of agents for distributed ATM network management was

proposed by Fergal Somers in the HYBRID architecture [Som96] and by Hayzelden

and Bigham in Tele-MACS [HB98]. The hierarchical arrangement allows levels of

co-ordination. Each layer is defined to conduct the control of the network to a certain

level of competence. In [Som96], the levels are classified as local, county, regional

and national levels. In [HB98], the hierarchy is composed of reactive, planning and

strategic layers. The adoption of a layered multi-agent control system seems to fit the

requirements of distribution, intelligence, robustness and concurrency of broadband

network control.

For the channel allocation problem, the main goal is to bring more distribution of

control, autonomy and flexibility in resource management. As stated in [Som96] the

decision whether to use a hierarchy of agents or to use a set of non-hierarchical agents

depends on the control domain. If the interaction between agents to control the

resource is limited to the domain of the agents, a non-hierarchical approach would be

more straightforward; if the control demands co-ordination of other domains in the

network, the hierarchical approach is more suitable. The channel allocation problem

can be restricted to one domain, so that a single layer of agents can be placed in the

base stations. However, layered control is seen as essential, so the internal

architecture of the agent must supply this feature. Moreover, the agent architecture

must support planning and negotiation mechanisms.

Internal agent architectures are classified by the degree of reasoning incorporated

into the agent, from a completely logical model to a fully reactive model with no

symbolic representation. Hybrid architectures combine features of logical and reactive

models and are more suitable for real time applications. As described in Chapter 3,

INTERRAP [Mül96] is a hybrid agent architecture that also incorporates mechanisms

for co-ordination and co-operation among autonomous agents. Internally the agent

consists of a set of hierarchical layers, a knowledge base that supports the
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representation of different abstraction levels of knowledge and a well-defined control

architecture that ensures coherent interaction among layers. It was designed to react to

unexpected events, to long-term actions based on goals and to cope with other agent

interactions. INTERRAP was, therefore, chosen to be the architecture model for the

agent implementation in this work. The architecture illustrated in Figure 4.1 was

adapted from Figure 3.3 for application in mobile networks.

Social Model

Mental Model

World Model

Hierarchical Agent Knowledge Base                        Agent Control Unit

Sensors Communication Actors
world interface

Co-operative Planning Layer

Local Planning Layer

Reactive Layer

ENVIRONMENT

Figure 4.1: The architecture of the agent

In the cellular network scenario, each base station has one agent. The world

interface presented to the agent includes the sensor section responsible for the

perception of the environment, which would include requests for channel allocation

from new calls, handoff requests, borrowing channel requests and orders for locking

channels.

The communication section handles message exchanges for channel management

and in the negotiation process. The actor section is responsible for all execution tasks

that actually allocate, release, re-allocate, lock, lend channels, manage normal and

supervised handoffs and terminate appropriately unsuccessful requests.
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In the knowledge base, the world model contains the environment information

and everything necessary for the operation of the Reactive Layer. The mental model

contains the complete information about the agent, about the use of frequency

channels and possibly history of traffic load in the cell. Finally the social model has

relevant information about other agents’ data. The control unit is structured to include

a Reactive Layer that is responsible for fast accommodation of traffic demand, a

Local Planning Layer using other strategies to optimise the local load distribution of

channels and the Co-operative Planning Layer, responsible for load balancing

across a larger area.

In the functional specification of the agent for the cellular scenario, the abstract

architecture described in Chapter 3 is embedded inside the control and functional

processes that compose the agent. The next section discusses the functionality of each

agent layer, and how the agents accomplish the complete channel allocation scheme.

4.3 Functional Specification of the Agent

The channel allocation scheme is the main functionality of each agent. The

execution of the complete channel assignment scheme is performed in two parts: one

is the channel allocation inside the cell and the other is the load balancing of the

network performed by a group of agents. The local channel allocation is mainly

executed by the Reactive Layer of the agent, with optimisation of channel usage being

done by the Local Planning Layer. The second part of the scheme is a joint plan

between agents, executed when the local strategy becomes saturated and the

performance of the system starts to degrade. The joint plan is triggered by the Local

Planning Layer and co-ordinated by the Co-operative Planning Layer. The different

parts of the whole scheme do not conflict, but even so the interaction between layers

follows the INTERRAP control architecture, suppressing or changing tasks when

channel allocation conflict arises. The Local Planning Layer is responsible for

keeping consistency between joint plans and reactive tasks. The approach taken is this

work is new in the field of mobile networks.

4.3.1 Reactive Layer

The Reactive Layer is basically composed of a FCA algorithm with channel

borrowing and channel locking. The algorithm called “Distributed Borrowing
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Algorithm” (D-BA) is based on the general behaviour of the D-LBSB scheme

[DSJA97]. A description of the D-LBSB scheme is given in Chapter 2.

The decision to build into the Reactive Layer of the agent an algorithm similar to

one of the distributed schemes in the literature was taken because it allows a close

evaluation of the performance of such algorithms under simulated cellular network

conditions and not only under a limited mathematical model. It also allows the

benefits of the Local Planning and Co-operative Planning layers of the agent to be

evaluated against the same reactive scheme.

The D-BA scheme is similar to the D-LBSB scheme, but not exactly the same.

Some design and implementation parameters of D-BA are different as explained

below.

4.3.1.1 Differences between D-LBSB and D-BA schemes

Although D-BA classifies mobile users in the same way as D-LBSB, there are

important differences.

! In D-LBSB the region r is given by the equation 2.17 (section 2.4.1.1), relying on

more assumptions than the more detailed cellular model built in this work.

Therefore, in D-BA, the region r is fixed in all cells and it is determined based on

the signal strength that will be received by the mobile users close to the borders.

The decision to calculate the region r in this way was taken because the main

purpose of this region is to indicate which mobile users are more likely to go out

of the cell.

! Differently from D-LBSB, in D-BA the mobile user classification routine is

independent of the borrowing algorithm. The approach taken is to have the mobile

user classification continuously updated, allowing the agent to use this

information outside the execution of the borrowing algorithm. It is also faster and

more cost-effective to have the mobile user classification being continuously

updated than to have to build all the information every time the borrowing

algorithm is executed.

! Having the region r fixed and the classification of each mobile user, the

NumDepart array is available at all times. This is another difference between the

two schemes. D-BA has the advantage of having the NumDepart array updated
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continuously and not only when the borrowing algorithm is initialised as in D-

LBSB.

The cycle in D-BA is shorter and slightly different with regard to threshold

decisions, because it considers only the neighbouring cells as sources from which to

borrow channels and the threshold decisions are made in order to increase the chance

of borrowing channels.

In most of the channel allocation schemes in the literature that use channel

borrowing and channel locking, the borrowing algorithm is executed every time a call

or handoff request is made and there are no more available channels to accommodate

the request. This is not the case in D-LBSB and consequently in D-BA, where the

borrowing algorithm is triggered before the exhaustion of the nominal channels, when

the threshold h is reached. The borrowing algorithm does not get one channel, but a

certain number of channels X that depends on the average traffic load of the entire

network. Therefore, the outcome of each execution of the borrowing algorithm in D-

LBSB or D-BA can be successful (when all X channels are borrowed), partially

successful (when some channels are obtained but not the number X of channels

expected) or unsuccessful (when no channels are obtained). However, there is no

mention in the references for the D-LBSB scheme about these possible outcomes, and

more importantly about the criteria for successive runs of the borrowing algorithm

from the same cell. Therefore, in the D-BA scheme, special criteria were introduced

for re-executions of the borrowing algorithm as explained later in section 4.3.1.2.

Other differences are found in implementation parameters such as the degree of

coldness threshold to consider a cell hot, the degree of coldness threshold for a lender

cell to stop lending channels, the degree of coldness threshold to release a borrowed

channel; these values are not fully described in the references.

4.3.1.2 Description of the D-BA

Mobile users are classified in three categories: new, departing and others. New

users are those that have successfully received a channel in the cell (new calls and

handoff requests) between the time of the channel allocation until time “t”. After time

t, they are classified as others or departing according to their position inside the cell.

Mobile users are classified as departing if they are inside a pre-determined region r

close to the borders of the cell. Users are classified as others if they are inside the
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main region of the cell. There is a special routine that re-checks the position of the

mobile user periodically in order to keep its classification updated.

When the channel availability in the cell decreases to a certain threshold, it

becomes “hot”; cells above the threshold are called “cold” cells. The classification of

a cell as hot or cold depends on a threshold (h) of its degree of coldness (dc), i.e., the

ratio between the number of available channels and the total number of assigned

channels of the cell (C).

Hot cells are not allowed to lend channels and cold cells are not allowed to borrow

channels.

Each cell site keeps as local parameters its NCC (set of non-co-channel cells,

considering its compact pattern), CC (set of co-channel cells), dc, HNCC (set of hot

non-co-channel cells), HCC (set of hot co-channel cells). The cell knows the first two

parameters from the configuration of the network; dc is updated internally according

to the current availability of channels. HCC is updated independently of the algorithm

as a cell informs all its co-channel cells when it changes its state (hot or cold). HNCC is

computed at the beginning of the algorithm execution.

When a cell becomes hot, it triggers the execution of the following algorithm:

1. The hot cell broadcasts a message requesting the dc of all cells.

2. Receiving the responses, the hot cell calculates the average degree of coldness

(dcavg) of the entire network, and HNCC. With this data, it calculates how many

channels (X) it needs to borrow to reach dcavg, solving the Equation 2.16 from

Chapter 2 section 2.4.1.1 (rewritten below):

( )hdcCX avg −⋅= (4.1)

3. The algorithm starts to execute the cycle below:

a) The hot cell B sends messages to the cold neighbouring cells L. The

content of the message allows the L cells to compute the utility function

FBL (Equation 2.17) for a 7-cell compact pattern as described in

section 2.4.1.1 of Chapter 2 (as Equation 4.2). The computations of each L

cell are sent back to B.
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DBL or nearness is the measure in terms of cell distance between L and B, for

example, for the neighbouring cells of B, DBL is 1.

HBL or hot cell channel blockade is the number of hot co-channel cells of L

that are non-co-channel cells of B.

Rcp is the radius of the compact pattern, also measured in terms of cell

distance. Rcp and 7 are used for normalisation.

b) B orders the list of L cells by decreasing values of FBLs and informs the

cell with the higher value that it is the current lender.

c) B borrows channels from the lender L respecting the safety threshold of

L’s channel availability. Every channel borrowed is locked in L and in the

co-channel cells of L that are non co-channel cells of B inside the reuse

distance. If the number of channels needed is not reached, the procedure is

repeated for the other L cells in the list. The algorithm terminates when the

number of channels X is reached or when the search in the L cells is

exhausted.

The possible outcomes of each execution of the borrowing algorithm can be:

1. Successful: all X channels are borrowed.

2. Partially successful: some channels are obtained but not the number X of channels

expected (in the implementation, a partial success is seen as a failure of type 1).

3. Unsuccessful: no channels are obtained, for one of the following reasons:

a) Failure type 2: the lender cells did have channels to lend, but the channel

locking was not possible.

b) Failure type 3: All possible lender cells are hot.

c) Failure type 4: the network is so heavily loaded that X is equal to zero.

Borrowing Algorithm Re-execution Criteria

In D-BA, the borrowing algorithm is re-executed if the cell reaches the threshold

again, even if the cell has not given back all borrowed channels. However, if the

outcome of the algorithm execution is partially successful or unsuccessful, the cell

will not be allowed to re-execute the algorithm immediately, but it will be forced to
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wait for a certain amount of time depending on the cause of the failure of the previous

outcome. The introduction of these delays is to avoid an uninterrupted run of the

borrowing algorithm, which would overload the data processing in the base station

and increase substantially redundant signalling in the network.

Channel Assignment

The D-BA scheme is also responsible for the channel assignment. If the incoming

request is a handoff request it will first try to assign the request to a nominal channel;

if that is not possible, it will look for a borrowed channel (if any exists in the cell). If

both attempts fail, the request is blocked. If the request is an incoming call, it will

look firstly for an available borrowed channel and then for an available nominal

channel. Failure in both attempts leads to the request being blocked. The decision to

use a different order of channel assignment for the two types of channel request is

because new users coming to the cell through handoff requests are more likely to stay

in the cell. New calls can be generated at any place in the cell and if there are

borrowed channels it is better to make use of them in order to keep them for shorter

periods, improving the channel usage.

4.3.2 Local Planning Layer

The Local Planning Layer determines the departing region r based on the

signal/noise ratio. This layer is responsible for the channel re-assignment scheme.

Every time a channel is released, the Reactive Layer requests a re-assignment

decision:

! If the channel is a borrowed channel, it will be re-allocated to an appropriately

departing user (using a nominal channel) or it will be given back to the owner cell,

depending on the channel availability of the current cell.

! If it is a nominal channel, it will be re-allocated to non-departing user that is using

a borrowed channel.

The threshold for keeping or releasing a borrowed channel may vary with the

traffic load.

This layer monitors the efficiency of the algorithm in the Reactive Layer, and it is

responsible for the decision of triggering the Co-operative Planning Layer.
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The Local Planning Layer could be much more elaborate than the current version

in this work: more reasoning and learning could be added to improve local

performance. For example the determination of r could take in account traffic history

conditions. Implications of this are discussed in Chapter 6.

4.3.3 Co-operative Planning Layer

The Co-operative Planning Layer is responsible for the negotiation of frequency

resources. When the use of the channel allocation algorithm in the Reactive Layer is

not sufficient to keep low rates of call blocking, one way to alleviate the load of a hot

spot is to move calls to less loaded regions. This can be done through management

handoffs (or traffic handoffs as known in the standards), but this is not an easy task.

Only mobile users close to certain borders of the cells can attempt the management

handoffs. The handoff attempts must be in a co-ordinated manner to avoid a mobile

user being shifted back and forward between two cells. The handoff of users to

different cells is a load-balancing problem, so that the co-ordinated control needed to

solve this problem depends on the collaboration of a group of cells. The co-ordination

of a joint plan using management handoffs is the responsibility of the Co-operative

Planning Layer of the agents. The frequency resource negotiation performed by the

agents has two phases:

! to find the best region to attempt the movement of calls and to engage in a joint

plan.

! the actual execution of the management handoff requests in a co-ordinated

manner, i. e. the execution of the joint plan.

In order to engage and collaborate in a joint plan, the agents communicate through

a negotiation protocol called Contract-Net Protocol (CNP) [Smith88]. A protocol is a

common pattern of conversations used to perform some general task among agents.

In order to perform the Contract-Net Protocol, the agents communicate through

communicative acts. Communicative acts correspond to building blocks of dialogue

between agents and are based on speech act theory [Aus62] [Sea69]. Each message

exchanged between agents is a communicative act. In this work, the agent

implementation uses a sub-set of the communicative acts specified in the FIPA Agent

Communication Language (ACL) [FIPA97]. Table 4.1 shows the set of ACL

communicative acts being used in this work.
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Table 4.1 — Categories of communicative acts

Communicative act
Information

passing
Requesting
information

Negotiation Action
performing

Error
handling

accept-proposal "

cancel "

cfp "

failure "

inform "

inform-ref (macro act) "

not-understood "

propose "

query-ref "

refuse "

reject-proposal "

request "

Figure 4.2 illustrates the CNP as described in the Foundation for Intelligent

Physical Agents (FIPA) [FIPA97] and applied in this work.

not-
d t d

refuse
reason

Deadline for proposals

reject-proposal
reason

failure
reason

inform
Done(action
)

the manager cancels
thcontract due to a
hof situation

cancel
reason

accept-proposal
proposal

propose
preconditions2

cfp (call for  proposals)
action
preconditions1

Figure 4.2: FIPA Contract-Net Protocol
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In Figure 4.2, boxes with double edges represent communicative actions, white

boxes represent actions performed by the initiator, shaded boxes are performed by the

other participant(s) in the protocol and italicised text with no box represents a

comment [FIPA97].

