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Abstract

With the rapid development of cellular communication techniques, many recent studies

have focused on improving the quality of service (QoS) in cellular networks. One character-

istic of the systems in cellular networks, which can have direct impact on the system QoS,

is the fluctuation of the system capacity. In this thesis, the QoS of systems with capacity

fluctuations is studied from two perspectives: (1) priority queueing systems with preemption,

and (2) the M©M©�C©�C system.

In the first part, we propose two models with controlled preemption and analyze their

performance in the context of a single reference cell that supports two kinds of traffic (new

calls and handoff calls). The formulae for calculating the performance measures of interest

(i.e., handoff call blocking probability, new call blocking and dropping probabilities) are de-

veloped, and the procedures for solving optimization problems for the optimal number of

channels required for each proposed model are established. The proposed controlled pre-

emption models are then compared to existing non-preemption and full preemption models

from the following three perspectives: (1) channel utilization, (2) low priority call (i.e., new

calls) performance, and (3) flexibility to meet various constraints. The results show that the

proposed controlled preemption models are the best models overall.

In the second part, the loss system with stochastic capacity, denoted by M©M©�C©�C,

is analyzed using the Markov regenerative process (MRGP) method. Three different distri-

butions of capacity interchange times (exponential, gamma, and Pareto) and three different

capacity variation patterns (skip-free, distance-based, and uniform-based) are considered.

Analytic expressions are derived to calculate call blocking and dropping probabilities and are

verified by call level simulations. Finally, numerical examples are provided to determine the

impact of different distributions of capacity interchange times and different capacity variation

patterns on system performance.

ii



Acknowledgements

I am grateful to a number of people for their time and support in the completion of this

thesis. Principal thanks and appreciation are due to my supervisor, Dr. Raj Srinivasan,

for his constant encouragement and valuable guidance in every stage in writing this thesis.

Without his professional insights and impressive kindness and patience, this thesis would

not have reached its present form. I would also like to extend a sincere thank you to my

committee members, Dr. Mik Bickis, Dr. Chris Soteros and Dr. Gordon A. Sparks, for their

participation and for providing me with valuable suggestions throughout. I would also like

to thank Dr. Myron Hlynka for being my external examiner. His insightful comments were

much appreciated. I would further like to express my gratitude to Guichang Zhang for his

expertise and generous support, and as well as Zhengrong Li for his encouragement, which

is necessary to complete this endeavor.

Finally, I am eternally grateful to my beloved parents, Junde Yan and Sumin He, for their

loving considerations and great confidence in me all through the years. They have always

helped me out of difficulties and supported me whenever I need. I would especially like

to thank and dedicate this thesis to my wife, Jia Yu for her infinite patience, understand-

ing, support and encouragement throughout the process. Her attitude of hard working has

inspired me all along. I could never have made it this far without my family’s perpetual love.

iii



This thesis is dedicated to

my parents Junde Yan and Sumin He, my wife Jia Yu, and my son Caden Yan.

iv



Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents v

List of Tables vii

List of Figures ix

List of Symbols xi

1 Introduction 1
1.1 Introduction to cellular networks . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Introduction to the handoff phenomenon and guard channel schemes . . . . . 6

1.2.1 Handoff Initiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Hard handoff and soft handoff . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Handoff channel-assignment schemes . . . . . . . . . . . . . . . . . . 8

1.3 Queueing models for single cell . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 The M©M©C©C model and the Erlang B formula . . . . . . . . . . . 12
1.3.2 Stochastic capacity and the M©M©�C©�C model . . . . . . . . . . 14

1.4 Scope of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 First Guard Channel Model 24
2.1 Motivations and model description . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 The composite model method and performance metrics . . . . . . . . . . . . 26
2.2.1 The composite model method . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Approximate methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.1 Hierarchical model method . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.2 Effective capacity method . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 The recursive method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.1 When g � 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.2 Solution verification with some special cases . . . . . . . . . . . . . . 41
2.4.3 When g % 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.6 Optimization problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

v



2.6.1 Optimal number of guard channels . . . . . . . . . . . . . . . . . . . 63
2.6.2 Optimal number of guard channels and total channels . . . . . . . . . 65

3 Second Guard Channel Model 69
3.1 Motivation and model introduction . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 Analysis with homogeneous service rate . . . . . . . . . . . . . . . . . . . . . 70

3.2.1 Closed form performance metrics . . . . . . . . . . . . . . . . . . . . 71
3.2.2 Closed form solution versus simulation . . . . . . . . . . . . . . . . . 74
3.2.3 Properties of performance measures . . . . . . . . . . . . . . . . . . . 74
3.2.4 Optimization problems . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Comparison of Models 100
4.1 Optimal number of channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2 New call performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3 Ability to meet constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 The M©M©�C©�C Queueing System and Markov Regenerative Process 123
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2 Review of Markov regenerative theory . . . . . . . . . . . . . . . . . . . . . . 124
5.3 Application to the first guard channel model . . . . . . . . . . . . . . . . . . 126

5.3.1 General procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.3.2 A simple case when n � 1 and g � 1 . . . . . . . . . . . . . . . . . . . 134
5.3.3 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.4 Application to the M©M©�C©�C queueing systems . . . . . . . . . . . . . . 140
5.4.1 Analytical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.4.2 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6 Conclusion and Future Work 166
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

References 169

Appendix: 174

vi



List of Tables

1.1 Table 1. Call level workload parameters . . . . . . . . . . . . . . . . . . . . . 17

1.2 Table 2. Network capacity parameter settings in call-level simulations . . . . 17

2.1 Parameter conversion table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 CPU run time (in seconds) of different methods for solving the M1 model . . 63

2.3 Results of optimization problem O1 for the M1 model . . . . . . . . . . . . . 65

2.4 Results of optimization problem O2 for the M1 model . . . . . . . . . . . . . 67

2.5 Results of optimization problem O3 for the M1 model . . . . . . . . . . . . . 68

3.1 Performance measures for the M1 and M2 models when g � n . . . . . . . . 73

3.2 Validation of the closed form solutions of the M2 model by call-level simulation 75

3.3 Numerical examples to study the behavior of ∂P
N
d �n, g�©∂n and P

N
d �n, g�. . 81

3.4 Numerical examples of optimization problem O1 for the M2 model . . . . . . 84

3.5 Optimization problem O2 for the M2 model . . . . . . . . . . . . . . . . . . 95

3.6 Experiment parameters and levels used to compare the M2 model and HT’s

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1 Experiment parameters and levels for Experiment 1 . . . . . . . . . . . . . . 101

4.2 Experiment parameters and levels for Experiment 2-1 . . . . . . . . . . . . . 107

4.3 Experiment parameters and levels for Experiment 2-2 . . . . . . . . . . . . . 109

4.4 Experiment parameters and levels for Experiment 3 . . . . . . . . . . . . . . 111

A.1 MRGP vs. simulation: Exponential - Distance . . . . . . . . . . . . . . . . 178

A.2 MRGP vs. simulation: Exponential - Skipfree . . . . . . . . . . . . . . . . . 179

A.3 MRGP vs. simulation: Exponential - Uniform . . . . . . . . . . . . . . . . . 179

A.4 MRGP vs. simulation: Gamma - Distance . . . . . . . . . . . . . . . . . . . 179

A.5 MRGP vs. simulation: Gamma - Skipfree . . . . . . . . . . . . . . . . . . . 180

A.6 MRGP vs. simulation: Gamma - Uniform . . . . . . . . . . . . . . . . . . . 180

A.7 MRGP vs. simulation: Pareto - Distance . . . . . . . . . . . . . . . . . . . 180

vii



A.8 MRGP vs. simulation: Pareto - Skipfree . . . . . . . . . . . . . . . . . . . . 181

A.9 MRGP vs. simulation: Pareto - Uniform . . . . . . . . . . . . . . . . . . . . 181

viii



List of Figures

1.1 Typical structure of a cellular network . . . . . . . . . . . . . . . . . . . . . 3

1.2 An example of channel reuse in cellular networks . . . . . . . . . . . . . . . . 4

1.3 An illustration of handoff initiation techniques . . . . . . . . . . . . . . . . . 8

1.4 A sample path of stochastic capacity process . . . . . . . . . . . . . . . . . . 15

2.1 State transition diagram of the M1 model . . . . . . . . . . . . . . . . . . . 30

2.2 Hierarchical model approach: state transition diagram of the capacity model 32

2.3 Hierarchical model approach: state diagram of performance model when sys-

tem capacity is i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 State transition diagram of the M1 model when g � 1 . . . . . . . . . . . . 36

2.5 Grouping of states of the M1 model when g % 1. . . . . . . . . . . . . . . . . 56

2.6 Comparison of methods for solving the 1st guard channel model . . . . . . . 62

2.7 Optimization problem O2 for the M1 model . . . . . . . . . . . . . . . . . . 66

2.8 Optimization problem O3 for the M1 model . . . . . . . . . . . . . . . . . . 68

3.1 Two possible shapes of the curve of P
N
d when g is fixed. . . . . . . . . . . . . 82

3.2 Sample contour curves of P
N
d and P

h
b . . . . . . . . . . . . . . . . . . . . . . 90

3.3 Different patterns for contour curves of P
h
b and P

N
d . . . . . . . . . . . . . . . 91

3.4 Different scenarios when the contour curve of P
N
d belongs to pattern 3. . . . 92

3.5 Different scenarios when the contour curve of P
N
d belongs to pattern 2. . . . 93

3.6 Different scenarios when the contour curve of P
N
d belongs to pattern 1. . . . 94

3.7 Boxplots of relative difference D at different values of λ1©λ2 . . . . . . . . . 98

3.8 Boxplots of relative difference D at different values of P
hb
0 ©PNL

0 . . . . . . . 99

4.1 Experiment 1: Boxplots of relative differences at different mobilities . . . . . 113

4.2 Experiment 1: Boxplots of relative differences at different ratios of constraints. 114

4.3 Experiment 1: Boxplots of relative differences at different handoff call blocking

constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

ix



4.4 Experiment 1: Boxplots of relative differences at different P
Nb
0 percentages. . 116

4.5 Experiment 2-1: Boxplots of relative differences at different mobilities. . . . . 117

4.6 Experiment 2-1: Boxplots of relative differences at different handoff call block-

ing constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.7 Experiment 2-2: GoS of new calls for different models when P
hb
0 � 10

�2
. . . . 118

4.8 Experiment 2-2: GoS of new calls for different models when P
hb
0 � 10

�3
. . . . 119

4.9 Experiment 2-2: GoS of new calls for different models when P
hb
0 � 10

�4
. . . . 119

4.10 Experiment 2-2: GoS of new calls for different models when P
hb
0 � 10

�5
. . . . 120

4.11 Experiment 3: Plot of constraint met percentage against λ1. . . . . . . . . . 120

4.12 Experiment 3: Plot of constraint met percentage against mobility. . . . . . . 121

4.13 Experiment 3: Plot of constraint met percentage against handoff call blocking

constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.14 Experiment 3: Plot of constraint met percentage against new call loss constraint.122

4.15 Experiment 3: Plot of constraint met percentage against ratio of constraints. 122

5.1 The capacity and traffic models of the M1 model when n � 1 and g � 1 . . . 135

5.2 The M1 model: results for the MRGP method and the composite model method140

5.3 Typical sample paths of different types of capacity variation process . . . . . 157

5.4 Simulated autocorrelation and partial autocorrelation function plots for three

different types of variations . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.5 Verify the method of MRGP using simulations . . . . . . . . . . . . . . . . . 163

5.6 Effect of offered load on call loss in the M©M©�C©�C system . . . . . . . . 164

5.7 Effect of λf on call loss in the M©M©�C©�C system . . . . . . . . . . . . . 165

x



List of Symbols

G The infinitesimal generator of a given Markov chain . . . . . . . . . . . . . . . . . . . . . . 26

λc The average capacity-change rate for the M©M©�C©�C queueing system141

λ1 Arrival rate for low priority traffic, e.g., new calls. . . . . . . . . . . . . . . . . . . . . . . . .25

λ2 Arrival rate for high priority traffic, e.g., handoff calls . . . . . . . . . . . . . . . . . . . . 25

µ1 Call departure rate for low priority traffic, e.g., new calls . . . . . . . . . . . . . . . . . 25

µ2 Call departure rate for high priority traffic, e.g., handoff calls . . . . . . . . . . . . .25

µc The mean capacity interchange time for the M©M©�C©�C queueing system

141

Ω
N
b The set of blocking states for new calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Ω
N
d A set containing all the states that can initiate call dropping transitions . . 30

Ωg�1 The state space of the first guard channel model when g � 1. . . . . . . . . . . . . .35

Ω State space of a giving queueing system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Q Mean queue length of the M©M©c©c queue at equilibrium. . . . . . . . . . . . . . . . 34

ρk The offered load for the new call (k � 1) or for the handoff call (k � 2) . . . 25

C
r
�i,j� Coefficient in front of the r

th
boundary point for state �i, j� . . . . . . . . . . . . . . 37

EB�ρ, k� The Erlang B formula with offered load ρ and number of channels k . . . . . . 35

g Number of guard channels in the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

g
�

The optimal number of guard channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

n Total number of channels in the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

n
�

The optimal number of channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xi



n
�

c When g is fixed, the number of total channels where the local maxima of P
N
d

occurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

P
hb
0 The constraint on handoff call blocking probability . . . . . . . . . . . . . . . . . . . . . . . 63

P
Nb
0 The constraint on new call blocking probability . . . . . . . . . . . . . . . . . . . . . . . . . . 68

P
Nd
0 The constraint on new call dropping probability . . . . . . . . . . . . . . . . . . . . . . . . . . 68

P
NL
0 The constraint on new call loss (blocking and dropping combined) probability

65

P
h
b Handoff call blocking probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

P
N
b New call blocking probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

P
N
d New call dropping probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

P
N
L New call loss (blocking and dropping combined) probability. . . . . . . . . . . . . . . 31

R The ratio of handoff blocking constraint (P
hb
0 ) to new call loss constraint(P

NL
0 )

102

(n
�¬

, g
�¬

) The solution to optimization problem O
¬

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

O1 The optimization problem to find the optimal number of guard channels when

the total number of channels is fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

O2 The optimization problem to find both the optimal total number of channels

and the optimal number of guard channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

AMPS Advanced mobile phone system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

AUTOVON The automatic voice network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

BDP Birth and death process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

BS Base station. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

CAC Call admission control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

xii



CDMA Code division multiple access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

CDPD Cellular digital packet data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

DCRS Dynamic channel reservation scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

DTMC Discrete time Markov chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

EC Effective capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

FCFS First-come first-served. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

FDMA Frequency division multiple access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

FIFO First-in first-out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

FSS Fully shared scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

GCS Guard channel scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

GoS Grade of service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

GPRS General packet radio service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

HQS Handoff queueing scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

HT The widely used fixed guard channel model, which is a non-preemption model

69

LTE Long term evolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

M1 The first guard channel model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

M2 The second guard channel model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

MBPS Measurement based prioritization scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

MGCS Multi-guard channel scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

MRGP Markov regenerative process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

xiii



MS Mobile station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

MTSO Mobile telephone switching office . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

MWCP Model(s) with controlled preemotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

MWFP Model(s) with full preemption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

MWNP Model(s) with no preemption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

MWP Model(s) with preemption; this term includes both controlled preemption

models and fully preemption models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

OM The original model, also known as the fully preemptive model . . . . . . . . . . . . 24

PASTA Poisson arrivals see time averages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72

PHZ Pre handover zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

PSTN Public switched telephone network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

QoS Quality of service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

RSS Received signal strength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

SMP Semi-Markov process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125

TDMA Time division multiple access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

xiv



Chapter 1

Introduction

Cellular communication has experienced an explosive growth in the past two decades.

