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Abstract

Voice over IP (VolIP) systems are gaining increased popularity due to the cost effectiveness, ease
of management, and enhanced features and capabilities. Both enterprises and carriers are
deploying VolP systems to replace their TDM-based legacy voice networks. However, the lack
of engineering models for VolP systems has been realized by many researchers, especially for
large-scale networks. The purpose of traffic engineering is to minimize call blocking
probability and maximize resource utilization. The current traffic engineering models are
inherited from the legacy PSTN world, and these models fall short from capturing the
characteristics of new traffic patterns. The objective of this research is to develop a traffic
engineering model for modern VoIP networks. We studied the traffic on a large-scale VolP
network and collected several billions of call information. Our analysis shows that the traditional
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traffic engineering approach based on the Poisson call arrival process and exponential holding
time fails to capture the modern telecommunication systems accurately. We developed a new
framework for modeling call arrivals as a non-homogeneous Poisson process, and we
further enhanced the model by providing a Gaussian approximation for the cases of heavy traffic
condition on large-scale networks. In the second phase of the research, we followed a new time-
to-event survival analysis approach to model call holding time as a generalized gamma
distribution and we introduced a Call Cease Rate function to model the call durations. The
modeling and statistical work of the Call Arrival model and the Call Holding Time model is
constructed, verified and validated using hundreds of millions of real call information collected
from an operational VVolP carrier network. The traffic data is a mixture of residential, business,
and wireless traffic. Therefore, our proposed models can be applied to any modern
telecommunication system. We also conducted sensitivity analysis of model parameters and

performed statistical tests on the robustness of the models’ assumptions.

We implemented the models in a new simulation-based traffic engineering system
called VoIP Traffic Engineering Simulator (VSIM). Advanced statistical and stochastic
techniques were used in building VSIM system. The core of VSIM is a simulation system that
consists of two different simulation engines: the NHPP parametric simulation engine and the
non-parametric simulation engine. In addition, VSIM provides several subsystems for traffic
data collection, processing, statistical modeling, model parameter estimation, graph generation,
and traffic prediction. VSIM is capable of extracting traffic data from a live VoIP network,
processing and storing the extracted information, and then feeding it into one of the simulation

engines which in turn provides resource optimization and quality of service reports.
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CHAPTER 1

1 Introduction

The wide deployment of high-bandwidth, reliable, and cost-effective IP networks is
pushing towards a major paradigm shift in the telecommunications world. The wired and
wireless industries are heading towards an All-IP backbone for their future networks. According
to Wikipedia [1], Voice over Internet Protocol (VoIP) is “a general term for a family of
transmission technologies for delivery of voice communications over IP networks”. According to
a report from “US Business VoIP Overview: Optimization Trumps Expansion” [2] in January
2010, 42% of US businesses at the end of 2009 had a VolIP solution in at least one business
location. Furthermore, VoIP growth among US businesses will increase rapidly over the coming
few years, reaching 79% by 2013. The same report predicts that the revenues of Broadband IP
Telephony will continue to grow and will be more than double by 2013. In-Stat released a report
in March 2010 that sheds light on the penetration of VVoIP through the US government sector [3].
The report indicates that 48% of the government agencies under survey have VolP solution

deployed in at least one location.

Telecommunication system traffic engineering, also known as “Teletraffic engineering”,
is defined in Wikipedia [4] as the “application of traffic engineering theory to

telecommunications. Teletraffic engineers use their basic knowledge of statistics including
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queuing theory, the nature of traffic, their practical models, their measurements and simulations
to make predictions and plan for telecommunication networks at minimum total cost”.
Throughout this research, we will use the general term Traffic Engineering (TE) instead of
Teletraffic Engineering to discuss traffic on PSTN, and VoIP networks. Traffic engineering
provides the tradeoff between service and cost. Traffic engineering of the traditional circuit-
switched PSTN networks passed through many phases and reaches the maturity with
mathematical models that could efficiently capture the parameters and behavior of the traditional

telecom process.

IP networks are packet-switched rather than circuit-switched. In order to transport voice
conversations over IP networks, the voice stream must be broken down into transportable units
which are then encapsulated into IP packets. The resources and characteristics of IP networks are
different from these of circuit-switched networks. For example the major resource in a circuit-
switched network is the number of circuits (trunks). Each phone call is assigned to a separate
circuit (trunk) for the duration of the call. This scheme does not provide the optimal utilization of
resources since the circuit is reserved for the call regardless of whether or not voice is being
exchanged on that circuit. The circuit switched scheme is easier to engineer since the resource
requirements for each call can easily be calculated and allocated. Therefore, the resources
required for a VoIP call are not clearly identified. We provide a deep analysis for VoIP resource
requirements and provided a new metric that can be used to quantify the number of calls that can

be carried on a VVolP network.

23



1.1 Motivation

It has been realized that the traditional traffic engineering models fall short from
capturing the traffic characteristics on modern telecommunication networks. The popularity of IP
telephony, the wide spread of wireless services, and the drop in phone call prices have
significantly affected the phone usage and hence resulted in different traffic patterns. Many
other research studies and our traffic data show that the traditional traffic engineering approaches

are inadequate for modern telecommunication systems.

The most common traffic engineering model is the Erlang-B model. This model was
developed in 1920 and was widely used to engineer PSTN networks. The Erlang-B model is
based on Poisson call arrival process and negative exponential call holding time. It has been
proven through many studies that the Poisson and exponential distributions cannot capture the
characteristics of traffic on modern telecommunication systems. However, none of the previous
studies examined the traffic on a large-scale VoIP system and provided a complete model that
can be used to design such systems. In this research we use live traffic data to build and validate
call arrival and call holding time models, and we plan to develop a complete traffic engineering

model for such large VoIP networks.

1.2 Scope

The scope of this research is limited to providing a traffic engineering model for
performance analysis, traffic prediction and resource optimization of VoIP networks. The models

of call arrival rate and call holding time can also be applied to any Internet-based telephony, such
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as Skype. We use Call Administration Control (CAC) to allow/reject incoming calls, and this is
a common approach on the private enterprise and carrier networks. The approach of CAC does
not apply to Internet telephony for resource management; however, the call arrival rate and call

holding time models will still be the same.

1.3 Goals

The main goal of this research is to provide a modern traffic engineering model for large-
scale VVolIP networks that enables us to conduct performance analysis, and resource optimization
of VoIP systems under different load conditions. In order to do so, we need to study the
characteristics of VolP traffic, and develop new models that can fit the complex modern traffic
patterns. After these models are developed, we need to provide simulation-based solution for the

traffic problem.

1.4 Contributions

The major contributions of this research are summarized as follows:
e Literature review of VolP and PSTN traffic engineering models
In this thesis we provide comprehensive literature review for PSTN, and VoIP systems
and the traffic engineering and modeling work that has been done in this field. In
addition, we provide analyses of pros and cons of various approaches and modeling for

VolIP networks.
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Applying a new traffic measure, Maximum Call Load for VolP systems.

We propose to use the max call load for VoIP networks as a comparable measure to
network TDM trunks. Therefore, traffic engineering models can be used to determine the
call capacity of VolP networks. The new Maximum Call Load metric can support the
Call Admission Control (CAC) to accept or reject an incoming call request.

Using packet per second (pps) in addition to bit per second (bps) in determining
network capacity (Maximum Call Load).

The traditional calculation of the maximum number of calls is based on network
bandwidth, and our experimental research shows that this approach fails to work on some
routed networks with high speed links. Our experiments show that packet throughput of
network devices (pps) could be a constraint for VolIP traffic as well. When doing traffic
engineering for VolP networks, network engineers should calculate not only the physical
bandwidth of network interfaces but also the capacity (measured in pps) of network

devices.

Framework for modeling call arrival rate as None Homogeneous Poisson Process
(NHPP).

Our study of hundreds of millions of call data showed that the traditional Poisson
approach of modeling call arrival rate include high amount of approximation and errors
because it depends on assuming a fixed call arrival rate over the engineering period. We
propose to use a NHPP with a variable arrival rate. Furthermore, we present a framework
for finding a function of time that accurately captures the call arrival rate. We present

statistical and mathematical background and validation for our work.
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Normality (Gaussian) approximation of call arrival rate under heavy traffic
condition

We propose a new model for call arrival rate on VolP tandem networks under heavy
traffic conditions. Based on empirical evidence, such call arrival rate can be modeled as
linear Gaussian processes instead of NHPP. We show that the Gaussian approach
provides intuitive and accurate representation for the call arrival process. The Gaussian
approximation allows finding explicit mathematical equations for the model parameters,
and provides effective model validation and significance testing. Our work is validated
by using hundreds of millions of call records collected from a large-scale VVoIP network
in the U.S. Our statistical analysis of a few data samples shows that the coefficient of
determination, R?, for the proposed Gaussian model is 0.9973 which means that 99.73%

of the variability in the data is explained by the proposed model.

Framework for using a survival-analysis approach to model call holding time. The
approach introduces a “Call Cease Rate” function to model call holding time

We present a new approach for modeling call holding time on VVoIP networks. Our study
of hundreds of millions of call information shows that Erlang B model’s exponential
assumption is not valid for the modern VoIP networks. We propose a new approach
based on time-to-event analysis. We introduce the concept of “call cease rate function”
and find a mathematical model for this function based on the captured call data. After
studying several models, we found that both the log-logistic and the generalized gamma

distributions provide a good fit for the data.
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1.5

Development of a parametric and non-parametric Traffic engineering simulation
models for VoIP systems

We provide a new VolIP simulation suite that consists of a parametric simulator based on
Non-homogeneous Poisson Process (NHPP) call arrival model, and a non-parametric
simulator based on real traffic data. Our simulators are validated against real call data
obtained from multiple offices of a production VoIP carrier network. The simulation
results show that our simulator can provide up to 28% better resource utilization than the
legacy Erlang B model. Our simulator can also help carriers dynamically allocate

network resources to meet various traffic demands.

Publications

Journal Articles

Imad Al Ajarmeh, James Yu and Mohamed Amezziane, "Modeling VolP Traffic on
Converged IP Networks with Dynamic Resource Allocation”, INTERNATIONAL
JOURNAL of COMMUNICATIONS, ISSN: 1998-4480, Issue 1, Volume 4, 2010, page
47-55

James Yu and Imad Al Ajarmeh, "Design and Traffic Engineering of VolP for
Enterprise and Carrier Networks", International Journal On Advances in

Telecommunications, vol. 1 no 1, year 2008
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Conference Papers

e Imad Al Ajarmeh, James Yu and Mohamed Amezziane, “G/G/c/c Simulation Model for
VoIP Traffic Engineering with non-Parametric Validation”, The Eighth International
Conference on Digital Telecommunications ICDT 2013 April 21 - 26, 2013 - Venice,
Italy

e Imad Al Ajarmeh, James Yu and Mohamed Amezziane, “Modeling Call Arrivals on
VoIP Networks as Linear Gaussian Process under Heavy Traffic Condition”, the 7
International Conference on Networks (ICON 2011), Singapore, December 2011

e Imad Al Ajarmeh, James Yu and Mohamed Amezziane, “Framework for Modeling Call
Holding Time for VolP Tandem Networks”, GLOBECOM 2011, Houston, Texas,
December 2011

e Imad Al Ajarmeh, James Yu and Mohamed Amezziane, "Framework of Applying a
Non-Homogeneous Poisson Process to Model VolP Traffic on Tandem Networks",
10th WSEAS International Conference on Informatics and Communications, Taipei,
Taiwan, August 2010

e James Yu and Imad Al Ajarmeh, "*Call Admission Control and Traffic Engineering of
VolP", Second International Conference on Digital Communications, San Joes, CA, July

2007, ""Best Paper Award"

1.6 Thesis Outline

This Thesis is organized as follows: Chapter 2 contains a high-level description of VolP

networks and characteristics of VolP traffic. The literature review and previous work is
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presented in Chapter 3. Chapter 4 contains the research methodology and environment for data
collection and analysis. Chapter 5 provides the detailed modeling results and analysis. Chapter 6
presents VSIM design. Chapter 7 includes VSIM simulation details and analysis. And Chapter 8

includes the conclusions and future work.
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CHAPTER 2

2 VoIP Networks

In this chapter we present a study for VolP traffic characteristics and analysis. Also we study
different VolIP networks and their resource constraints. Based on the analysis of traffic and

networks, we discuss the need of Call Administration Control (CAC) to ensure voice quality.

2.1 VolP Traffic

VolIP Systems create two types of messages on the IP networks: (a) control traffic
(signaling), and (b) bearer traffic (IP encapsulated voice payload). The control traffic is
generated by the call setup and management protocols and is used to initiate, maintain, manage,
and terminate connections between users. VoIP control traffic consumes little bandwidth and
does not require to be included in the traffic engineering modeling. The focus of our analysis is

on the bearer traffic.