The execution of the protocol during the two-phase agent negotiation is best

explained through an example.

4.3.3.1. First Phase of Negotiation

In the first phase of negotiation, a utility function is used to find the best region to

move calls. The best region is the one that maximises such utility function, which

takes into account the availability of channels and the proportion of users in the areas

where management handoffs may be performed.

Suppose that in the cellular network in Figure 4.3, cell A is hot and the local

channel allocation algorithm is not responding efficiently anymore because the

neighbouring cells are also getting hot. The Local Planning Layer triggers the Co-

operative Planning Layer to start the negotiation with agents in other cells.

B’

B’

B’

B’

A

A’

A’

A’

A’

A’

B’

B’

A’

Figure 4.3: Negotiation Strategy
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The following actions are taken in the first phase of negotiation:

1. In the hot cell, agent A is a manager candidate agent and it sends call for

proposals (cfp(0)) to all its co-channel cell agents A’i, where i can vary from 1 to

the current number of co-channel cells of A (maximum 6).

2. The A’i agents advertise the need for channel availability assessment to their

neighbouring cell agents B’ij, 61 ≤≤ j  sending cfp(1) (cell load assessment and

plan engagement availability).

3. Each B’ij agent sends to the respective A’i agent a propose(1) act if the cell is able

to engage in a joint plan in the near future or a refuse(1) act otherwise. Inside a

propose(1) act the B’ij agent sends its degree of coldness (dc) and the percentage

of the mobile users in the cell (Depart) which are inside the departing region r of

selected cell borders, called regions of movement. The regions of movement in

each cell are pre-defined according to the position of the cell of agent A.

4. Each A’i agent receives the answers of its neighbouring B’ij agents and it

computes the value of the utility function given by Equation 4.3. Where Reg is the

minimum set containing A’i and its neighbours B’ij that have sent propose(1) acts.

In the calculation of F’, Reg can be less than 7 (even if all B’ij agents have sent

propose(1) acts) because the cellular network is not wrapped, the boundary cells

of the network do not have a complete set of neighbouring cells, therefore

7Re1 ≤≤ g . The factor α is introduced in order to decrease the influence of

Depart over F’ (0 < α < 0.25).
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5. The A’i agents that were able to perform the calculation of F’, send the result of

F’ to agent A in propose(0) acts. The A’i agents that did not have enough

propose(1) acts from their neighbours in order to calculate F’ send refuse(0) acts.

6. The received propose(0) act with biggest F’ value is chosen to be the region for

moving the calls (if F’ is greater than a minimum value). Agent A advertises the

result of the auction to the winning co-channel cell agent with an accept-

proposal(0) act. If there is no winning region, then agent A sends reject-

proposal(0) to all A’i agents that have sent propose(0) acts and aborts the joint

plan attempt for a specific duration of time.



85

7. If there is a winning region, then the co-channel cell agent of this region sends

cfp(2) (engage joint plan) to its neighbouring B’ij agents.

8. Each B’ij agent, receiving the cfp(2), assess its availability to engage the joint plan,

considering the number of plans it is already participating in and the regions of

movement being already considered in such plans. It sends a propose(2) act if: the

number of current engaged plans is less than two and the regions of movement (if

engaged in another plan) match the requesting one. Otherwise, it sends a refuse(2)

act.

9. If the wining co-channel cell agent receives back a minimum number of

propose(2) acts from its neighbouring B’ij agents, it sends back an inform(jp)

(inform joint plan) act to agent A and sends accept-proposal(2) acts to all of its

B’ij agents that have sent propose(2) acts. Otherwise it sends a failure(jp) (joint

plan failure) act to agent A and reject-proposal(2) acts to its B’ij agents that have

sent propose(2) acts.

10. The winning co-channel cell agent that has just sent an inform(jp) and its B’ij

agents will perform all preparatory tasks to engage the joint plan and they will

wait for an inform(activejp) (inform joint plan activation) from agent A.

11. If agent A receives an inform(jp) act, it sends a reject-proposal(0) to all other co-

channel cell agents that have sent propose(0) acts before, and a request(jp)

(request joint plan engagement) act to its two neighbouring cell agents in

connection with the winning region. This request is mandatory. Finally, agent A

will send an inform(activejp) act to all agents engaged in the joint plan (first joint

plan execution act). If agent A receives a failure(jp) act, it selects the next best F’

(if exists) and the actions from 6 to 11 are repeated.

12. An agent receiving a request(jp) act will perform all preparatory tasks to engage

the joint plan and wait for an inform(activejp) act from agent A.

13. End of the first phase of negotiation.

Figure 4.4 shows the flow diagram of a successful first phase negotiation. For

clarity, the diagram shows only the manager agent candidate, one of its two

neighbouring cell agents, the wining co-channel cell agent and one of its neighbouring

cell agents.
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MANAGER CANDIDATE
AGENT

CO-CHANNEL
CELL AGENT

NEIGHBOUR OF
CO-CHANNEL CELL
AGENT

cfp(0)

propose(1)

cfp(1)

accept_proposal(0)

propose(0)

cfp(2)

propose(2)

inform(jp) accept_proposal(2)

NEIGHBOUR OF  
MANAGER

CANDIDATE AGENT

request(jp)

Figure 4.4: Successful first phase agent negotiation

Figure 4.5 shows possible examples of unsuccessful selection of regions for

moving calls. The diagrams show the interactions between a manager agent candidate

and simplified cell regions (only one of the B’ij agents is shown).

4.3.3.2 Second Phase of Negotiation: the Joint Plan Execution

The second phase of the negotiation starts with the engagement of all agents

belonging to the winning region, the manager agent A and its two neighbouring cell

agents (which border the winning region) into the joint plan (as illustrated by the

green shaded region in Figure 4.3). Agent A is the manager of the joint plan and the

other partner agents are the contractors of the plan [Smith88]. The manager has the

responsibility to monitor the actions of the contractors and for the termination of the

joint plan.

Each iteration of the joint plan needs to be feasible. Therefore, the heuristic

developed by the author follows a resource-oriented approach of market-based control

[Clearw96]. The aim is to load-balance the whole region so that the difference in

degree of coldness of partner cells should be smaller then certain threshold. The

heuristic tries to balance the region by distributing users among cells (when possible).
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MANAGER CANDIDATE
AGENT

CO-CHANNEL
CELL AGENT

cfp(0)

refuse(0)

(a) unsuccessful negotiation case 1

 MANAGER CANDIDATE
AGENT

CO-CHANNEL
CELL AGENT

NEIGHBOUR OF
CO-CHANNEL CELL
AGENT

cfp(0)

refuse(1)

cfp(1)

refuse(0)

(b) unsuccessful negotiation case 2

 

MANAGER CANDIDATE
AGENT

CO-CHANNEL
CELL AGENT

NEIGHBOUR OF
CO-CHANNEL CELL
AGENT

cfp(0)

propose(1)

cfp(1)

reject_proposal(0)

propose(0)

(c) unsuccessful negotiation case 3

MANAGER CANDIDATE
AGENT

CO-CHANNEL
CELL AGENT

NEIGHBOUR OF
CO-CHANNEL CELL
AGENT

cfp(0)

propose(1)

cfp(1)

accept_proposal(0)

propose(0)

cfp(2)

refuse(2)

failure(jp)

(d) unsuccessful negotiation case 4

Figure 4.5: Examples of unsuccessful region selection
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Plan Initialisation

1. The manager agent A sends its first act to all partner agents to inform them that

the joint plan is in operation (inform(activejp) act).

2. All partner agents receiving the inform(activejp) act will send an inform(ptrnjp)

(partner cell in the joint plan) act to their manager agent identifying themselves

and their neighbouring cells in the regions of movement.

3. Iteration:

a) The manager agent sends a query-ref(0) act to all partner agents.

b)  Each partner agent sends its total number of channels and the number of

channels in use to the manager agent through an inform-ref(0) act.

c) The manager agent computes the rate of change ( ic∆ ) for each partner agent

and itself by calculating the difference between the channel occupancy of the

cell (ci/Ci) and the average channel occupancy of all members (N) of the joint

plan (Lavg):

avg
i

i
i L

C

c
c −=∆ (4.4)

∑
=

=
N

i i

i
avg C

c

N
L

1

1
(4.5)

where Ni ∈∀

ci is the total number of channels in use in the cell of agent i.

Ci is the total number of channels (nominal + borrowed) in the cell of agent i.

Lavg is the average channel occupancy of all cells of the joint plan.

ic∆  is the rate of change in channel occupancy of the cell of agent i inside the

joint plan.

d) If the cell of agent i has ic∆ >0, the manager agent sends to agent i: ic∆ , the

c∆  of the neighbouring cells having borders with the regions of movement of

the cell of agent i and the total number of channels of these cells (C). It also

sends Lavg. This information is sent through a request(jpaction)

(joint plan action) act.
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e) Each agent i that receives the request(jpaction) act from the manager agent

will try to transfer users in the regions of movement (departing areas)

following the algorithm:

i) Sort the received c∆ of the neighbouring cells.

ii) If ic∆ is smaller than min c∆ , then no transfers can be made; go to

step f). Otherwise, go to step iii).

iii) Calculate how many users need to be transferred: .Ciciusers ∗∆=

iv) If min c∆  is greater than Lavg, then transfer one user to the

neighbouring cell with min c∆ ; Go to step viii). Otherwise, go to step v).

v) Sort only c∆  that is smaller or equal to Lavg. The aim is to transfer

mobile users proportionally to the number of channels available in each

target neighbouring cell with c∆  smaller or equal to Lavg.

vi) For all sorted c∆  find the number of users that the cell can receive. For

c∆  of cell j : jjj Ccus ∗∆−=

vii) To find the proportion of users that will be attempted to transfer to

each cell, sum all usj: ∑
=

=
m

j
jusUS

1

. The proportion of users for each cell

is: .min 





∗ users

US

us j

viii) Do the handoff attempts.

f) End of the iteration.

4. Repeat this iteration at intervals of s seconds until the manager decides to

terminate the joint plan. When the plan is to be terminated, the manager agent

sends a cancel(jp) (cancel joint plan) act to inform the termination of the joint

plan.

The termination of the joint plan can be determined by the completion of certain

number of iterations, or when the difference in traffic load between the member cells

is smaller than certain value, or by an exception.

Figure 4.6 shows a flow diagram of the execution of a joint plan. Again for clarity,

only the manager agent and one of the partner agents are shown. The dashed arrow
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means that the issue of the act may or may not happen, depending on the outcome of

the manager’s heuristic.

 MANAGER
AGENT

PARTNER
AGENT

inform(activejp)

query_ref(0)

inform_ref(0)

cancel(jp)

inform(ptrnjp)

query_ref(0)

inform_ref(0)

request(jpaction)

request(jpaction)

Figure 4.6: Execution of a joint plan

A section of Chapter 5 describes the implementation of the negotiation acts in

signalling messages; it also shows the flow diagrams of the signalling message

exchanges between agents inside the cellular network model.

4.4 Summary

This chapter described the specification of the proposed multi-agent system

applied to the scenario of mobile networks. The abstract agent architecture described

in Chapter 3 was adapted to control the frequency channel allocation inside the

cellular network environment. The main functionality of each layer of the agent was

fully specified.
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Chapter 5 Simulation Modelling

5.1 Introduction

In the previous chapter the agent architecture was presented and the specification

of the multi-agent system described. The reminder of this thesis is concerned with

investigating the benefits of the multi-agent system on channel allocation.

There are two ways of measuring the performance characteristics of a channel

allocation scheme: through mathematical analysis or through a simulation model.

Most of the performance measurements of channel allocation schemes in the literature

were made through mathematical analysis, using Markov chains, the traffic pattern in

the cells being modelled using Poisson distributions. Some schemes did not

distinguish between incoming calls and handoff requests, as for example in

[ZY89][ESG82]. Others represent handoff requests as an additional Poisson traffic

load in the cell as in [DSJ97] [DSJA97]. Therefore, they do not model mathematically

the possible trajectories of the mobile. The reason for that is the estimation of

mobility in communication networks can become too complex for mathematical

analysis [Siva98]. Moreover, the variety of signalling messages in real cellular

systems is difficult to model mathematically. To be able to make measurements with

different user mobility scenarios and greater range of signalling statistics, simulation

models are used.

Cellular network systems can be modelled through an event driven simulator. The

cellular model can be built using a simulator developed specially for this purpose or

using a commercial simulator. Purpose-built simulators are faster in terms of

execution time, but the development time can be prohibitive. Commercial simulators

are not as fast as purpose-built simulators, because their code is much heavier than a

single purpose simulator, but on the other hand, the existence of library models allows

the faster construction of more detailed models. In addition, the benefits of

documentation and debug facilities improve the quality of the resulting model. Finally

the ability to plug in existing models can be beneficial in the development phase, for

comparisons or for further work.
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OPNET™ is a communication network commercial simulator that can be defined

as a general-purpose event driven simulator. A simulation model is defined in four

levels (until version 3.1) or five levels. Each level has a different graphical interface.

The top level in the later versions is the project level, followed by the network, node,

process and code levels. The topology of the network to be simulated is built in the

network level. The node level consists of the constituent modules of each network

node and their interconnections. The elements are queues, processes, sources,

receivers and transmitters. The functionality of each module is built in the process

level; a module being defined as a process or a set of processes. Each process is

defined as a finite state diagram and the transitions to each state. The code level is the

contents of each state, separated by the code to be executed before an event and the

code to be executed after an event, before changing state. OPNET is built in the C

language, but it has a large number of predefined functions, several of them replacing

normal predefined C functions in order to give the expected result inside the

simulator.

In this research, the results of the multi-agent system are compared against the

conventional mobile network using the FCA and a mobile network using the D-BA

scheme under common traffic load scenarios. The network performance

measurements used for the comparison between channel allocation schemes are the

traffic blocking rate, handoff rejection rate and call dropping rate. To be able to

perform the comparisons, a common cellular network needs to be modelled in

OPNET and validated against a mathematical model.

This chapter describes the models developed in OPNET to build the cellular

network and the different channel allocation schemes, the assumptions made on these

models and the implementation parameters used.

5.2 Basic Cellular Model Description

The cellular network was modelled to present much of the functionality of a

mobile phone system as specified by AMPS [Mac79]. As explained earlier, AMPS is

used because there is more literature that can be used for comparison. The main

features implemented in the model are listed below.

! Call set-up/teardown is modelled explicitly.
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! Handoffs are performed automatically based on received signal strength and

parameterised handoff threshold.

! Emulation of forced call termination on insufficient signal is implemented.

! Mobile stations self locate on cells based on received signal strength from nearest

base stations.

! All mobile stations have arbitrary trajectories.