Today, millions of people around the world are using cellular phones as their major commu-

nication tools. Such rapid development in cellular communication has stimulated interest

in studying and improving the quality of service (QoS) in cellular communication networks.

One limitation of cellular networks is the unpredictability of available network capacity due

to channel breakdown, channel reservation, and channel preemption. Therefore, the study

of QoS of systems with fluctuating capacities becomes necessary and meaningful. The study

in this thesis investigates this topic from two perspectives: (1) priority queueing systems

with preemption, and (2) the M©M©�C©�C system, which is a variant of the traditional

M©M©C©C system with fluctuating capacity.

A priority queueing system is a queueing system that serves customers of different priority

levels. Most often, the services received by high-priority customers are guaranteed by allowing

high-priority customers to preempt low-priority customers when the system is congested. As a

result, the amount of system resources (servers) available to low-priority customers is greatly

affected by the demand from high-priority costumers. In the first part of the thesis, the study

focuses on priority queueing systems in the context of cellular communications, where two

kinds of traffic are considered: handoff traffic (high-priority) and new traffic (low priority).

In the second part of the thesis, the M©M©�C©�C system, first introduced by Luo and

Williamson [32], is used to directly model systems whose capacity can vary stochastically

over time.

In this chapter, an introduction to cellular networks, and an overview of handoff tech-

niques in cellular networks from the aspects of handoff initiation, handoff types, handoff

decision and prioritization schemes, are provided. The traditional M©M©C©C loss system
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and the Erlang B formula are introduced. Then recent studies on systems with fluctuating

capacity are reviewed. The chapter concludes with a description of the scope of the thesis.

1.1 Introduction to cellular networks

The cellular network is currently in its fourth generation. The first generation used analogue

communications. To accommodate more cellular phone subscribers and increase the network

capacity, digital TDMA (time division multiple access) and CDMA (code division multiple

access) technologies were developed in the second generation. The third generation provided

users with high-speed packet-switching data transmission in addition to circuit-switching data

transmission. The fourth and current generation provides mobile ultra broadband Internet

access. Two 4G candidate systems are commercially deployed: the Mobile WiMax standard

(first in South Korea in 2006) and the first-release Long Term Evolution (LTE) standard (in

Oslo, Norway and Stockholm, Sweden since 2009).

What exactly is a cellular network? Zhang and Stojmenovic [64] provided a detailed

introduction to cellular networks. A cellular network provides cell phones or mobile stations

(MSs) with wireless access to the public switched telephone network (PSTN). In modern

wireless communications, the service coverage area of a cellular network is divided into many

small areas, or cells, each of which is served by a base station (BS). The BS is connected to

the mobile telephone switching office (MTSO), which is also known as the mobile switching

center. The MTSO is in charge of a cluster of BSs and is connected to the PSTN. The wireless

connection between base and mobile stations allows mobile devices such as cellphones to

communicate with wire-line phones in the PSTN (Figure 1.1).

One critical problem in cellular communication is the limited amount of frequency spec-

trum that can be allocated for cellular communication. The solution to this problem is the

frequency reuse concept. As the coverage area is divided into cells, each cell is assigned a

group of frequency bands or channels. To avoid radio cochannel interference, the group of

channels assigned to one cell must be different from those assigned to its neighbouring cells.

However, the same group of channels can be assigned to two cells if the cells are far enough

from each other that the radio cochannel interference between them is limited to a tolerable
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Figure 1.1: Typical structure of a cellular network

level. Typically, a reuse factor of seven is adopted meaning that seven neighbouring cells

are grouped together to form a cluster. The total available channels are divided into seven

groups, each of which is assigned to a cell within the cluster. The groups of channels can then

be reused in other clusters of cells (Figure 1.2). Assuming there are N channels allocated

to a cellular network that consists of C cells, CN©7 channels are available in the cellular

network for concurrent use when the reuse factor is seven. However, because of the explosive

growth of mobile phone subscribers, the current network capacity might not be enough, even

with frequency reuse. Black [5] and Rappaport [43] proposed a cell splitting technique to

increase the network capacity without new frequency spectrum allocation. The idea was to

use several low power transmitters instead of one powerful transmitter and split an original

cell into several (typically four) smaller cells. After cell-splitting, the cellular network that

was originally covered by C cells is now covered by 4C smaller cells and, has the new capacity

of 4CN©7. In practice, not all cells are split into smaller cells and cells of different sizes (e.g.,

pico, micro, and macro cells) can coexist in a single cellular network. Another technique to

increase the network capacity is sectoring [5, 43]. In sectoring, the cell size remains the same,

but a cell is divided into several sectors by using directional antennas at the BS instead of a
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Figure 1.2: Channel reuse: the total available channels are divided into seven groups,
each of which is assigned to a cell. The cells marked with the same number have the
same group of channels assigned to them and the cells marked with different numbers
have different groups of channels assigned to them.

single omnidirectional antenna. Typically a cell is divided into six 60
`

sectors. By dividing

a cell into smaller sectors and applying the frequency reuse technique on these sectors, the

frequency reuse factor is reduced and the total network capacity is increased.

The channels assigned to a cell can be divided into voice channels and control channels.

A voice channel is used for an actual conversation and a control channel is used to set up the

conversation. Both voice and control channels are further divided into forward (downlink)

and reverse (uplink). A forward channel carries traffic from the BS to the MS and a reverse

channel carries traffic from the MS to the BS. Multiple access methods are used to help MSs

located in the cell to share the available channels.

To make a call from an MS, a request must be sent to the MTSO via a reverse control

channel in its current cell. Once the request is granted by the MTSO, two voice channels

(one for sending voice and the other one for receiving voice) will be assigned to the MS for

making the call. Making a call to an MS is more complicated than making a call from an

MS. To make a call to an MS, the call must be first routed to the MTSO in charge. Then

the MTSO in charge needs to locate the cell of the target MS through location management.
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Once the MTSO knows which cell the MS is in, two voice channels from that cell are then

assigned to the MS to complete the call.

If an MS moves out of the MTSO where the MS is originally subscribed for wireless

services (also known as the home MTSO), it is roaming. A roaming MS can receive services

(such as making calls, receiving calls, connecting to the internet) only after it has been

registered in the visited MTSO with information authenticated against the information kept

in the home MTSO.

Within a given cell covered by a BS, there are multiple MSs that need to communicate

with the BS simultaneously. Multiple MSs share the air interface in an orderly manner

through multiple access methods. Three popular multiple access methods are frequency

division multiple access (FDMA), time division multiple access (TDMA), and code division

multiple access (CDMA). FDMA divides the frequency spectrum assigned to the BS into

several frequency bands, or channels, that are well separated and do not interfere with each

other. This method of FDMA is used in the Advanced Mobile Phone System (AMPS) [5, 6].

In an FDMA cellular network, typically about 45 MSs within a cell can communicate with

the BS simultaneously. TDMA is usually built alongside FDMA and allows multiple MSs

to share the same channel by chopping time into time slots of equal length. MSs take their

turns using the shared channel with only one MS being allowed to use the shared channel in

each time slot. Therefore, although the channel is shared, no interference can arise among

the sharing MSs because only one MS can use the channel at a given time. Because MSs

using TDMA cannot use a channel continuously, transmitting voice is a potential challenge.

Fortunately, an ordinary human being can stand a delay of 20 milliseconds (ms). A more

advanced way to implement TDMA is through dynamic TDMA which uses a scheduling

algorithm to dynamically reserve a variable number of time slots to accommodate variable

bit-rate data streams based on the traffic demand of each data stream. In the CDMA

approach, each MS is assigned a unique sequence code to modulate its signal. CDMA is

a spread spectrum multiple access technique, as each MS’s signal is spread over the entire

bandwidth by the unique sequence code assigned to it. At the receiver, that same unique

code is used to recover the signal. Although the radio channel is shared, no interference

can arise because the sequence codes used by the sharing MSs are orthogonal. The signal
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received by the BS from each MS must be at the same transmitted power; to achieve this, a

few bits in the forward control channel are reserved for power control. The BS uses these bits

to instruct each MS to adjust its output power level to guarantee that all signals received by

the BS have the same strength. For more details regarding how CDMA encodes and decodes

refer to Stallings [48].

1.2 Introduction to the handoff phenomenon and guard

channel schemes

Handoff is a new phenomenon which arises with the development of wireless communications.

Cellular systems divide a geographic area into small cells such that the same radio frequency

can be reused in cells that are certain distance away. Smaller cells can help the system achieve

higher system capacity but also increases the possibility that an active MS might move from

cell to cell during an ongoing call. When an MS is engaged in a call, it is using two channels

in its current cell. When the MS moves out of the boundary of the current cell and enters

a neighbouring cell, it needs to acquire two channels from the neighbouring cell to keep the

ongoing call alive. The process of transferring a call from one cell to a neighbouring cell is

called a handoff.

1.2.1 Handoff Initiation

Handoff initiation is the process of requesting a handoff. Four main handoff initiation tech-

niques mentioned in Ekiz et al. [13], Marichamy et al. [33], Pollini [39] will be examined. All

techniques are based on the received signal strength (RSS) from the current cell (RSSc in

Figure 1.3) and from a neighbouring cell (RSSn in Figure 1.3). As a result of signal propaga-

tion, the RSS becomes weaker as the MS moves towards the boundary of its current cell and

becomes stronger as it crosses the boundary and enters a neighbouring cell. The received

signal is averaged over time using an averaging window to remove momentary fading due to

geographical and environmental factors [39, 55]. The signal strength threshold Smin in Figure

1.3 is called the “receiver threshold”. The receiver threshold is the minimum acceptable RSS
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for call continuation [55]. If a moving MS fails to acquire channels from the neighbouring

cell and RSSc drops below the receive threshold, the ongoing call is dropped.

The first handoff initiation technique is purely based on the RSSs of an MS. The RSSs

are measured over time and the MS will be transferred to the BS with the strongest signal.

In Figure 1.3 at time T1, the RSS from the neighbouring cell starts to exceed the RSS from

the current cell and a handoff is initiated. This technique is simple to implement but its

downside is obvious: due to signal fluctuations, several unnecessary handoffs can occur while

the RSS from its current cell is still strong enough to serve the call (i.e., stronger than Smin).

These unnecessary handoffs are known as ping-pong effects and will cause an increase in

forced termination probability. A good handoff technique should minimize such effect.

The second handoff initiation technique is called relative signal strength with threshold.

It is similar to the first handoff initiation technique but a threshold (S1 in Figure 1.3) is

implemented to reduce the ping-pong effect. A handoff is initiated only if RSSc (the current

cell’s RSS) is lower than the threshold and RSSn (the neighbouring cell’s RSS) is stronger

than RSSc. The handoff is initiated at time T2.

The third handoff initiation technique is relative signal strength with hysteresis. This

technique uses a predetermined hysteresis value (h in Figure 1.3). A handoff is initiated (at

time T3) when RSSn exceeds RSSc by the hysteresis value h.

Relative signal strength with hysteresis threshold combines both the threshold technique

and the hysteresis technique. A handoff is initiated when RSSc is below a threshold (which

could be chosen between S1 and Smin) and RSSn is stronger than RSSc by the hysteresis

value h. The handoff initiation can occur between T3 and T4.

1.2.2 Hard handoff and soft handoff

A handoff can be hard or soft. The hard handoff occurs when the radio frequency channel in

use from the current channel is released first and a new channel from the neighbouring cell

is acquired later. Because of the time gap between channel release and channel acquisition

there is a service interruption when this type of handoff occurs. Hard handoffs are common

to systems using TDMA and FDMA such as General Packet Radio Service (GPRS) [28].

The soft handoff is a feature of systems that use CDMA standards, where an MS can
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Figure 1.3: An illustration of handoff initiation techniques

simultaneously be connected to two or more BSs during a call. When an MS is engaged in

a call a BS is added in when the RSS from this BS exceeds a given threshold and removed

when RSS drops below certain threshold for a given amount of time [13]. The addition or

removal of a BS during an active call causes soft handoff. There is no service interruption

during a soft handoff.

1.2.3 Handoff channel-assignment schemes

If we consider a reference cell and a neighbouring cell, two types of calls can be distinguished.

A handoff call is defined as a call that is in progress in a neighbouring cell needs to be

transferred and continued in the reference cell because of the movement of an MS. In contrast,

a new call is a call that originates in the reference cell. In this section different handoff

channel-assignment schemes will be reviewed.

The simplest channel assignment scheme is the fully shared scheme (FSS) in which all

available channels are fully shared by both handoff calls and new calls. Handoff calls and

new calls are treated equally and are served on a first-come first-served (FCFS) basis. If all

channels are busy upon the arrival of an incoming call, the incoming call will be blocked. The

FSS is widely used in current cellular networks because of its simplicity [64]. In addition,

the FSS has the advantage of maximizing the utilization of wireless channels as opposed to
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the guard-channels schemes (which will be introduced later). The disadvantage of the FSS

is the potentially high blocking rate of handoff calls.

Since it is generally less desirable to terminate an ongoing handoff call than to block a

new call, recent research on channel-assignment schemes has focused on reducing the loss

probability of handoff calls. Many prioritization schemes have been proposed [33, 55, 56, 57].