VoIP encapsulates digitized voice in IP packets. The standard Pulse Code Modulation

(PCM) uses 256 quantization level and 8,000 samples per seconds. As a result, we have a
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digitized voice channel of 64 kbps (DS0). If we use 20ms sampling interval, each sample will

be:

64,000 bps x 20 ms = 1,280 bits = 160 bytes

This digitized voice is then encapsulated in an RTP/UDP/IP packet as illustrated in Table 1

Table 1. VolP frame

Layer-2 header

IP header
(20 Bytes)

UDP header
(8 bytes)

RTP header
(12 bytes)

Payload
(160 bytes)

If the layer-2 is Ethernet, the 802.3 frame header, Frame Check Sequence (FCS), preamble, and

Inter-Frame Gap (IFG) add additional 38 bytes. If the layer-2 is Point-to-Point Protocol (PPP),

its header and FCS are 7 bytes.

PCM is the standard codec scheme for G.711, and it does not use any voice compression

algorithm. If a compression algorithm is used, the bandwidth for a voice channel is reduced to 8

kbps for G.729A and 5.3-6.3 kbps for G.723.1. Some codec schemes employ a silence

compression mechanism where the bit rate is significantly reduced if no voice activity is

detected. Furthermore, look-ahead algorithms are used in order to anticipate the difference

between the current frame and the next one. A summary of voice codec schemes is shown in

Table 2.
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Table 2. Vocoding and VolP overhead

G.711 G.711 G.729A G.723.1
(10 ms sampling | (20 ms sampling | (20 ms sampling | (30 ms sampling

interval) interval) interval) interval)
Raw BW in bps * 64,000 64,000 8,000 5,300
VoIP Payload (bytes) 80 160 20 20
VoIP overhead (802.3) 78 78 78 78
VolP overhead (PPP) 47 47 47 47
BW in bps (802.3)* 126,400 95,200 39,200 26,133
BW in bps (PPP) 101,600 82,800 26,800 17,867

2.2  VolP Network Types

VolIP traffic can be divided into five different categories based on users

1. Residential: This is VoIP service for home users, and it is also referred to as Broadband
phone. This service is enabled by the wide deployment of broadband Internet connections
such as DSL or cable at homes as shown in Figure 1. Traffic generated by residential VoIP
calls tends to peak during the evenings when people are back home. The Internet service
provider subscribes a certain number of simultaneous SIP sessions (SIP trunk) to the VolP
provider (S1 in Figure 1). The limiting resource in this network is the number of trunks

(usually ISDN-PRI links) between the provider and the PSTN.

! The bandwidth (BW) is for one voice channel
2 Required Bandwidth including the overhead based on the codec packet sampling rate
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Figure 1. Residential Internet-based VVolP

2. Enterprise [intranet]: This is a VolIP network within the company intranet. Many
companies deploy local VVolP solutions over their existing intranet aiming to reduce the cost
of phone calls within the company. Such solution is more efficient for larger businesses with
multiple locations especially if some of these locations are located outside the country.
Traffic generated by such systems is easily predicted and tends to peak in the mornings.
Figure 2 shows a basic Enterprise VoIP system. The limiting resource in this network is the
WAN connections to the remote offices (W1, W2 and W3). The number of trunks to the

PSTN (N1 and N2) could be another limiting resource for the traffic from and to PSTN.
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Figure 2. Enterprise VolP architecture

3. Carrier-to-Enterprise Network (aka SIP Trunking service): This VolIP network
provides business customers subscription for SIP trunk groups with a VVoIP carrier or service
provider. A typical business VoIP solution is illustrated in Figure 3. The service provider
owns and runs the VoIP system and network, and the business customer subscribes via trunk
groups with a certain capacity. Traffic generated by such systems is easily predicted and

tends to peak in the mornings of the business days.

36



ternet Telephonv Service Provider

(ITSP)

Softswitch

Gateway with Sessign Border Controller

s1 PSTN

PBX

Figure 3. SIP Trunking VoIP solution

The limiting resource in this configuration is the number of sessions in the SIP
trunk (capacity of the trunk group, shown in Figure 3 as S1). If an enterprise subscribes
too few trunks, the end-user would experience a high probability of blocking, for both
incoming and outgoing calls. If the enterprise subscribes too many trunks, many of them

will not be used resulting in poor resource utilization and waste of money.

4. Carrier Networks: Networks built to carry voice calls over IP networks. Usually, such

networks are large and carry huge amount of traffic. Traffic on these networks tends to be a
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mixture of business and residential, so it is harder to predict and needs more complex
mathematical modeling. Many carrier networks provide Service Level Agreement (SLA)
guarantees for the voice traffic and hence proper traffic engineering for these networks
becomes very important and business-critical. Figure 4 shows a typical VoIP carrier

network that spans multiple cities.

City 2 City 3 City 1

w3 SIP Cust

SIP Customers
58 w2 -
2 :’.’. IP Network B : LA —
o S A W1

Sftswitch Softswitch

w4 Nt
DM
= DM ' Customers
= Customers City 4 \/\/\/

PSTN

Figure 4. VoIP carrier network

Large-scale carrier networks have more than one limiting resource: (i) the WAN connections
between the central offices (W1, W2, W3 and W4), (ii) the number of trunks to the PSTN,
and (iii) the capacity of the softswitch and VVoIP Gateways. In this research, we focus on the
WAN connections described in (i) which is considered the most important limiting resource

of such VolP network.
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5. Call Centers: call centers are a special case of business users category with three major
differences: (i) unlike regular business phone systems, call centers have automated attendant
systems and waiting queues where calling customers can interact with the automated system
and/or wait for the next available agent. (ii) calls to call centers tend to be relatively longer.
(iii) call centers usually operate even outside the business hours or days. The limiting

resource on a call center system is the number of agents servicing customer calls.

2.3 Call Admission Control (CAC)

The purpose of Call Admission Control (CAC) is to determine whether or not the
network has sufficient resource to route an incoming call. In the circuit-switched networks the
Call Admission Control algorithm is simply to check if there are circuits (or trunks) available
between the origination switch and the termination switch. VVoIP traffic is carried over packet-
switched networks, and the concept of circuits (trunks) is not applicable. However, the need for
Call Admission Control (CAC) for VolP calls is the same. Packet switched networks, by nature,
accept any packet regardless of voice or data packets. When the incoming traffic exceeds the
network capacity, congestion occurs. Control mechanism is needed to address the issue of
congestion by traffic shaping, queuing, buffering, and packet dropping. As a result of this
procedure, packets could be delayed or dropped. Delay is usually not an issue for data-only
applications. Packet loss can also be recovered by retransmission which is supported by many
protocols such as TCP or TFTP. However, retransmission would cause longer delay which is not

acceptable to time-sensitive applications such as VolP. For voice traffic, delay and packet loss
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would degrade the voice quality, which is not acceptable to end-users.

ITU-T standards provide

the following guideline for the voice quality measurement [6]. Table 3 shows a summary of ITU-

T guidelines for VolP:

Table 3. VolP Quality Measurement

Network Good Acceptable Poor
Parameter
Delay (ms) 0-150 150-300 > 300
Jitter (ms) 0-20 20-50 > 50
Packet Loss 0-0.5% 0.5-1.5% > 1.5%

The standard voice quality measurement is the Mean Opinion Score (MOS) where

different voice samples are collected and played back to a group of people who rank the voice

quality between 1 and 5 (1 is the worst and 5 is the best). An MOS of 4 or better is considered

toll quality. The objective of Call Admission Control is to prevent network congestion so that all

calls could achieve toll quality or better.
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Switch

New Call
Request

Originating
Gateway

v

IP WAN

7/
I

VolP Manager

Call accepted or rejected based on
resource availability

Terminating
Gateway

Terminating
Switch

Figure 5. Call Admission control for VolP system
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Figure 5 shows a simple CAC for a VolP system. It should be noted that that CAC is
different from Quality of Service (QoS) as frequently referenced in the literature. The main
difference is that QoS is a priority scheme to differentiate the traffic that is already on the
network, while CAC is to police the traffic from coming to the network when the network is
congested [7]. CAC for circuit-switched network is implemented in the Q.931 and SS7 signaling
protocols. Q.931 is used to determine if there is a free B channel in the ISDN trunk and reserve
that channel for an incoming call. SS7 signaling is to identify a free DSO channel between central
office switches and reserve that DSO channel for an incoming call. Although VolIP is on a
packet-switch network; however, voice communications still require end-to-end connections to
guarantee the voice quality. There are many publications about ensuing voice quality over IP
networks, and the general approach of Call Admission Control is to reject a VoIP call request if
the network cannot ensure the voice quality. CAC mechanisms are classified as measurement-

based control and resource-based control.

Measurement-based Control: For measurement-based control, monitoring and probing tools
are required to gauge the network conditions and load status in order to determine whether to
accept new calls or not [66]. A protocol, such as RSVP, is required to reserve the required

bandwidth before a call is admitted into the network.

Resource-based Control: In the case of resource-based control, resources are provisioned and

dedicated for VVolIP traffic.

Those two mechanisms are also referenced as link-utilization-based CAC and site-

utilization-based CAC [9]. Another reference of these two methods is measurement-based CAC
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and parameter-based CAC [10]. In both CAC methods, voice quality of a new call and existing
calls shall be assured after a call admission is granted.

Traditional CAC approaches make their decision without taking into consideration of the priority
of the requested service. It is difficult to use such CAC systems for networks that provide
differentiated services with different priorities. For example a network may have voice, video,
data, interactive data, and signaling traffic. Therefore, some recent researches focus on providing
priority-based CAC algorithms in which service priority as well as requirements is taken into
consideration. Bae et al (2009) [11] proposed an adoptive resource-based CAC algorithm for
packet-switched IP-based mobile network. Whenever resources are needed to satisfy a service
request, the CAC algorithm estimates the required number of Physical Resource Blocks (PRBS).
Other factors are considered in determining the number of PRBs such as the service type, and
modulation and coding scheme (MCS) level. The goal of this CAC is to guarantee QoS
requirements for packet delay in the packet-switched network. Dandan et al (2007) [12] proposed
another adoptive CAC algorithm for CDMA networks. The algorithm determines the required

resources based on the service requirements and the priority of the traffic.

2.4 \VolP Call Resources and Admission Control

It is common to calculate the resources needed for VolP calls based on bandwidth
requirements alone [9]. In this section we present a study for the VolP call resource
requirements in which we show that there are other resources that must be taken into

consideration. Resource requirements studied in this research are model-independent. This
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means these resources are the same whether traffic engineering is based on Erlang models or any
other models. For example, the Erlang-B model uses traffic intensity and Grade of Service
(GoS) to determine the number of trunks in circuit-switched networks. VVoIP, however, is carried
over packet-switched networks, and network capacity is measured in bits per second instead of
the number of trunks. We studied different network designs for VoIP, and proposed a Call
Admission Control (CAC) scheme based on network capacity. We then proposed a new
measurement scheme to translate network bandwidth into the maximum call load. With this new
metric, resource requirements in traffic engineering models such as number of trunks in Erlang-B
model become applicable to VoIP. We conducted experiments to measure the maximum call
loads based on various voice codec schemes including G.711, G.729A, and G.723.1. Our results
show that call capacity is most likely constrained by network devices rather than physical
connections.  Therefore, we recommend considering both packet throughput (pps) and bit
throughput (bps) in determining the max call load. If network capacity is constrained by packet

throughput, then codec schemes would have almost no effect on the maximum call load.

2.4.1 Empirical Results and Analysis

We emulated VolP in the lab over different links. The expected results (theoretical limit)
are calculated based on the overall bandwidth requirements for each codec shown in Table 2.
Table 4 shows a summary of the theoretical maximum call load for different codec schemes on

different links.
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Table 4. Theoretical limit of VolP call capacity (Max Call Load)

Links G.711 G.711 G.729A | G.723.1
(20ms) (10ms) (20ms) (30ms)
FD FT1 (768k) 9.3 7.6 28.7 43
FD E1 (2.0M) 24.2 19.7 74.6 111.9
FD 2xE1 (4.0M) 48.3 39.4 14931 | 22391
10BaseT (HD) 52.5 39.6 1276 " 191.3"
10BaseT (FD) 105 255.1 382.7
100BaseTX (FD) 1,050 791.1 2,551 3,827

We compare the experimental results with the theoretical limits presented in Table 2 using the
following metric:

Utilization = experimental result + theoretical limit

This new metric is to measure the efficiency of a link for voice calls, and it is different from the

traditional measure of data throughput and link utilization.