! A cartographic background maps the cell boundaries.

! There can be any number of mobile stations per cell.

! The simulation includes a parameterised call generation distribution and average

inter-arrival time.

! A parameterised call length distribution and average call length is implemented.

Modelling assumptions have been made in order to minimise simulation runtime

and keep the model maintainable without affecting the investigation of the channel

allocation problem. The cellular model makes use of two transmissions mechanisms.

The radio interface between the mobile terminal and base stations, and the full-duplex

T-carriers between base stations and the MTSO (it is possible to have high speed

microwave radio links between base stations and the MTSO, but this transmission

mechanism is not considered in the cellular model here). Both mechanisms are

divided between voice and data links. In this work, data links are used for signalling

purposes only. Propagation delays in transmission links are not considered. The

signalling channels were simplified. Mobile stations do not receive calls only generate

them, so that paging channels are not necessary. In AMPS, each cell has three forward

control channels (FOCC) for a 7-cell cluster, but here, each cell has only one FOCC,

represented by a radio data link. Therefore, there is one reverse control channel

(RECC) per cell, which is represented by a radio data link and a static variable that

emulates the Busy/Idle State (BIS). Control channel bit streams are not modelled

explicitly; packets are used instead with relevant signalling information. Voice traffic

is also emulated through packets sent periodically by a mobile station during the

period that its call is in progress. The base stations and MTSO use the voice packets

for signal strength monitoring leading to handoff procedures or forced call

terminations if necessary.
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The cellular network implemented has forty-nine cells, ten nominal frequency

channels per cell in a 7-cell cluster, as shown in Figure 5.1 where frequency channel

sets are represent by different colours. The number is used to identify a particular cell.

Figure 5.1: Cellular network frequency planning

The cellular network is not wrapped and all configuration settings concerning

neighbouring cells and co-channel cells take this fact in account. Mobile users’

trajectories also take into consideration the cartographic boundaries of the cellular

network.

5.2.1 OPNET Network Model

The network is a macrocellular structure with a cell radius of 3.33207-km

(corresponding to 0.03 degrees on the cartographic map at latitude 38o [Rai48]).

In the scenarios used for the simulations, the network model implemented in

OPNET consists of the following nodes: one MTSO, 49 base stations and 980 mobile

stations. Figure 5.2 depicts part of the OPNET network model where base stations and

their full duplex links with MTSO are shown, and mobile stations are distributed

inside the cells.
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Figure 5.2: OPNET network model for the cellular model

The following sections describe the physical and functional properties of the node

and process models of the cellular model. Some of the process models of the cellular

model have similar functionalities to the ones presented in the OPNET Cellular

System Example Models [OPNETb94]. The built-in OPNET cellular system model is

a good example, but the code is not error-free. Also, it is missing important features

like call dropping and other features like the call generation inside the mobile node,

that make it unusable for this work.

5.2.2 Mobile Station

The mobile station has the capability to initiate, maintain and terminate calls, to

self-locate in the cell with highest received signal and to move inside the cellular

network. Different modules inside the mobile station node implement each one of

these functionalities. Figure 5.3 depicts the modules of the mobile station node and

their interrelations.
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Figure 5.3: Mobile station node model

5.2.2.1 Radio Interface

A simplified model has been built. The three nearest base stations receive the voice

packets sent by the mobile station and the signal strength is calculated based on the

distance between the mobile station and the receiver base station.

5.2.2.2 Call Generator Source Model

In each cell a source call generator process generates the call requests and

randomly chooses an idle mobile station located inside the cell to place the call. The

pdf for the call inter-arrival time and its mean value are changeable simulation

parameters. In the scenarios simulated in this work, a negative exponential

distribution was selected for call inter-arrival time with different mean values

depending on the desired traffic load in the cell. The call length distribution is also a

simulation parameter. Constant and exponential call length distributions were used in

the simulations, both with a mean of 180 seconds.

5.2.2.3 Call Server Module

Each mobile station has a unique identification in the system: the mobile

identification number (MIN) that is defined by the filter module in the beginning of

the simulation and used by the call server module to identify all voice and data

packets sent by the mobile station. When the mobile station is idle the call server

waits for the arrival of a call request from the call generator; when it gets one, the call

set up is initiated. First, the BIS is checked in the RECC of the cell:

! If the BIS is equal to 0: the RECC is busy, the mobile station waits a random time

interval between 0 and 200ms to recheck the BIS. The number of times the mobile

rechecks the BIS is limited to 10 attempts through a process parameter in order to
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emulate the maximum number of busy occurrences parameter given by the

overhead information in AMPS systems. When it reaches the limit of recheck BIS

attempts the mobile returns to its idle state.

! If the BIS is equal to 1: the RECC is idle and the mobile station waits a random

time between 0 and 92ms to send the call request, exactly as in the AMPS system

when the overhead message bit is equal to zero. After the waiting time, the call

request is sent and an access timer is set up in order to retransmit the call request

if no response is received. The maximum number of call request attempts in the

access channel is a parameter (a maximum of 4 attempts was used in the

simulations), if the number of attempts reaches the maximum, the mobile returns

to idle.

The response of a call request can be unsuccessful forcing the call to be terminated

and the mobile to return to its idle state. However, if it is successful, the model deals

with the tasks of a call in progress:

! Call update: During the length of the call, voice packets are sent to the voice radio

link. The voice packet is used by the base stations and MTSO to perform signal-

to-noise ratio (SNR) measurements. The periodicity of the voice packets is

determined by a simulation parameter.

! Handoff: The mobile station performs a handoff order.

! Call dropping: The mobile station forcibly terminates the call if the signal is too

weak. The mobile returns to idle.

! Call termination: The length of the call is reached and the call is normally

terminated. The mobile returns to idle after sending a call termination packet in

the voice channel.

5.2.2.4 Filter Module

This module is responsible for the self-location of the mobile station in the cell in

which the mobile receives the strongest signal. When the mobile station is idle, it

performs the self-location procedure periodically each 1 min (this value is also a

changeable simulation parameter). During the period a call is in progress, the filter

module sends to the call server the packets received from the radio link which are

designated for its mobile station and destroys all other received packets.



98

5.2.2.5 Trajectory Module

This is an independent module inside the mobile station node responsible for the

movement of the mobile inside the cellular network. The movement of the mobile

station is independent of the status of the mobile (idle or call in progress). During the

movement the position of the mobile is updated periodically, in accordance with a

position update parameter inside the trajectory process. This parameter was chosen to

be smaller than the voice update parameter in order to have an updated position of the

mobile station every time a voice packet is sent. The time interval between position

updates and the distance between two consecutive positions determine the speed of

the movement and is called a step.

In this work, three different types of movements were implemented: random,

driving on a highway and walking along a street. However any kind of trajectory can

be implemented inside the model. The choice of these trajectories was an attempt to

create diverse user mobility inside the cellular network.

The mobile station with random movement performs cycles of partially random

movement. The start position is always the same (the position determined in the

network configuration). The movement consists of vertical and horizontal trajectories

(inside the network cartographic grid) in such a way that the mobile returns to its

original position in the end of the movement cycle. The first trajectory is always

vertical, the decision to go up or down in the grid is determined by a random variable

with a uniform distribution between 0 (up) and 1 (down). Secondly, a random variable

with a uniform distribution between 0 and a settable maximum number determines the

number of steps of this first trajectory. When the mobile finishes its vertical

trajectory, it starts the horizontal trajectory. Again a random variable with a uniform

distribution determines whether the mobile goes right or left in the grid and another

random variable with a uniform distribution determines the number of steps of this

horizontal trajectory. The third trajectory is in the opposite vertical direction and with

same number of vertical steps. The last trajectory is then in the opposite horizontal

direction with same number of horizontal steps. This concludes a cycle of movement;

the mobile goes to a stand still state during a random period of time (uniform

distribution) before starting a new cycle of movement again. Figure 5.4 shows some

examples of possible random movements.
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Figure 5.4: Examples of random movements

The parameter values used in the simulations are:

! Speed of the mobile station: 5 km/h.

! Maximum number of steps: 90 (giving a maximum distance of 3.1815 km from

the original position).

! Maximum waiting time: 360 s.

The mobile station on a highway performs a horizontal or vertical trajectory

depending on the direction of the highway. The movement starts at the beginning of

the simulation and only stops at the end of the simulation. Mobile stations on a

vertical highway start the movement going up on the cartographic grid until they

reach the upper bound of the cellular network, then they change the direction to down,

until they reach the lower bound of the cellular network, changing direction to up and

so on. Mobile stations on a horizontal highway follow the same process, but left and

right instead up and down. The vehicular mobile stations have a speed of 40 km/h; the

walking mobile stations have a speed of 2 km/h.

5.2.3 Base Station

The main functions of the base station is to perform SNR measurements on all

received voice packets and act accordingly with the result of the measurements and

the origin of the voice packet, and to keep an updated profile of each active mobile

user in the cell.
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Figure 5.5: Base station node model

5.2.3.1 Handoff Module

The process that implements the handoff module is responsible for monitoring all

voice packets it receives. It also keeps an updated list of all active calls within the cell.

When the base station receives a voice packet from an active mobile station within

the cell, the signal strength of the received packet is compared against the handoff

threshold. If the signal strength is less than the handoff threshold, a handoff request

for that mobile station is sent to the MTSO. If the response from the MTSO is

successful, the base station forwards the handoff order (inside the voice channel) to

the mobile station with the information about the new cell and frequency channel, and

also it takes the MIN of the corresponding mobile station off the active calls list. If the

handoff is not possible, the MTSO sends a handoff reject message and the base station

only updates the handoff reject statistics. If the next voice packet is still under the

handoff threshold a new handoff request is made, but if the signal strength of the

voice packet continues to decrease below the call-dropping threshold, the call is

terminated and the call server process in the mobile station is interrupted to forcibly

terminate the call.

The base station also receives voice packets from mobile stations that are active in

neighbouring cells. The base station compares the signal strength of the received

voice packet against a system-defined threshold. If the signal strength is greater than

this threshold the base station forwards the voice packet to the MTSO in order to

record this cell as a possible handoff cell candidate for the caller who sent the voice

packet.
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When the base station receives a call termination packet in the voice channel from

one of its active mobile stations, it directs this information to the MTSO and to the

user controller, and takes the MIN of the corresponding mobile station off of the

active calls list.

5.2.3.2 User Controller Module

The user controller module has four main tasks:

! to deal with all signalling messages in the control channels

!  to keep updated information about active mobile stations

! to keep, and update when needed, the frequency planning configuration of the

cellular network

! to manage the allocation of channels in the cell.

The user controller module consists of five different processes: perception, user

controller, channel manager, frequency manager and database. The processes were

created using OPNET’s dynamic parent-child process model capability.

The perception process works as an environment sensor and dispatcher, receiving

all signalling messages and directing them to the responsible processes.

The user controller process is responsible for keeping track of all changes

occurring in the status of an active mobile station, since the call set up until the call

termination or handoff order. Each active mobile station within the cell is classified as

new, departing or others. This classification is not related to AMPS standards, it is an

extra feature added to the cellular model in order to keep more information about the

active mobile stations in the cell. When the user controller process receives a new call

or handoff request and a channel is granted, the mobile station identification is

inserted in the user classification list. If it is a new call, a successful call set-up

message is sent to the MTSO with the identification of the caller and the base station.

If it is a handoff request, a successful handoff response is sent to the MTSO. The

mobile station is classified as new when inserted in the user classification list. After a

period of time t after the insertion and throughout the duration of the call inside this

cell, the mobile station is classified as others or departing, depending on the SNR

measurements made by the handoff module over the voice packets sent by the mobile

station. The caller is classified as others if the SNR of its voice packets is greater than

a threshold called departing threshold. If its SNR is less than the departing threshold,
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the caller is classified as others, but a timer is started and when this timer expires the

caller is classified as departing if its SNR is still less or equal than the departing

threshold. Each time the handoff module receives a voice packet of a caller within the

cell, the classification of the caller is checked for update.  Therefore a departing

mobile station can become others again if its SNR comes back to be greater than the

departing threshold. When the call is terminated, the user controller process removes

the information related to the mobile station and sends a call termination message to

the MTSO.

The channel manager and the frequency manager processes are responsible for the

allocation and release of the assigned channels of the cell. They deal with the channel

request for new calls and handoffs and send the appropriate response to these

requests. They implement the FCA strategy. The channel manager updates statistics

such as the number of a specific request type it receives, and the number of successful

and unsuccessful responses. The frequency manager keeps track of the traffic load in

the cell, updating the percentage of available channels in the cell every time a channel

is allocated or released. It is worth mentioning that in AMPS systems the allocation of

the individual channels of each cell is the responsibility of the MTSO. This feature of

the system was modified in this cellular model, distributing the task to the

corresponding base stations. However this modification does not change the model

statistics.

Finally the database process is responsible for keeping the information about the

cellular system that affects the cell where the base station is placed. It has the

identification of its neighbouring base stations, the base stations that are its co-

channel cells, all base stations inside its compact pattern, all the base stations inside

the channel reuse distance that are not its co-channel cells. For all identified base

stations, the database process has the information on the corresponding set of

frequency channels being used.

5.2.3.3 BIS Module

This module monitors the busy status of the RECC receiver and sets a BIS flag as the

status changes. The mobile station checks this flag reading the object attribute linked

to it, therefore emulating the reading of the BIS field in the FOCC performed by a

mobile station when trying to seize the RECC.
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5.2.4 MTSO

In AMPS systems, the MTSO offers several services like Home Location Register

(HLR), Visitor Location Register (VLR), networking services between different

cellular networks (IS-41), billing and mobile tracking. In the simplified model here,

only the mobile tracking is relevant for the channel allocation investigation. The most

important function of the MTSO is to keep the information necessary about a specific

active mobile station in order to be able to decide to which cell the mobile station

needs to handoff if such request is received.

The MTSO node consists of a module called call manager and the full-duplex

(voice and data) links to each base station in the system as shown in Figure 5.6.

BS_0

BS_1

BS_47

BS_48

MTSO

CALL MANAGER

Voice

Data

Figure 5.6: MTSO node model

5.2.4.1 Call Manager Module

The call manager process, which implements this module, keeps track of each

active mobile station by keeping a list of all calls in progress in the cellular network.

It is a two-dimensional list (a list of lists). Each element of the master list corresponds

to a call in progress. When a new call is established a new element is inserted in the

master list. The linked list attached to each element of the master list consists of data

structures that contain information on the current signal strength for the call at each

base station able to receive above a threshold [OPNETb94].

This process is responsible for the selection of the cell to which an active mobile

station needs to be handed over. If a channel is available in the selected cell a handoff

order is issued, otherwise a handoff failure is reported to the base station that

requested the handoff.
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When a call terminates, the corresponding element in the master list is removed

and destroyed together with its linked list.

5.3 Cellular Network with D-BA Simulation Model

For the simulations of the D-BA scheme, the basic cellular network model has to

be modified. Since the only difference is the channel allocation scheme, the user

controller module of the handoff node (section 5.2.3.2) and the call manager module

in the MTSO node (section 5.2.4.1) needed alterations. The modifications in the call

manager module were minimal, the only feature added is the redirection of signalling

messages between base stations. The user controller module, however, needed drastic

modifications because the D-BA scheme is implemented entirely inside this module.