One such scheme is the handoff queueing scheme (HQS, [55]). As discussed earlier, when a

call moves into the reference cell from a neighbouring cell, it will be terminated if it fails

to acquire a new channel from the reference cell and the RSS from its original cell (the

neighbouring cell) drops below the receiver threshold. The HQS is feasible because there is a

time difference between the time of handoff initiation and the time when the RSS reaches the

receiver threshold. When a handoff call has requested to be transferred into the reference cell

but all channels in the reference cell are occupied, instead of terminating it immediately, this

handoff call is placed in the line of calls that are waiting for channel release in the reference

cell. When the RSS drops below the receiver threshold the call will be lost. A new call can

be admitted into the cell only if there is no handoff call waiting in the queue and there is at

least one free channel in the BS. The HQS reduces the loss probability of handoff-calls while

increasing the blocking probability of new calls. A timer based handoff priority scheme is

proposed in Marichamy et al. [33] in which, when a channel is released, a timer starts and

this channel will be reserved for handoff use for a certain amount of time. If no handoff

call arrives during that period of time and the timer expires, the channel can be assigned

to new or handoff calls on a FCFS basis. In Tekinay and Jabbari [56] Measurement Based

Prioritization Scheme (MBPS) was introduced. The priority of a handoff call waiting in the

queue changes dynamically based on the RSS from its cell. The calls with RSS close to the

receiver threshold have higher priority than calls with higher RSSs. This scheme produces

better results than the first-in first-out (FIFO) queueing scheme.

Another widely adopted type of channel assignment scheme that prioritizes the handoff

call is the guard channel scheme (GCS). In Harine et al. [17] a basic GCS is introduced in

which, a predetermined number of channels in the reference cell are reserved exclusively for

handoff calls. The remaining channels, called the normal channels, are shared by handoff

calls and new calls. Both handoff calls and new calls use the normal channels first. When all

9



the normal channels are occupied, incoming new calls will be blocked but incoming handoff

calls can still be admitted into the cell if there is at least one idle guard channel. The

loss probability of handoff calls improves with an increase in the number of guard channels.

However, the new call blocking probability increases and the total utilization of channels

decreases, as idle guard channels can not be used by new calls. In Kim et al. [24], a dynamic

channel reservation scheme (DCRS) based on mobility is proposed to increase the total

channel utilization without increasing the loss probability of handoff calls. In the DCRS,

normal channels are still shared by new calls and handoff calls. However, the guard channels,

although reserved for handoff calls, can also be used by new calls whose request probability

depends on the mobility of calls. The mobility of calls in the reference cell is defined as

the ratio of the handoff arrival rate to the new call arrival rate. If there are no arrivals of

handoff calls, the request probability is one, and the guard channels will be used by new calls.

If there are no arrival of new calls, the request probability is zero and the guard channels

will be used by handoff calls. If the mobility is greater than one, i.e., the arrival rate of

handoff calls is larger than that of new calls, the request probability is decreased quickly

so the handoff calls can use the guard channels. If the mobility is less than one, i.e., the

arrival rate of handoff calls is less than that of new calls, the request probability is decreased

slowly so new calls have the opportunity to use idle guard channels. In this way, handoff call

performance is guaranteed and the blocking probability of new calls is reduced. There are

other methods to determine the number of guard channels dynamically. In Agrawal et al.

[1] the number of guard channels is determined dynamically by the use of neighbouring BSs.

Each BS periodically determines the number of MSs in a prehandover zone (PHZ)—a small

area next to the handoff zone that contains users who will possibly request handoff soon—

and reports that number to an adjacent BS. The adjacent BS then reserves that number of

channels as guard channels in its own PHZ. In Zhang and Liu [65] an adaptive algorithm to

assign the number of guard channels is proposed. When the dropping probability of handoff

calls exceeds a predetermined threshold the number of guard channels is increased to reduce

the likelihood of a handoff call being lost.

As the demand for mobile multimedia services (such as voice, data, and video) has

increased since the third-generation of cellular networks, multimedia based guard channel
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schemes are necessary. In Wang et al. [59], real-time and nonreal-time traffic are consid-

ered. Traffic calls are categorized into four different types: real-time and nonreal-time new

calls, and real-time and nonreal-time handoff calls. Accordingly, the channels in each cell

are divided into three parts: one for real-time calls, one for nonreal-time calls only, and one

for handoff calls that cannot be serviced in the first two parts. In the third group, several

channels are reserved exclusively for real-time handoff calls. In addition, a real-time handoff

call has the right to preempt nonreal-time calls if no channels are available; the interrupted

nonreal-time is redirected to a queue. Hwang et al. [21] has proposed a multiguard channel

scheme (MGCS) that can be used in cellular networks with multiclass traffic. In this model,

different channel thresholds are set for different types of calls. A certain type of traffic can

be admitted to the cell only if the number of busy channels is less than the channel threshold

set for its type. This model extends the GCS for single class traffic to multi-class traffic. In

Somagari and Pati [47] an adaptive MGCS for multi-class traffic is proposed to ensure the

QoS for multimedia wireless cellular networks and to minimize the dropping of handoff calls.

Although a different number of guard channels are reserved for the handoff calls of different

traffic classes, handoff calls in a class with low priority can access the guard channels of of the

handoff calls in the next higher class with a certain probability determined by the mobility

of calls and channel occupancy.

1.3 Queueing models for single cell

Server capacity is the primary determinant of system performance. In conventional queue-

ing system environments, such as call centers, the physical server capacity is usually a fixed

quantity. These systems have been well-studied for many years. In other queueing sys-

tems, the available system capacity can vary unpredictably over time. Many examples of

stochastic capacity systems appear in the context of wireless transmission. For example, in a

reservation-based system with multiple priority levels, high priority traffic such as voice may

take precedence over data traffic. As a result, the system capacity available for low priority

traffic changes over time based on the demand of high priority traffic [50]. Another simple

example would be high-performance computing centers, where the failure or the removal of
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computing nodes from the system can result in the loss of jobs from the system, and having

an impact on the blocking rate or queueing delay seen by other jobs [51]. The rapid devel-

opment of computer networks and mobile technologies has increased the interests in systems

in which the server capacity changes over time. In such systems call losses can be due to:

� Call blocking: This refers to the scenarios when an incoming call fails to acquire a

channel and is rejected from the cell.

� Call dropping: This refers to the scenarios when an ongoing call is terminated prema-

turely and forced to leave the cell and never returns.

In the following section, the standard M©M©C©C model and the well known Erlang B

formula are reviewed. Then a variant of the M©M©C©C model with stochastic capacity,

denoted by M©M©�C©�C ([32]) is introduced.

1.3.1 The M©M©C©C model and the Erlang B formula

The M©M©C©C model, also known as the Erlang loss model was first used to model call

centers at the beginning of the 20th century and it can also be used to model a single-cell

(the reference cell) in a cellular network. Assume that there are C channels available to serve

calls made from wireless subscribers. All calls are homogeneous (in the sense that each of

them can be served by any one of the channels) and arrive at the reference cell according to a

homogeneous Poisson process with rate λ. The channels are also assumed to be homogeneous

and the service time for each call follows i.i.d. exponential distribution with rate µ (which is

also known as the departure rate for each call). It is further assumed that the traffic arrival

process is independent of the traffic departure process. Arriving calls are served according to

FCFS discipline and since there is no waiting room, when all channels are busy new calls will

be blocked. Such a Markovian queueing model has been well studied in literature Kleinrock

[25, 26].

The queue length process rQ�t�, t ' 0x of this system is a finite birth and death process
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(BDP) with state space ri¶i � 0, 1, 2, ..., Cx. The birth rate of state i is given by

λi �

~��������������
λ if 0 & i $ C

0 otherwise

(1.1)

and the death rate of state i is µi � iµ, i � 0, 1, ...C. Its infinitesimal generator G can be

written as:

G �

Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂̂
\

�λ λ

µ �λ � µ λ

2µ �λ � 2µ λ �

�

� �k � 1�µ �λ � �k � 1�µ λ

kµ �kµ

[___________________________________________________]

.

The structure of the matrix G shows that the queue length process rQ�t�, t ' 0x is

irreducible and hence the stationary distribution π exists and is unique. Since the stationary

distribution must satisfy πG=0 and =C

i�0
πi � 1 , by solving a system of equations we have:

π0 � � C

=
n�0

ρ
n

n!
�
�1

,

πi � π0 �
ρ
i

i!
for all i � 1, ..., C,

where ρ � λ©µ is the total offered load, a measure of demand made on the system, which is

dimensionless but given a unit called erlangs. The main performance measure for this model

is the probability that all channels are busy and the cell is unable to accept new call requests,
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that is, the call blocking probability which is given by

πC � � C

=
n�0

ρ
n

n!
�
�1

�
ρ
C

C!
� EB�ρ, C�. (1.2)

This formula is known as Erlang’s loss formula or the Erlang B formula and is widely used

in systems where the server capacity is a constant over time.

1.3.2 Stochastic capacity and the M©M©�C©�C model

Background

The variation in capacity with time, known as the “stochastic capacity”, arises frequently in

the context of wireless networks. The main reasons that lead to stochastic capacity are:

� Server failure and repair activities: In wireless communications, channels that carry

voice or data traffic can fail. Failed channels will be repaired after some time. The

system capacity decreases when channel failure occurs and increases when failed chan-

nels are repaired. Since the failure activities usually occur unpredictably and the repair

times are random variables, system capacity is changing stochastically [58].

� Different priority levels for different traffic: In wireless networks, voice traffic usually

takes precedence over data traffic; an example is the cellular digital packet data (CDPD)

system analyzed by Massey and Srinivasan [34]. As a result, the system capacity for

low priority traffic (i.e., the number of channels that could be used to transmit data

traffic) varies with time based on high priority traffic (voice traffic) demands.

� The time-varying characteristics of the wireless propagation environment: This phe-

nomenon applies to wireless LANs and CDMA systems. The system capacity of CDMA

systems has a complex nature. Gilhousen et al. [16] predicted that properly augmented

and power-controlled multiple-cell CDMA promises a significant increase in current

cellular capacity. Shen and Ji [46] showed that user bandwidth demand, transmission

capability and outage requirement have significant impact on CDMA network capacity.

In Wu and Williamson [61], Wu Y. and Williamson C. found that increased variability

in data call arrival decreases the system capacity, whereas increased variability in data
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Figure 1.4: A sample path of stochastic capacity process

call holding times increases the system capacity.

Mechanism and impacts of stochastic capacity

In 2005, Sun and Williamson [50] performed a series of call-level simulations to study the

performance of different call dropping policies in stochastic capacity network. The simulations

assumes that the system has an overall average capacity for carrying n simultaneously ongoing

calls, but the capacity varies randomly with time. An example of their stochastic network

capacity model is shown in Figure 1.4. The horizontal axis represents time and the solid

line portrays the available system capacity at each instant in time. The capacity changes are

modeled as events that occur at specified points in time. The system capacity always has a

non-negative integer value, but capacity changes can occur at arbitrary points in continuous

time.

Four characteristics of the stochastic capacity process are:

� Frequency of capacity changes: If the frequency of capacity changes, f , is specified,

then the capacity changes exactly every 1©f seconds. We say that capacity varies

deterministically with time.

� Distributions of interchange times: The distribution used for the elapsed time between

network capacity changes. Deterministic, exponential, and self-Similar models are used

in their simulations. The deterministic model has a capacity-change event every T
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seconds. The exponential model has capacity change events at random times following a

Poisson process. The time between capacity-change events is exponentially distributed

with a mean of T seconds. The self-similar model assumes that capacity-change events

occur in bursts, similar to a self-similar (fractal) process. The mean time between

capacity-change events is T seconds.

� Distribution of the capacity itself: This is used to generate the exact network capacity

at each capacity-changing instant. The mean of this distribution should match the long-

term average of n calls, while the variance affects the magnitude of capacity fluctuations

that can occur. A normal distribution is used to facilitate control of both the mean

and the variance of the system capacity.

� Correlation structure in the capacity time series process: Independent and identically

distributed samples as well as self-similar processes are considered. In the self-similar

model, the capacity values constitute a self-similar process, with short-range and long

range correlations. In the random model, the same capacity trace is shuffled into a

random order to remove short-range and long-range correlations.

Other important model specifications are:

� Call workload: New calls arrive according to a specified arrival process: Poisson or

self-similar process. Each call has a specified holding time, drawn from a specified

distribution (exponential or Pareto).

� Call dropping Policies: 9 dropping polices in five categories are considered. They are

randomized (Random ), arrival-based (Last-In-First-Out, First-In-First-Out), departure-

based (EarliestDeparture, LatestDeparture), duration-based (ShortestDuration policy,

LongestDuration) and completion-based (LeastCompleted, MostCompleted) policies.

The two inputs provided to the simulation are a call workload file and a network capacity

file. The call workload file is a time-ordered sequence of call arrival events. Each call specifies

its source node, destination node, arrival time, and duration. Each call requires one unit of

network capacity. Workload files are generated using the call workload models indicated in

Table 1.1. Each workload file contains 100,000 calls. The network capacity file is a time-

ordered sequence of capacity-change events. Capacity files are generated using the models

and parameters indicated in Table 1.2. Each capacity file contains 10,000 capacity-change
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Table 1.1: Table 1. Call level workload parameters

Parameter Level

Stochastic Arrival Process Poisson, Self-similar

Traffic Holding Time Exponential, Pareto

Call Arrival Rate (calls/sec) 0.1. . . 1.0. . . 6.0

Mean Call Holding Time (sec) 30

Table 1.2: Table 2. Network capacity parameter settings in call-level simulations

Parameter Levels

Mean Time between Capacity Changes (sec) 10, 15, 30, 60, 120

Stochastic Capacity Change Time Deterministic, Exponential, Self-Similar

Capacity Capacity Change Value Normal

Capacity Mean 40

Values (calls) Standard Deviation 2, 5

events. In some simulations, only the initial portion of the capacity file is needed, depending

on the frequency of capacity changes.

Each call dropping policy is provided with the same workload and capacity files, so that

they each handle the same traffic demands under the same network conditions. Differences

observed in the call level performance reflect differences in call dropping policies used.

The primary performance measures are call blocking probability and call dropping proba-

bility. The results (described below) of the simulations shed light on the impact of stochastic

capacity:

� Frequency of capacity changes. As the time between capacity changes increases, the

call blocking rates for all policies asymptotically converge toward the same value, and

the call dropping rate asymptotically approaches 0. This result is expected, as low-

frequency changes approximate a static network, for which the Erlang B blocking for-

mula can be directly applied. If capacity changes are infrequent, few calls need to be

dropped. The performance differences between dropping policies are more pronounced

when there is a high frequency of capacity changes in the network. This result makes
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sense since high-frequency changes imply more call dropping episodes, and thus greater

opportunity for distinctions among policies. The differences among policies manifest

themselves more clearly in the call blocking performance than in the call dropping

performance. Because all policies dropped about the same number of calls, carefully

choosing which calls are dropped can significantly benefit the call blocking performance.

The relationship between call blocking rate and frequency of capacity changes is not

monotonic. For some policies, the call blocking rate decreases as capacity changes

become less frequent, whereas for other policies, the behavior is nonmonotonic.

� Variability of capacity changes. The capacity values are drawn from a normal distri-

bution with a mean of 40 calls and two different standard deviations 2 and 5. The

higher-variability capacity model has a higher call blocking rate and a higher call drop-

ping rate. The separation between dropping policies is more pronounced with higher

capacity variability. These results show that for networks with high-frequency or high-

variability capacity changes, the call dropping policy can have a large impact on call

blocking performance.