The first experiment is a VolIP traffic test over a full duplex 10/100BaseTX link. The key
measurement is the maximum number of simultaneous calls with toll quality (max call load).
When we tried to run this experiment over the 100BaseTX link, the CPU utilization of the Linux
machine reached 98%. Therefore, the experiment of 100M is considered not applicable for
measuring the max call load. The second experiment is to test the VolP traffic over a serial link

with two routers; we configured the link speeds to 768Khbps, 2Mbps, and 4Mbps. The third

! Note that a Full Duplex Serial link of 4.0M carries more calls than a half-duplex 10BaseT link because PPP has
less overhead than Ethernet.
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experiment is to emulate VVoIP over three routers with 10BaseT link (half duplex). During the
experiment run, we also monitor the CPU utilization of traffic transmitter and receiver. The
CPU utilization on the transmission side is 40% for G.723.1 and G.729A and 20% for G.711.
The utilization is much lower on the receiver side, less than 10% in all cases. The fourth
experiment is to emulate VVolIP over a routed full duplex 100BaseTX link. In this experiment, we
used a Linux-Based router on a Pentium 4 machine, and the CPU utilization for sender and
receiver is less than 40% in all cases. A summary of the observed maximum call loads versus

expected (theoretical) maximum call loads is shown in Figure 6.

100%
MmG.711
m B G.729A
05 -+ — — -
80% l F1G.723.1
60% 1 — — —
40% — — — —
20%
O% / T = T = T — T
Switched 768K 2M aM 10BaseT 100M
(10M)  (Serial) (Serial) (Serial) (HD) (FD)

Figure 6. Call utilization for various links

The observations from these experiments are summarized as follows:

e We are able to achieve line speed performance (96% or better) using the max message size in
all experiments. This result confirms the validity of the measurement tool and the

experiment process.
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e The data shows close to 100% utilization on 10BaseT switched Ethernet. It shows that we

could achieve the max call load as calculated from the available bandwidth.

e In the cases of routed networks, we observed close to 100% utilization only on low speed links,
but poor utilization on high speed links. It shows that the max call load cannot be achieved

on the high speed links.

e G.711 always yields better utilization than G.729A which is comparable to G.723.1. It shows
that the smaller size for a codec scheme would yield less utilization on the link. This is an

interesting result, and we will investigate further later.

e Although G.729A and G.723.1 compress the voice payload by a factor of 8-10, their

improvement to the max call load is less than 10% on high speed links.

e When using larger packet sampling rates (from 10ms to 20ms), we notice significant increase

in the Max Call Load.

In summary, the experimental results raise a question about how to measure max call
loads for VolIP. Many other studies calculate the call load based on the bit throughput (bps), and
our experiment shows that bps alone could not explain the results observed in the experiment as

there is a large discrepancy between observed data and calculated data.

2.4.2 Packet Throughput and Maximum Call Load

Our lab experiments show that in the case of low utilization, it always involves routers.
This observation leads to the study of packet throughput (number of packets processed per
second) of network devices. The routers used in this experiment are Cisco 2610 and Cisco 2620.

According to the product specifications, these routers are able to carry 1,500 packets per second
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(pps). If Cisco Express Forwarding (CEF) is enabled and the traffic pattern is applicable, the
router could achieve 15,000 pps. Each VolIP call requires two connections (one in each direction)
and this is the symmetric characteristic of VoIP traffic. The way pps is calculated for router is
that each packet is counted twice as it goes through the incoming port and the outgoing port. If
we use 20ms sampling interval and 64-byte frames, the calculated max call load of a router

would be:

15,000 pps =+ (1000 sec + 20 ms) + 4 =75 calls/sec

And for 30ms sampling interval (G723.1) we have:

15,000 + (1000 + 30) + 4 = 112 calls/sec

These numbers are consistent with all the experimental results of the routers. In other words, the
max call load is bounded by the router “capacity” rather than the link capacity. We also noticed
that we were able to achieve maximum utilization on the physical links for the baseline tests
(using MTU as the packet size). The inconsistency in utilization leads to the question about the
root cause of difference between the baseline tests and emulated VolIP tests. To answer this
question, we need to study the VolP traffic characteristics explained in Section 2.1 and compare
with the processing of packets by network devices. We find that VVoIP uses small packet size to
transfer calls. In order to achieve higher link utilization using small packet size, we need to send
more packets per second. Pushing more small packets into the network would not cause
congestion on the link itself; instead, the routers may not be able to process the demand and
become the congesting point.

As an example, the frame size of G.729A is 98 bytes (or 784 bits, see Table 2). If we want

to achieve full link utilization (10 Mbps) using G.729 codec, we need packet throughput of:
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10,000,000 bps + 2 + 784 bit/packet = 6,377pps

Since VolP traffic is symmetric in both directions, we need the network to handle twice this
amount. According to the product specification, each packet is counted twice as it goes through

the router (coming and leaving). Therefore, the required packet throughput for the router is:
6,377 x2x2 = 25,508 pps

Given that our router (Cisco-2600) is capable of processing 15,000 pps. Because of this

constraint, we observe a lower link utilization which is:
15,000 + 25,508 = 58.8%

This calculated utilization is almost identical to our experimental results of 57% as presented in
Figure 6 . This example of calculation is applicable to all the results we obtained in this research.
It proves our point that the limiting factor (bottleneck) is on the router’s capability to process
packets rather than the network itself. Therefore, to provide sound traffic engineering for VolIP

we need to consider pps as well as bps.

2.5 Summary

We propose to use the max call load for VoIP networks as a comparable measure to
network trunks. With this modification, traffic engineering models can be used to determine the
call capacity of VoIP networks. Packet-switched networks, by nature, do not have the concept of
blocking, and all incoming packets are accepted even if the new packets will cause congestion on

the network which could result in delay and packet loss. In the case of VolP, this will cause
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quality degradation to the new calls as well as to the existing ones. The solution to this problem
is to use a Call Admission Control (CAC) where call manager or softswitch can apply a traffic
engineering model to implement a CAC algorithm to accept or reject an incoming call request.
The traditional calculation of the maximum number of calls is based on network
bandwidth, and our experiments show that this approach fails to work on some routed networks
with high speed links. Our experiments show that packet throughput of network devices (pps)
could be the constraint for VolP traffic. When doing traffic engineering for VolP networks,
network engineers should calculate not only the physical bandwidth of network interfaces but
also the capacity (measured in pps) of network devices. If the device capacity is the limiting
factor, codec schemes would have no effect on the call capacity; instead, packet sampling

interval could significantly change the maximum call load.
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CHAPTER 3

3 Literature Review of Traffic
Models

In this chapter we provide a review for the work that has been done in the traffic theory and traffic

engineering for VVoIP as well as PSTN.

3.1 Telecommunication System Modeling

A telecom system can be viewed as a service center in which customers arrive at a
service point, get serviced and then depart the system. Some systems have a single server others
have multiple servers. Some systems allow customers to wait if they arrive while the server(s) is
busy such as call centers. Other systems don’t provide any waiting space or mechanism (block
customers) such as regular residential or business phone systems. For the purpose of this study
we assume the telecom system has multiple servers and no waiting queue is provided (blocking

system).

According to this analogy, the system can be divided into three major components: the

arrival process, the service time process, and the server(s). Analyzing such system involves
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studying statistical queuing techniques based on theoretical distributions and simulations. In a
basic telecommunication queuing system, theoretical distributions are used to describe the call

arrival rate and the call holding time. Figure 7 shows a basic telecommunication system model.

Queue/delayed

Source Resource
) . e
Offered (Processing Unit) Carried
Traffic Traffic
] Blocked traffic
Retried
Traffic

Lost traffic

Figure 7. Telecommunication system model

Call arrival rate and call holding time are not deterministic values. Therefore, the first step in
analyzing telecom systems is to find the probabilistic models that best approximate these

processes.

If simple models and relations are chosen to approximate the call arrival and call holing
time distributions, we might be able to use mathematical methods to obtain equations that can be
used to estimate the system parameters and this is called an analytical model or solution for the

system. However, if complex models and relations are chosen, an analytical model for the
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queuing system might not be feasible and in this case simulations are used to estimate the
required parameters. Simulation systems utilize computers to evaluate a model and estimate
parameters numerically.

Both analytical modeling and simulations have their own advantages and disadvantages.
Analytical modeling yields mathematical formulas that can be used to estimate system
parameters directly. However, it is not always possible to perform analytical modeling in order to
obtain such formulas. Even if mathematical formulas are obtained, it is also important that these
formulas can be computed efficiently. It should be noticed that the modeling process that yields
simple analytical models usually involves a lot of approximations which might yield inaccurate
results especially in systems with complex traffic patterns. Simulations can be easily modified
and adapted to any system. Also simulation models require less approximation and could yield
more accurate results in many cases. Furthermore, simulations can be tuned to achieve arbitrary
accuracy for the estimated parameters. On the other hand, simulations might take a long time
depending on the complexity of the system and the required accuracy [13]. Also simulation
might suffer insufficient level of abstraction which limits the ability of a simulation model to
explore only a limited portion of the system behavior and characteristics. It is desirable to study

systems using analytical models whenever such models are available.

3.1.1 Call Arrival Process

The goal of studying call arrival process is to determine the behavior and rate of calls
arriving at the system. In other words we need to know that during the next t seconds k calls will
arrive at the system with a probability of p(k,t). It is very common to model the call arrival rate

using a Poisson distribution,
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a)e
p(k,t) = ( k!) e k=012 )

where Ais the key parameter for the distribution, and it determines the shape and indicates the
average number of events in the given time interval (rate). Equation (1) is known as Poisson
Distribution and it is used to model the number of events within a given time interval. Any

process that can be described by this distribution is called Poisson Process.

A Poisson Process has some interesting properties that make it attractive for modeling
traffic arrival rate in telecommunication systems. Below is a summary of the most important

Poisson properties [15]:

e If Xy, Xy, ... are random variables representing the inter-occurrence times of a
Poisson Process, then {X, »n=1,2,...} are i.i.d (independent and identical
distributed) and have exponential distribution.

e Poisson distributions are additive: If two types of Poisson events occur

independently of each other (say X; and X; having the parameter of A, and 4,

A
A+A,

respectively), then the probability that X; occur before X, is given by

e Poisson Processes are additive as well: let Yi(t) and Y,(t) be two Poisson
processes with parameters g, and u, respectively and Y(t) = Y(t) + Y(t) for ¢ >

0. Hence, Y(t) is also a Poisson process and its probability P is given as:

P[Y (t) = n] = e_(/'l1+ltl2)t [(;“1 +n'1!“12 )t]n
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e Relation between Poisson process and uniform distribution: let n Poisson events
occur at times t1< t,< t3< ... <t, in the interval [0, T], then the random variables
ty, to, ..., ty have the same distribution as the nth-order statistics corresponding to
the independent random variables U;, U, ..., U, and they are uniformly

distributed in the interval [0, T].

3.1.2 Call Holding Time

The second process that we must study is the service time (call holding time). Likewise,
we need to be able to estimate the probability of an ongoing call leaving the system (call ends)
during the next t seconds H(t). In traditional telecommunication systems call holding time is

usually modeled using a negative exponential distribution:

H(t)=1-e* =1-¢"" @)
where 4 is the call departure rate, and is computed as the reciprocal of the average call hold
time (u = %). Equation (2) is known as the negative exponential distribution. This distribution

describes the probability of the call remaining time rather than holding time. This is possible
because both call holding time and call remaining time follow the same exponential distribution.
This property of the exponential distribution is called “memory-less property” [16] and it states
that at any time (t), the remaining time for the ongoing calls follow the same negative
exponential distribution as the original one (with the same parameter . ) regardless of the
amount of time each has spent on the system. This property can be proven mathematically as

follows: Let P(Z,) be a negative exponential process such that:
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P(Z,<x)=1-e" (u>0)
The probability of call termination after time t is given as:

P(t<Z, <t+x) [1—-e*™]-[1-e]
P(Z, >t) e

P(Z, <t+X|Z >t)=

=]1—e* (This is a negative exponential distribution)

3.2 Traffic Engineering Models

The traditional approach for telecommunication systems traffic engineering is based on
the assumption that the call arrival rate conforms to a Poisson process and call holding time
follows the negative exponential distribution. Conformance to a Poisson process means that call
inter-arrival times are described by a negative exponential distribution. Traffic that follows these

assumptions is said to be random. Traffic randomness means:

1. Random call arrival: The arrival time of each call is independent of the arrival times
of other calls. The inter arrival time follows a negative exponential distribution.
2. Random call holding time: The call holding time of each call is independent from

the holding times of other calls and follows a negative exponential distribution.

3.2.1 Traffic Measurement

In circuit-switched networks, the limiting resource is the number of circuits which is also
known as trunks (N). Traffic load on the network is measured by Traffic Intensity which is
defined as:
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Traffic Intensity (A) = Call Rate x Call Holding Time
where call rate is the number of incoming calls during a certain period of time. Call Rate is
randomly distributed and assumed to follow the Poisson distribution in the traditional models.
Call Holding Time is the summation of (a) call duration which is the conversation time, (b) call
initialization and setup (c) ringing time. The measurement unit of Traffic Intensity is Erlang
which is the traffic load of one circuit over one hour. For example if a circuit is observed for 30-

minute of use in a 60-minute interval, the traffic intensity is 30+60=0.5 Erlang.