Therefore the name of this module was changed to D-BA and the base station node

now is represented by the model shown in Figure 5.7.

RADIO INTERFACE

HANDOFF D-BA

BIS

MTSO

VOICE DATA

Figure 5.7: Base station node in D-BA cellular network model

5.3.1 D-BA Module

The main tasks of the D-BA module are still the same as the user controller module

in the conventional cellular model, but now follow the D-BA scheme for the channel

allocation. The D-BA module consists of the following processes: perception, user

controller, channel manager, frequency manager, database, channel borrower,

channel lender, lender manager and channel locker.
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All the processes will interact with each other in order to perform the D-BA

scheme exactly as described in Chapter 4, section 4.3.1.2 and also to perform the

channel reassignment as described in section 4.3.2.

The functionality of the perception, user controller and database processes is the

same as described in section 5.2.3.2, the only difference being that they are prepared

to deal with the signalling messages exchanged when the channel borrowing

algorithms are being executed.

The channel manager and the frequency manager processes keep a consistent and

updated record of the status of all channels in the cell. Now the cell can have nominal

and borrowed channels. The nominal channels can have the following status:

available, in use, lent or locked; a borrowed channel can be available or in use. The

channel manager is responsible for triggering the channel-borrowing algorithm, the

decision being based on the rules of the D-BA algorithm as explained in

section 4.3.1.2. The frequency manager decides what channel will be allocated when a

channel request is received. It also deals with channel borrowing and channel locking

requests. For the cellular network using only the D-BA scheme, the frequency

manager also performs the channel reassignment (Local Planning Layer functionality

in the agent model, section 4.3.2) and the channel release when a call is terminated. It

also decides when a borrowed channel will be returned to its original cell.

The borrower process is the heart of the D-BA scheme. The channel manager

invokes the borrower process every time the channel-borrowing algorithm needs to be

executed. The borrower process performs the initialisation phase described in

section 4.3.1.2 and starts the algorithm cycle to borrow channels. It executes all the

steps due to the borrower cell inside the algorithm.

The lender process receives the signalling messages of borrower cells. For each

borrower cell that has initiated the algorithm cycle and sent a request to this cell, one

lender manager process is instantiated. The lender manager will be responsible for all

requests from only one specific borrower cell. The lender manager process is

destroyed when the borrower cell that it was serving advertises that it came back to

normal levels of channel availability.

The locker process receives the requests of co-channel cells that are lending

channels to other cells. The locker process will signal the channel manager process
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and lock channels if possible, sending the appropriate response to the requesting

lender cell.

5.3.1.1 Signalling Message Exchange for Channel Borrowing

Figure 5.8 depicts the signalling flows between the processes that compose the D-

BA module. For clarity, the perception and the database processes were omitted. The

perception process receives all messages from the environment (mobile station,

MTSO, handoff node) and dispatches the messages to the corresponding processes.

All processes inside the D-BA module interact with the database. In Figure 5.8 the

group of signalling messages exchanged between two processes or between a process

and the environment is represented by an arrow and a number.

MTSOMTSOMTSOMTSO

HANDOFFHANDOFFHANDOFFHANDOFF
MODULEMODULEMODULEMODULE

MOBILEMOBILEMOBILEMOBILE
STATIONSTATIONSTATIONSTATION

MTSOMTSOMTSOMTSO

USERUSERUSERUSER
CONTROLLERCONTROLLERCONTROLLERCONTROLLER

CHANNELCHANNELCHANNELCHANNEL
MANAGERMANAGERMANAGERMANAGERLENDERLENDERLENDERLENDER BORROWERBORROWERBORROWERBORROWER

LOCKERLOCKERLOCKERLOCKER

11112222

3333
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Figure 5.8: Signalling message exchange in D-BA module
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A brief description of the signalling messages and its meaning is given below:

Group 1:

MOBILE STATION 4USER CONTROLLER PROCESS

call_request_msg a mobile is asking for an available channel to start a call

USER CONTROLLER PROCESS 4MOBILE STATION

call_response_msg response of the success or failure in a call set up

Group 2:

USER CONTROLLER  PROCESS4HANDOFF MODULE

assigned_call_msg information about a new call that has been set-up

HANDOFF MODULE 4USER CONTROLLER PROCESS

voice_packet SNR information about a call being managed by the cell

call_termination_msg information about a call that has been terminated

handoff_mgs response of a handoff request or handoff order information

Group 3:

USER CONTROLLER PROCESS 4 MTSO

assigned_call_msg informing the MTSO about a new call that has been set-up

handoff_channel_rsp success or failure of a handoff channel request

MTSO 4 USER CONTROLLER PROCESS

 handoff_channel_rq MTSO is requesting a channel to handoff a call to this cell

Group 4:

USER CONTROLLER PROCESS 4 CHANNEL MANAGER PROCESS

newcall_channel_rq channel request for a new call to this cell

handoff_channel_rq channel request to handoff a call to this cell

call_termination_msg information about a call that has been terminated

handoff_reject_msg internal information about a reject handoff request

CHANNEL MANAGER PROCESS 4 USER CONTROLLER PROCESS

newcall_channel_rsp success or failure of a new call channel request

handoff_channel_rsp success or failure of a handoff channel request
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Group 5:

USER CONTROLLER  PROCESS4BORROWER PROCESS

ms_depart_info_rsp information about the current departing mobile stations

BORROWER PROCESS 4USER CONTROLLER PROCESS

ms_depart_info_rq request information about current departing mobile stations

Group 6:

CHANNEL MANAGER  PROCESS4BORROWER PROCESS

start_borrowalg_msg triggers the execution of the borrowing algorithm

BORROWER PROCESS 4CHANNEL MANAGER PROCESS

rcv_borwdchs_msg channels obtained with borrowing algorithm execution

Group 7:

LENDER (LENDER MANAGER)  PROCESS4CHANNEL MANAGER PROCESS

lend_chs_rq request one or more channels to be lent to other cell

ret_lent_chs lent channel(s) being returned to the cell

CHANNEL MANAGER PROCESS 4LENDER (LENDER MANAGER) PROCESS

lend_chs_rsp response about allocation of channels for lending

Group 8:

CHANNEL (FREQUENCY) MANAGER PROCESS 4 MTSO

ret_brwd_chs borrowed channel(s) being returned to a specific lender cell

Group 9:

LOCKER  PROCESS4CHANNEL MANAGER PROCESS

lock_chs_rq request one or more channels to be locked

rls_locked_chs locked channel(s) being released to the cell

CHANNEL MANAGER PROCESS 4LOCKER PROCESS

lock_chs_rsp response about locking of channels
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Group 10:

BORROWER PROCESS 4MTSO

ch_availability_rq request to inform degree of coldness of the receiver cell

calc_F_rq request to a possible lender cell to calculate utility function F

borrow_chs_rq request a lender cell to lend channel(s)

MTSO 4BORROWER PROCESS

ch_availability_rsp cell is informing its degree of coldness to requester cell

calc_F_rsp possible lender cell calculated F and is sending the response

borrow_chs_rsp zero or more channels lent to borrower cell

Group 11:

LENDER PROCESS 4MTSO

ch_availability_rsp cell is informing its degree of coldness to requester cell

calc_F_rsp possible lender cell calculated F and is sending the response

borrow_chs_rsp zero or more channels lent to a borrower cell

lock_chs_rq request one or more channels to be locked

rls_locked_chs release specified locked channel(s) in the receiver cell

MTSO 4LENDER PROCESS

ch_availability_rq  inform own degree of coldness to a requester cell

calc_F_rq calculate utility function F

borrow_chs_rq a borrower cell is requesting channel(s)

ret_brwd_chs borrowed channel(s) being returned to this lender cell

lock_chs_rsp response about locking of channels

Group 12:

MTSO 4 LOCKER  PROCESS

lock_chs_rq request one or more channels to be locked

rls_locked_chs release specified locked channel(s) in the cell

 LOCKER PROCESS 4MTSO

lock_chs_rsp response about locking of channels
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The following diagrams show the signalling message exchange during the

execution of a borrowing channel algorithm cycle: firstly, a successful channel

borrowing (Figure 5.9) and then the possible unsuccessful cases (Figure 5.10).

The diagrams describe the signalling messages exchanged between a borrower cell,

a lender and/or one of its co-channel cell that can cause interference with the borrower

in a successful channel-borrowing algorithm cycle execution. It is needed to bear in

mind that, for a successful channel borrowing, the locking of channels need to be

successful in all co-channel cells of the lender that can cause interference with the

borrower.

BORROWER
CELL

MTSO LENDER
CELL

CO-CHANNEL CELL
OF LENDER CELL

calc_F _rq

calc_F_rsp

borrow_chs_rq

calc_F _rq

calc_F_rsp

borrow_chs_rq
lock_chs _rq

lock_chs_rsp

ret_brwd _chsret_brwd_chs

lock_chs_rq

MTSO

lock_chs_rsp
borrow_chs_rspborrow_chs_rsp

rls_locked _chs rls_locked _chs

Figure 5.9: Signalling message exchange in a successful channel borrowing
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(a) unsuccessful channel borrowing case 1
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(b) unsuccessful channel borrowing case 2

Figure 5.10: Signalling message exchange in unsuccessful channel borrowings

5.4 Cellular Network and Multi-Agent System Simulation
Model

Another set of modifications leads to the third cellular network model built. This

incorporates the multi-agent system. There is one intelligent agent in each base station

responsible for the channel allocation strategy. The implementation of the channel

allocation strategy using intelligent software agents constitutes the only difference

between this network model and the basic network model. However, one important

feature has been added in this model, that is the capability of the system to perform

management handoffs. A management handoff (traffic handoff as it is called in the

AMPS/GSM specifications) is requested by a base station based on traffic conditions

and SNR measurements and not only on SNR measurements as for the normal
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handoff request (confinement handoff) as modelled in the basic cellular model. This

new feature was needed for the successful execution of joint plans (section 4.3.3.2).

The implementation changes between the cellular model with intelligent agents

and the conventional one are confined in the following modules:

! An agent module, described in the following subsection, replaced the user

controller module inside the base station node.

! The handoff module inside the base station node was altered to comply with the

management handoffs.

! The call manager module inside the MTSO node was modified to comply with the

management handoffs and to redirect signalling messages exchanged between

agents.

5.4.1 Agent Simulation Model

The hierarchical structure of the agent architecture was implemented inside a

module in the base station node. The different layers were created using OPNET’s

dynamic parent-child process model capability. Each layer is composed of a different

group of processes. Figure 5.11 illustrates how the conceptual agent model

(Chapter 3, section 3.2.1) was adapted and implemented inside an OPNET module.
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Figure 5.11: Implementation of the conceptual agent model
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The perception process comprises the sensor section and part of the

communication section of the agent architecture. The action plane represents the

execution of tasks performed by the processes on the environment and it comprises

the actor section and the remaining communication section of the agent architecture.

All control layers intersect the action plane and the knowledge base plane. When a

control layer is activated in response to an event in the environment, the overall

behaviour of the processes inside the control layer constitutes the execution of the

control cycle (section 3.2.1.1). The arrows between layers represent the activation

requests and the commitments performed in a control path.

Specifically for the channel allocation strategy, the agent replaces the user

controller module in the base station node as depicted by Figure 5.12.

RADIO INTERFACE

HANDOFF AGENT

BIS

MTSO

VOICE DATA

Figure 5.12: Agent module integrated in the base station node

Each layer of the agent consists of a different group of process. Figure 5.13

illustrates the process hierarchy and group division of all processes that make up the

agent module.
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LD:  channel lender process CCC: joint plan co-channel cell process
LC:  channel  locker process N :    joint plan neighbouring cell process
CM: channel manager process PM:  joint plan manager process
LM: lender manager process DB:  data base process

Figure 5.13: Process hierarchy inside agent module

The perception process is now capable of interfacing the entries for all three layers

of the agent. The database process provides information for the three layers.

As explained in Chapter 4, the Reactive Layer makes use of the D-BA scheme as

channel allocation algorithm, so that the simulation modelling description made in

section 5.3 describes the Reactive Layer of the agent model.

The Local Planning Layer consists of two processes: local planning and frequency

manager. The local planning process monitors the borrower process in the Reactive

Layer, analysing the outcomes of the borrowing algorithm runs and making the

decision when the Co-operative Planning Layer needs to be triggered to start a joint

plan. The frequency manager was moved from the Reactive Layer to the Local

Planning Layer because the decision making for reassignment and release of channels

depend directly on planning strategies in the this layer.

The Co-operative Planning Layer consists of a master process and possible child

processes that will be instantiated depending on the role of this agent in a joint plan

negotiation or execution. The master process is called the co-operative layer process

and is capable of responding to any signalling message belonging to the Contract-Net

Protocol (CNP) in any kind of role concurrently. The roles the agent can assume are a

manager candidate or a manager of a joint plan, a co-channel cell of a manager (or of

a manager candidate), or a neighbour (of a co-channel cell or a manager). For each

role, different rules are applied concerning the engagement in a joint plan. For

example, an agent cannot start a role of a manager candidate (starting a joint plan
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negotiation, i.e. first phase negotiation) if it is already serving another joint plan (in

execution, i.e. second phase negotiation) as a co-channel cell or a neighbour.

However, the agent can start a role of a manager candidate if it is not a member of a

joint plan in execution, even if it is responding to other agents in other joint plan

negotiations. The agent’s decision making for each stage of a particular joint plan

negotiation depends on the state of all other joint plan negotiations or executions in

which this agent is taking part.

The possible child processes in the Co-operative Planning Layer are the joint plan

co-channel cell, the joint plan neighbouring cell, and the joint plan manager.

A joint plan co-channel cell process is instantiated every time the agent can give

continuity to a call_for_proposal message from a manager candidate agent in the

beginning of a joint plan negotiation. The agent sends a refuse message straight away

if it is already engaged in two executing joint plans. The joint plan co-channel cell

process will perform the actions described in section 4.3.3.1 (first phase of the agent

negotiation) for a co-channel cell of a manager candidate. If the joint plan negotiation

in which this process is taking part progresses to the second phase (execution), then

the joint plan co-channel cell process will perform the actions as a partner of the joint

plan in execution as described also in section 4.3.3.2. If in some stage of the

negotiation (in which this process is taking part), the agent can no longer engage the

joint plan or its cell is not in the winning region, then the joint plan co-channel cell

process is destroyed.

The other two kinds of child processes that the co-operative layer can have are

only instantiated during joint plan executions. During the first phase of the agent

negotiation, the co-operative layer process deals with the actions of a manager

candidate or a neighbour of a co-channel cell.

A joint plan neighbouring cell process is instantiated if the agent is acting as a

neighbour (it does not matter if it is a neighbour of a co-channel-cell agent or of a

manager agent) in a joint plan in execution. It will perform the actions of a partner of

the joint plan in execution as described in section 4.3.3.2.

A joint plan manager process is instantiated if the agent is acting as a manager of a

joint plan in execution. It will perform the actions of the manager agent of the joint

plan in execution as described in section 4.3.3.2.
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In summary, for each joint plan in execution that the agent is engaged in, a special

child process in the Co-operative Planning Layer will be instantiated and the type of

the child process depends on the role of the agent in the joint plan.

The following subsection describes the signalling messages in the Co-operative

Planning Layer during negotiation and execution phases of joint plans.