� Time of capacity changes. The distribution of interchange time has a small impact on

the call blocking performance, but a larger impact on the call dropping performance.

� Correlation of capacity changes. Results showed that correlations in the capacity-

change process are beneficial. Random (uncorrelated) models can have large fluctua-

tions in network capacity at any time scale, whereas correlated models produce more

gradual changes in capacity.

M©M©�C©�C queueing system

In Luo and Williamson [32], a variant of the M/M/C/C loss system with fluctuating server

capacity was introduced. The new system is denoted by M©M©�C©�C. Similar to the

M©M©C©C loss system, the call interarrival time and service time follow independent expo-

nential distributions. However, the system capacity (i.e., the number of available channels)

follows a stochastic process and can vary with time (as is indicated by the tilde in front of

system capacity C). Therefore, C can be considered to be the maximum capacity of this

system. If the capacity interchange times are i.i.d. and follow exponential distributions, a
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two-dimensional Markov chain can be used to model this system. If capacity interchange

times are i.i.d. but follow a general distribution, a Markov regenerative process (MRGP)

method is used in Luo and Williamson [32] to analyze this model.

1.4 Scope of the thesis

For simplicity, we consider a pure loss cellular network with homogeneous cells for which a

specific number of channels is permanently assigned to each cell, and our attention is focused

on a single cell (the reference cell). First, two guard channel schemes with partial/controlled

preemption are proposed. The inspiration comes from the widely used fixed guard channel

scheme [17] as well as literatures on loss systems with preemption [18, 44, 66]. Although

the proposed schemes will be discussed in the context of a loss system comprising handoff

calls and new calls, the schemes can be considered generally as partially preemptive schemes

for priority queueing system as well. Then, MRGP method will be reviewed and used to

analyze the M©M©�C©�C system. The main performance measures are calculated and the

impact of stochastic capacity on these performance measures are assessed through numerical

examples.

Related work

Based on the prioritizing schemes used, priority queueing systems can be classified into non-

preemptive and preemptive priority queueing systems. Most of the handoff guard channel

schemes are non-preemptive systems [11, 17, 37, 42, 63]. In Li et al. [29], Wang et al. [59],

guard channel schemes with preemption are proposed in which nonreal-time traffic can be

interrupted by real-time traffic. The interrupted traffic is redirected to a queue to wait for

free channels instead of being dropped. Therefore they are delay systems rather then loss

systems.

Related work on priority queueing systems can be divided into two categories: preemp-

tion policies and performance analysis of preemptive queueing systems. Garay and Gopal

[15] investigated problems that relate to making the best decision on which call to preempt

and proposed heuristics for a centralized network framework which performed well relative to
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the optimal solution. Then Peyravian and Kshemkalyani [38] presented a simulation study

of preemption in a general connection-oriented network setting and developed two optimal

connection preemption selection algorithms that operate in a decentralized network that op-

timized the criteria of (i) the number of connections to be preempted, (ii) the bandwidth

to be preempted, and (iii) the priority of connections to be preempted, in different orders.

Sung et al. [53] proposed a centralized connection preemption algorithm that optimized the

preemption criteria in an order different from Peyravian and Kshemkalyani [38]; Sung’s algo-

rithm minimized the number of preempted and rerouted sessions. Stanisic and Devetsikiotis

[49] analyzed two simple and efficient preemption policies with random selection which dra-

matically sped up the process of selecting a set of connections to be preempted.

Preemptive queueing systems can be classified into two groups: preemption with delay

and preemption with loss. Preemption with delay is usually modelled by an M©G©C queue

(a system with infinite queueing). White and Christie [60] was the first to define and studied

preemptive priority in a single server system with Poisson arrivals. This group also studied

the case in which the preemptive server was prone to breakdown. In Miller [35], a matrix-

geometric method was used to derive the recursive computational formulas for the steady

state distributions of M©M©1 priority queues with two classes of customers. Buzen and

Bondi [7] studied the mean response time of each priority level in a multiserver M©M©m
preemptive-delay network with multiple priority classes. In Cho and Un [10], the authors

proposed a combined preemptive/non-preemptive priority discipline using preemptive-resume

and preemptive-repeat-identical policies. Recently, Lian and Zhao [30] studied a two-stage

M©G©1 queue with discretionary priority. These analyses are of limited relevance to the

investigation of this thesis, which is a study of preemption with loss, because the more

prevalent use of preemption policies is to drop, rather than postpone the preempted call.

The earliest work on the performance analyses of a preemptive loss system dates back

to 1962, when Helly [18] used the Erlang B formula on a single cell to present a preemption

framework. In 1980, Calabrese et al. [8] studied the automatic voice network (AUTOVON)

with two classes of traffic, wherein the class 1 traffic can preempt class 2 traffic when the

network is fully occupied. Two preemption disciplines (ruthless and the friendly) were con-

sidered. Also in 1980, Fischer [14] considered an M©M©s©s preemptive system that carried
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two classes of customers with unequal service times. Due to the difficulty in obtaining the

closed form steady state equations, the author analysed three special cases instead: (i) s � 1,

(ii) the ratio of class 2 mean holding time to class 1 mean holding time approaches 0, and

(iii) the ratio of class 2 mean holding time to class 1 mean holding time approaches infin-

ity. In Zhao et al. [66], a two parallel link (i.e., a primary link and a backup link) network

supporting K call classes was considered, where a class k call can preempt if necessary and

calls of classes k � 1, ..., K can in turn be preempted by any call of class 1, ..., k � 1. The

preemption rates were obtained in the heavy traffic limit. All the studies mentioned above

considered systems with full preemption in which lower priority calls could be preempted by

higher priority calls when necessary. To my knowledge, partial (or controlled) preemption

was first introduced by in Zhou and Beard [67] and then in Zhou and Beard [68]. In their

model, high priority calls (i.e., emergency calls) can only preempt low priority calls (i.e., pub-

lic calls) when the number of active high priority calls in the system is within a threshold.

Their scheme was similar to the first guard channel scheme that is proposed in this thesis.

However, their scheme is not exactly the same as our scheme, and they focused on comparing

the channel occupancy of their scheme with other emergency call admission control (CAC)

schemes whereas we concentrated on studying the call loss probabilities and comparing them

with fully preemptive and non-preemptive schemes.

Literature on the application of MRGP in queueing systems and recent studies on the

M©M©�C©�C system were examined. The MRGP model has been shown to capture the be-

havior of real systems with both exponentially and non-exponentially distributed event times

and has been used to study non-Markovian queueing systems for years. In 1995, Logothetis

et al. [31] surveyed the MRGP literature and adopted different solution techniques in their

transient analyses. Dharmaraja et al. [12], used an MRGP model to calculate numerically

new call and handoff call blocking probabilities with general (nonexponential) interarrival

time distributions. Wu and Williamson [61] investigated the capacity of multiservice CDMA

networks supporting voice and non-Poisson data traffic based on an MRGP model and showed

that the variability of the data call arrival process adversely affected the system capacity. In

2007, Sun and Williamson [51] carried out some preliminary studies on queueing system with

stochastic capacity based on MRGP. In 2008, the notation for a loss system with stochas-
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tic capacity, M©M©�C©�C, was introduced by Luo and Williamson [32]. They used the

MRGP method to analyze the performance of an M©M©�C©�C system for which capacity

interchange times followed nonexponential distributions. In their model, the capacity could

change only one unit at a time so the capacity process was skip-free. In our study, three

different types of capacity variation are considered.

Thesis outline and contributions

In Chapters 2 and 3, we propose two guard channel models with controlled preemption. We

restrict our attention to a relatively simple scenario: a single reference cell is considered,

wherein two types of traffic are supported, one with higher priority than the other. In this

context, the high priority traffic is the handoff call and the low priority traffic is the new call.

In the proposed models, low priority traffic can access guard-channels but can be preempted

by high priority traffic when necessary. Preempted calls are dropped and removed from the

system. Assume that each call occupies one channel. The arrival processes for low and high

priority traffic are independent Poisson processes (with rate λ1 and λ2, respectively) and the

service times for both traffic types follow independent exponential distributions (with rate

µ1 and µ2, respectively). The system as a whole can be viewed as a controlled preemptive

M©M©C©C system serving two types of traffic.

In Chapter 2, our first guard channel model with controlled preemption is proposed. The

model is based on the full preemptive scheme but sets a limit on the maximum number

of ongoing high priority calls (handoff calls) allowed in the system. The goal is to protect

low priority calls (new calls) while maintaining the performance of high priority calls at a

satisfactory level. Three performance measures are of interest: low priority call blocking

and dropping probabilities and the high priority call blocking probability. Two approximate

methods and two analytic methods are discussed and their performances are compared. Four

special cases are investigated as inspired by Fischer [14]. At the end, two optimization

problems are solved for which, an optimal number of total channels and/or guard channels

can be determined based on predetermined call performance thresholds.

In Chapter 3, our second guard channel model with controlled preemption is developed

and analyzed. This model also utilizes controlled preemption and is based on the fixed guard
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channel model in Harine et al. [17]. Closed form formulae for three performance measures

are derived for homogeneous service rates of both low and high priority calls. The closed

form solution is verified using call level simulations. Algorithms for solving two optimization

problems are introduced. Finally, the optimal number of channels required to meet certain

performance constraints are compared between our model and the fixed guard channel model

studied in Harine et al. [17]. The results show that the channel utilization of our model is

superior to that of the fixed guard channel model.

In Chapter 4, we compare the performance of four models: (i) the fixed guard channel

model from Harine et al. [17], a model without preemption, (ii) our first guard channel model,

a model with controlled preemption, iii) our second guard channel model, also a model with

controlled preemption and, (iv) the model with full preemption studied in [18, 44, 66]. The

models are compared according to: (a) channel utilization, which is reflected by the minimum

number of channels required to meet certain constraints on call loss, (b) low priority call (i.e.,

new call) performance when the constraint for the performance of high priority call is met,

and (c) flexibility to meet various constraints. The results show that each model possesses a

unique advantage that depends on the traffic parameters. However, models with controlled

preemption (i.e., the two new models proposed in the thesis) manifested the best overall

performance.

In Chapter 5, the theory of MRGP is reviewed and applied to model our first guard chan-

nel model. Then the loss system with stochastic capacity, i.e., the M©M©�C©�C system

is discussed and the MRGP method is used to solve this system. Three different distribu-

tions of capacity interchange times (exponential, gamma, and Pareto), and three different

capacity variation patterns (skip-free, uniform-based, and distance-based variations) are con-

sidered when constructing the MRGP model. Analytic results are verified by simulations and

numerical experiments are carried out to study the impact of the characteristics of capacity-

change (the distribution of capacity interchange times and the capacity variation pattern) on

call loss probabilities.
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Chapter 2

First Guard Channel Model

2.1 Motivations and model description

2.1.1 Motivations

As Chapter 1 explains, most of the priority queueing systems use the full preemption scheme

in which high-priority traffic have priority over low-priority traffic on all the channels in

the system. High-priority traffic can access all the channels and can preempt low-priority

traffic to accommodate itself whenever the system is full. A loss system with full preemption

will be called the original model (which will be called the OM model hereafter) . In such an

original model, the performance measure (i.e., the blocking probability) of high-priority traffic

remains unaffected by the low-priority traffic. However, the low-priority traffic consequently

suffers unnecessary losses. As a straightforward example, consider the performance measures

for the following situation:

1) There are a total of 15 channels in the system.

2) The high-priority traffic and low-priority traffic arrives according to Poison processes

with rate 5 and 2, respectively.

3) The call holding times for both types of traffic follow the same exponential distribution

with rate 1.

If one employs the OM model, the blocking probability for high-priority traffic is 0.016%,

and the loss probability (blocking probability and dropping probability combined) for low-

priority traffic is 1.1%. Assume that the performance thresholds for high-priority traffic

and low-priority traffic are 0.5% and 1%, respectively, then the performance measure of high-

priority traffic (0.016%) is much lower than its threshold 0.5% while that of low-priority traffic

24



(1.1%) exceeds its threshold 1%. Therefore, a model that could offer an easy adjustment to

balance performance measures of high-priority and low-priority traffic, is desirable.

2.1.2 Model description

The model to consider is a single cell with a limited number of channels n, wherein g of them

are set up as guard channels. There are two kinds of traffic: low-priority traffic (i.e., new

calls) and high-priority traffic (i.e., handoff calls). New calls can access all the n channels,

and handoff calls can access only the g guard channels. The arrival processes for both new

calls and handoff calls are assumed to be independent Poisson processes with rates λ1 and

λ2, respectively. The service time for new calls and handoff calls are assumed to follow

independent exponential distributions with rates µ1 and µ2, respectively. Let ρk � λk©µk,
k � 1, 2 be the offered load for the new call (when k � 1) or for the handoff call (when

k � 2). The call admission procedure is as follows: when a new call arrives and at least one

idle channel is in the cell, the new call will be accepted, and a channel will be assigned to

it. If there are no idle channels available, the new call will get blocked. When a handoff

call arrives, it is admitted provided that there are at most g � 1 ongoing handoff calls in the

cell. If there are already g ongoing handoff calls in the cell, then this incoming handoff call

will get blocked from this cell. When a handoff call is admitted although all channels are

busy, the system will choose an ongoing new call (according to some call dropping policy,

random dropping policy by default) to drop in order to free a channel to accommodate the

admitted handoff call. Therefore, handoff calls can preempt new calls only when the number

of ongoing handoff calls currently in the system is less than g. As we can see, the system

capacity for new calls, denoted by i, is changing stochastically with time and is depending

on the arrival and departure events of the handoff call. Based on this model description, it

is not hard to see that there can be at most g ongoing handoff calls simultaneously in the

system, and therefore i could take value in c, c � 1,�, n, where c � n � g. This model is

considered as the first guard channel model (or the M1 model, a term which will be used

interchangeably). The major difference between the M1 model and the original model is that

in the M1 model, any high-priority traffic can access only the g guard channels and will have

priority over low-priority traffic on these g guard channels, instead of on all the n channels.
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To be more specific, the original model is a special case of the M1 model when g � n. Next,

we will construct a stochastic model to solve the M1 model.

2.2 The composite model method and performance met-

rics

2.2.1 The composite model method

The system states of the M1 model could be described by Ω � r�i, j�¶c & i & n, j & ix, where

i denotes the system capacity for new calls, and j is the number of ongoing new calls currently

in the system. The number of ongoing handoff calls currently within the system is given by

n� i (which could be considered as the number of channels currently NOT available to new

calls). In this section, a composite model constructed using a two-dimensional Markov chain

is employed to model this system. Later in Section 2.3.1 a two-level hierarchical model will

be built in order to consider the availability model and performance model separately. The

state transition diagram of the composite model is shown in Figure 2.1. Note that the system

capacity i indicates that there are n� i ongoing handoff calls in the system. Also notice that

there can be no transition from state �i, j� to �i�1, j�1� when i j j, since a handoff call can

only preempt an ongoing new call when all channels are busy (i.e., when i � j). Based on

the transition diagram, the system can be modeled as a homogeneous irreducible continuous

time Markov chain with �c � n � 2��n � c � 1�©2 states.