3.2.2 Erlang-B model

The Erlang-B model [17] is the standard to model the network traffic of circuit-switched
networks. It is known as the blocked-calls-cleared model, where a blocked call is removed from
the system (no waiting queue). In this case, the user will receive an announcement of circuit
busy. Notice that a busy announcement is not the same as busy signal, which is the case when the
callee is already on the phone. From the perspective of the Erlang-B model, not-answered-calls
and busy calls are all considered successful calls. Traffic randomness is the primary assumption
in the Erlang-B. In addition to the traffic randomness, the Erlang B model has the following two
assumptions:

1. Infinite number of sources (users): The model implies that a large number of users

who could make a call through the network. In practice, if the number of potential

users is much larger than the number of trunks, this assumption is considered valid
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2. Blocked calls are cleared: When a call is blocked due to insufficient resources
(trunks), the user will get a recording or a fast busy tone. The call request is

discarded (cleared) by the network and the user must hang up.

A mathematical formula for the Erlang-B model is derived as follows:
Let A: be the random traffic load, N: the number of servers (trunks), k: index of the number of
arriving calls (rate), and P;: the probability that an arriving call finds j ongoing calls in the

system (j < N). Pj: can be expressed as:

Ak forj=012..N (1)

The blocking probability is defined as the probability that an arriving call is blocked because all
(N) trunks are busy. When all trunks are busy no further traffic can be carried by the system and

the arriving traffic is blocked and cleared off the system. Blocking probability B(N,A) is given

by:

BN, 4) = —N. 2)

Equation (2) is known as Erlang’s Loss Formula or Erlang-B formula. This formula can be used

even if the offered load is larger than the available servers basically because blocked calls will be
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cleared off the system. Therefore, it is clear that the telecommunication systems might not carry

the entire offered load. Recall that A is the offered Load, so the carried load is given as:

A, =Ax*[1—-B(N,A)]
And the lost load (blocked and cleared) is the difference between offered load and carried load
and is given as:

A—A, =AxB(N,A)
Therefore, Grade of Service (GoS) can be written as:

A-A4,

GoS = y

Under Erlang-B assumptions, the blocking probability and the Grade of Service (GoS)
are equal.
The reason for a call being blocked on a typical circuit-switched network is that all trunks are
busy. A GoS of 0.01 shows that there is 1% probability of getting a busy announcement. GosS is
a critical factor for calculating the required number of trunks since it represents the trade-off
between service and cost. For a local telephone switch, if we set the number of trunks (to the
tandem office) equal to the number of subscriber lines, then the switch would have GoS=0
(100% non-blocking) regardless of the traffic load. Of course, this is a hypothetical example as
no carriers would have this engineering practice. Different subsystems might have different GoS
values on the same telecommunication network. The overall GoS for the whole network is the

highest GoS value of the subsystems.

In Erlang-B formula shown in (2) above, if traffic intensity A is small compared to the
number of trunks N, then A/N is very small and the denominator in (2) reduces to

e Therefore, equation (2) can be rewritten as:
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Ak

e

Pk=

Recall that that Traffic Intensity A = Call Rate x Call Holding Time
Therefore, the above equation is the same as Poisson equation. In this case the traffic conforms
to a Poisson distribution. If we take the limit when the number of trunks (N) approaches infinity,

we get:

AN

: a2 -a
limpy_ o N e -0

Thus, if we have Poisson traffic and infinite number of trunks, the blocking probability tends to
zero.

It should be noted that the assumptions of the Erlang-B model are transparent to the
underlying networks regardless of whether it is a circuit-switched network carrying traditional
phone calls, or a packet-switched network carrying VolP calls. The standard practice is to take a
conservative approach in measuring traffic intensity on the Busiest Hour of the Busiest
Week/Season (BSBH) in a year. In other words, one should never engineer the network based on

the average demand. Instead, it should be based on quasi-peak demand.

3.2.3 Erlang-B model Extensions

Extended Erlang-B model: Erlang-B model is based on the assumption that blocked calls are
cleared from the system and it does not take retries into account. Extended Erlang-B model,
however, takes into consideration the probability that a blocked user will try again immediately.
This probability depends on the Recall Factor (Rf) which is a new parameter that has been

introduces to traffic model in the Extended Erlang-B model. The mathematical representation for
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the Extended Erlang-B is based on using the original Erlang-B formula in an iterative manner. In
each iteration, the number of retried calls is calculated based on the Recall Factor and the
resulting number is added to the initial call load. This process is repeated until all call attempts
are satisfied. For example, if the initial level of traffic is represented by A, then we use Erlang-B
model in the following manner:

Find P, = B(N,A) and then calculate the probable number of blocked callsB,:

B, = A P; and then we calculate the number of recalls R:

R = B,Rf thenew offered loadis A;.; = Ay + R

Now we return to the first step and keep iterating until we reach a stable value for A.

Engest Traffic: Erlang-B formula was developed based on the assumption that the call arrival

rate is independent of the number of calls in the system. Such assumption can be justified only if
the number of users (subscribers) is much larger than the number of trunks (infinite number of
sources (users)). In practice, this assumption might not hold all the time. There are cases when
the number of subscribers is comparable to the number of trunks. In such cases the arrival rate
depends on the number of calls in the system. This observation is explained as following: a user
can be involved in one call at a time only, hence users who are already involved in calls cannot
initiate new calls, and this means that the expected call arrival rate depends on the number of free
users who might initiate new calls. Expected call arrival rate is inversely proportional to the
number of busy users/trunks. In this case the traffic is known as Engest Traffic and the telecom

model is based on finite population assumption.
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The blocking probability of a finite source system is less than that of an infinite source
system, and the reason is because the arrival rate decreases as the number of busy users/trunks
increases.

Blocking probability P; for Engast traffic is given as:

Let A =call arrival rate per subscriber
k = number of busy users in the system
N = total number of subscribers
R = number of trunks

t,= mean call holding time
. . 1
u = mean call termination rate (t—)
h

_As
P=

P (%)
P, =P, = — RJ
? N f:op"(?f)

Where () is the binomial coefficient and is given as:

(111,) " k! (NN!— k)]

Notice that the offered traffic (arrival rate) is a function of the number of busy users in the
system. When we have k busy users only (N — k) users can generate calls at a rate of A, per user.
Therefore, the offered arrival rate C;, in case of k busy users can be expressed as:

C, =(N—k)A;for 0<k<R
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The mean offered traffic C can be given as:

C=(N—A4,)A
where A,is the average number of busy trunks. The offered traffic intensity A is:
A =Cty = At (N —A4,)
The system will be in blocking state when all trunks (R) are busy, in other words when A, = R
In this case the offered call rate is (N — R)A, and all arrival calls are lost (blocked). The lost
traffic can be expressed as:
A—A, = (N — R)AstyPg
Unlike Erlang-B model, under Engest traffic assumptions, GoS is not equal to the blocking

probability. GoS is given as:

3.3 Other Research on Traffic Models

As indicated in Section 3.2.2, the Erlang-B model is based on the assumptions that call
holding time follows a negative exponential distribution and call arrival rate follow a Poisson
Process with a constant rate over a certain block of time. A separate queuing model will be
provided for each of those time blocks. The exponential approximations are made in order to
achieve relative simplicity in the corresponding mathematical and analytical models. Under
exponential call inter-arrival assumption, the observed call arrival process consists of the sum of

a large number of independent call arrivals. Therefore, we are dealing with memory-less
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exponentially distributed events for call inter-arrival time and call holding time. The memory-
less property of the process is also referenced as Markov property which is essential for
providing analytical solution to the queuing model. Hence, the telephone network is easily
modeled as M/M/c/c queuing system and Erlang models can be used to study the performance of
the telecommunication system and calculate the required resources. Exponential distribution is
used for one-parameter approximation of the data. In the case of call holding time, the rate
parameter for the exponential distribution is based on the mean of call holding times, and in case
of call inter-arrival time the rate parameter is based on the mean inter-arrival times. On the other

hand, the lognormal and Erlang distributions can be used for two-parameter approximations.

Recently, there has been a growing interest in modeling more complex call arrival flows
and holding times. This interest is driven by the attempts to solve problems associated with the
inadequacy of the exponential assumptions. Such problems affect the design and performance of
the system. As we mentioned in the previous section, finding explicit equations for systems with
complex arrival flows might be very difficult. When the models used to capture call arrival
process or call holding time lack the Markovian property, the analytical approach for
performance evaluation is not feasible. Research in this field either tends towards simulations or
towards analyzing the system under the condition of heavy traffic (many calls in the system) [23]

and low traffic (the system is mostly idle) [24].

3.3.1 Modeling Call Arrival Process

Erlang model assumes that call arrival occurs as a Poisson process, and it implies calls

are generated independently by a large number of users [infinite number of user assumption]. In
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addition, it is assumed that each user generates at most one call in a given period of time.
Therefore, the arrival time of calls is uniformly distributed over that period and hence the call
arrival rate is represented by a stationary Poisson process. In practice, the stationary Poisson
assumption is often violated since call arrival rate is a function of time and not uniformly
distributed over a long period of time. In addition, some users generate more than one call during
a certain period of time. Therefore, the results obtained by stationary Poisson-based call arrival
models are not accurate. In this section we will study the main approaches that have been

proposed to replace the stationary Poisson call arrivals.

3.3.1.1 Batch (Session) Based Call Arrivals

It is common that calls arrive in bursts (batches) in which each call starts after the previous call
ends. This case might be handled by assuming that bursts are of fixed size (x) and burst arrivals
follow a Poisson process. In this case each burst of size x is treated by Erlang formula as a single
call that occupies x lines for the period of the call holding time. Also one of the factors that
violate Erlang’s stationary Poisson assumption is the fact that many users generate multiple calls
rather than one call during a given period of time. This effect can be minimized by introducing
the concept of sessions. A session is defined as the sequence of calls generated by a certain user.
The batch-based approach is similar to the session-based; however, calls arrive in batches
regardless of the user generating the call. Using session arrivals instead of call arrivals enables

us to use Erlang models to engineer the network.

In [18] Bonald proposed to model call arrival rate by using the concept of Poisson-based
sessions rather than Poisson-based calls. Sessions are assumed to be independent from one

another and each session contains a random finite number of calls and idle periods. Bonald
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based his work on the observation that although call arrival rate within each session follows a
non-Poisson process, session arrival rate follows a Poisson process. As a result, Erlang traffic
formula can be used, or follows a permanent nature and hence Engest Formula can be used.

In [68] and [70] the authors studied call arrivals on an IP based network with resource
reservation capabilities. They suggest a Batch Poisson call arrival process in which calls arrive in
batches, and batches arrive randomly following a Poisson distribution. Batches may have
different sizes. They proposed an application for the Bandwidth Reservation (BR) policy of the
Erlang Multirate Loss Model (EMLM). The proposed model is named Batched Poisson EMLM
under Bandwidth Reservation (BR) policy (BP-EMLM/BR). The model is based on partial batch
blocking, i.e. a part of an arriving batch can be accepted while the rest of it is rejected depending
on the available link bandwidth [69]. The authors proposed a recursive method to approximate
the link utilization with two probability functions: Time Congestion (TC) probability and Call
Congestion probability (CC). The authors also considered the case of finite population and
Quasi-random traffic. In such case the Engset Multirate Loss Model (EnMLM) can be used

instead of the EMLM model.

Session-based model have been used on systems other than IP networks. For example,
Hess and Cohn [19] studied the voice traffic behavior in mobile radio systems. They followed a
session-based approach and concluded that session inter-arrival time follows an exponential
distribution. They suggested a model for peak load estimation and used Erlang-C formula to

calculate the required resources for the network.

The advantage of the session approach is that call arrivals within each session can have
any arbitrary distribution. In addition, it provides more accurate results than the traditional

Poisson call arrival approach. On the other hand, we still have to assume that sessions are
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independent from each other and follow a Poisson process. Basically, if the number of users is
relatively low, then the session arrival process depends on the number of on-going calls and

therefore the Poisson session arrival assumption is violated.

3.3.1.2 Traditional Stationary Poisson Arrival Rate

This is the traditional approach used by Erlang-B model. Call arrivals are assumed to follow a
Poisson distribution with fixed rate. We have covered this approach in more details in Section
3.1.1. However, we mention it here since we still find some modern research that depends on this
approach. Zvezdan et al. [20] provided a bandwidth calculation method for VVolIP networks based
on Poisson call arrival rate. Erlang-B and Extended Erlang-B models were used to calculate the
required network resources. The authors are aware of the well-known limitations of Poisson
approximation. Therefore, they based their calculations on the assumption that the Busy Hour
Traffic (BHT) is approximately 17% of the whole traffic for that day. The calculation method
takes into consideration factors such as Voice Activity Detection, RTP header compression, and

the used codec. The results of the proposed method are validated my Matlab simulation.