5.4.1.1 Signalling Message Exchange in the Co-operative Planning Layer

The messages exchanged between agents follow the FIPA-CNP as described in

Chapter 4. However, to simplify the implementation in OPNET, some of the CNP act

names were modified, but the same semantics were used. This was the case for the

acts inform, request, failure and cancel, where the context of the message was added

to its name, for example inform_jp, reqjp_action, failure_jp, cancel_jp, etc. The

number inside curled brackets that appears in the end of the messages is the contents

of the content parameter [FIPA97] and it was introduced in this description to make

easier the understanding of the purpose of the message.

Figure 5.14 illustrates the groups of signalling messages exchanged between the

co-operative layer processes and other agents (through MTSO) and the signalling

messages exchanged inside the agent module.

LOCALLOCALLOCALLOCAL
PLANNINGPLANNINGPLANNINGPLANNING
LAYERLAYERLAYERLAYER

MTSOMTSOMTSOMTSO

CO-OPERATIVECO-OPERATIVECO-OPERATIVECO-OPERATIVE
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JOINT PLANJOINT PLANJOINT PLANJOINT PLAN
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Figure 5.14: Signalling message exchange in the agent module (CPL)
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A brief description of the signalling messages and their meaning is given below.

For clarity, the role that the agent is performing when sending or receiving signalling

messages is underlined.

Group 1:

LOCAL PLANNING LAYER (LPL)4 CO-OPERATIVE LAYER (CL) PROCESS

start_cf0_msg the LPL is requesting the CL process to try to announce a joint plan.

Group 2:

CO-OPERATIVE  LAYER PROCESS 4MTSO

cfp(0) the manager candidate is asking its co-channel cells to assess their

regions.

refuse(0) the co-channel cell cannot propose a joint plan.

propose(0) the co-channel cell assessed successfully its region and it is sending back

a proposition to the manager candidate .

accept_proposal(0) the manager candidate is accepting one of the propositions.

reject_proposal(0) the manager candidate is rejecting one of the propositions.

request_jp(0) the manager is requesting its two neighbours inside the winning region to

engage the joint plan.

failure_jp(0) the manager candidate accepted the proposition of this co-channel cell,

but for some reason the co-channel cell is informing that the joint plan

cannot be executed.

propose(1) a neighbour of a co-channel cell is sending its assessment.

refuse(1) a neighbour of a co-channel cell cannot send an assessment because it

cannot engage any joint plan in near future.

propose(2) a neighbour of a co-channel cell is informing that it can engage the joint

plan.

refuse(2) a neighbour of a co-channel cell cannot engage the joint plan before

proposed by the co-channel cell to the manager candidate.

MTSO 4CO-OPERATIVE LAYER PROCESS

cfp(0)
a co-channel cell is receiving cfp(0) from a manager candidate .

cfp(1) a neighbour of a co-channel cell is being asked for assessment.
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cfp(2) a neighbour of a co-channel cell is being asked to engage a joint plan.

propose(0), refuse(0) the manager candidate is receiving a proposition or a refusal from a co-

channel cell.

propose(1), refuse(1) the CL process forwards the message to the respective CCC process.

propose(2), refuse(2) the CL process forwards the message to the respective CCC process.

accept_proposal(0),

reject_proposal(0)

the co-channel cell is being informed that its proposition was

accepted/rejected by the manager candidate.

accept_proposal(2),

reject_proposal(2)

the neighbour of a co-channel cell is being informed to engage/not engage

the joint plan.

failure_jp(0) the manager candidate is being informed that the proposition before

accepted it is no longer valid for some reason.

inform_jp(0) the manager candidate is being informed that everything is ready to start

the joint plan execution.

request_jp(0) the neighbour of a manager is being ordered to engage the joint plan.

cell_jp_inform(0),

query_ref(0),

reqjp_action(0)

redirect message to the respective N process or to the CCC process.

ptnrjp_inform(0),

inform_ref(0)

redirect message to the joint PM process.

cancel_jp(0) the member of a joint plan is being informed that the corresponding joint

plan is terminated.
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Group 3:

CO-OPERATIVE LAYER PROCESS 4 JOINT PLAN CO-CHANNEL CELL (CCC) PROCESS

propose(1) the co-channel cell is receiving the assessment of one of its neighbours.

refuse(1) the co-channel cell is being informed that a neighbour (sender) cannot

send its assessment.

propose(2) the co-channel cell is being informed that a neighbour (sender) is ready to

engage the joint plan.

refuse(2) the co-channel cell is being informed that a neighbour (sender) cannot

engage the joint plan.

accept_proposal(0) the co-channel cell had its proposition accepted and now it has to send

cfp(2) to its neighbours.

cell_jp_inform(0) the co-channel cell is being informed that the corresponding joint plan is

starting the execution phase.

query_ref(0) the co-channel cell needs to send its load information to the manager .

reqjp_action(0) the co-channel cell is being informed (by its manger) that it needs to

perform management handoffs.

cancel_jp(0) the co-channel cell is being unformed that the corresponding joint plan

has finished and it needs to clean up to be destroyed.

Group 4:

CO-OPERATIVE LAYER PROCESS 4 JOINT PLAN NEIGHBOUR CELL (N) PROCESS

cell_jp_inform(0) the neighbour is being informed that the corresponding joint plan is

starting the execution phase.

query_ref(0) the neighbour needs to send its load information to the manager.

reqjp_action(0) the neighbour is being informed (by its manger) that it needs to perform

management handoffs.

cancel_jp(0) the neighbour is being informed that the corresponding joint plan has

finished and it needs to clean up to be destroyed.
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Group 5:

CO-OPERATIVE LAYER PROCESS 4 JOINT PLAN MANAGER (PM) PROCESS

ptnrjp_inform(0) the manager is receiving the id and departing regions ids of a joint plan

partner agent.

inform_ref(0) the manager is receiving load information of a partner agent.

Group 6:

JOINT PLAN CO-CHANNEL CELL PROCESS 4MTSO

cfp(1) the co-channel cell is requesting a neighbour to assess itself.

propose(0) the co-channel cell is sending a joint plan proposition to a manager

candidate.

refuse(0) the co-channel cell is sending a joint plan refusal to a manager candidate.

cfp(2) the co-channel cell is asking a neighbour to engage the corresponding

joint plan.

accept_proposal(2) the co-channel cell is informing the neighbour to actually perform the

engagement to the joint plan.

reject_proposal(2) the co-channel cell is informing the neighbour that a joint plan with the

manager candidate is no longer possible.

inform_jp(0) the co-channel cell is informing the manager that the co-channel cell and

its neighbour are ready to start the joint plan execution.

failure_jp(0) the co-channel cell is informing the manager candidate that the

proposition before sent it is no longer valid for some reason.

ptnrjp_inform(0) the co-channel cell is informing its own id and the its departing ids to the

manager.

inform_ref(0) the co-channel cell is informing its load to the manager.

Group 7:

JOINT PLAN NEIGHBOUR PROCESS 4 MTSO

ptnrjp_inform(0) the neighbour is informing its own id and the its departing ids to the

manager.

inform_ref(0) the neighbour is informing its load to the manager.
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Group 8:

JOINT PLAN MANAGER PROCESS 4 MTSO

cell_jp_inform(0) the manager is informing each joint plan partner that the corresponding

joint plan is starting the execution phase.

query_ref(0) the manager is requesting load information of the receiving partner .

reqjp_action(0) the manager is requesting the receiving partner to perform management

handoffs.

cancel_jp(0) the manager is informing each joint plan partner that the joint plan is

being terminated.

Group 9:

CL CHILD PROCESS  4 LOCAL PLANNING LAYER 4USER CONTROLER PROCESS

mgmt_hoff_rq Co-operative Planning Layer is signalling the Reactive Layer to request

management handoffs accordingly with the information inside the

signalling message.

The following diagrams show the signalling message exchanges during joint plan

negotiation and execution phases. Firstly, it shows the diagrams during a joint plan

negotiation. For clarity, the diagrams show only the interaction of an agent trying to

set up a joint plan, the signalling messages exchanged with one of its co-channel cell

agents and the latter with one of its agent-neighbours. However, it is necessary to bear

in mind that in an agent negotiation, all co-channel cell agents of a manager candidate

will receive these messages and also all neighbours of the co-channel cell agents.

Examples of possible outcomes of the negotiation phase are shown in separate

diagrams in Figure 5.15 and Figure 5.16.
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Figure 5.15: Successful joint plan negotiation
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Figure 5.16: Different cases of unsuccessful joint plan negotiation
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Figure 5.17 shows diagrammatically the signalling message exchanges during the

execution of a joint plan. A signalling message with a dashed arrow means that the

issue of this message may happen or not depending on the outcome of the manager’s

heuristic.
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Figure 5.17: Signalling message exchanges during the execution of a joint plan

5.4.2 Handoff Module Modifications

The only modification needed in the handoff module (base station node) was to

comply with management handoff requests. The agent module issues management

handoff requests, which need to be processed and sent to the MTSO by the handoff

module. Once the management handoff request was sent to the MTSO the expected

responses are the same as a normal handoff request. The handoff module is

responsible for keeping consistency of handoff requests belonging to a same mobile

station, i.e. a departing mobile station cannot have a management handoff request and

a normal handoff request being processed by the MTSO at the same time. Only the

first request will go through towards the MTSO, the other will be discarded by the

handoff module if the previous one is still being processed by the MTSO.
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5.4.3 Call Manager Module Modifications

The call manager module, inside the MTSO node, processes separately the two

types of incoming handoff requests, because the procedure for the selection of the cell

for the handoff is different. However, once the target cell is selected, all procedures

are the same for both kinds of handoff requests. This was a important implementation

issue in order to keep consistency in the statistics being measured in the cellular

network model.

Another modification was the capability of the MTSO to redirect accordingly

signalling messages exchanged between agents.

5.5 Simulation Modelling Summary

In this chapter the most important simulation modelling issues of this research

work were discussed. In order to compare traffic performance characteristics, three

cellular network models were built. The first is the conventional cellular model using

the FCA strategy. The second cellular network model was based on the conventional

model, but using a different channel allocation scheme, the D-BA scheme. A

description of the signalling messages used in the execution of the borrowing

algorithm was shown. Finally, the third cellular network model was also based on the

first basic model built, but now the multi-agent system was introduced to perform the

channel allocation strategy. The signalling messages used by the agents were

described. A new networking feature was added in the third model: the management

handoff procedure.

The verification and validation of the simulation modelling described in this

chapter and other important issues about simulation parameters will be discussed in

the next chapter.
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Chapter 6 Simulation Results and Analysis

6.1 Simulation Modelling Verification and Validation

In order to determine whether the cellular network simulation model developed

accurately represents a real system, it needs to be verified and validated. The

verification determines whether the simulation model performs as intended and the

validation determines whether the conceptual simulation model is an accurate

representation of the system under study. If the simulation model and its results are

valid and are used as an aid in making decisions, then the model is said to be credible

[LK91].

In [LK91], several techniques are described to verify and validate a simulation

model; the following techniques were used in this work.

6.1.1 Verification and Validation of the FCA Cellular Network Simulation
Model

The FCA cellular network simulation model was verified using the OPNET ODB

(debugging) functionality, allowing several kinds of traces and breakpoints to be

applied during the execution of the simulation. The overall simulation results and the

intermediate results obtained in traces and breakpoints were checked for consistency

and coherency. Animation, using a special OPNET package, was also applied to

check specific features of the cellular system, such as user mobility. The input

probability distributions given by OPNET and used in this work were sampled and

their sample mean compared with the desired ones. Finally, run-time checks end the

simulation if inconsistencies are detected.

The simulation model was validated by comparing the simulation output data for

the call blocking rate of the entire network against the Erlang B formula taking the

same mean offered traffic and the same mean call holding time. In this specific

validation scenario only call requests are considered as offered traffic in the cell,

because mobile users do not have trajectories. Therefore the call-blocking rate is

equal to the total traffic offered over the total traffic refused. The decision to use the

call blocking rate as a validation statistic is because the Erlang B formula is

extensively used for describing telephony systems [DS84] [Bear88], including FCA
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cellular networks as configured in this scenario [ZY89] [Lee95]. The technique used

for the validation was the confidence-interval approach based on independent data for

steady-state parameters [LK91].

The simulation model was considered to be in the steady state after 80,000 seconds

simulation time. Figure 6.1 shows that this is a valid assumption. The call blocking

rate measurements were sampled from 80,000 seconds to 180,000 seconds, following

the initial-data deletion technique [LK91]. The number of measurements is large

enough to consider that its sample mean has closely converged to the steady-state

mean (v) that is equal to the expected mean of the output random variable, here the

call blocking rate.

Figure 6.1: Call blocking rate versus simulation time

Figure 6.1 shows the OPNET output graph for the call blocking rate (Global

Percentage of Traffic Refused) over the simulation time. Although the graph in

Figure 6.1 is for an offered traffic of 15 Erlang, the output graphs for lower offered

traffic follow the same general shape only with a lower call blocking rate. Hence the

assumption of steady state after 80,000 seconds is reasonable.

For each offered traffic load, the estimation of steady-state mean (v) for the call

blocking rate and its confidence interval was performed using the replication/deletion
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approach [LK91]. In this approach, the observations used for the estimates (call

blocking rate measurements) are taken beyond the warm-up period l (here,

80,000 seconds). A number n (n≥5) of independent replications of the simulation

needs to be performed, each one with length of m observations, where m needs to be a

large number. In this work, five replications of the simulation were performed for

each traffic load, using a different seed for the random generators in OPNET. Each

simulation ran for 180,000 seconds, making the number of observations m very large

(m > 20,000).

The estimation of v is given by first taking the sample mean of the m observations

(Y) of each replication (i) of the n replications:
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 is the unbiased point estimator for v.

Finally an approximate 100(1 – �) percent confidence interval for v is given by:
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The value between brackets is called the half-length of the confidence interval.

S2(n) is the sample variance given by:

( )
( ) ( )[ ]

1
1

2

2

−

−
=

∑
=

n

nYmY

nS

n

i
i

(6.4)

The parameter tn is given by Equation 6.5 and has a t distribution with n-1 degrees

of freedom.



129

[ ]
( )
n

nS

vnY
tn

2

)( −= (6.5)

Values of tn-1,1-�/2 are given in tables. For the validation of the results of five

replications considering a 90% confidence interval, t4,0.95 is needed and its value is

2.132 (Table T.1 of the appendix in [LK91]).

For the validation of the FCA cellular model, the overall traffic-blocking rate of

the network was taken, as this is the major performance characteristic considered in

this work. This is possible because the average traffic blocking probability in an entire

cellular network (PB) is given by Equation 6.6 (from [ZY91]):
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M is the total number of cells in the network, Ti is the offered traffic in cell i, and

Pb(Ti, Ci) is the Erlang B formula (Equation 2.17) for cell i considering its offered

traffic Ti and the number of channels allocated to the cell Ci among the total number

of channels of the compact pattern. Equation 6.6 is general for uniform and non-

uniform traffic load distributions in the cellular network. In the case of uniform load

distribution and equal number of channels allocated per cell, Ti = T and Pb(Ti, Ci) =

Pb, therefore :

PbPb
MT

T
MPB == (6.7)

The values for validation were taken from simulations of a 7-cell network. All the

process models for the 7-cell network are exactly the same as those for the 49-cell

network, but the execution time is much quicker. The average number of calls per

hour is the same in all cells, starting from an average of 80 calls/h per cell, with the

load in subsequent simulations being increased until it reaches 300 calls/h per cell.