After ordering all the states lexicographically as {�c, 0�, ..., �c, c�, �c � 1, 0�, ..., �c � 1, c �

1�, ...�n, 0�, ...�n, n�x, the infinitesimal generator G can be written as:
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where B
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is an i � �i � 1� matrix and has the following form:
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where Diag is the diagonal element of the infinitesimal generator in the given row, which is

the negative sum of all the remaining elements in the same row.

F
�i�

is an i � �i � 1� matrix and has form:

F
�i�
�
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(2.6)

Note that G is not a block tridiagonal matrix since B
�i�

and F
�i�

are not square matrices.

The steady state distribution π can be obtained by solving πG � 0.

2.2.2 Performance metrics

The performance measures of interest are handoff call blocking probability (P
h
b ), new call

blocking probability (P
N
b ), and new call dropping probability (P

N
d ). The calculation of these

performance measures will be presented in this section. First of all, although handoff calls

can access only the g guard channels, they have priority over new calls on these g channels.

When the number of ongoing handoff calls is less than g and an incoming handoff call sees

all channels busy, instead of being blocked, it can reserve a channel for itself by dropping an

ongoing new call. The blocking probability of handoff calls is not affected by the presence of

new calls. Therefore, handoff calls in this model can be represented by an M©M©g©g loss

system, and the blocking probability can be calculated by the well-known Erlang B formula

as:

P
h
b � EB�λ2

µ2
, g�. (2.7)
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Figure 2.1: State transition diagram of the M1 model

To calculate the new call blocking probability P
N
b , let us define Ω

N
b as the set containing all

the blocking states for new calls: Ω
N
b � r�i, j�¶i � j, �i, j� " Ωx. Then there exists

P
N
b � =

�i,j�"ΩNb

π�i,j�. (2.8)

where π�i,j� is the steady state probability for state �i, j�.
To calculate the new call dropping probability P

N
d , we define Ω

N
d as a set containing all

the states that can initiate call dropping transitions. A call dropping transition is a transition

that leads to a call dropping event. Assume that the system is currently in state �i, j�, then

a dropping event can occur only when both of the following two conditions are satisfied:

1) The system is currently full and the number of ongoing handoff calls is less than g

(which could be represented by i � j and i j n � g), and

2) a handoff call arrives and is admitted by dropping a new call. The system transits to
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state �i � 1, j � 1�.
Subsequently, all the states that satisfy the first condition can initiate call dropping

transitions and should be included in Ω
N
d , i.e., Ω

N
d � r�i, j�¶i � j and i j n � g, �i, j� " Ωx.

The new call dropping probability follows:

P
N
d �

rThe number of new calls being dropped per unit timexrThe number of incoming new calls per unit timex
�

λ2<�i,j�"ΩNd
π�i,j�

λ1
. (2.9)

Combining the blocking and dropping probabilities of new calls together produces the overall

loss probability of new calls:

P
N
L � P

N
b � P

N
d . (2.10)

Let us revisit the example presented at the beginning of this chapter and describe it with

the notations just developed: n � 15, λ1 � 2, λ2 � 5, and µ1 � µ2 � 1. When using the

original model, we have P
h
b � 0.016% and P

N
L � 1.1% while the thresholds for P

h
b and P

N
L

are 0.5% and 1%, respectively. Now the first guard channel model is employed to calculate

the performance measures through the composite model method. Set g � 12 will then lead

to P
h
b � 0.34% and P

N
L � 0.73%. Both of them are now below their thresholds. Furthermore,

the new call dropping probability P
N
d is reduced by 41% (from 0.79% to 0.46%).

Since the solution of the composite model would become intractable when the number of

channels n is large
1
, other methods that can handle large n’s are called for. In Section 2.3,

two approximate approaches will be introduced to effectively approximate new call blocking

probability (P
N
b ) and new call dropping probability (P

N
d )

2
. Then, a recursive method is

presented in Section 2.4 as a numerical alternative to the composite method. A comparison

among all available methods will be carried out in Section 2.5 where the performance of

numerical methods and approximate methods are compared to simulation results.

1
A desktop with Intel(R) i5 processor, 8GB ram, and Windows 7 32bit installed can calculate up to about

120 channels.
2
There is no need to “approximate” handoff call blocking probability, as it can be calculated exactly by

the Erlang B formula. The numerically stable method introduced in the Appendix can be used when the
number of channels is large.
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2.3 Approximate methods

2.3.1 Hierarchical model method

In the first approximate method, a two-level hierarchical model is constructed to estimate

the performance measures of the M1 model. Such methodology is well-known in the field of

performance modelling. Trivedi et al. (2003) chose this method to approximate the blocking

probability of a pure loss system with server break-downs and repairs [58]. With appropriate

modification this method can be also be applied to the M1 model.

The hierarchical model is composed of an upper level model which is an availability model,

and a sequence of lower-level performance models. The availability model is essentially one

that describes the stochastic evolution of the system capacity for new calls. Each state i of

the availability model is a possible value of system capacity for new calls and is assigned a

reward rate which is derived from the lower-level performance model with the same system

capacity. Recall that in the M1 model the system capacity for new calls, i, is equal to the

difference between n and the number of ongoing handoff calls in the system; therefore i can

take value in n � g, n � g � 1, ..., n. Since the performance measure of interest here is the

new call blocking probability, the reward rate assigned to state i of the availability model

should be the blocking probability derived from the performance model with capacity i. The

transition diagram of the capacity model, which accounts for the capacity evolution (for new

calls) in the M1 model, is presented in Figure 2.2.

 

 
  

λ2 
 

λ2 
 

λ2 
 

λ2 
 

λ2 
 

n-g n-g+1 n n-1 n-2 

gµ2 (g−1)µ2 
 

3µ2 
 

2µ2 
 

µ2 
 

Figure 2.2: Hierarchical model approach: state transition diagram of the capacity
model

This is a homogeneous skip-free continuous-time Markov chain. Its steady state proba-
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bilities are given by

πn�g �
����

n

=
k�n�g

g!

�n�k�!
� µ

k��n�g�
2

λ
k��n�g�
2

���
�1

πi � πn�g �

g!

�n�i�!
� µ

i��n�g�
2

λ
i��n�g�
2

, for i � n � g � 1, ..., n � 1, n.

(2.11)

Now, consider the performance model with system capacity i. The state transition dia-

gram is shown in Figure 2.3.
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Figure 2.3: Hierarchical model approach: state diagram of performance model when
system capacity is i

This is an M©M©i©i queueing system, and its steady state probabilities are given by

v0 � � i

=
k�0

ρ
k
1

k!
�
�1

vj � v0 �
ρ
j
1

j!
, for j � 1, 2, . . . i.

(2.12)

Then, the blocking probability for new calls of this queueing system, denoted by Pb�i�, can

be calculated by the Erlang B formula as:

Pb�i� � vi � ρ
i
1

i!
� i

=
k�0

ρ
k
1

k!
�
�1

. (2.13)

Now let us consider Pb�i� as the reward rate assigned to the state i of the capacity model.

The total new call blocking probability of the M1 model can be approximately computed as
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the expected reward rate when the system is at equilibrium and is given by

P
N
b �

n

=
i�n�g

Pb�i�πi

�

n

=
i�n�g

Ẑ̂̂̂
^̂̂̂̂
\
ρ
i
1

i!
� i

=
k�0

ρ
k
1

k!
�
�1

�

g!

�n�i�!
� u

i��n�g�
2

λ
i��n�g�
2

����
n

=
k�n�g

g!

�n�k�!
� u

k��n�g�
2

λ
k��n�g�
2

���
�1[_________]

.

(2.14)

Since we are essentially using Pb�i�πi to approximate the steady state probability of state

(i, i) in the composite model where i � n � g, n � g � 1, ...n, the dropping probability can

then be approximated according to Equation 2.9:

P
N
d �

λ2

λ1

n

=
i�n�g�1

Pb�i�πi. (2.15)

2.3.2 Effective capacity method

The method of effective capacity is a simple yet efficient approach for estimating the new

call blocking probability of our first guard channel model. The effective capacity (EC) can

be interpreted as the average number of channels available for new calls after the system

achieves equilibrium. Since handoff calls in the M1 model can occupy at most g channels

simultaneously, and can be modeled as an M©M©g©g loss system, it is fairly straightforward

to demonstrate that the effective capacity for new calls can be calculated as

EC � n � g � �average number of free channels in the M©M©g©g system�. (2.16)

The average number of free channels in M©M©g©g is given by g�Q where Q is the mean

queue length of the M©M©g©g queueing system:

Q �=g

i�0
iπi. (2.17)

where πi in the above equation is the steady state probabilities of state i in the M©M©g©g
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queueing system. Therefore, we have

EC � n � g � g �Q

� �n �Q� and rounded to the nearest integer.
(2.18)

Now the new call blocking probability (P
N
b ) of the M1 model can be approximated with the

loss system M©M©EC©EC:

P
N
b � EB�λ1

µ1
, EC�. (2.19)

This method cannot be utilized, though, to approximate dropping probability for new calls.

2.4 The recursive method

This section introduces a recursive technique that can be used to solve the steady state

probabilities of the M1 model. Herzog et al. [19] first employed such a technique to analyze

a wide class of queueing systems whose interarrival and service times were described by

multidimensional Markovian processes. Then, Alam and Mani [3] tested a similar recursive

technique to study the steady state probabilities of a multi-server, first-come, first-served

queueing system which alternates between two modes of system operation. In the following

sections, we first develop a recursive approach for the case when g � 1 of the M1 model, and

then extend it to the general cases when g % 1.

2.4.1 When g � 1

Figure 2.4 shows the state transition diagram of the M1 model when g � 1. The state space is

defined as Ωg�1 � r�i, j�¶i � n or n � 1, 0 & j & ix, where j denotes the number of new calls

in the system and i denotes the system capacity for new calls. P�i,j� represent the steady

state probability of state �i, j� (where i can be n � 1 or n); then, the balance equations for

this system can be written as

� When j � 0:

�λ1 � λ2�P�n,0� � µ1P�n,1� � µ2P�n�1,0�, (2.20)
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Figure 2.4: State transition diagram of the M1 model when g � 1

�λ1 � µ2�P�n�1,0� � µ1P�n�1,1� � λ2P�n,0�. (2.21)

� When j � 1, 2, ..., n � 2:

�λ1 � λ2 � jµ1�P�n,j� � λ1P�n,j�1�

� �j � 1�µ1P�n,j�1� � µ2P�n�1,j�, (2.22)

�λ1 � µ2 � jµ1�P�n�1,j� � λ1P�n�1,j�1�

� �j � 1�µ1P�n�1,j�1� � λ2P�n,j�. (2.23)

� When j � n � 1:

�λ1 � λ2 � �n � 1�µ1�P�n,n�1� � λ1P�n,n�2�

� nµ1P�n,n� � µ2P�n�1,n�1�, (2.24)

�µ2 � �n � 1�µ1�P�n�1,n�1� � λ2P�n,n�

� λ2P�n,n�1� � λ1P�n�1,n�2�. (2.25)

� When j � n:

�λ2 � nµ1�P�n,n� � λ1P�n,n�1�. (2.26)

The general idea of this recursive technique is to define a subset of state probabilities as

boundary points. Then the next step is to express the rest state probabilities in terms of

these boundary points and at last, to solve a reduced system of equations for these boundary
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points. In this case, we choose P�n,0� and P�n�1,0� as boundary points
3

and the procedures

are outlined as follows.

Step 1: model reduction

Write all remaining state probabilities in terms of the chosen boundary points, i.e

P�i,j� � C
1
�i,j�P�n,0� � C

2
�i,j�P�n�1,0� (2.27)

where �i, j� " Ωg�1. C
1
�i,j� and C

2
�i,j� are the unknown coefficients of the two boundary points

P�n,0� and P�n�1,0� for state �i, j�, respectively
4
. To successfully construct the reduced system

of two equations with two unknowns (that is, the two boundary points), we need to first

determine all the coefficients C
r
�i,j� where r " r1, 2x. This step establish the recursive relations

of C
r
�i,j�’s by way of Equations 2.20 - 2.26.

� Initial values I: Because the two boundary points can also be expressed in term of

themselves as:

P�n,0� � 1 � P�n,0� � 0 � P�n�1,0� (2.28)

and

P�n�1,0� � 0 � P�n,0� � 1 � P�n�1,0�, (2.29)

we obtain the coefficients when j � 0 as:

C
1
�n,0� � 1, C

2
�n,0� � 0, C

1
�n�1,0� � 0, C

2
�n�1,0� � 1. (2.30)

� Initial values II:

3
The choice of boundary points is not unique. For example, using P�n,n� and P�n�1,n�1� as boundary

points also works, but will lead to slightly different recursive formulae than those that are presented in this
section.

4
More specifically, the superscript 1 corresponds to the first boundary point P�n,0� and the superscript 2

corresponds to the second boundary point P�n�1,0�
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– when i � n, according to Equation 2.20, there follows

P�n,1� �
λ1 � λ2

µ1
P�n,0� �

µ2

µ1
P�n�1,0�, (2.31)

from which the coefficients can be extracted:

C
1
�n,1� �

λ1 � λ2

µ1
, C

2
�n,1� � �

µ2

µ1
. (2.32)

– When i � n � 1, so that now according to Equation 2.21, we have

P�n�1,1� � �
λ2

µ1
P�n,0� �

λ1 � µ2

µ1
P�n�1,0�, (2.33)

from which we can obtain the following the coefficients:

C
1
�n�1,1� � �

λ2

µ1
, C

2
�n�1,1� �

λ1 � µ2

µ1
. (2.34)

� When j " r1, 2, ..., n � 1x and i � n, by Equation 2.22 and 2.24

P�n,j�1� �
�λ1 � λ2 � jµ1��j � 1�µ1

P�n,j�

�
λ1�j � 1�µ1

P�n,j�1� �
µ2�j � 1�µ1

P�n�1,j�. (2.35)

By rewriting all the state probabilities in the above equation in terms of the boundary

points with corresponding coefficients, we have

C
1
�n,j�1�P�n,0� � C

2
�n,j�1�P�n�1,0�

�
�λ1 � λ2 � jµ1��j � 1�µ1

�C1
�n,j�P�n,0� � C

2
�n,j�P�n�1,0��

�
λ1�j � 1�µ1

�C1
�n,j�1�P�n,0� � C

2
�n,j�1�P�n�1,0��

�
µ2�j � 1�µ1

�C1
�n�1,j�P�n,0� � C

2
�n�1,j�P�n�1,0��.