Duncan et al. [28] investigated busy period voice traffic for a trunked mobile radio
system. They used data aggregated of multiple talk group traffic. The analysis indicated that call
inter-arrival time follows an exponential distribution and exhibit certain degree of long-range

dependency.
3.3.1.3 Erlang-jk

Erlang-jk is sometimes considered to model call inter-arrival time distributions. It is composed of

a mixture of two Erlang distributions with different proportions. In [25], Barcel6 and Bueno
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studied call inter-arrival time for mobile telecommunication networks, and they used two
different methods to estimate call inter arrivals. The first applies a filtering process and assumes
that in the filtering process all and only calls that have been rejected are eliminated. Therefore,
analyzing the inter-arrival time of the samples remaining after filtering, we get the coefficient of
variation of the inter-arrival time to the system. The second proposed method for inter-arrival
estimation is based on the delay probability estimation which is sensitive to call inter-arrival time
[26]. Barcelé and Bueno concluded that channel idle time is best modeled by an Erlang-jk
distribution. The same model can be used to represent call inter-arrival time after filtering
unsuccessful call attempts. This approach has the disadvantage that it does not accommodate for

attempt calls and it ignores calls with short duration (bound of the filtering process).

Call inter-arrival time for cellular networks was studied by Sanchez et. al [29]. They
based their research on real traffic samples and concluded that call inter-arrival time is far from
being exponential Also they concluded that call arrival rate cannot be represented by a Poisson
process. Multiple models were examined, and the Kolmogorov-Smirnov (K-S) goodness of fit

results indicate that call inter-arrival time is best modeled as Erlang-j-k with j=3.

3.3.1.4 BCMP

A BCMP network (named after the authors of the paper who first described this network) is a
heterogeneous queuing network with multiple classes of customers having different distributions. A
product form of equilibrium distribution exists for the BCMP network. It is considered an extension
to a Jackson network allowing several customer classes and service time distributions. In a recent study
for call processing in Intelligent Networks (IN), Irina et al [21] modeled the SS7 signaling traffic

as exponential BCMP queuing network. The study provides a method of analyzing the post-
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selection delay in the SS7 channel and IN nodes as part of the call setup process. Analytical as
well as empirical studies are provided. Signaling arrival rate is modeled as a Poisson Process
with fixed rate (4). The study proposes a mathematical model that can be used to calculate the
post-selection delay assuming an exponential service time. However, In the case of general
service time distribution in BMCP network nodes, calculating the delay can be achieved using

simulations only.

3.3.1.5 Non-homogeneous Poisson Process

Unlike the stationary Poisson process, the non-homogeneous (non-stationary) Poisson process
has a rate that is a function of time. In a study of a telephone call center, Lawrence Brown et al.
[27] modeled the call arrivals as a time-inhomogeneous Poisson process with piecewise constant
rates. Under the proposed model, the duration of the day is divided into short time intervals and
during each interval the arrival rate is assumed to be constant. It is not necessary to make all the
intervals with equal time lengths. Brown et al studied different types of traffic, and they used a
different fixed-length time block for each traffic type. Their decision on the block length was
based on the arrival rate. They used smaller blocks (6 minutes) for traffic with high arrival rate
and larger blocks (up to 60 minutes) for traffic with low arrival rates. The general rule is to have
intervals short enough so that the arrival rate can be assumed constant within each interval.
Lawrence Brown used Kolmogorov-Smirnov statistic test to accept the hypothesis that call
arrival rate is a non-homogeneous Poisson process. Furthermore, Brown provided empirical
evidence that the call holding time of a call center follows a distribution close to lognormal

rather than exponential. Although the lognormality hypothesis was rejected by Kolmogorov-
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Smirnov test, Brown adopted this distribution based on empirical observations and the used the

large sample size for justification.

3.3.1.6 Packet-level Arrival Modeling

Another approach for VoIP traffic engineering is based on the packet level rather than the call
level. In this approach mathematical and statistical models are provided for packet arrivals.
Bowei et al. [67] provided a packet-level VolP modeling study in which they collected 332,018
call records from a live network and then they used the empirical data to develop and validate the
traffic models. They used the developed models to build a simulator for QoS studies on the IP
network. The authors proposed two models for packet inter-arrival times:
Q) Semi-empirical model in which the empirical data is used to construct the model.
(i) Mathematical model that consists of parametric statistical model. For each call, a
call duration is generated (a random variable obtained from a proposed piece-wise
Weibull distribution), then periods of transmission and silence are generated.
Packet arrivals are inserted every 20ms during the transmission periods, and every
2 seconds during the silence periods.
The authors provide a parametric model for the periods of transmission and silence for systems
with silence suppression capabilities. They found that the square-root gamma distribution
provides a good and flexible fit for the data. Although Bowei et al. focus on modeling packet
arrival process; however, this process is directly related to call arrival process. They consider the

call arrival process as a non-homogenous Poisson process for the tow proposed models.

Another result of this research confirms our previous observation of the symmetrical

nature of VoIP traffic on the packet level. The authors observed similar traffic patterns from
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caller to callee as from callee to caller. The only observed differences are for FAX calls where
the transmission is mainly from the sender to the receiver and during the ringing period of
regular calls where more packets are sent from callee to caller than in the opposite direction.
These effects are minor and can be ignored especially in the large-scale networks.

In another packet-level study, Jiang and Schulzrinne provided analysis for the talk-spurt and
silence gap distributions produced by some modern silence detectors. They concluded that the
inter-arrival times of talk spurts and the gaps do not follow the traditionally-assumed exponential
distribution. Instead, the study suggests heavier tails for both talk and gap distributions. The
authors propose a simulation system based on using the real Cumulative Distribution Function
for the talk-spurts or gap arrivals. Using CDF is a completely empirical approach, where no
model is assumed. Instead, real traffic data is fed to the simulator which in turn computes the

CDF and uses it as the call arrival distribution.

3.3.2 Modeling Call Holding Time

It has been recognized that the exponential approximation for call hold time seriously
underestimates the long calls [22], and the reason is because the exponential distribution lacks a
heavy tail that can accommodate for long-duration calls. The need to fit call hold time into a
heavy-tailed distribution is mainly to capture calls with long hold times. It is possible to achieve
good fit using a longnormal mixture basically when we truncate the very long hold times
“statistical outliners”. Although this truncation permits a data fit, it might lead to loss of

significant fraction of calls. On the other hand, leaving all the calls including the few extremely
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long duration ones leads to infinite variance/mean distribution [16]. In this section we summarize

the major approaches for modeling call holding time.

3.3.2.1 Traditional Exponential Call Holding Time

This approach is covered in details in Section 3.1.2, and it is the model assumed by Erlang
formulas. We briefly look at some of the recent traffic modeling approaches that adapted this
model. The finite population with Quasi-random traffic pattern was also considered in [71]. The
authors provided analytical and as well as a simulation for calculating Call Blocking Probability
(CBP) under this condition. They considered exponential holding time for both the simulation
and the analytical model. They concluded that the accuracy of the calculation was satisfactory

compared to the simulation.

In [82], Pareto, exponential, multimodal, and deterministic distributions were compared
for call holding times. The study provided simulation comparison for the effect of these
distributions on call routing and QoS. The authors concluded that the choice of call holding time
model has only a slight impact on the efficiency of QoS routing. The study states that the
traditional exponential holding time can be considered as a reasonable approximation because
the QoS and call losses are insensitive to the used distribution. As a result, the call holding time

is determined by the mean value of the call durations.

3.3.2.2 Lognormal Model

Lognormal distribution provides a heavier tail than the exponential. It is a 2-parameter
distribution: location and scale (or geometric mean and geometric standard deviation). Therefore,
this distribution attracted researchers to use it for call holding times. In their study of traffic for a
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trunked mobile radio system, Duncan et al. [28] concluded that call holding time follows a
lognormal distribution and hence suggested that using Erlang models for such traffic may not
lead to reliable results.

Jedrzychy and Leung [33] provided another research in which they confirmed that the
negative exponential assumption for channel holding time is not correct and that a lognormal
model approximation provides a better fit for data. The study was based on real traffic data, and
maximum likelihood estimation method was used for model estimation. After model
estimations, the authors used chi-square to test the goodness of fit. Duncan et al. [28] also
concluded in their research that the call holding time has a lognormal distribution and exhibit no
significant correlation structure. They used Kolmogorov—Smirnov test to examine several
distributions: exponential, lognormal, gamma, and Erlang, and found that lognormal yield the

best fit.

3.3.2.3 Mixture of Lognormals

A mixture of lognormals allows more flexibility to fit calls with more variability in the duration.
V. Bolotin (1994) [30], provided an empirical study in which he concluded that call hold time
can be best modeled as a lognormal or a mixture of lognormals. The author used Kolmogorov-
Smirnov goodness-of-fit test to fit his empirically-obtained sample. In a later work, Chlebus [31]
used the more reliable Anderson-Darling test to prove that call holding time for mobile telephony

follows the same lognormal patterns obtained by Bolotin for fixed telephony.

Barcelo and Jordan [34] have studded channel holding time for a public cellular

telephony network. They made a series of experiments and concluding that the negative
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exponential distribution is not a good approximation of the channel holding time. They suggested
that the probability distribution that better fits the empirical data was a sum (mixture) of
lognormal distributions. This suggestion was supported by Kolmogorov-Smirnov goodness-of-
fit test results. It is worth mentioning that channel holding time equals call holding time if the

user remains within the same cell.

Barcel6a (1999) [34] provided a field study for the channel occupancy in cellular
networks. He concluded that the exponential distribution is far from capturing the empirical data.
Finally, the author landed on using a mixture of lognormal distributions similar to those found by

Bolotin and Chlebus for call holding time.

3.3.2.4 Phase Type Distributions

Phase-type distribution is composed of one or more Poisson processes. These processes are
related and occur in a certain sequence (phases). In general, if a system is modeled using
exponential distribution and an explicit mathematical solution is found, we can replace the
exponential with a phase-type distribution (in order to accommodate for the variability in the

data) and still be able to derive mathematical solutions [73].

V. Ramaswami, et al (2003) [35] studied the effect of long holding time for dial-up
connections on the call holding time distribution. The study is based on a sample of 4.5 million
calls. The collected data showed that the median was only 48 seconds while the mean was 297
seconds. This data failed to fit into an exponential distribution. The authors used the Expectation-
Maximization (EM) algorithm to fit the data into a phase type distribution. They concluded that

the call holding time is best modeled as a 4-component phase type distribution.
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Hyper-Exponential and Hyper-Erlang distributions belong to the phase-type distribution
family. Hyper-Exponential distribution provides a mixture density so that it can accommodate
for more than one type of calls, such as calls with long duration and calls with short durations.
Also Hyper-Erlang distribution is used for mixed type traffic data with heavy tails. Both
distributions preserve the Markovian property of the queuing system and hence analytical

solutions can be derived [72].

Fang et al (1998) [36] studied call holding time for complete and incomplete calls in PCS
networks. They used a general distribution to model and derive general formulas for call holding
time for both complete and incomplete calls. They provided analytical study for each of the

following distributions: Gamma, (staged) Erlang, hyperexponential and hyper-Erlang.

In another study [16], Fang applied two new distributions to model call holding time. The
first is called Sum of Hyper-exponential (SOHYP) model which was previously used to model
channel holding time for cellular networks, and the second model is called the Hyper-Erlang
model (AKA mixed-Erlang) which was previously used to model the cell residence time for PCS
networks. The interesting feature of the Hyper-Erlang and SOHYP models is that they preserve
the Markov property which is required for performing theoretical queue analysis. Fang provided
a unifying analytical approach to analyze the performance of the resulting queuing system under
the assumption that cell residence times are independent and identically distributed (i.i.d.). He
provided analytical formulas for handoff probability, handoff rate, call dropping probability, and

the actual call holding times for both complete and incomplete calls.

In their study of channel holding time in cellular communication networks, Thomas et. al.

[74] based their study on the assumption that call holding times and cell residence times follow
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phased-type distributions. The authors derive channel holding time from the phase-type call
holding time and cell resident time distributions, and the result is another phase-type distribution
for channel holding time. They considered both hyper-Erlang and SOHYP distributions for call
holding time. In a similar study of channel holding time, Orlik and Rappaport [75] reached
similar conclusion, and they derived channel holding time distribution from the assumed SOHYP

call holding time.

3.3.2.5 Weibull and Piecewise Weibull Distributions

Weibull distribution exhibits a heavy tail property when the positive shape parameter is less than
one. When the shape parameter equals to one the Weibull distribution becomes exponential.
Therefore, Weibull has multiple applications in telecommunication modeling. For example,
Weibull distribution has been used to model caller patience factor in call centers [78], and call
holding time for internet dial-up connections and World Wide Web sessions [77]. Piecewise
Weibull distribution has been used to model a mixture data (data set belonging to multiple

categories or classes). Each piece of the distribution corresponds to a category of the data set.