The load per cell follows a Poisson distribution with the mean being the selected

average of calls/h. The call holding time was constant with a value of 180 seconds,

the reason for that is discussed later. The exponentially distribution for the call

holding time is not required in order that the results (of the Erlang B formula) hold for
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this case. The results are insensitive to the form of the call holding time distribution in

this case [Dai92].

Table 6.1 gives the values of the average calls/h per cell, the resulting overall call

blocking rate of the FCA cellular network in each simulation, the sample mean, the

sample variation and the 90% confidence interval half length.

Table 6.1: Simulation results and confidence interval calculations

calls/h seed 4 seed 20 seed 51 seed 75 seed 99 sample mean sample variance ci half length.

80 0.005298 0.006257 0.006551 0.004563 0.005834 0.005701 6.21139E-07 0.000751

100 0.01802 0.019183 0.017438 0.01812 0.019193 0.018391 4.04315E-07 0.000606

120 0.041656 0.043055 0.041298 0.0425 0.043713 0.042444 4.97342E-07 0.000672

140 0.078042 0.078368 0.075814 0.080053 0.079381 0.078332 2.29198E-06 0.001443

160 0.121384 0.118123 0.117716 0.120693 0.122337 0.120051 2.57809E-06 0.001531

180 0.165823 0.162686 0.168944 0.168442 0.170037 0.167186 6.28959E-06 0.002391

200 0.21394 0.211171 0.220559 0.21414 0.219273 0.215817 1.20056E-05 0.003304

220 0.25832 0.25871 0.259888 0.260551 0.259825 0.259459 8.01939E-07 0.000854

240 0.302758 0.299958 0.306001 0.301108 0.303881 0.302741 5.19469E-06 0.002173

260 0.341974 0.340113 0.342327 0.341777 0.34172 0.341582 7.25258E-07 0.000812

280 0.376791 0.378053 0.37728 0.376589 0.373985 0.376539 3.99532E-07 0.000603

300 0.408175 0.40987 0.411833 0.41019 0.409602 0.409934 1.68667E-06 0.001238

Figure 6.2 plots in a graph the values of the overall call blocking rate sample mean,

and the limits of the half-length of the confidence interval.
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Figure 6.2: Overall call blocking rate with 90% confidence interval

As can be seen the values are very close to each other. To determine how

representative the values shown in Figure 6.2 are, Figure 6.3 shows the FCA sample
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mean versus the values given by Erlang B formula considering the same average of

calls/h per cell and the mean holding time of 180 seconds.
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Figure 6.3: Comparison of overall call blocking rate given by the FCA network model
simulation and Erlang B formula

Therefore the simulation model developed for the FCA cellular network can be

considered valid.

To represent a realistic cellular system, a constant call holding time cannot be used

and a negative exponential distribution with mean of 180 seconds should be used

instead. This distribution has been used in all simulations where the three systems

FCA, D-BA and multi-agent are compared. However, the negative exponential

distribution given by OPNET for call holding time yields a lower mean than the

expected. This is shown in Table 6.2, where now a negative exponential distribution

with a mean of 180 seconds supplied by OPNET was used in each simulation. The

minimum call duration was set to be 2 seconds, a value that can be considered

negligible because is very close to zero and should not affect the distribution.
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Table 6.2: Average call holding time (simulated)

calls/h seed 4 seed 20 seed 51 seed 75 seed 99 sample mean

80 175.7863 174.3329 175.8036 176.981 174.593 175.4994
100 177.6885 175.8426 175.8606 175.6512 176.9302 176.3946
120 178.3809 178.3288 175.0556 177.9687 174.4097 176.8288
140 178.2147 177.1721 176.8435 174.6213 176.0334 176.577
160 177.681 176.3726 175.8019 174.545 173.032 175.4865
180 177.0934 176.457 175.3934 177.4615 176.7983 176.6407
200 176.4222 176.5711 176.1976 175.3506 175.065 175.9213
220 177.2215 176.3991 176.3565 175.3502 177.8627 176.638
240 176.4282 176.6223 176.0113 176.3661 176.566 176.3988
260 176.6725 176.3998 176.2363 175.7181 176.4263 176.2906
280 176.6449 175.5405 176.4758 176.9534 176.1811 176.3591
300 176.7144 176.3835 175.6368 176.7177 176.0347 176.2974

As can be seen the sample mean of the call holding time given by each simulation

and the sample mean of the replications are lower than 180 seconds. The lower call

holding time affects the overall call blocking as shown in Figure 6.4.
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Figure 6.4: FCA network using OPNET negative exponential distribution with mean
180s and a minimum call duration of 2s versus Erlang B

As expected, the overall call-blocking rate is lower than the probability given by

the Erlang B formula, because the mean holding time is lower than 180 seconds. In

order to prove this statement, Figure 6.4 also shows the blocking probability given by

the Erlang B formula, when the offered traffic used in its calculation is given by the

average calls/h per cell and the actual average call holding time of the five
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replications. Now, the values for FCA and Erlang B are very close as expected,

showing the validity of the system and also showing the discrepancy within OPNET.

In order to get results of traffic blocking comparable with the ones shown in the

literature for a call holding time following a exponential distribution with mean 180s,

a minimum call duration of 15 seconds was introduced. The overall call blocking rate

for FCA versus the Erlang B formula (with a mean call holding time of 180 seconds)

is shown in the graph of Figure 6.5.
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Figure 6.5: FCA network using OPNET negative exponential distribution with mean
180s and a minimum call duration of 15s versus Erlang B

The average call holding time is around 179 seconds when a minimum call

duration of 15 seconds is used (as shown in Table 6.3) and the call blocking rates are

then closer to the Erlang B formula using 180 seconds. The minimum call holding

time is also quite realistic.

The minimum call duration of 15 seconds was used in the simulations of the three

different cellular systems. This allows better comparisons with results in the literature.
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Table 6.3: Average call holding time (simulated)

calls/h seed 4 seed 20 seed 51 seed 75 seed 99 sample mean
80 179.549 180.2595 178.9407 178.5605 180.8018 179.6223
100 179.2792 180.3343 178.8608 179.1242 178.5182 179.2233
120 177.2375 178.3094 177.8046 180.9908 178.5276 178.574
140 181.0546 180.3108 177.9094 178.6921 177.4982 179.093
160 181.2971 179.692 179.342 178.9918 178.806 179.6258
180 179.2078 181.4784 179.0102 178.2552 180.1401 179.6183
200 178.4421 178.5511 178.74 177.9716 180.1336 178.7677
220 179.5833 179.6137 179.5018 177.593 178.78 179.0144
240 177.2708 180.0978 179.0394 178.7967 178.994 178.8398
260 179.5722 177.8328 177.6848 178.6288 180.2941 178.8026
280 179.8219 179.8936 179.5534 178.4898 179.7593 179.5036
300 178.9872 178.7327 180.2401 178.4993 179.1894 179.1298

6.1.2 Verification and Validation of the Cellular Network using the D-BA
scheme and the Cellular Network using the Multi-Agent System

The two cellular systems were carefully verified using the same techniques used

for the FCA cellular network, with special attention being given to the coherency and

consistency of the channel allocation behaviour of each system.

Only a partial validation of the two systems was possible, because the traffic

blocking rate given by the new channel allocation schemes cannot be compared to

theoretical models such as the Erlang B formula. However, all the aspects of the two

cellular networks except for the channel allocation schemes are the same as the FCA

cellular network and therefore valid in those aspects.

The output data for the D-BA scheme could not be compared directly with the D-

LBSB scheme [DSJA 97] because the implementations are not exactly the same and

the simulation results shown in [DSJA 97] use very broad assumptions. For example,

“the call arrival in a cell is programmed as a Poisson process with inter-arrival time

exponentially distributed with mean 1/�, and the call holding time is programmed as

an exponentially distributed random variable with mean 1/�” [Sen97]. Values for �

are shown, but not for �. Also the D-LBSB comparison with FCA and other schemes

is performed using a cellular network with 100 cells, but the actual number of

channels per cell is not explicitly shown (supposedly 100 channels per cell) and with a

specific situation where there are 40 hot cells. The output data for the D-BA scheme is

not as good as expected from the original description of D-LBSB, but, as it has been
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stated, the simulation parameters used in the simulations of the D-BA scheme are

quite different from those used in the D-LBSB scheme. However, the D-BA output

data is consistent and reasonable in all simulation scenarios where it was applied.

The output data given by the cellular network using the multi-agent system is also

very reasonable and consistent, performing as expected. The cellular network using

the multi-agent system is confidently believed to be a valid model as well.

6.2 Simulation Model Parameters and Traffic Load Scenarios

For simplicity, the three cellular networks being compared will be identified by

their channel allocation schemes: FCA, D-BA and MA for the multi-agent system.

The cellular network configuration is the same for all three models. It is a 49-cell

network, 10 channels per cell in a 7-cell cluster with 980 mobile stations

(section 5.2.1). The call generation follows a Poisson distribution with mean equal to

the specified average calls/h. The call holding time follows a negative exponential

distribution with mean of 180 seconds. The minimum call duration is 15 seconds as

explained in section 6.1.1. The simulation model parameters described below are used

in the simulations. All three models use the following model and simulation attribute

values:

Mobile Station:

a) Call server module

! Voice packet update interval = 18 seconds.

b) Filter module

! Self-location update interval = 60 seconds.

c) Trajectory module

! Random trajectory maximum number of steps = 90.

! Mobile station maximum stationary time = 360 seconds.

Base Station:

a) Handoff module

! Handoff threshold = 18 dBm

! Call dropping threshold = 10 dBm

b) User Controller process

! Departing user threshold = 23 dBm
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The threshold values chosen are comparable to those used in AMPS systems. The

values for updates were selected in order to give good control over the calls or the

location of the mobile station without overloading the simulation. The maximum

distance performed by a mobile station in random movement is comparable with the

cell radius.

The D-BA and the MA models use additionally the following attribute values:

1. Base Station:

a) D-BA module or Agent module (Reactive Layer)

! Degree of coldness (dc) threshold = 0.2

! Minimum dc for a cell to lend channels = 0.3

! Maximum number of channels that can be borrowed per request = 2

! Threshold variation to return to cold state (above dc threshold) = 0.2

! Borrowed channel release threshold = 0.2

! Delay in executing next borrowing algorithm if outcome was partial

success = 300 seconds

! Delay in executing next borrowing algorithm if outcome was failure 2

= 600 seconds

! Delay in executing next borrowing algorithm if outcome was failure 3

= 1200 seconds

! Delay in executing next borrowing algorithm if outcome was failure 4

= 1500 seconds

Finally the MA model uses additionally the following attribute values:

1. Base Station:

a) Agent module (Co-operative Planning Layer)

! Number of iterations per joint plan = 10

! Time interval between iterations in a joint plan = “voice packet update

interval”

! Minimum value of F’ utility function (Equation 4.2) to send an accept-

proposal to a region = 0.3

! Parameter � in F’ utility function (Equation 4.2) = 0.08

! max number of joint plans that an agent can engage simultaneously = 2

! Delay in executing next the attempt for a joint plan if the current

attempt was not successful = 300 seconds
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The choice of values for the additional attributes of the D-BA and MA models was

performed during the verification process using sensitivity analysis. A further

discussion about parameter sensitivity will be given later.

In order to analyse the performance of the MA network in comparison to the D-BA

and the FCA networks, four different traffic load scenarios were used. One scenario

was selected, where the traffic load was uniformly distributed in the network (all the

cells receive the same offered traffic) and three scenarios with non-uniform traffic

load distribution. All the mobile stations had trajectories, either random movement or

driving/walking. In all scenarios, the models were considered to be in the steady state

after 80,000 seconds, as explained earlier. The following sections show the simulation

results for each traffic load scenario. The measurements were sampled from

80,000 seconds to 180,000 seconds, following the replication/deletion approach

[LK91] in the same way as was done in the validation of the simulation model

(section 6.1.1). For clarity, the two half-lengths of the 90% confidence interval of the

simulation results are not plotted on the graphs, only the sample mean of the five

replications.

The main network performance measures used for the comparisons between the

three cellular networks are:

! Traffic blocking rate: total number of rejected (call + handoff) requests / total

number of (call + handoff) requests.

! Handoff rejection rate: total number of handoffs rejected / total number of

handoffs requested.

! Call dropping rate: total number of calls dropped by weakness of signal /total

number of accepted calls and successful handoffs.

! Performance of the borrowing algorithm.

! Performance of the management handoffs requested by the Co-operative Planning

Layer of the agents engaged in joint plan.

6.3 Simulation Results for the Traffic Load Scenario 1

In this scenario, all cells start with an average of 60 calls/h (offered traffic of

3 Erlang) and the subsequent simulations increase the average by 20 calls/h until the

last simulation reaches 200 calls/h per cell (10 Erlang). All mobile stations have

random movement. For this scenario where the traffic load distribution was uniform,
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the simulation parameter “borrowed channel release threshold” was chosen to be 0

instead of 0.2 as explained later.

The simulated call holding time sample mean for the FCA, D-BA and MA

networks is shown in Table 6.4. The values are very close to the desired mean of

180 seconds, proving that the choice of minimum call duration of 15 seconds was

good.

Table 6.4: Simulated average call holding time

FCA D-BA MA

180.6358 s 180.8205 s 180.6243 s

Figure 6.6 shows the overall traffic blocking rate for the three cellular networks.

The performance of the D-BA and the MA networks does not show any advantage for

scenarios with uniform traffic load distribution; the D-BA network slightly under-

performs the FCA. This was expected because when one cell reaches the threshold of

channel availability all the other cells are also reaching (or are close to reaching) the

same threshold. This makes the probability of a successful channel borrowing attempt

low for increasing traffic loads. Moreover, when the channel borrowing attempt is

successful, the channel locking in nearby cells increases the blocking rate because

these cells are as loaded as the borrower cell. This is the reason why the threshold for

releasing borrowed channels was selected to be zero. In uniform load distribution the

sooner the borrower cell gives back its borrowed channels the better. For uniform

traffic load distribution the conventional FCA is preferable to D-BA and also to MA

(which uses the D-BA in its Reactive Layer), although the MA network is slightly

better than the FCA because of the load balancing action of the Co-operative Planning

Layer. However, the amount of signalling needed in the MA network is prohibitive

when compared with the gain in channel allocation.