(2.36)

Consequently, it is not difficult to derive the following recursive relationship by equating
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the coefficients of like terms:

C
r
�n,j�1� �

�λ1 � λ2 � jµ1��j � 1�µ1

C
r
�n,j�

�
λ1�j � 1�µ1

C
r
�n,j�1� �

µ2�j � 1�µ1

C
r
�n�1,j�

(2.37)

where r � 1 or 2.

� When j " r1, 2, ..., n�2x and i � n�1, by Equation 2.23, the following situation exists:

P�n�1,j�1� �
�λ1 � µ2 � jµ1��j � 1�µ1

P�n�1,j�

�
λ1�j � 1�µ1

P�n�1,j�1� �
λ2�j � 1�µ1

P�n,j�. (2.38)

Again, let us rewrite all the state probabilities in the above equation in terms of the

boundary points with their corresponding coefficients:

C
1
�n�1,j�1�P�n,0� � C

2
�n�1,j�1�P�n�1,0�

�
�λ1 � µ2 � jµ1��j � 1�µ1

�C1
�n�1,j�P�n,0� � C

2
�n�1,j�P�n�1,0��

�
λ1�j � 1�µ1

�C1
�n�1,j�1�P�n,0� � C

2
�n�1,j�1�P�n�1,0��

�
λ2�j � 1�µ1

�C1
�n,j�P�n,0� � C

2
�n,j�P�n�1,0��,

(2.39)

and it is followed by a recursive relationship:

C
r
�n�1,j�1� �

�λ1 � µ2 � jµ1��j � 1�µ1

C
r
�n�1,j�

�
λ1�j � 1�µ1

C
r
�n�1,j�1� �

λ2�j � 1�µ1

C
r
�n,j�

(2.40)

where r � 1 or 2.

� Using the recursive relationship presented in Equations 2.37 and 2.40 together with the

initial values listed in Equations 2.32 and 2.34, one may determine all the unknown

coefficients C
r
�i,j�, where r � 1, 2 and �i, j� " Ωg�1.
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Step 2: compute steady state probabilities

In this step we construct and solve a system of two equations of unknown boundary points

P�n,0� and P�n�1,0�.

� The first equation: the first equation can be obtained by rewriting Equation 2.26 in

terms of the two boundary points and combining like terms as follows:

�λ2 � nµ1�P�n,n� � λ1P�n,n�1�

��λ2 � nµ1��C1
�n,n�P�n,0� � C

2
�n,n�P�n�1,0�� � λ1�C1

�n,n�1�P�n,0� � C
2
�n,n�1�P�n�1,0��

���λ2 � nµ1�C1
�n,n� � λ1C

1
�n,n�1��P�n,0� � ���λ2 � nµ1�C2

�n,n� � λ1C
2
�n,n�1��P�n�1,0�

�P�n,0� �
��λ2 � nµ1�C2

�n,n� � λ1C
2
�n,n�1��λ2 � nµ1�C1

�n,n� � λ1C
1
�n,n�1�

P�n�1,0�. (2.41)

� The second equation: The second equation represents the normalizing condition which

demands that all steady state probabilities should sum up to 1:

=
�i,j�"Ωg�1

P�i,j� � 1

� =
�i,j�"Ωg�1

�C1
�i,j�P�n,0� � C

2
�i,j�P�n�1,0�� � 1

�P�n,0� � =
�i,j�"Ωg�1

C
1
�i,j� � P�n�1,0� � =

�i,j�"Ωg�1

C
2
�i,j� � 1. (2.42)

� The solution: By solving Equation 2.41 and 2.42 simultaneously, we have

P�n,0� �
1

<�i,j�"Ωg�1
C1

�i,j� � h �<�i,j�"Ωg�1
C2

�i,j�

(2.43)

where

h �
�λ2 � nµ1�C1

�n,n� � λ1C
1
�n,n�1�

��λ2 � nµ1�C2
�n,n� � λ1C

2
�n,n�1�

, (2.44)

and then P�n�1,0� can be calculated using its relationship with P�n,0� as follows:

P�n�1,0� � hP�n,0�. (2.45)
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Step 3: compute performance measures

After the boundary points are obtained, all the remaining state probabilities can also be

calculated by substituting the coefficients and the boundary points into Equation 2.27. The

performance measures, (i.e., handoff call blocking probability, new call blocking probability

and new call dropping probability) then can be calculated by the formulae presented in

Section 2.2.2.

2.4.2 Solution verification with some special cases

In order to gain a further insight into this system, as well as to check the recursive solutions

developed in the last section, we now consider four special cases.

In case I, we set λ2 � µ2 � 0 and let the model interpretation for this case be that handoff

calls are completely removed from the system, and the new calls are the only kind of traffic

that can still access the system. Since there is no higher priority traffic to compete with, new

calls can use all n channels, and our system reduces to an M©M©n©n loss system. Now, let

us re-examine the formulae derived in the last section by setting λ2 � 0 and µ2 � 0. Note

that P�n,0� and P�n�1,0� remains as the boundary points. And, the condition must exist that

P�n�1,0� � 0 for j � 0, 1, ..., n � 1 because when there is no handoff call, the system capacity

for new calls should always be n.

� Initial values: Set λ2 � 0 and µ2 � 0 in Equations 2.32 and 2.34, and there follows

C
1
�n,1� �

λ1

µ1
, (2.46)

C
2
�n,1� � 0, (2.47)

C
1
�n�1,1� � 0, and (2.48)

C
2
�n�1,1� �

λ1

µ1
. (2.49)

� Recursive relations:

– When j � 1, 2, ..., n � 1 and i � n, substitute zero for λ2 and µ2 in Equation 2.37
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to produce

C
r
�n,j�1� �

�λ1 � jµ1��j � 1�µ1

C
r
�n,j�

�
λ1�j � 1�µ1

C
r
�n,j�1� � 0, r � 1, 2.

(2.50)

Since C
2
�n,0� (refer to Equation 2.30) and C

2
�n,1� are both equal to zero, it is easy to

see that all C
2
�n,j�’s are zero. Now, by taking a closer look at Equation 2.50, one

may use it to calculate the first few values of C
1
�n,j�:

C
1
�n,0� � 1 �refer to Equation 2.30� (2.51)

C
1
�n,1� �

λ1

µ1
(2.52)

C
1
�n,2� �

λ1 � µ1

2µ1
�
λ1

µ1
�

λ1

2µ1
� 1 �

λ
2
1

2µ2
1

� �λ1

µ1

2® 2! (2.53)

C
1
�n,3� �

λ1 � µ1

2µ1
�
λ

2
1

2µ2
1

�
λ1

2µ1
�
λ1

µ1
�

λ
3
1

6µ3
1

� �λ1

µ1

3® 3!. (2.54)

Next, assume that

C
1
�n,j� � �λ1

µ1

j® j!, for j � 0, 1, 2, ..., n, (2.55)

and prove it through mathematical induction on j.

Proof. Assume that

C
1
�n,j�1� � �λ1

µ1

j�1®�j � 1�!,where j � 1, 2, ..., n, (2.56)

is true, then by Equation 2.50, the calculation is

C
1
�n,j� �

λ1 � µ1

jµ1
�

λ
j�1
1�j � 1�!µj�1

1

�
λ1

jµ1
�

λ
j�2
1�j � 1�!µj�2

1

� �λ1

µ1

j® j!. (2.57)
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Therefore, Equation 2.55 holds for j � 0, 1, 2, ..., n.

– when j � 1, 2, ..., n � 1 and i � n � 1, by setting λ2 � 0 and µ2 � 0 in Equation

2.40, we obtain

C
r
�n�1,j�1� �

�λ1 � jµ1��j � 1�µ1

C
r
�n�1,j�

�
λ1�j � 1�µ1

C
r
�n�1,j�1� � 0, r � 1, 2.

(2.58)

Again, all C
1
�n�1,j�’s are zero because C

1
�n�1,0� and C

1
�n�1,1� are both zero. Combining

this situation with the fact that P�n�1,0� � 0, it is not difficult to see from the

following equation:

P�n�1,j� � C
1
�n�1,j�P�n,0� � C

2
�n�1,j�P�n�1,0� (2.59)

that P�n�1,j�’s (j � 0, 1, 2..., n � 1) are all equal to zero.

� Solutions: Since P�n�1,0� � 0, we have only one unknown variable P�n,0�, and it is ready

to be determined by the normalizing condition as follows:

=
�i,j�"Ωg�1

P�i,j� � 1

� =
�i,j�"Ωg�1

�C1
�i,j�P�n,0� � C

2
�i,j�P�n�1,0�� � 1

� =
�i,j�"Ωg�1

C
1
�i,j�P�n,0� � 1 �because P�n�1,0� � 0�

�

n

=
j�0

C
1
�n,j�P�n,0� � 1 �because C

1
�n�1,j� � 0, j � 1, 2, ..., n � 1�

�P�n,0�

n

=
j�0

C
1
�n,j� � 1

�P�n,0� � � n

=
j�0

��λ1

µ1

j® j!���1 �by Equation 2.55�. (2.60)
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Therefore, all the remaining state probabilities can be obtained:

P�i,j� �

~��������������
P�n,0� � �λ1µ1	j j!, when i � n;

0, when i � n � 1.

(2.61)

This result confirms the intuitive interpretation made at the beginning of this section:

when λ2 � 0 and µ2 � 0, the system is an M©M©n©n loss system.

Now let us define

ρ1 � λ1©µ1, ρ2 � λ2©µ2, α � µ1©µ2. (2.62)

To reparametrize the recursive formulae using α, ρ1 and ρ2, we divide the original parameters

(that is, λ1, λ2, µ1 and µ2) by µ2 and establish the rules of correspondence for parameter

conversion in Table 2.1:

Table 2.1: Parameter conversion table

Previous Parameter New Parameter

λ1 � αρ1

λ2 � ρ2

µ1 � α

µ2 � 1

� Now, the initial values in (2.30), (2.32) and (2.34) can be written in terms of the new

parameters as

C
1
�n,0� � 1 C

2
�n,0� � 0 C

1
�n,1� �

αρ1 � ρ2

α C
2
�n,1� � �

1
α

C
1
�n�1,0� � 0 C

2
�n�1,0� � 1 C

1
�n�1,1� � �

ρ2

α C
2
�n�1,1� �

αρ1 � 1
α . (2.63)

� When j � 1, 2, ..., n � 2, the recursive relationships among coefficients (Equation 2.37
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and 2.40) can also be expressed with the new set of parameters as

C
r
�n,j�1� �

�αρ1 � ρ2 � jα��j � 1�α C
r
�n,j�

�
ρ1�j � 1�Cr

�n,j�1� �
1�j � 1�αCr

�n�1,j�

(2.64)

and

C
r
�n�1,j�1� �

�αρ1 � 1 � jα��j � 1�α C
r
�n�1,j�

�
ρ1�j � 1�Cr

�n�1,j�1� �
ρ2�j � 1�αCr

�n,j�..

(2.65)

� Then the system of two equations for solving the two boundary points (as displayed in

(2.41) and (2.42)) are apparent:

~��������������
P�n,0� �

��ρ2�nα�C
2
�n,n��αρ1C

2
�n,n�1�

�ρ2�nα�C
1
�n,n��αρ1C

1
�n,n�1�

P�n�1,0�

P�n,0� �<�i,j�"Ωg�1
C

1
�i,j� � P�n�1,0� �<�i,j�"Ωg�1

C
2
�i,j� � 1

, (2.66)

and the expression of P�n,0� can be obtained by

P�n,0� �
1

<�i,j�"Ωg�1
C1

�i,j� � h �<�i,j�"Ωg�1
C2

�i,j�

(2.67)

where

h �
�ρ2 � nα�C1

�n,n� � αρ1C
1
�n,n�1�

��ρ2 � nα�C2
�n,n� � αρ1C

2
�n,n�1�

. (2.68)

In case II, let α approach infinity (�). The initial values in (2.63) become

lim
α��

C
1
�n,0� � 1 lim

α��
C

2
�n,0� � 0 lim

α��
C

1
�n,1� � ρ1 lim

α��
C

2
�n,1� � 0

lim
α��

C
1
�n�1,0� � 0 lim

α��
C

2
�n�1,0� � 1 lim

α��
C

1
�n�1,1� � 0 lim

α��
C

2
�n�1,1� � ρ1. (2.69)
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Equations 2.64 and 2.65 become the next step:

lim
α��

C
r
�n,j�1� �

�ρ1 � j��j � 1� lim
α��

C
r
�n,j�

�
ρ1�j � 1� lim

α��
C
r
�n,j�1� � 0,

(2.70)

and

lim
α��

C
r
�n�1,j�1� �

�ρ1 � j��j � 1� lim
α��

C
r
�n�1,j�

�
ρ1�j � 1� lim

α��
C
r
�n�1,j�1� � 0.

(2.71)

Next, let us use mathematical induction to identify and prove patterns of the coefficients as

α approaches �.

Based on the initial values listed in Equation 2.69, we are able to calculate the first few

coefficients through Equation 2.70 and 2.71:

� When j � 1, we have

lim
α��

C
1
�n,2� �

ρ1 � 1

2
ρ1 �

ρ1

1 � 1
� 1 �

ρ
2
1

2
, (2.72)

lim
α��

C
2
�n,2� � 0, (2.73)

lim
α��

C
1
�n�1,2� � 0, (2.74)

lim
α��

C
2
�n�1,2� �

ρ
2
1

2
. (2.75)

� When j � 2, we have

lim
α��

C
1
�n,3� �

ρ1 � 1

3
�

1

2
ρ

2
1 �

ρ1

3
� ρ1 �

ρ
3
1

3!
, (2.76)

lim
α��

C
2
�n,3� � 0, (2.77)

lim
α��

C
1
�n�1,3� � 0, (2.78)

lim
α��

C
2
�n�1,3� �

ρ
3
1

3!
. (2.79)
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Since the first few values of limα��C
1
�n�1,j� and limα��C

2
�n,j� are all zeroes, it is certain that

lim
α��

C
2
�n,j�1� � 0, for all j � 0, 1, 2, 3, ..., n � 1, (2.80)

lim
α��

C
1
�n�1,j�1� � 0, for all j � 0, 1, 2, 3, ..., n � 2, (2.81)

Next, let us make the following conjectures about the coefficients C
1
�n,j�1� and C

2
�n�1,j�1�:

lim
α��

C
1
�n,j�1� �

ρ
j�1
1�j � 1�! , j � 0, 1, 2, ..., n � 1, and (2.82)

lim
α��

C
2
�n�1,j�1� �

ρ
j�1
1�j � 1�! , j � 0, 1, 2, 3, ..., n � 2, (2.83)

and prove them with mathematical induction.