In their VolP traffic modeling study, Bowei et al. modeled call durations as a mixture of
piecewise Weibull distributions. The work is based on 138,770 call information. They fitted the
empirical data to a 6-piece Weibull distribution. These different pieces result from the mixture of
different types of calls (for example: machine-to-machine, voice call, fax ... etc). An interesting
point of this study is that it investigates the validity of i.i.d (independent and identical
distributed) assumption for call durations. i.i.d assumption is sometimes violated since users
tend to use some applications more often during a certain time of the day. The authors provide

analysis for the relation between call duration and the time of the day. They found minor effect

75



of the time of the day on the call duration, and this effect is mainly due to the decrease in the
frequency of short calls between 10 PM and 6 AM. They concluded that this effect is minor and

can be ignored, and hence the iid assumption holds.

In addition, Weibull distribution has been used to model call holding time in wireless
cellular networks [76]. The authors derive a call completion probability function based on
Weibull call holding time and cell dwell time. In [79] the authors provide a review of several
research papers that employed Weibull distributions to model the call holding time of integrated

voice and multimedia packet data services.

3.3.2.6 Pareto Distribution

The Pareto Distribution was first proposed as a model for the distribution of wealth in society. It
is a 2-parameter skewed and heavy-tailed distribution. These properties of Pareto distribution
attracted some telecommunication traffic researchers to use it for service time modeling. In [80],
the authors used Pareto distribution to model cell dwell time. The choice of Pareto was made
because of its heavy tail feature. They provided channel holding time statistics based on the
Pareto assumption. In the same work, the authors also considered Weibull, and Lognormal
distributions for cell dwell time. However, mathematical models were provided for the case of

Pareto only.

In [81], the authors considered Pareto distribution for call holding times in their
performance analysis for wireless cellular networks. Similarly, in [83] Pareto distribution was
considered for call holding times. The authors presented a formula for the probability mass
function (pmf) of the number of handovers based on renewal theory arguments and a Pareto
distributed call holding time (CHT). The study provides comparison of the system performance
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between the Pareto CHT case with cases of Erlang_K and hyperexponential distributions. The
study concludes that call holding time is best modeled as Pareto distribution. A major
disadvantage of using Pareto distribution is that it is known for being prone to errors and

statistical inaccuracies in simulations [81].

3.4 Summary

Many researchers have demonstrated that the traditional traffic engineering models are
inadequate for modern telecommunication systems such as wireless, and VVolIP. The Poisson call
arrival rate and the negative exponential call holding time involve high degree of approximations

which will result in systems that are not properly engineered.

The majority of the recent research in this field focuses on modeling either the call
holding time or the arrival rate without providing a complete traffic engineering model. An
example model is found in [44] where Baynat et al. derived an Erlang-like formula for
dimensioning radio resources in GSM/GPRS/EDGE networks. The proposed formula takes into
account both the voice and data traffic. According to the authors, the advantage of the proposed
Erlang-like model is that it has an analytical solution for the formula, and therefore avoiding the
computational complications of the simulations. The model was validated against a simulator
and results show close match with the advantage of short computing time for the formula
compared to longer time for the simulation.

Table 5 below provides a summary of the major approaches for modeling call arrival process:
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Table 5. Call arrival process modeling approaches

Approach

Advantages

Disadvantages

Poisson call arrivals

(exponential inter-arrivals)

e Simplicity

¢ Analytical solution

e Inaccurate
e Inadequate for modern

systems

Session (batched) based

arrivals

e Poisson-based session
e analytical solutions

¢ Erlang Formulas can be applied

ei.i.d assumption might be
difficult to hold

enot accurate

Erlang-jk e More flexible call inter- etwo Erlangs means more
arrival time parameters
e Added complexity
BCMP e Mixed queuing network e Complex

ePoisson arrivals

esuffers Poisson limitations

Non-homogeneous Poisson

eFlexible

e Accurate

e Accuracy of results depends
on the time function

¢ No exact analytical solution

Packet-level arrivals

e Takes into consideration

VolP features such as

silent detection and codec.

e Could provide accurate
results, depending on the

selected models

e More complex

¢ Obtaining packet
information is more
difficult than obtaining call
information

e In case of using one codec
and if silent detection is not
used, then the relation
between call arrival and
packet arrival might be too
simple so that the added
complexity is not justified.

e Difficult what-if analysis

Table 6 summarizes the major approaches used for modeling call holding times
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Table 6. Call holding time modeling approaches

Approach

Advantages

Disadvantages

Traditional Exponential

e Easy analytical solution
eSimple calculations (one
parameter distribution)

o Not accurate
e Ignores heavy tailed data
¢ One call type (not mixed)

lognormal

e Accommodates for some
heavy-tailed data

e The tail is not heavy enough
e The tail decays
exponentially

Mixture of lognormals

eflexible

eNot general enough to
capture wide mixture

e Complexity of having a
distribution of multiple
pieces

e More parameters

e The tail decays
exponentially

Phase-type distribution

e General family that contains
multiple distribution for
different cases

ePreserve Markovian
property for analytical
solution

e Might be complex
e Multiple parameters for
multiple phases.

Weibull and piecewise Wibull

e Heavy-tail

e Piecewise Weibull provide
flexibility to model a
mixture of multiple types
of calls

e Wiebull converges to
exponential under special
case

e For Piecewise Wiebull, we
need to have 2 parameters
per piece

e Complexity of having
multiple pieces

Pareto distribution

e Heavy-tailed distribution

that can capture long calls.

e Only 2 parameters

e Statistical inaccuracy for
simulations
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In addition, we do not find studies targeting large-scale VoIP networks, such as Tandem
networks. The main characteristics of such network are that it carries huge amount of traffic, and
the traffic usually is composed of a mixture of residential, wireless, and business calls. In this
research we plan to bridge the gap by providing a deep study for traffic patterns obtained from
actual large-scale tandem network. We will provide a frame work for modeling call arrival rate
and call holding time, and then we will use the provided frame work to find distribution
functions that capture some sample traffic data. A complete traffic engineering simulation model

will be provided in order to optimize resource usage on VolP networks.
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CHAPTER 4

4 Research Methodology

In this chapter we discuss the methodology we followed throughout this research. We explain the
data collection process and environment, and then we describe the simulation model. Also we

cover the mathematical and statistical methods used in to develop the models in this research.

4.1 VolP Traffic Data from IP Tandem Network

One of the unique features of this study is the quality and quantity of call information
from which the proposed models have been developed and validated. This study has been
sponsored by one of the major VolP Tandem carriers in the United States. Therefore, we were
given access to billions of call information records in order to develop and validate our models.
Traffic carried on tandem networks is composed of wide mixtures of residential, business, and
wireless traffic. Using large mixture of traffic enhances the robustness, correctness and usability

of the models.
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4.1.1 IP Tandem Network

Tandem networks play the backbone roles in the telecommunications hierarchy. They
interconnect different central offices together by means of tandem switches. Central offices
might belong to the same carrier or to different carriers. In the later case the tandem service
provides interconnectivity and switching between different carriers (inter-carrier switching).
Therefore, tandem networks are expected to carry large amount of traffic and should be designed
for high capacity, high availability, high scalability, and cost efficiency. An IP-Based Tandem
service utilizes IP core network instead of the legacy TDM as a transport for the voice traffic.
The IP core network could be dedicated for voice only or could be shared between voice and
data. Using a converged IP network for data and voice provides substantial cost saving for

network design and management. Figure 8 illustrates a typical IP tandem network.
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Figure 8. Typical IP-based tandem network
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The legacy PSTN is connected through TDM trunks. VolP customers are connected via
IP links. The network has an IP core which is used to interconnect different sites. The limiting
resources on the network can be the IP backbone connections between different tandem offices,
the IP connections to the VolIP customers, or the TDM connection to the legacy PSTN. The

scope of our research is to optimize the first two I1P-based resources.

4.1.2 Data Collection and Processing

During this study we have collected several billions of call detail records (CDR’s) from
the IP tandem network under study. We developed a library of scripts and tools in order to
collect the raw data from the different sources and then filter, aggregate, process and visualize
the data according to the study needs. Figure 9 shows the number of CDR’s collected over three

years.
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Figure 9. Number of collected Call Detail Records
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During the first year of the study, we collected more data because our collection criteria were
wide open in order to explore more traffic samples covering more markets and customers.
During the second and third years, we narrowed our collection to cover samples of markets with

different sizes and different customer base (Business, residential, wireless, VolIP and landline).

A Call Detail Record (CDR) is kept for every call on a local Billing Server (Network File
System) located at each tandem office. We installed a CDR Extraction Script (CDR ES) on each
of the remote NFS servers. The purpose of the CDR ES is to access the local NFS and extract
the CDR fields that we are interested in. Our centralized data collection server executes the CDR
ES every day after midnight via SSH and stores the collected data onto a centralized attached

storage. Figure 10 illustrates the data collection process.
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Figure 10. Data collection process
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Once we get our CDR copy we divide the traffic into three categories:

e Wireless traffic

e landline traffic

e VoIP traffic.
This categorization is based on the origin of the call. It should be noted that all calls leaving the
tandem office to another tandem office are converted into VoIP so they can be transported on the
IP backbone. Calls leaving the office to carrier networks (customers) will be converted to VolP
only if the carrier is connected to the office by means of IP circuits. The wireless traffic is
usually delivered over TDM links. Figure 11 shows a comparison between the three traffic
categories in a typical tandem office. The figure shows that traffic coming to the tandem office
from the carrier networks over IP links is only 15% of the overall traffic; however, it is important
to notice that all other traffic (wireless and landline) will be converted into VolIP to be transferred
to other offices. In addition, all the traffic coming over the backbone from other offices is VolIP.
In other words, all the incoming traffic [over the backbone as well as over the carrier links] is
either VoIP or “potential” VoIP. The remaining TDM connections to wireless and landline
carriers are being converted into IP connections. It is expected that within the next few years all
TDM links between the carriers will be replaced by IP connections. After traffic is categorized,
we extract traffic information of interest. We keep the raw Time of Arrival (ToA) for each call.
We also generate aggregated forms of the call data by dividing the day into time blocks and
finding the mean of the call arrivals over each time block. We generate 1, 10, 100, 1200, 3600
seconds aggregated data files. For call holding time study, each data point consists of the call

time of arrival (ToA) and the call duration.
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We make sure to select different samples of data so that each sample is taken from a

different city. Some of these samples are collected from big cities with more than 10 million
calls per day, and other samples are collected from small cities with less than 1 million calls per
day. This variation in the samples helps finding robust models that can fit wide range of call

patterns.
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Figure 11. Tandem traffic categories

Our modeling results are identical for all traffic aggregations which indicate the goodness and
87

significance of the proposed models and hence the correctness and robustness of the proposed

engineering framework.



4.2 Mathematical and Statistical Modeling and Analysis

We used various mathematical and statistical techniques to fit identify and distributions
to empirical data and then to validate the fitted models and estimate the parameters. In this

section we briefly describe the major mathematical and statistical methods we used.

Maximum Likelihood estimation (MLE): we used MLE to fit the proposed model function to
the actual call arrival data and to estimate the model parameters. MLE is a well-known
estimation method that involves a systematic search over different population values. Eventually,
MLE selects the estimates that most likely to be true based on the given empirical data sample
[45]. MLE is widely used for linear and generalized linear models which we use in our
research. The ML estimators are obtained by taking the partial derivatives of the log-likelihood

function of the model with respect to each of the model parameters.

Fisher scoring method: It is a mathematical estimation method that is specialized in
maximizing the log-likelihood function [46]. We used this method to solve the maximum
likelihood equations numerically and hence estimate the parameter values of the generalized

linear model fitted to call arrival rate under the non-homogeneous Poisson process.

Wald’s significant test: we used this test to test the significance of each parameter in the
proposed call arrival function. Wald’s test is a well-known hypothesis test and it requires
estimation of the unrestricted model (the model without the imposition of null hypothesis

restrictions) [47] [48].

Likelihood ratio test: we used this test in modeling call arrival rate as non-homogeneous

Poisson process. The test was used to confirm the model and parameter significance results
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obtained by Wald’s test. It is based on evaluating the difference between the likelihood statistics
of two models given that one model is a special case of the other [50]. The Poisson process is a
special case of the non-homogeneous Poisson process. Therefore, we used this method to test
whether the call arrival rate function is generated by a Poisson process (special case) or by a non-
homogeneous Poisson process (general case). The null distribution of the resulting test statistic is
a Chi square whose number of degrees of freedom equals the number of model parameters minus

one [51].

Survival analysis: Survival analysis techniques are used to analyze time to event problems.
They are widely used in medical, biological, engineering, economics, demography, public health,
and epidemiological studies [52]. A common feature of the data sets that motivates this approach
is that it represents a set of random event durations that can be looked at as time-to-event
durations. In our case, the event of interest is call termination and we represent call duration by
looking at the time needed for the call to end. Therefore, we used this approach to model call

holding time.