Schemes that use FCA with channel borrowing and channel locking will not

perform well in uniform load distributions. The exception are the BDCL scheme

[ZY89] and the BCO schemes [ESG82], where the number of channels that can be

borrowed by other cells is adaptively controlled with the current traffic load in the

cell, and they rely on intra-handoffs to release quickly borrowed channels. BDCL has

better results because it also minimises the channel locking. However they are
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completely centralised schemes and generate heavier signalling load than the D-BA

scheme. Dynamic channel assignment (DCA) schemes are more likely to outperform

FCA in uniform traffic load distributions such as in [ZY91] [O-GL-R97].
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Figure 6.6: Traffic blocking rate for traffic load scenario 1

One good feature of the proposed multi-agent system is that it improves the

handoff rejection rate. This is a consequence of the execution of the heuristic

proposed by the author inside the agent joint plan and it proves the load balancing

feature of the agent negotiation is behaving exactly as expected. Figure 6.7 shows the

handoff rejection rate of the three networks.
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Figure 6.7: Handoff rejection rate in traffic load scenario 1

The call dropping rate graph (Figure 6.8) shows that the number of calls dropped is

extremely low. This means that there are insufficient events to be of statistical

significance (as evidenced by the rather large confidence intervals plotted for the MA

network in Figure 6.8).
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Figure 6.8: Call dropping rate in traffic load scenario 1

Uniform traffic load distributions are not common in real cellular networks and the

MA model was actually designed to improve traffic conditions in non-uniform traffic

load distributions, mainly in hot spots of traffic load.



141

The expected behaviour of the MA network is to improve the performance of the

D-BA scheme in non-uniform traffic load distributions. The MA network will start to

give better improvement than the D-BA network when the latter starts to decrease the

efficiency of its borrowing algorithm. The improvement starts to decrease as the

traffic load increases, because fewer resources will be available for load balancing.

Therefore, the general form of the traffic blocking rate expected in the simulation

result is shown in Figure 6.9.
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Figure 6.9: Expected behaviour of MA against D-BA for traffic blocking rate

The next three sections show how the MA network behaves with different load

distribution scenarios.

6.4 Simulation Results for the Traffic Load Scenario 2

The layout of the network of the second scenario with non-uniform traffic load

distribution is shown in Figure 6.10. This cellular layout was first used in the

simulation tests in [ZY89], being also used in other papers in the literature. The

number in the bottom of each cell is its identification number. The number in the

middle represents the average of calls/h the cell is receiving (Poisson distribution).

The shaded areas in the network layout represent highways. Mobile stations inside the

shaded area can be driving at 40 km/h or walking at 2 km/h and they move in both

directions. All the other mobile stations have random movement. The simulation

parameters have the values shown in section 6.2.
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Figure 6.10: Cellular network layout for non-uniform load distribution of scenario 2

In the results, the abscissa of each graph is the percentage of load increase in all

cells compared to the traffic load shown in Figure 6.10, called the base load (0%). For

example, in the first simulation result, the load in each cell is 40% less than the one

shown in Figure 6.10 (e.g. the average of calls/h in cell 0 is 120). Figure 6.11 shows

the overall traffic blocking rate of the three networks for different percentages of

traffic load increase.
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Figure 6.11: Traffic blocking rate for traffic load scenario 2
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The MA network outperforms the D-BA and the FCA networks and the expected

general behaviour of the MA network is demonstrated. The number of borrowing

attempts is kept at the same level as the D-BA network, and at almost the same

efficiency ((successful + partial successful outcomes) / total number of borrowing

algorithm executions) (Figure 6.12). This result is interesting because the simulations

show that actually the MA is not able to improve the efficiency of the borrowing

algorithm as supposed. This means the current Local Planning Layer developed in this

work could be improved in order to add a more adaptive behaviour to the Reactive

Layer. The results show the agent negotiation is playing an important part in load

balancing the traffic and consequently reducing the blocking rate, even without an

improvement in the efficiency of the borrowing algorithm.
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Figure 6.12: MA versus D-BA: Borrowing algorithm (BA) results
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The handoff rejection rate is also lower in the MA network, thanks to the action of

the agent negotiation (Figure 6.13). This is an important result because it increases the

QoS perceived by the mobile user. Finally, Figure 6.14 shows the call dropping rate

of the networks. The call dropping rate is small and irregular in all three networks,

making it difficult to analyse the significance of the result.
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Figure 6.13: Handoff rejection rate in traffic load scenario 2
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Figure 6.14: Call dropping rate in traffic load scenario 2
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Some of the cells with higher traffic load in the network had better improvement in

the traffic-blocking rate. The traffic blocking rate of cells 0, 26 and 36 are shown in

Figure 6.15.
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Figure 6.15: Cells 0, 26 and 36: Traffic blocking rate for traffic load scenario 2
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The greater improvement in traffic blocking rate of individual highly loaded cells

is a good result, because these cells are those that have a greater need of resources.

The level of improvement in the more loaded cells is mainly a consequence of the

choice of the borrowed channel release threshold. A higher threshold means the

loaded cells will keep their borrowed channels for longer. In the next scenario the

value of this parameter is changed to show its effect.

6.5 Simulation Results for the Traffic Load Scenario 3

The layout of the network of the third scenario with non-uniform traffic load

distribution is shown in Figure 6.16. This cellular layout is the same as used in the

simulation tests in [YY94]. Again, mobile stations inside the shaded area can be

driving at 40 km/h or walking at 2 km/h and they move in both directions. All the

other mobile stations have random movement. The simulation parameters have the

values shown in section 6.2, except the release borrowed channel threshold that was

decreased to 0.1, as explained later.

Figure 6.16: Cellular network layout for non-uniform load distribution of scenario 3

Figure 6.17 shows the overall traffic blocking rate of the three networks for

different percentages of traffic load increase in scenario 3.
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Figure 6.17: Traffic blocking rate for traffic load scenario 3

The MA network outperforms the D-BA and the FCA networks. The improvement

is lower than scenario 2, but the MA network behaves as expected. The number of

borrowing attempts is also kept at the same level of the D-BA network, with a lower

blocking rate. The handoff rejection rate is also lower in the MA network

(Figure 6.18).
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Figure 6.18: Handoff rejection rate in traffic load scenario 3
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Figure 6.19 shows the call dropping rate for all three networks.
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Figure 6.19: Call dropping rate in traffic load scenario 3

Now, the cell with highest traffic load is cell 43; cell 0 also has a high load. The

traffic blocking rate of cells 43 and 0 are shown in Figures 6.20 and 6.21.

In these highly loaded cells, the improvement is less when the borrowed channel

release threshold is set lower. This is expected because the cells keep the borrowed

channels for less time with a lower threshold. However, there is a slight gain in the

overall traffic blocking rate because the lender cells will have more channels for their

own offered traffic. The decision of what value to use for the borrowed channel

release threshold depends on what is more important for the network: a slightly better

overall blocking rate or a greater improvement in the more highly loaded cells. Both

traffic blocking rates are shown in Figures 6.20 and 6.21.
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Figure 6.20: Traffic blocking rate in cell 43 for traffic load scenario 3 with different
borrowed channel release thresholds
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Borrowed channel release threshold = 0.1
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Figure 6.21:Traffic blocking rate in cell 0 for traffic load scenario 3 with different
borrowed channel release thresholds

Figure 6.22 shows how a cell with lower traffic load is affected by the three

different networks and different borrowed channel release thresholds. Of course, the

traffic blocking rate will be lower when the borrowed channel release threshold is set

equal to 0.1 because cell 22 will have more available channels to serve its offered

traffic. The traffic-blocking rate given by the FCA network is very low as expected;
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the blocking is worse with the other schemes because this cell is lending channels to

other cells.
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Figure 6.22: Traffic blocking rate in cell 26 for traffic load scenario 3 with different
borrowed channel release thresholds
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6.6 Simulation Results for the Traffic Load Scenario 4

The last scenario tries to study the effects of call congestion in highways. The non-

uniform load distribution layout is shown in Figure 6.23. Now the cells with more

traffic load are the ones that contain highways (shaded areas). In this particular

scenario a cross point between the highways has the highest traffic load. Mobile

stations inside the shaded area can be driving at 40 km/h or walking at 2 km/h and

they move in both directions. All the other mobile stations have random movement.

The simulation parameters have the values shown in section 6.2.

Figure 6.23: Cellular network layout for non-uniform load distribution of scenario 4

Figure 6.24 shows the overall traffic blocking rate of the three networks for

different percentages of traffic load increase in scenario 4.
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Figure 6.24: Traffic blocking rate for traffic load scenario 4

This scenario illustrates important features in the schemes. FCA outperforms both

the other schemes up to the base load, probably because the channel locking is

affecting the most heavily loaded central part of the network.  The MA scheme is a

little bit better than D-BA because of its load-balancing feature. From the base load

upward the MA shows a modest improvement over the D-BA because the Co-

operative Planning Layer is not being triggered sufficiently to make a noticeable

improvement. In the current implementation of the agent, detection of failure types 3

and 4 by the Local Planning Layer is responsible for triggering the agent negotiation.

In this scenario, the delays in generating the “failure triggers” have a bigger impact.

Failure 3 is numerous because of the traffic condition in the region of the cross point,

but failure 4 does not occur until the highest load shown in Figure 6.24. This is

expected because several cells have low traffic load. In order to prove the impact of

the delays introduced, a simulation was performed with this scenario using the

parameters values of section 6.2, but now the values for all borrowing algorithm re-

execution delays were lowered by 50 %.

! Delay in executing next borrowing algorithm if outcome was partial

success = 150 seconds

! Delay in executing next borrowing algorithm if outcome was failure 2

= 300 seconds
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! Delay in executing next borrowing algorithm if outcome was failure 3

= 600 seconds

! Delay in executing next borrowing algorithm if outcome was failure 4

= 750 seconds

Figure 6.25 shows the new traffic blocking rates for the D-BA and MA networks;

of course the FCA is not affected by these parameters.

BA re-execution delays 50% lower
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Figure 6.25: Traffic blocking rate for traffic load scenario 4 with different values for the
borrowing algorithm re-execution delays

As expected the MA network performs better now, especially as the load gets

higher. However, the cost-benefit of the increase in signalling load needs to be further

investigated and is not covered in this thesis.

The delay values in section 6.2 have an advantage that the number of runs of the

borrowing algorithm does not escalate for higher loads. More specifically for

scenario 4, the number of runs of the borrowing algorithm does not change

significantly from 40% load increase upwards, as shown in Figure 6.26.
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Figure 6.26: Number of borrowing algorithm runs for MA (left) and D-BA (right)
networks in scenario 4 versus Percentage of load increase (OPNET graphs)

The following simulation results also used the parameter values shown in

section 6.2. The handoff rejection rate given by the MA network is still the lowest

from the base load upwards. But for the first time in the scenarios investigated, the

handoff rejection rate of the MA network was noticeably worse that the FCA up to the

base load, as shown in Figure 6.27. The probable cause is because there were fewer

failures of type 3 up to the base load and consequently there were not sufficient

executions of the joint plan to improve the rates in the MA network. It is worth

remembering that several cells have a very low traffic load up to the base load in

scenario 4.
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Figure 6.27: Handoff rejection rate in traffic load scenario 4
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The call-dropping rate is also irregular for scenario 4 (Figure 6.28).
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Figure 6.28: Call dropping rate in traffic load scenario 4

The cell with highest traffic load is cell 0 and now this is surrounded by other

heavily loaded cells. The traffic blocking rate in this cell is shown in Figure 6.29.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-40 -20 0 20 40 60 80 100 120

Load increase (%)

T
ra

ff
ic

 b
lo

ck
in

g
 r

at
e

BS0 MA

BS0 D-BA
BS0 FCA

Figure 6.29:Traffic blocking rate in cell 0 for traffic load scenario 4
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Here, the D-BA scheme has the highest traffic blocking rate up to 80% load

increase. The runs of the borrowing algorithm in cell 0 mostly result in failure type 3.

The probability of borrowing channels decreases because of the delays introduced for

re-execution of the algorithm. The blocking rate is also degraded because, in the D-

BA scheme, there is no channel availability threshold to avoid the locking of channels

in a cell. Therefore, if a channel is available in cell 0 it might be locked because a co-

channel cell is lending a channel to another cell.

The MA network outperforms the FCA network for traffic loads above the base

load. This is a good result, despite the improvement being only 5% on average.

However, the poor performance of the Reactive Layer of the agent needs to be

considered. As the current Local Planning Layer is simple, the results of the agent

system are being “dragged down” by the algorithm in the reactive layer clearly not

being suitable for a cell surrounded by congested neighbours. It is the action of the

Co-operative Planning Layer of the agent that is responsible for the lower traffic

blocking rate.

Finally, the traffic blocking rate of cell 36 is shown in Figure 6.30.
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Figure 6.30:Traffic blocking rate in cell 36 for traffic load scenario 4

The D-BA scheme works very well for isolated hot spots, such as cell 36.

Consequently the proposed MA network also improves the traffic blocking rate.

Although it is sometimes worse than the D-BA because of the action of the Co-
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operative Planning Layer bringing more users to cell 36 (load balancing) and

therefore generating a higher probability of blocking incoming traffic than the D-BA

scheme alone.

6.7 Analysis of Simulation Results

The most important feature shown in the simulation results is that the behaviour of

the multi-agent system is as expected by the author. There are still resources available

when the neighbouring cells (of a borrower cell) also reach the threshold (h) of

channel availability. However, at that point the borrowing algorithm in the Reactive

Layer is not able to obtain those resources anymore and at this time the agent

negotiation has an important role in shifting some of the traffic to less loaded regions.

The agent negotiation proved to work well as shown by the simulation results. Almost

100% of the management handoffs were successful in all scenarios when the mobile

station had enough signal strength to shift cells. This clearly shows good performance

from the heuristic proposed by the author inside the agent negotiation, choosing the

right cells to receive mobile users. As an example, Table 6.5 shows the management

handoffs for scenario 2, where the success rate is high. In this case the success rate is

defined as the ratio of successful handoffs to possible handoffs; possible handoffs

exclude those where the signal strength is too low.

The number of rejections for lack of signal strength is high, and perhaps could be

reduced if the threshold for a mobile user to be considered as departing were

optimised. This is one of several parameters that could be optimised. However, this

could never be a firmly-fixed value as different operators would have different views

on a suitable value, given its effect on perceived quality of service (QoS): a lower

threshold would give less calls dropped (better QoS), but more likelihood of calls

failing (worse QoS).

Another factor that was fairly artificial was the simulated user mobility. However,

the work performed is sufficient to demonstrate that user mobility directly affects the

performance of the agent negotiation. Knowledge of traffic distribution, mobility and

geography (taking into account buildings and roads) inside the cell would allow a

better and a more precise procedure for building and updating the departing users lists

(NumDepart array). This would substantially improve the agent negotiation
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performance and consequently decrease the traffic blocking rate. It may even be

practicable to have different procedures for different types of cell geography.

Table 6.5: Management handoff request performance

Load increase
(%)

Total number of
management
handoff requests

Total number of
rejected
management
handoff requests
because lack of
signal strength

Total number of
successful
management
handoffs

Success rate
(%)

-20
551 331 220 100.0

-40
1,781 1,115 666 100.0

0
3,267 1,889 1,378 100.0

20
4,780 2,846 1,934 100.0

40
5,787 3,409 2,376 99.9

60
6,494 3,735 2,751 99.7

80
6,538 3,778 2,752 99.7

100
6,914 3,843 3,052 99.4

120
6,122 3,301 2,790 98.9

Another interesting result is that it is the agent negotiation that is decreasing the

blocking rate when the entire network reaches the channel availability threshold (h).

At this point, the use of the D-BA scheme is not worthwhile anymore and the load

balancing performed by the agents causes the decrease in traffic blocking.

The amount of improvement given by the multi-agent system is fairly modest.