Proof. Assume that

lim
α��

C
1
�n,j� �

ρ
j
1�j�! (2.84)

and

lim
α��

C
1
�n,j�1� �

ρ
j�1
1�j � 1�! (2.85)

hold for j � 0, 1, 2, ..., n � 1. Then we have

lim
α��

C
1
�n,j�1� �

ρ1 � j

j � 1
�
ρ
j
1�j�! � ρ1

j � 1
�

ρ
j�1
1�j � 1�!

�
ρ
j�1
1�j � 1�! , (2.86)

which proves Equation 2.82. Similarly, Equation 2.83 can also be proven without difficulty.

Then from Equation 2.66, the boundary points are obtained as α approaches infinity:

lim
α��

P�n,0� �
��ρ2 � nα� limα��C

2
�n,n� � αρ1 limα��C

2
�n,n�1��ρ2 � nα� limα��C

1
�n,n� � αρ1 limα��C

1
�n,n�1�

lim
α��

P�n�1,0�

�
��ρ2 � nα� � 0 � αρ1 � 0

�ρ2 � nα�ρn1n!
� αρ1

ρn�11

�n�1�!

lim
α��

P�n�1,0�
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� 0. (2.87)

Then limα�� P�n�1,0� can be directly calculated as follows:

=
�i,j�"Ωg�1

lim
α��

P�i,j� � 1 (2.88)

� =
�i,j�"Ωg�1

lim
α��

�C1
�i,j�P�n,0� � C

2
�i,j�P�n�1,0�� � 1

� � lim
α��

P�n�1,0�	 n�1

=
j�0

lim
α��

C
2
�n�1,j� � 1

(because lim
α��

P�n,0� and all lim
α��

C
1
�n�1,j�’s are zeroes)

� lim
α��

P�n�1,0� � �n�1

=
j�0

��λ1

µ1

j® j!��

�1

. (2.89)

Since limα�� P�n,0� and all limα��C
2
�n,g� are zeroes, we have all limα�� P�n,j�’s are also zeroes.

All the remaining non zero steady state probabilities as α approaches infinity are

lim
α��

P�n�1,j� �
ρ
j
1

j!
� �n�1

=
j�0

��λ1

µ1

j® j!��

�1

, j � 1, 2, ...n � 1, (2.90)

which indicates that the system is reduced to anM©M©n�1©n�1 loss system as α approaches

infinity. This conclusion is expected, since when α approaches infinity the mean service time

for handoff calls becomes infinitely long by comparison to that of new calls. As a result, the

probability of the system having one ongoing handoff call is approaching 1, and it is almost

certain that the capacity for new calls is n � 1.

Remark 1 We have also noticed another pattern of the coefficients, that is:

C
r
�n,j� � C

r
�n�1,j� �

ρ
j
1

j!
, r � 1, 2 and j � 0, 1, 2, ..., n � 1. (2.91)

The proof can be found in the Appendix.

In case III, we treat ρ1 � 0 and (for simplicity) set α � 1. The initial values and the

recursive relations for the coefficients are re-established, and patterns of coefficients are found
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to facilitate in solving for the steady state probabilities.

By setting α � 1 and ρ1 � 0 in (2.63) we obtain the initial values for this case:

C
1
�n,0� � 1 C

2
�n,0� � 0 C

1
�n,1� � ρ2 C

2
�n,1� � �1

C
1
�n�1,0� � 0 C

2
�n�1,0� � 1 C

1
�n�1,1� � �ρ2 C

2
�n�1,1� � 1. (2.92)

The recursive relations for coefficients can also be established by setting α � 1 and ρ1 � 0 in

Equation 2.64 and 2.65. For j � 1, 2, ..., n � 2 We have

C
r
�n,j�1� �

�ρ2 � j��j � 1� Cr
�n,j� �

1

j � 1
C
r
�n�1,j� (2.93)

and

C
r
�n�1,j�1� � C

r
�n�1,j� �

ρ2

j � 1
C
r
�n,j�. (2.94)

Equation 2.66 - 2.68 can also be reduced to

P�n�1,0� � hP�n,0� (2.95)

P�n,0� �
1

<�i,j�"Ωg�1
C1

�i,j� � h<�i,j�"Ωg�1
C2

�i,j�

(2.96)

where

h �
�ρ2 � nα�C1

�n,n� � αρ1C
1
�n,n�1�

��ρ2 � nα�C2
�n,n� � αρ1C

2
�n,n�1�

� �
C

1
�n,n�

C2
�n,n�

. (2.97)

The patterns of coefficients that are useful in explicitly calculating all the coefficients are

established as follows:

� based on the initial values listed in (2.92), the calculation is

C
1
�n,1�

C2
�n,1�

� �ρ2 and
C

1
�n�1,1�

C2
�n�1,1�

� �ρ2

� C
1
�i,1� � �ρ2C

2
�i,1�, i � n � 1, or n. (2.98)
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� When j � 1, by Equations 2.93 and 2.94 we have

C
1
�n,2� �

ρ2 � 1

2
ρ2 �

1

2
��ρ2� � 1

2
ρ

2
2 � ρ2 (2.99)

C
2
�n,2� �

ρ2 � 1

2
� ��1� � 1

2
� �1� � �1

2
ρ2 � 1

�

C
1
�n,2�

C2
�n,2�

� �ρ2 (2.100)

and

C
1
�n�1,2� � C

1
�n�1,1� �

ρ2

2
C

1
�n,1� � �ρ2 �

ρ
2
2

2
� ρ2 (2.101)

C
2
�n�1,2� � C

2
�n�1,1� �

ρ2

2
C

2
�n,1� � 1 �

ρ2

2
� ��1�

�

C
1
�n�1,2�

C2
�n�1,2�

� �ρ2. (2.102)

Again, there follows

C
1
�i,2� � �ρ2C

2
�i,2�, i � n � 1, n. (2.103)

� Assume that C
1
�i,j�1� � �ρ2C

2
�i,j�1� for i � n � 1 or n, and j � 1, 2, 3, ..., n, then

C
1
�n,j� �

ρ2 � j

j � 1
C

1
�n,j�1� �

1

j � 1
C

1
�n�1,j�1�

�
ρ2 � j

j � 1
��ρ2C

2
�n,j�1�� � 1

j � 1
��ρ2C

2
�n�1,j�1��

� �ρ2 �ρ2 � j

j � 1
C

2
�n,j�1� �

1

j � 1
C

2
�n�1,j�1�


(2.93)
� �ρ2C

2
�n,j�, j � 2, 3, ..., n (2.104)

and

C
1
�n�1,j� � C

1
�n�1,j�1� �

ρ2

j � 1
C

1
�n,j�1�

� �ρ2C
2
�n�1,j�1� �

ρ2

j � 1
��ρ2C

2
�n,j�1��

� �ρ2 �C2
�n�1,j�1� �

ρ2

j � 1
C

2
�n,j�1�


(2.94)
� �ρ2C

2
�n�1,j�, j � 1, 2, 3, ..., n � 1. (2.105)
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Therefore, we have

C
1
�n,j� � �ρ2C

2
�n,j�, for all j � 1, 2, ..., n, (2.106)

and

C
1
�n�1,j� � �ρ2C

2
�n�1,j�, for all j � 1, 2, 3, ..., n � 1. (2.107)

To summarize, the following relationship between C
1
�i,j� and C

2
�i,j� has been observed

and proven:

C
1
�i,j� � �ρ2C

2
�i,j�, i � n � 1 or n, and j � 1, 2, ..., i. (2.108)

Now, using Equation 2.108 together with the fact that

h � �
C

1
�n,n�

C2
�n,n�

� ρ2, (2.109)

Equation 2.95 can be simplified and the boundary points P�n�1,0� and P�n,0� can be obtained

as

P�n,0� �
1

<�i,j�"Ωg�1
C1

�i,j� � h<�i,j�"Ωg�1
C2

�i,j�

(2.110)

�
1

C1
�n,0� � C

1
�n�1,0� �<jj0C

1
�i,j� � h�C2

�n,0� � C
2
�n�1,0�� � h<jj0C

2
�i,j�

�
1

1 � 0 �<jj0C
1
�i,j� � ρ2�0 � 1� � ρ2<jj0C

2
�i,j�

�
1

1 �<jj0C
1
�i,j� � ρ2 �<jj0��ρ2C

2
�i,j��

�
1

1 �<jj0C
1
�i,j� � ρ2 �<jj0C

1
�i,j�

�
1

1 � ρ2
, (2.111)

and

P�n�1,0� � hP�n,0� �
ρ2

1 � ρ2
. (2.112)
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Therefore, the remaining steady state probabilities are

P�i,j� � C
1
�i,j�P�n,0� � C

2
�i,j�P�n�1,0�

� C
1
�i,j�P�n,0� � C

2
�i,j�ρ2P�n,0�

� P�n,0��C1
�i,j� � ρ2C

2
�i,j��

� 0, for j � 1, 2, ..., i. (2.113)

Therefore, only the two boundary points P�n,0� and P�n�1,0� are non zero. By further examin-

ing their values, one discover that they match the limiting distribution of an M©M©1©1 loss

system. This result can be deduced readily from the model settings: ρ1 � 0 implies λ1 � 0,

which means that the incoming stream of new calls is shut down, and only handoff calls can

access the system. As a result, the system reduces to an M©M©1©1 loss system serving only

handoff calls.

In the last case, case IV, keep α � 1 but set ρ2 � 0; this will reduce the system to an

M©M©n©n loss system because in this case, the incoming stream of handoff is shut down;

only new calls can access the system. The settings in case IV describe the same situation

as in case I by a different parametrization; and it is expected to produce the same results.

This case can also be verified by examining the steady state probabilities with the recursive

method.

By setting α � 1 and ρ2 � 0 in Equation 2.63, we obtain the initial values of the coefficients

for case IV:

C
1
�n,0� � 1 C

2
�n,0� � 0 C

1
�n,1� � ρ1 C

2
�n,1� � �1

C
1
�n�1,0� � 0 C

2
�n�1,0� � 1 C

1
�n�1,1� � 0 C

2
�n�1,1� � ρ1 � 1. (2.114)

The recursive relations for coefficients can also be established by setting α � 1 and ρ2 � 0 in

Equations 2.64 and 2.65. This setting produces

C
r
�n,j�1� �

ρ1 � j

j � 1
C
r
�n,j�

�
ρ1

j � 1
C
r
�n,j�1� �

1

j � 1
C
r
�n�1,j�

(2.115)
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and

C
r
�n�1,j�1� �

ρ1 � 1 � j

j � 1
C
r
�n�1,j�

�
ρ1

j � 1
C
r
�n�1,j�1�.

(2.116)

Again, we need to find useful patterns among coefficients in order to explicitly calculate

all the coefficients:

� When r � 1:

1. When the capacity for new calls is n�1, since C
1
�n�1,0� � C

1
�n�1,1� � 0, from (2.116)

it is easy to see that

C
1
�n�1,j� � 0, for all j � 1, 2, ..., n � 1. (2.117)

2. When the capacity for new calls is n, recall from initial values listed in (2.114)

and Equation 2.116 that

C
1
�n,0� � 1

C
1
�n,1� � ρ1

C
1
�n,2� �

ρ
2
1

2
.

By mathematical induction, we can prove that for j � 0, 1, 2, ..., n,

C
1
�n,j� �

ρ
j
1

j!
. (2.118)

� When r � 2:

1. When the capacity for new call is n� 1, by initial values listed in (2.114) together

with Equation 2.116, we have:

C
2
�n�1,0� � 1

C
2
�n�1,1� � ρ1 � 1

C
2
�n�1,2� �

ρ1 � 1 � 1

2
C

2
�n�1,1� �

ρ1

2
C

2
�n�1,0�
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�
1

2
ρ

2
1 � ρ1 � 1,

and again by mathematical induction, we can prove that for j � 0, 1, 2, ..., n � 1,

C
2
�n�1,j� �

j

=
k�0

ρ
k
1

k!
. (2.119)

2. When the capacity for new calls is n, using the equality in Equation 2.91, we have

for j � 0, 1, 2, ..., n � 1 that

C
2
�n,j� �

ρ
j
1

j!
� C

2
�n�1,j� � �

j�1

=
k�0

ρ
k
1

k!
. (2.120)

Now, the boundary points P�n�1,0� and P�n,0� are ready to be derived. Because

h �
�ρ2 � nα�C1

�n,n� � αρ1C
1
�n,n�1�

��ρ2 � nα�C2
�n,n� � αρ1C

2
�n,n�1�

by (2.44)

(2.121)

�
nC

1
�n,n� � ρ1C

1
�n,n�1�

�nC2
�n,n� � ρ1C

2
�n,n�1�

(because ρ2 � 0, α � 1�

�
nρ

n
1

n!
� ρ1

ρ
n�1
1

�n�1�!

�n ��<n�1

k�0
ρk1
k!
	 � ρ1 ��<n�2

k�0
ρk1
k!
	

� 0, (2.122)

we have

P�n�1,0� � hP�n,0� by (2.45)

� 0, (2.123)

and

P�n,0� �
1

<�i,j�"Ωg�1
C1

�i,j� � h �<�i,j�"Ωg�1
C2

�i,j�

by (2.43)
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�
1

<�i,j�"Ωg�1
C1

�i,j�

�
1

<n

j�0
ρ
j
1

j!

.

Because P�n,0� only depends on n, all the js in the above expression are replaced by k to

avoid confusion. Then P�n,0� can be written as:

P�n,0� �
1

<n

k�0
ρk1
k!

. (2.124)

The remaining steady state probabilities are as follows:

P�n,j� � C
1
�n,j�P�n,0� � C

2
�n,j�P�n�1,0�

�

ρ
j
1

j!

<n

k�0
ρk1
k!

, for j � 1, 2, ..., n (2.125)

P�n�1,j� � C
1
�n�1,j�P�n,0� � C

2
�n�1,j�P�n�1,0�

� 0, for j � 1, 2, ..., n � 1, (2.126)

which indicates that the system in case IV is indeed an M©M©n©n loss system that serves

only new calls.

2.4.3 When g % 1

This section extends the recursive solution from g � 1 to the more general case g % 1. To

facilitate the transition from g � 1 to g % 1, let us divide all the state probabilities into 5

groups as shown in Figure 2.5. Then, the balance equations can be established below.

� Boundary points: P�i,0� where i � n � g, n � g � 1, ...n,

– When i � n:

�λ1 � λ2�P�n,0� � µ1P�n,1� � µ2P�n�1,0�. (2.127)
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Figure 2.5: Grouping of states of the M1 model when g % 1.