Statistical graphical methods: we used graphical methods in the call holding time modeling
process. The tools were used based on the empirical estimators and their log transformations.
The purpose is to identify the underlying true distribution that fits the empirical data. For
example, let F,(t) be the empirical estimator of the distribution function which is defined as
F,() =n 1Y, 1(t; < t), where ty, ..., t, are the observed call durations and 1(A)=1 when A is
true and O otherwise. Then, the plots of log(1-F,(t)) and log(-log(1-F(t))) versus t should both
yield straight lines when the call duration have an exponential or an extreme value distribution.
While the plots of log(-log(1-Fn(t))), @ 1(F,(t)) and log(Fa(t)/(1-Fn(t))) versus log(t) would

indicate, respectively a Weibull, Log Normal, and Log-logistic random variables, when the
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curves are linear. We used SAS software in order to plot the functions and their transformation

mentioned above.

Gauss-Newton numerical method: Gauss-Newton optimization method is a non-linear least
square modification of Newton method. It is used to minimize the sum of squared values of the
function [55]. It is a fast method and it is recommended whenever the problem can be expressed
as a non-linear least square format [54]. We used this numerical method to compute the non-

linear maximum likelihood estimator for the call cease rate function fitted to call holding times.

Cox-Snell residuals analysis: It is an efficient technique used to compute the departure of the
data from the proposed model [58]. We used this technique as a goodness of fit assessment
method in order to detect the deviation of the empirical data from the proposed call holding time
model. If empirical data has been fit to the correct model, then Cox-Snell residuals will have a

unit exponential distribution with a hazard ratio of one. Cox-Snell residuals are given as [57]:

e; =log(1—F(ty))

where is F (t)is the estimated probability distribution function based on the fitted model

If the Cox-Snell residuals follow a unit exponential distribution with a hazard ratio of one, then
the plot of estimate of the integrated hazard rate of Cox-Snell residuals against Cox-Snell

residuals themselves is a straight line with a slope of one [56].

Akaike Information Criteria (AIC) and Bayes Information Criteria (BIC) test: AIC is a
variant of the likelihood ratio test and is used to measure model fitting accuracy [59]. BIC is
useful for model selection by comparing different models. The likelihood can be increased by

adding more parameters to the model. BIC adds a penalty term with each model parameter in
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order to prevent over-fitting by introducing many parameters [60]. We used AIC and BIC tests in
order to compare between a set of candidate models for Call Cease Rate function and then select

the best model that fits the sample data.

Least-Squares (LS) method: we used least-square model to estimate the parameters of the
model fitted to call arrival rate under the Gaussian approximation condition. LS method is
basically about minimizing the sum of the squares of errors between the sample data and the
fitted model or estimated parameter [62]. The major advantage of LS estimation method is that it
does not require knowledge of the underlying distribution of the error component (t). When the
model is linear, it delivers explicit expressions for the parameters’ estimates. In addition when
e(t) is assumed to have a Gaussian distribution, it is possible to make inferences about
the parameters’ significance and about the model’s validity and usefulness. Therefore, we

can use the model to make predictions about future observations [61].

Normality tests: we used normality tests to prove that call arrival rate can be approximated as a
normal (Gaussian) distribution under heavy traffic condition. The assumption of normality is a
statistical procedure that requires some robust testing in order to confirm whether or not the
assumption holds [63]. In order to verify the validation of our normality assumption, we used

three different tests: Anderson-Darling test, (ii) Kolmogorov-Smirnov, and (iii) Shapiro-Wilks

R-Language: we used R-Language for the majority of data fitting, modeling and validation
throughout this research. R is a language for statistical data analysis and graphics. It is open
source and runs on Linux, windows and Macintosh. It has good graphical capabilities and
excellent online-help support. The R-Language has powerful syntax with many built-in

functions. It also supports used defined function for further flexibility and extendibility [64].
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4.3 Simulation

The call holding time and call arrival rate models proposed in this study are non-
Markovian and hence providing an analytical performance study for the traffic engineering
model is not feasible. Therefore, we built a simulation-based system in order to study the

performance of the VoIP networks based on the proposed models (VSIM).

VSIM simulation consists of a parametric G/G/c/c simulation based on the NHPP model, and a
non-parametric simulation based on the captured call information. According to Kendall's
notation the G/G/c/c is a queuing system where calls are assumed to arrive according to a general
distribution (G) and have a service time that follows another general distribution (G), the system
has a limited number of servers/channels (c) and no waiting queue (maximum number of calls in
the system equals the number of servers c). Therefore, VSIM simulator engine can be used to

simulate and complex queuing system.

VSIM simulation is built using Java programming language and based on the CSIM for
Java API [105]. CSIM API is an advanced simulation kit for building large-scale and complex
simulation models. It provides a library of routines for building process-oriented discrete-event

simulations. Below are the major highlights of the CSIM program structure.

Process: CSIM API models a customer or call entering a queue as a process that starts by
creating an active entity. CSIM processes run under the control of CSIM execution supervisor
which coordinates the execution and timing of the processes. CSIM processes can be in one of

the following states:

e Computing: actively computing using the host machine’s CPU
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e Ready: ready to enter the computing state
e Holding: allowing simulated time to pass

e Waiting: waiting for an event to happen or facility to become available.

A CSIM process can suspend its execution (leave the Computing state) and then resume
execution later (enters the Ready state and then reenter the Computing state) for unlimited
number of times and in no predictable pattern; the CSIM execution supervisor manages all of
these activities. In addition, there can be several simultaneously active instances of the same
process (entities). Each of these instances appears to be executing in parallel to each other (in
simulated time) even though they are in fact executing sequentially on a single processor on the
host machine. The CSIM runtime system guarantees that each instance of every process (entity)

has its own runtime environment.

Inter-process communication: CSIM library provides two structures to enable and control

communications and interactions between different processes. These structures are:

e events

« mailboxes

A process can wait for a certain event to occur while another process can set an event; causing it
to be placed in the OCCURRED state and allowing all of the waiting processes to resume (enter
the Ready state). A mailbox is a place where processes can exchange messages. One process can
send a message to a mailbox. Another process can attempt to receive a message from the
mailbox; if the message is already in the mailbox, the receiving process gets that message and
continues computing. However, if there are no messages in the mailbox, all receiving process

must wait until a message is sent to that mailbox.
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Resources: In queuing simulation, an object/process needs to occupy some simulated system
resources for a certain period of time. CSIM offers two kinds of resources: facilities and

storages. VSIM was built using facilities to model the system/network capacity.

Facility: a facility is usually used to model system resources. A simple facility consists of a
single server and a single queue (for processes waiting to gain access to the single server). Only
one process at a time can be using the server. A multi-server server facility contains a single
waiting queue and multiple servers. All of the waiting processes are placed in the queue until
one of the servers becomes available. Facilities are used to represent simulated system resources
where entities (processes) occupy servers in a one-at-a-time fashion. A process can apply one of

the following operations on a facility:

e reserve : wait for and then gain access (occupy) to a "free" server
« hold: occupy the facility/server for a certain period of time

« release: release a reserved server

e use: acombination of a reserve, hold, and release operations

o reset: reset statistics and counters associated with a given facility

In addition to the queue and server(s), a facility also has provisions for collecting performance
data on the delays associated with gaining access to a server (queue waiting) and on using the
servers (hold). This data collection can be provided by CSIM automatically for each facility; a
report summarizing the collected performance data can be produced at any time during the

execution of the model.
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Storage: a storage consists of a queue and a pool of storage units (sometimes called tokens). A
process can allocate one or more storage units; if there is not sufficient number of tokens that can
satisfy an allocation request, the process is suspended and placed in the waiting queue. When
other processes have deallocated their storage tokens, queued processes are given units to satisfy
their resource requests. As with facilities, performance data is collected to summarize the
queuing delays and holding times for these storage units. The main difference between a storage
and facility is that the storage is divided into smaller tokens; therefore it can be partially
allocated to a requesting process. Storage resource is not suitable for our research since an

incoming call requires a free IP trunk or channel and that is not divisible.
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CHAPTER 5

5 Traffic Engineering
Modeling Results and
Analysis

In this chapter we review the work we have done during this research. Also we highlight the
major results, findings, and contributions.

5.1 Modeling Call Holding Time for VolP Tandem

Networks

We present a new approach for modeling call holding time on VoIP tandem networks.
This research is based on millions of call information obtained from a tandem network. The
collected data is a mixture of residential, wireless as well as business call data. The tandem

network topology as well as the research methodology is described in Section 4.1.

Call holding time is a key variable of traffic engineering models. The traditional Erlang-B

model uses a negative exponential function to model call holding time. Our study of large
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number of telephone calls shows that the exponential assumption is not valid for modern large-
scale VoIP networks. We propose to use time-to-event analysis which consists of fitting a
parametric model to the call cease rate. Then we study several probability distribution functions
and compare their capability to model the VVolP call departure rate. We find that both the log-
logistic and the generalized gamma distributions provide a good fit for the data. Our statistical
analysis shows that the approach of modeling call cease rate provides more accurate results than

the traditional exponential and log-normal holding time models.

5.1.1 Data Exploration

We base our analysis on wide variety of samples. Some samples are collected from big
cities (8 to 10 million calls per day) and other samples are collected from smaller cities (0.5 to 1
million calls per day). This variation in the samples helps finding a robust model that fits wide
range of call patterns. Each collected data point consists of the call Time of Arrival (ToA) and
the call duration. Because of its nature, this type of data can only be modeled using a positive

random variable.

The collected data yields a histogram with a very heavy tail. The call service times (in
seconds) occur within an extreme range (0.6 — 169,6245) for a small city sample and (0.3 —
235,000) for the big city sample. The mean of each set is much larger than median and the
skewness coefficient is 75 and kurtosis is 16,509 (compared to 2 and 9 for the exponential
function). It is clear in Figure 12 that many observations occur way beyond the range of values
assumed by the exponential and this makes the exponential distribution far from capturing this

traffic pattern.
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Figure 12. Exponential distribution against truncated data

In cases like this, mixtures of lognormal distributions have been proposed to fit the data whose
distributions have tails that are higher than those of the exponential. For this purpose we look at
the histogram of the logarithms of the service times and try to fit a mixture of lognormals to the
data. Once again, as shown in Figure 13, the histogram’s relative frequencies of the tails are
much larger than the tail values of the proposed density. Therefore, a mixture of lognormal fails

to capture the heavy-tailed data and hence it is not an appropriate model.

98



Histogram of Service Time

i

03

Dansity
]

02
\

00
|

T T T T T T 1
@] 2 =1 [S] = 10 12

Locitime)

Figure 13. Fitting call duration data to a Mixture of Lognormals

5.1.2 Introducing the Call Cease Rate Function

Based on the conclusions of the previous data exploration, it seems that there is a need to
use a distribution with heavier tail than the exponential or lognormal to fit the data. In general,
modeling a set of random event durations differs significantly from the classical methodology
used when the data is generated by location-scale distributions such as the Gaussian. In the
classical approach, the functions of interest to the analyst are the probability distribution and
density functions. The data at hand falls in the first category. Therefore, we opted to introduce a

function that provides a better interpretation of time-related phenomena such as the one under
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investigation. This function represents the instantaneous probability that the call will end at time

t and is defined as:

. Pr(acall that lasts at least t will finish before t + At)
A = Al%mo At

(1)

A(t) is called the Hazard Function by survival analysts, Failure Rate function by reliability
engineers or Force of Mortality by demographists. Since we are observing the call cease events
which does not have a connotation of risk or failure, we chose to call our A(t) as the Call Cease

Rate function.

Since time is continuous, the probability that the call will end at exactly time t is O.
Hence, we introduce the concept that the call duration is between t and (#+4¢) and we make this
probability implicitly conditional on the call lasting to time t. In light of this, the above Call

Cease Rate function can be written as:

Prt <T < t+AtIT >1t)

A = Algglo At 2)

where T is the call duration.

The relationship between the conditional, the joint, and the marginal distributions of T leads to:

1Pr(t<T < t+At)

A(t) = limA—t D) (3)
At—0 -
L 1  F(t+At)—F(t) B f)
M50 At T1-F® @
At—0
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where F(t) and f(t) are respectively the probability distribution and density functions.