Currently the agent implementation has a fairly simple Local Planning Layer. The

task of this layer is to optimise the channel allocation algorithm in the Reactive Layer

through learning and prediction or traffic monitoring techniques that would make the

reactive algorithm more adaptive to the traffic load and consequently perform better.

The parameters that affect the performance of the borrowing algorithm (D-BA) most

in the Reactive Layer implemented in this work are those shown in section 6.2

(additional parameters for the D-BA model and hence also for the MA model). These

parameters should be optimised and adapted to different traffic situations by the Local

Planning Layer. Therefore, although the implemented Local Planning Layer is

sufficient for the objectives of the work in this thesis, a more elaborate Local Planning

Layer could be considered in future work as discussed in Chapter 7.
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In section 6.5, the author has shown some of the sensitivity analysis performed,

where the borrowed channel release threshold was applied to scenario 3 with different

values. One of the effects of this parameter is to shift the congestion of the network. If

the value is lower, the congestion of the whole network is shifted to a higher traffic

load. This can be easily seen by the output data of failure 4 of the borrowing

algorithm, as shown in Table 6.6.

Table 6.6: Output data for BA failure 4 of scenario 3

Load increase (%) BA failure 4 for
scenario 3

(borrowed channel
release threshold

= 0.1)

BA failure 4 for
scenario 3

(borrowed channel
release threshold

= 0.2)

-20 0 0

-40 0 0

0 0 0

20 0 0

40 0 0

60 0 0

80 0 0

100 0 0

120 0 4

130 4 4

140 32 57

The outcomes from executing the borrowing algorithm are an important source of

information about the traffic load in the network, and the Local Planning Layer can

use this information to improve the efficiency of the Reactive Layer and also the Co-

operative Planning Layer. In the current implementation of the agent, detection of

failure types 3 and 4 by the Local Planning Layer are responsible for triggering the

agent negotiation. Therefore, the delays introduced in the criteria for re-execution of

the borrowing algorithm (section 4.3.1.2) have a direct effect on the number of agent

negotiations being triggered. The introduction of these delays is very important to

decrease the waste of signalling resources. Continuing to run the borrowing algorithm

when the probability of failure is very high only yields signalling with no benefit on

traffic handling. However, the actual amount of time set for each delay needs also to
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be optimised by the Local Planning Layer and better-tuned values for these delays

could lead to a better performance of the agent negotiation.

Finally, the parameters belonging to the Co-operative Planning Layer also need to

be optimised. The simulation results are satisfactory, but an optimisation of those

parameters might improve the traffic blocking and handoff rejection rates.

In summary, the simulation results prove that the agent negotiation is efficient but

a more elaborate Local Planning Layer could be implemented to improve the overall

results given by the multi-agent system.
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Chapter 7 Discussions and Conclusion

7.1 Discussion

This thesis has addressed the challenge to bring more flexibility to cellular

networks with the distributed control needed to make the implementation feasible for

real systems. The approach adopted has been to use intelligent software agents to

provide more autonomy and flexibility to base stations. The major contribution of this

work has been the exploitation of the ability of intelligent agents to perform

autonomous and intelligent negotiation in order to improve the means of resource

acquisition. This approach has not been used for any other channel allocation scheme

and so is a new contribution.

The intelligent agents are completely responsible for the frequency channel

assignment in the cellular network, which for this work was a macro-cellular network

using FDMA access technology. Base stations are not able to share information by

interference measurements, but only by explicit exchange of information. The

resources are full frequency carriers and each base station has one intelligent agent.

The channel allocation schemes proposed in the literature were designed to be

autonomous and they have achieved their design goals. However, most of these

algorithms in the literature are reactive with a single strategy for adaptation to traffic

change conditions. They lack flexibility because they are not able to monitor their

own performance and change strategies to continue to pursue their objectives

efficiently or to negotiate resources within a group of cells. Flexibility can be

achieved through pro-active logical planning and through co-ordinated negotiation.

The features of complexity separation, fast response, autonomy, pro-activity and

negotiation for real-time applications have been objectives of multi-agent systems

research.

Several multi-agent frameworks have been proposed for control management in

telecommunication networks (section 4.2). A layered multi-agent control system

approach seems to fit the requirements of distribution, intelligence, robustness and

concurrency of broadband network control. The hierarchical arrangement allows

levels of co-ordination. Each layer is defined to conduct the control of the network to
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a certain level of competence and in this work such layering was considered desirable.

As one agent is placed at each base station, there is only one level of agents in the

cellular network, and therefore the internal architecture of the agent should supply the

layered control. The agent architecture also needed to offer planning and negotiation

mechanisms in order to provide autonomy and flexibility.

As explained in the body of the thesis, the INTERRAP architecture was adapted to

the cellular network environment. The Reactive Layer is responsible for fast

accommodation of traffic demand; the Local Planning Layer uses other strategies to

optimise the efficiency of the tasks in the Reactive Layer and the local distribution of

channels; the Co-operative Planning Layer is responsible for load balancing the

traffic across a larger area.

The Reactive Layer is basically composed of a FCA algorithm with channel

borrowing and channel locking. The algorithm called “distributed borrowing

algorithm” (D-BA) is based on the general behaviour of the D-LBSB scheme

[DSJA97]. The decision to use an algorithm similar to a distributed scheme proposed

in the literature was made for two reasons: first it allowed a close evaluation of the

performance of a distributed reactive algorithm in the cellular model built by the

author using a commercial network simulator; second, it allowed measurement of the

benefits of the other two layers of the agent against a purely reactive control system.

The Local Planning Layer is responsible for the channel re-assignment scheme.

This layer monitors the efficiency of the algorithm in the reactive layer, and it is

responsible for the decision of when to trigger the Co-operative Planning Layer.

The Co-operative Planning Layer is responsible for the negotiation of resources.

The agent negotiation has two phases: first to find the best region to attempt to shift

the frequency channel; second the actual execution of the handoff requests in a co-

ordinated manner, i. e. the execution of a joint plan. In the first phase, a utility

function (defined by the author) is used to find the best region. In the second phase,

all cells belonging to the best region engage in the joint plan. The co-ordination of the

handoff attempts is performed through a market-based control heuristic developed by

the author using the Contract-Net Protocol (CNP) [Smith88] as the negotiation

protocol.
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To investigate this approach, a cellular network model was built using the

commercial simulator OPNET. The simulation model was verified and validated

using the replication/deletion approach [LK91] and compared against the call

blocking probability given by the Erlang B formula. The simulator was extended to

incorporate the D-BA scheme and the full agent model.

The simulation results obtained from the multi-agent system were compared with

those of the conventional cellular network using FCA and a cellular network using the

D-BA scheme.

The network performance characteristics used for comparisons were the traffic

blocking rate, the handoff rejection rate and the call-dropping rate. Different traffic

load scenarios were set to demonstrate the behaviour of the three different cellular

networks facing different situations in traffic load.

The network using intelligent software agents gave the best result for overall traffic

blocking rate in all scenarios. Although the improvement of the multi-agent system

has been fairly modest compared to the D-BA scheme, the multi-agent system has

behaved as expected by the author, shifting some of the traffic to less loaded regions

when the Reactive Layer scheme could not obtain the sparse resources still available.

The simulation results show that the improvement in traffic blocking at high traffic

loads is a direct consequence of the agent-negotiation. The performance of the

market-control heuristic proposed by the author is very good with a success rate of

almost 100% in management handoffs (Table 6.5) in the scenarios chosen.

In non-uniform traffic load scenarios, individual cells with heavier traffic load

show a greater improvement in traffic blocking compared with FCA. In the scenarios

used, the results from the multi-agent system have been similar to the D-BA scheme

because the borrowing algorithm used in the Reactive Layer of the agent and used in

the D-BA scheme has been able to reduce the blocking rate in these individual cells.

The author has shown (Chapter 6) some of the sensitivity analysis of the borrowing

algorithm parameters, demonstrating how they affect the traffic-blocking rate in

individual cells.

The multi-agent system has presented the lowest handoff rejection rate in all

scenarios. This is a very interesting result that confirms the efficient action of the

agent negotiation. For all scenarios, the D-BA scheme has shown the worse handoff
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rejection rate so that it can be concluded that the reduction in handoff rejection rate is

down to the action of the Co-operative Planning Layer of the agent. This result is

important because the multi-agent system is able to improve the user’s perceived

quality of service.

The call-dropping rate has been very irregular in all three cellular networks for the

different scenarios, making it difficult to analyse the significance of the results.

However, the rate is so low that the results are not statistically significant.

Overall, the multi-agent system has proved to be feasible and a efficient. It has

brought more flexibility to the base stations in obtaining extra resources using a

different strategy than that being applied by the reactive channel allocation algorithm.

The agent negotiation is well behaved and controlled.

7.2 Evaluation of the Multi-Agent System

The work performed in this thesis gives a good insight into the applicability of

multi-agent systems in mobile telecommunications. The architecture chosen is general

and sufficiently flexible to be applied to other problems that involve resource

management and load balancing. In telecommunications, the use of agents is not

restricted to the network layer, but agents can also find a role at higher layers, such as

the services layer. The strength of multi-agent systems lies in their social behaviour

and in their capabilities to be proactive when pursuing their own goals.

The major strength of the internal agent architecture used in this work is the

separation of the complexity, the domain of action/intervention and the different

response timescales. Moreover, the work shows that an autonomous negotiation of

resources following a well design optimisation heuristic can improve QoS or/and

reduce costs.

Agents will be a good solution for problems where automated negotiation can be

applied, not only because they are autonomous, but mainly because of their other

capabilities: proactiveness, reactivity and learning.

However, the computational cost embedded in internally layered agents needs to

be carefully evaluated when applying them in a determined solution. The gathering of

information necessary for the execution of the negotiation process needs to avoid

excessive numbers of messages being exchanged. Ways to minimise the volume of
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messages and different approaches for decision making based on incomplete

information is part of the research activity into multi agent systems.

Any delays in response because of negotiation between agents would also be a

severe drawback. However, careful layering (as demonstrated in this work) between

fast reactive layers and longer-term planning processes should avoid this problem. In

certain cases, off-line learning or off-line optimisation could improve the response

time of the planning layers.

In this work, the co-operative layer of the agent is light in processing cost, giving a

good response time. However, in the reactive layer the trade-off between the

processing cost and the reduction in blocking rate is not so good. A simpler reactive

algorithm coupled with a richer local planning layer might well improve performance,

not only in terms of blocking probability, but also in responsiveness.

For real solutions in telecommunications, an approach that keeps simplicity in

mind is generally key to success. This is the reason that a careful design of each layer

of the agent is extreme important and the implementation of simulation models (as

performed in this thesis) can be useful for measuring the real cost-benefit of applying

agents in a specific solution.

7.3 Future Work

Currently the Local Planning Layer of the agent implemented is fairly simple. This

layer’s task is to optimise the reactive channel allocation algorithm in the Reactive

Layer and to make it more adaptive to the incoming traffic load. Learning and

prediction or traffic monitoring mechanisms should be used by the Local Planning

Layer to achieve these goals. The author has shown the parameters that affect the

performance of the borrowing algorithm most. The Local Planning Layer should

optimise these parameters and should adapt them to different traffic situations. A

more elaborate planning layer could also use learning and prediction techniques to

optimise the situations when the Co-operative Planning Layer is triggered, saving

signalling resources. A more elaborate Local Planning Layer should be considered in

future work.

Although the Co-operative Planning Layer of the agent implemented is performing

well, still there is space for improvement. This layer also has planning features as
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described in the INTERRAP architecture. Again, optimisation techniques could be

applied to this layer in order to determine how many iterations a joint plan should

perform given certain traffic conditions. The parameters that affect the performance of

the two phases of the agent negotiation (section 6.2) could also be optimised. This

should lead to better performance of the agent negotiation. A Co-operative Planning

layer with richer planning features should also be considered in future work.

Further investigation of the behaviour of the multi-agent system under more

realistic traffic load scenarios would be desirable. This investigation could bring

important information on how to improve the current multi-agent system.

The implementation of a more realistic user mobility simulation model (taking into

account buildings and roads inside the cells) would be a very important feature inside

the cellular network. User mobility directly affects the agent performance and more

precise procedures for building and updating the user departing lists would

substantially improve the agent negotiation performance and consequently decrease

the traffic-blocking rate. It could even be worth building different procedures for

different types of cells.

Finally, the multi-agent system developed in this work could be adapted to networks

that use different access technologies or different cellular structures (e.g. GSM, IS-95

CDMA or 3G) as discussed in the next section.

7.4 Applicability to Other Mobile Networks

The Agent framework proposed in this work is open. Different types of channel

allocation algorithms could be implemented in the Reactive Layer. The Local

Planning Layer would still have the task of optimising whatever algorithm is placed in

the Reactive Layer and decide when to trigger the Co-operative Planning Layer,

which in turn could have a broader range of strategies for negotiation.

In a hierarchical structure, the agent of a macro-cell could negotiate resources with

agents of micro-cells beneath it or even agents in pico-cells. The selection criteria for

the partners in a joint plan could be in terms of class of service required and the spare

bandwidth available for that service class. Therefore, although the implementation in

this work was performed in FDMA access networks, the framework of the agent is

powerful and general enough to be applied to third generation mobile networks. As a
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matter of fact, the work presented in this thesis was used as the basis for a successful

proposal for an IST EU 5th Framework Project (SHUFFLE) for radio resource

management using intelligent agents in third generation mobile network [Shuffle00].

Although the access technology characteristics are much more complex than FDMA

and very different interference and traffic capacity considerations need to be made,

radio resource management using negotiating agents is considered possible by the

author. This assertion is being proved in the Shuffle project and that work will have

an important impact on the implementation of intelligent agents for resource

management in real mobile networks.

7.5 Conclusion

Resource flexibility is one of the most important requirements in the next

generation of mobile communications. Techniques for increasing the flexibility of the

network to deal with new services and traffic characteristics are a requirement and an

implementation challenge.

The aim of the work in this thesis was to provide more autonomy and flexibility to

base stations in order to improve their means of radio resource acquisition. The

approach proposed by the author to achieve this aim, was to use intelligent software

agents to control the channel assignment in the cellular network. A special hybrid

agent architecture was adopted consisting of three layers. The first layer (Reactive

Layer) is responsible for fast accommodation of traffic demand. The second layer

(Local Planning Layer) uses other strategies to optimise the efficiency of the tasks in

the Reactive Layer and the local distribution of channels. Finally the third layer (Co-

operative Planning Layer) is responsible for load balancing the traffic across a

larger area. The specification and implementation of the Co-operative Planning

Layer is the major contribution of this thesis: the exploitation of the ability of

intelligent agents to perform autonomous and intelligent negotiation in order to

acquire radio resources. However, the interplay of the three layers proved to be a

powerful framework to improve radio resource flexibility and to increase the

robustness of the cellular network as a whole.

The performance of a cellular network using the multi-agent system was compared

with the conventional cellular network using FCA and another using a reactive

distributed borrowing algorithm called D-BA. The simulation results demonstrated
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that the use of intelligent software agents brought more flexibility in obtaining extra

radio resources to the network than the other two approaches.

Overall, the multi-agent system proved to be feasible and efficient. The agent

negotiation was an important feature of the system in order to improve perceived

quality of service and to improve the load balancing of the traffic.

The multi-agent system proposed in this work is general enough to be applied to

different kinds of cellular networks.
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