The relationship between f(t) and F(t) implies that A(t) can be written as:

d
_A-F@®)

M) = — = — - log(1— F (D)) (5)

solving the above equation leads to:

t
1—-F(t) =exp <—] A(s)ds) (6)
0

t
£(O) = A0) exp (— j A(s)ds) )
0

From 7, we notice that density functions defined through their A(t) form a generalization of the
exponential distribution in the sense that, at a given moment t,, the call duration has an
instantaneous exponential distribution with rate A(%,). There is a one-to-one relationship between
A(t) and F(t), so defining a family of distributions can be done through the call cease rate

function A(t). Table 7 shows some distributions along with their hazard and density functions.
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Table 7. Hazard and Density functions

Distribut A(t) F(t)

ion

Exponent A 1-exp(-At)
ial

Weibull Ayty—1 1-exp(—At?)
Extreme | (1/0)exp((t —p) | 1-exp(-exp((t —
Value /o) /o))

Log 1 ( (
Normal V21 ot P\72

log(t) —u
e o)

® is the standard
Log- B (t)ﬁ’—l (1 F(t)
a

(t—l =Q%ﬂ>

F(t)

Notice that the exponential distribution is a special case of the Weibull distribution (with y = 1).
The Weibull and log-normal distributions on the other hand are special cases of a larger family
of distributions called the generalized gamma, which contains also the classical Gamma
distribution.

We can use the collected data to obtain empirical estimate of the call cease rate function
A(t) and of the distribution F(t). We used graphical tools based on these empirical estimates and
their log transforms in order to identify the underlying true distribution of the data. With this in
mind we consider F,(t) , the empirical estimator of the distribution function defined as F,(t) =
n 1y 1(y; < t), wherety, ..., t, are the observed call durations and 1(A)=1 when A is true and

0 otherwise. Then, the plots of log(1-F,(t)) and log(-log(1-Fn(t))) versus t should yield
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respectively, straight lines when the call duration have an exponential or an extreme value
distribution (Figure 14). While the plots of log(-log(1-Fn(t))), @1 (F,, (1)) and log(Fn(t)/(1-Fn(t)))
versus log(t) would indicate, respectively a Weibull (Figure 15), Log Normal (Figure 16) and
Log-logistic (Figure 17) random variables, when the curves are linear. Notice that the
identification step has to be completely data-based and hence no assumptions are made

throughout it.
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Figure 14. Exponential and extreme value distribution test
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Figure 15. Weibull distribution test
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Figure 16. Log Normal distribution test
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Figure 17. Log-logistic distribution test
Figure 14 and Figure 15 deviate significantly from a straight line; therefore, we can be sure that
our call holding data does not follow an exponential or a Weibull distribution. The curves in
Figure 16 and Figure 17 seem to be quite close to a straight line, which suggest that the data

might follow either a log-normal or a log-logistic distribution. Next, we present the estimation

process of the parameters for the call cease rate model.
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5.1.3 Model Estimation

We use maximum likelihood estimation (MLE) since it yields parameter estimators that
are consistent and whose sampling distributions are known. The sampling distributions are useful
in testing the significance of the parameters and hence provide robust model validation. Other
advantages of such method of estimation are the information criterion which can be used for

model comparison and the Cox-Snell residuals which can be used to check the model’s validity.

The likelihood is a function of a model’s parameters and is defined to be equal to the joint
density of all observations. Since the calls durations do not depend on each other, we can write

the likelihood function as:

L(®) = TTy At 0 )exp |~ [} A(s, 0)ds] ®)
Where @ is a vector of parameters.
Since the logarithm is a convex increasing function, maximizing the likelihood is equivalent to

maximizing the log-likelihood, which can be written as:

1(0) = zn: log(A(t;, ) — zn: f l/l(s, 0)ds (9
i=1

i=19
Now we will apply MLE to estimate parameters for each of Log-logistic, Log-Normal, and
Generalized gamma. We will compare the result and decide on the model that best first our Call

Cease Rate function.

A. Log-logistic distribution

Since the call cease rate function of a log-logistic is:

At,a,p) = Bt Y(af +tH) ,a,f>0 (10)
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Then its primitive function is:

t

fxl(s, a,B)ds = log(af + tF) —log(aP) (11)

0

Therefore, the log-likelihood becomes:

l(a,B) =nlog(B) + nBlog(a) + (L —1) Z log(t;) — 2 z log(aﬁ + tlﬁ) (12)
i=1 i=1

Taking the derivatives with respect to the parameters leads to the following score functions:

a(a,B) 1B g1
=~ 26a Zaﬁﬂf (13)
ol(a, ) n o @ log(a) + tf log(t)

n
=—+nlog(a) + z log(t;) — 2
i=1

0B B of +1F

i=1

At the maximum, the score functions are equal to zero and the maximum likelihood estimators
are obtained by solving the equations in (13). The nonlinearity of the equations necessitates the

use of numerical optimization methods such as Gauss-Newton to find the MLE of the
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parameters. Shown below are the parameters estimates along with their standard errors and

confidence intervals:

Parameter: (1} B
Estimate 63.257 1.546

Std. Error 0.0791 0.0014
95% Conf. limits 63.257+0.155 1.546+0.003

B. Log-Normal distribution

Estimating the parameters of the log normal distribution is much easier, and estimates are
obtained by solving a system of linear equations. The likelihood function based on the log-
transformed of the call durations is then:

'—(u,a)=li[e><p[—%[w}j

(o}

(14)

This means that the log-likelihood function is:

| (14, 0) = constant —n |Og(6)_%i(|0g (ti)_ﬂj

i=1 (o}

(15)

Taking the derivatives with respect to the parameters leads to the following score functions:

8I(,Ll,0'):O:_LZZn:(Iog(ti)_ﬂ)

ou
| o n 2
%:_gﬁuézﬂ;(log(ti)—#) (16)
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When the score functions are equal to zero, we obtain the explicit form of the MLE’s:

Parameter: 1} c

Estimate 4.222 1.171
Standard Error 0.0013 0.0009

95% Conf. limits 4.222+0.003 1.171+0.002

C. Generalized gamma distribution

We also fit a generalized gamma distribution to the data. This model has 3 parameters which
makes it the most flexible model for a positive random variable like the call duration. As
discussed previously, several models are special cases of the generalized gamma. Due to the lack
of page space, we skip showing the complex likelihood related calculations. We obtain a table

with the parameters estimates, their standard errors and confidence intervals:

Parameter: Intercept Scale shape
Estimate 3.948 1.100 -0.480
Standard Error 0.002 0.0009 0.0024
95% conf. limits 3.95+0.004 1.1+0.002 -0.48+0.005

Notice that the shape and scale parameters are not equal and hence the model is not a
standard gamma. Also, the exponential distribution is a special case of the generalized

gamma (scale and shape parameters both equal to 1).
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5.1.4 Goodness of Fit and Model Validation

The Cox-Snell residuals are considered to be the most efficient at detecting the departure

of the data from the proposed models (Allison [57]), and Collett [58]). They are defined as:
e, = log (1— F (t; )) a7

Where is F(t)is the estimated probability distribution function based on the fitted model. Unlike
the usual residual from a classical linear model, the Cox-Snell residuals are always positive and
when the fitted model is correct, they have an approximately exponential distribution with rate
equals to 1. Therefore, we can use the plot -log(1-Fn(t)) vs. t described in section 5.1.2 to
evaluate the exponentiality of e;’s. Since the rate is 1, the plot should look like a straight line
with intercept 0 and slope 1. The graph shown in Figure 18 below shows Cox-Snell residuals
plots for each of the models fitted in section 5.1.3; log-logistic, log-normal and generalized

gamma.

—— Generalized Gamma
————— Log-Normal
- Log-Logistic

-log(1-Fn{e))

& (Cox-Snell Residuals)
Figure 18. Cox-Snell residuals for Log-logistic, Log-normal, and Generalized gamma
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All the graphs seem to display a linear curve running through the origin; however, the log normal
graph has a slope that is significantly different from 1. Both log-logistic and generalized gamma

provide a slope close to 1 and hence are both valid models for this data, with slight advantage for
the generalized gamma. This confirms our early conjecture that the generalized gamma would be

a better fit since it is the most flexible.

To compare the 3 different models, the most commonly used criteria (Lindgren,Berger)

are the Akaike Information Criteria (AIC) and Bayes Information Criteria (BIC) [38]:

AIC = -21(0) + 2p (18)

BIC = —21(0) + plog(n) (19)

Where 1(0) is the log-likelihood of the estimated model, p is the number of parameters in the
model and n is the number of observations in the model. A smaller information criterion
indicates a better model.

Below is a table of the criteria for each of the models considered in section 5.1.3

Distribution AIC BIC

Log-normal 2558481 2558504
Log-logistic 2541143 2541167
Gen. gamma 2519514 2519549

Both criteria agree that the generalized gamma model is noticeably better than its competitors
with the log-logistic distribution behaving better than the log-normal. Besides information
criteria, the choice between generalized gamma and Log-logistic can be affected by other factors

such as model flexibility, which would favor the generalized gamma, or model parsimony, which

110



would favor the log-logistic distribution. Equations 20 and 21 show the call cease rate functions
corresponding to the two generalized gamma and Log-Logistic models respectively. Figure 19

shows their plots truncated at 1000 seconds for clarity.

3651623 t>* exp (_24.33 t70.44)
igg Y= 0.44
1-T(4.34,24.33t°%)

(20)

where I is the upper incomplete gamma function.
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Figure 19. Call Cease Rate function (t <1000)

Notice that both rate functions decay at an algebraic rate. Moreover, we can show through series
expansions of the two rate functions, that their tails are assymptotically proportional to t ™. This

implies that the tail of the density function is asymptotically proportional to t “**® which
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explains the large number of extremely long call durations that cannot be fit with a density that

decays exponentially.

5.1.5 Final Model

Based on the model validation and comparison presented in sections 5.1.3 and 5.1.4, we
decide that the generalized gamma distribution is the best model. Since our data contains a large
number of extreme observations, we opted to zoom the call cease rate function plotted in Figure
20 to the range between 0 and 300 seconds. It is noteworthy that the call durations are not

exponentially distributed since ;(t) is not a constant. Also notice that short calls of duration less

than 28 seconds have an increasing call cease rate which means that at a given time t<28 such
calls are more likely to end than continue. On the other hand, calls of duration longer than 28
seconds have a decreasing call cease rate which means that at any time t>28, such calls are
unlikely to end in the next few seconds and will tend to continue for some time. This is an
insightful result especially that the durations of more than 20% of the calls are less than 30
seconds. The significant number of short calls is a direct result to the small-business credit card
transaction and processing systems as well as the automated voice applications such as voice
mail and Interactive Voice Response (IVR) systems where many callers tend to leave very short
messages or hang up. These systems and behavior result in generating large number of calls with

call duration that does not exceed a few seconds.
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Figure 20. Call Cease Rate function (t <300)

5.1.6 Summary

In this study we used a time-to-event analysis to model call holding time in modern large-
scale VolP networks. This approach consists of estimating the parameters of a hazard rate
function which corresponds in our case to the Call Cease Rate function. This methodology is

effective in  studying phenomena described by random time variables such as call durations.

We were able to obtain mathematical models that can accurately capture important characteristic
features of modern telecommunication systems, mainly the skewness and heavy-tailedness of the
call duration distribution. We used maximum likelihood estimation for model fitting, Cox-Snell
residuals plots for model validation, and Akaike and Bayes information criteria for model
comparison. We conclude that the log-logistic and generalized gamma distributions provide good

fits for the data with a slight advantage for the generalized gamma.
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5.2 Modeling Call Arrival Rate as NHPP

Erlang-B model is traditionally used to estimate the telecom network resource
requirements. This model is based on the Poisson arrival distribution where the rate (1) is
constant and is measured based on the Busy Season Busy Hour (BSBH). BSBH is the busiest
hour in the busiest week during the year. Networks are designed to handle traffic offered during
this hour. Using a constant call arrival rate fails to adapt to the variation of traffic with respect to

time such as time of day, day of week, and day of year.

Under the BSBH approach, a considerable portion of network resources will remain idle
for the majority of the year which results in poor resource utilization. Such problems can be
justified in the PSTN world because of the difficulties associated with allocating and revoking
network resources. For example, the typical limiting resource of a PSTN network is the number
of trunks connecting central offices. Increasing or decreasing this number is a complicated and
expensive process that involves the interaction of multiple parties. In the IP world resource
allocation is more flexible. Allocating more or less bandwidth for voice applications is a
relatively simple process. Dynamic resource allocation for VVolP traffic can be useful especially
for converged networks where voice and data share the same physical facilities. More bandwidth
can be allocated to voice traffic during busy days while providing non-used bandwidth for data

applications during the remainder of the year.

In this research we propose a new approach to traffic engineering by applying a Non-
Homogeneous Poisson Process (NHPP) for call arrival rate. Then we apply a generalized linear
function to model call arrivals as a function of time. The proposed model supports dynamic

allocation of network bandwidth based on predicted traffic. Modern network management
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systems can easily support this dynamic bandwidth allocation procedure. Furthermore, a
dynamic resource allocation system can adopt a de-allocation scheme which can significantly

minimize call blocking probability and maximize the bandwidth utilization.

5.2.1 Call Arrival Patterns

The models developed in this research are based call information collected from an IP
tandem network as described in 