– When i � n � g:

�λ1 � gµ2�P�n�g,0� � µ1P�n�g,1� � λ.2P�n�g�1,0� (2.128)

– When n � g $ i $ n:

�λ1 � λ2 � �n � i�µ2�P�i,0� � µ1P�i,1� � λ2P�i�1,0� � �n � i � 1�µ2P�i�1,0�. (2.129)

� Top points: P�n,j� where j � 1, 2, ..., n � 1,

�λ1 � λ2 � jµ1�P�n,j� � λ1P�n,j�1� � µ2P�n�1,j� � �j � 1�µ1P�n,j�1�. (2.130)

� Bottom points: P�n�g,j� where j � 1, 2, ...n � g � 1,

�gµ2 � λ1 � jµ1�P�n�g,j� � λ1P�n�g,j�1� � λ2P�n�g�1,j� � �j � 1�µ1P�n�g,j�1�. (2.131)

56



� Diagonal points: P�i,j� where i � j and i � n � g, n � g � 1, ..., n,

– When i � j � n:

�nµ1 � λ2�P�n,n� � λ1P�n,n�1�. (2.132)

– When i � j � n � g:

�gµ2 � �n � g�µ1�P�n�g,n�g� � λ1P�n�g,n�g�1� � λ2�P�n�g�1,n�g� � P�n�g�1,n�g�1��.
(2.133)

– When n � g $ i � j $ n:

�λ2 � iµ1 � �n � i�µ2�P�i,i� � λ1P�i,i�1� � λ2�P�i�1,i� � P�i�1,i�1��. (2.134)

� Inner points: P�i,j� where i � n � g � 1, n � g � 2, .., n � 1 and 0 $ j $ i,

�λ1�λ2�jµ1��n�i�µ2�P�i,j� � λ1P�i,j�1��λ2P�i�1,j���j�1�µ1P�i,j�1���n�i�1�µ2P�i�1,j�.

(2.135)

By defining P�i,j� � 0 whenever �i, j� is not a valid state (i.e., �i, j� � Ω), one finds that

some of the above balance equations can be combined together and as a result, the 5 groups

of steady state probabilities can also be combined accordingly into 3 sets:

� Set A: Boundary points (with i � n� g� 1, ..., n) � top points � inner points. The fol-

lowing balance equation is obtained by combining (2.127), (2.129), (2.130) and (2.135)

together.

�λ1�λ2�jµ1��n�i�µ2�P�i,j� � λ1P�i,j�1��λ2P�i�1,j���j�1�µ1P�i,j�1���n�i�1�µ2P�i�1,j�

(2.136)

for j � 0, 1, 2, ..., i � 1.

� Set B: Boundary points (with i � n � g) � bottom points. The following balance

equation is obtained by combining (2.128) and (2.131) together.

�λ1 � gµ2 � jµ1�P�n�g,j� � λ1P�n�g,j�1� � λ2P�n�g�1,j� � �j � 1�µ1P�n�g,j�1� (2.137)
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for j � 0, 1, 2, ..., n � g � 1.

� Set C: all the diagonal points.

– When i � n � g � 1, n � g � 2, ..., n (by combining (2.132) and (2.134) together):

�λ2 � iµ1 � �n � i�µ2�P�i,i� � λ1P�i,i�1� � λ2�P�i�1,i� � P�i�1,i�1��. (2.138)

– When i � n � g, refer to Equation 2.133.

Since the steady state probabilities of states �n, 0�, �n�1, 0�, ... and �n� g, 0� are serving

as boundary points, by defining C
r
�i,j� as the coefficient of the steady state probability of the

boundary point �r, 0�, that is, P�r,0�, all the remaining steady state probabilities could be

written in terms of the boundary points as:

P�i,j� � C
n
�i,j�P�n,0� � C

n�1
�i,j�P�n�1,0� � ... � C

n�g

�i,j�P�n�g,0�, (2.139)

and all the coefficients C
r
�i,j�, where r � n � g, n � g � 1, ..., n and �i, j� " Ω, still need to be

determined. The recursive formulae for P�i,j� can be established first using Equation 2.136

and 2.137:

P�i,j�1� �
�λ1 � λ2 � jµ1 � �n � i�µ2��j � 1�µ1

P�i,j� �
λ1�j � 1�µ1

P�i,j�1� �
λ2�j � 1�µ1

P�i�1,j�

�
�n � i � 1�µ2�j � 1�µ1

P�i�1,j� (2.140)

for i � n � g � 1, n � g � 2, ..., n and j � 0, 1, 2, ..., i � 1, and

P�n�g,j�1� �
�λ1 � gµ2 � jµ1��j � 1�µ1

P�n�g,j� �
λ1�j � 1�µ1

P�n�g,j�1� �
λ2�j � 1�µ1

P�n�g�1,j� (2.141)

for j � 0, 1, 2, ..., n � g � 1.

The recursive formulae for the coefficients can then be obtained:
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� For i � n � g � 1, n � g � 2, ..., n and j � 0, 1, 2, ..., i � 1, by Equation 2.140, we have

C
r
�i,j�1� �

�λ1 � λ2 � jµ1 � �n � i�µ2��j � 1�µ1

C
r
�i,j� �

λ1�j � 1�µ1

C
r
�i,j�1� �

λ2�j � 1�µ1

C
r
�i�1,j�

�
�n � i � 1�µ2�j � 1�µ1

C
r
�i�1,j�. (2.142)

� For i � n � g and j � 0, 1, 2, ..., n � g � 1, by Equation 2.141, we have

C
r
�n�g,j�1� �

�λ1 � gµ2 � jµ1��j � 1�µ1

C
r
�n�g,j� �

λ1�j � 1�µ1

C
r
�n�g,j�1� �

λ2�j � 1�µ1

C
r
�n�g�1,j�.

(2.143)

� In order to calculate all the coefficients, start with the initial values where j � 0 or 1:

– When j � 0:

C
r
�i,0� �

~��������������
1 if r � i

0 Otherwise

. (2.144)

– When j � 1: Set j � 0 in Equation 2.140 to bring about:

P�i,1� �
�λ1 � λ2 � �n � i�µ2�

µ1
P�i,0� �

λ2

µ1
P�i�1,0� �

�n � i � 1�µ2

µ1
P�i�1,0� (2.145)

for i � n � g � 1, n � g � 2, ..., n.
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Then, the corresponding initial values are as shown below:

C
r
�i,1� �

~��������������������������������

λ1�λ2��n�i�µ2
µ1

when r � i

�
λ2
µ1

when r � i � 1

�
�n�i�1�µ2

µ1
when r � i � 1

0 otherwise

for all i � n � g � 1, n � g � 2, ..., n.

Next, we set j � 0 in Equation 2.141 to obtain the initial values of the coefficients

for P�n�g,1�:

P�n�g,1� �
�λ1 � gµ2�

µ1
P�n�g,0� �

λ2

µ1
P�n�g�1,0� (2.146)

and the corresponding initial values of coefficients are produced:

C
r
�i,1� �

~������������������������

λ1�gµ2
µ1

when r � n � g

�
λ2
µ1

when r � n � g � 1

0 otherwise

.

The remaining coefficients can be calculated recursively using Equation 2.142 and 2.143

together with the initial values just obtained. Finally, after calculating all the coefficients, we

need to solve a system of g�1 equations for the g�1 boundary points. The first g equations

can be obtained from Equation 2.138:

�λ2 � iµ1 � �n � i�µ2�P�i,i� � λ1P�i,i�1� � λ2�P�i�1,i� � P�i�1,i�1�� (2.147)

¼ �λ2 � iµ1 � �n � i�µ2� n

=
r�n�g

P�r,0�C
r
�i,i� � λ1

n

=
r�n�g

P�r,0�C
r
�i,i�1�
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� λ2� n

=
r�n�g

P�r,0�C
r
�i�1,i� �

n

=
r�n�g

P�r,0�C
r
�i�1,i�1��

¼

n

=
r�n�g

�P�r,0� ��λ2 � iµ1 � �n � i�µ2� � Cr
�i,i� � λ1C

r
�i,i�1� � λ2�Cr

�i�1,i� � C
r
�i�1,i�1���� � 0

(2.148)

where i � n � g � 1, n � g � 2, ..., n. The last equation is the normalizing condition:

=
�i,j�"Ω

P�i,j� � 1 (2.149)

¼ =
�i,j�"Ω

� n

=
r�n�g

P�r,0�C
r
�i,j�� � 1 (2.150)

¼

n

=
r�n�g

Ẑ̂̂̂
^̂̂\P�r,0�

��� =�i,j�"Ω

C
r
�i,j�

��
[_______] � 1. (2.151)

Numerical methods can serve to solve this system of equations for boundary points.

Subsequently, all the remaining steady state probabilities can be computed with Equation

2.139. As illustrated, the advantage of this recursive method over the composite model

method introduced earlier is that when using the recursive method, we need only to solve a

system of g�1 equations instead of solving a system of �2n� g�2��g�1�©2 equations while

using the composite model approach. Therefore, systems with large n that is intractable

with the composite model are now solvable using the recursive method.

2.5 Numerical examples

In this chapter, four methods have been introduced to calculate the performance measures

for the M1 model. In the following experiment, all the four methods—as well as call-level

simulations—will be carried out to compute the blocking and dropping probabilities for new

calls
5

in the M1 model so that the results will be compared. The parameters are chosen as

5
The blocking probability for handoff calls in the M1 model can be computed exactly by the Erlang B

formula and is not included for method comparison
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follows: λ1 varies from 1 to 40; λ2 � λ1©2, µ1 � µ2 � 1, n � 20 and g � 10. Figure 2.6

demonstrates that the two numerical methods (i.e., the composite model method and the

recursive method) matched very well with the simulation results. The approximate methods

would overestimate new call blocking and dropping probabilities; the discrepancy becomes

more significant as λ1 increases. The CPU time for each method running on an i5-2500K

3.30GHz CPU was recorded and listed in Table 2.2. It is clear that the two approximate

methods took only negligible amount of CPU time. The composite model method and the

recursive method were running with the Multiprecision computing toolbox in Matlab to

greatly boost their accuracy, but as a trade-off, they took much more CPU time to run.
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Figure 2.6: Comparison of 5 different methods for calculating the blocking or/and
dropping probabilities for new calls in the M1 model. Please note that the EC method
is not able to approximate dropping probabilities.
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Table 2.2: CPU run time (in seconds) of different methods for solving the M1 model

Methods Composite Hierarchical ENC Recursive Simulation

CPU time 1561.1 0.0442 0.0156 473.8842 613.3959

2.6 Optimization problems

To put the M1 model in practice, we would like to minimize its performance measures: handoff

call blocking probability (P
h
b ), new call blocking probability(P

N
b ), and new call dropping

probability (P
N
d ). This is a multi-objective optimization problem [22], and the decision

variables are the number of guard channels g and the number of total channels n. There are

several different ways to set up the optimization problem, and we adopt the ways that were

presented in Harine et al. [17] and consider the following two representative optimization

problems.

2.6.1 Optimal number of guard channels

O1 : Given λ1, λ2, µ1, µ2 and n, determine the optimal integer value of g so as to

minimize P
N
b and P

N
d such that P

h
b �g� & P hb

0 ,

where P
hb
0 is a constraint imposed on the handoff call blocking probability P

h
b .

In order to solve this optimization problem, outlining the following properties of the

performance metrics becomes a necessary step:

Properties

1. The handoff call blocking probability P
h
b � EB�ρ2, g�, according to the property of the

Erlang-B formula, is a decreasing function of g, i.e., P
h
b �ρ2, g� $ P

h
b �ρ2, g � 1�. Proof

can be found in Harine et al. [17].

2. The new call blocking probability P
N
b is a decreasing function of n (when holding g

fixed) and an increasing function of g (when holding n fixed). When g is fixed, a system

with smaller n will provide fewer channels for new calls to use; hence, the higher the

63



new call blocking probability will be. When n is fixed, a system with more guard

channels will allow more handoff calls to stay in the system at the same time. As a

result, it will reduce the number of channels available for new calls and increase its

blocking probability.

3. The new call dropping probability, P
N
d , is a decreasing function of n (when holding

g fixed) and an increasing function of g (when holding n fixed). When g is fixed, a

smaller n will increase the chance of new calls to use guard channels with the risk

of being preempted by handoff calls later. Therefore, the dropping probability for

new calls increases. When n is fixed, a larger g will also increase the chance of new

calls occupying guard channels with the risk of being preempted by handoff calls later.

Again, the dropping probability for new call increases.

The first property tells us that if g
�

is the smallest value of g that satisfies P
h
b �g�� & P hb

0 ,

then any g in {g��1, g
�

�2, ..., n} would also satisfy P
h
b �g� & P hb

0 . The second and the third

properties suggest that when n is fixed, both P
N
d and P

N
b increase as g increases. Therefore,

among all the possible values of g that satisfy P
h
b �g� & P

hb
0 , the smallest one we defined

earlier, g
�

, will also minimize P
N
d and P

N
b at the same time. Thus, the optimal value of g

can be obtained by using a simple one-dimensional search over the range r0, 1, 2, ..., nx for

g
�

such that

g
�

� minrg¶P h
b �g� & P hb

0 x. (2.152)

As an illustration, we set λ1 � λ2 � 20, µ1 � µ2 � 1 and n � 60 in the following examples,

summarizing the optimal number of guard channels for different constraints of handoff call

blocking probability in Table 2.3. As we can see, the optimal number of guard channels, g
�

,

increases as P
hb
0 becomes stricter. When P

hb
0 � 10

�6
, 3©4 of the channels are employed as

guard channels. Also note that as g
�

increases, both the blocking and dropping probabilities

for new calls increase as well.
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Table 2.3: Results of optimization problem O1 for the M1 model

P
hb
0 g

�

P
h
b P

N
b P

N
d

10
�2

30 0.0085 3.6643 � 10
�4

2.6134 � 10
�4

10
�3

35 6.8593 � 10
�4

6.1756 � 10
�4

5.5628 � 10
�4

10
�4

39 5.5554 � 10
�5

6.7247 � 10
�4

6.5805 � 10
�4

10
�5

42 6.4520 � 10
�6

6.7865 � 10
�4

6.7584 � 10
�4

10
�6

45 6.0625 � 10
�7

6.7940 � 10
�4

6.7904 � 10
�4

2.6.2 Optimal number of guard channels and total channels

O2 : Given λ1, λ2, µ1 and µ2, determine the optimal integer values of n and g so as to

minimize n such that

~��������������
P
h
b �g� & P hb

0

P
N
b �n, g� � PN

d �n, g� & PNL
0 .

In this optimization problem, we impose a constraint not only on the handoff call blocking

probability but also on the new call loss probability (i.e., P
N
L �n, g� � PN

b �n, g� � PN
d �n, g�).

To solve this optimization problem, first plot the contours of P
h
b �g� and P

N
L �n, g� in the first

quadrant of the �n, g� plane in Figure 2.7. The region above the contour line P
h
b �g� � P hb

0 and

below line n � g will satisfy the constraint P
h
b �g� & P hb

0 . The region to the right of contour

line P
N
L � P

NL
0 and below line n � g will satisfy the other constraint P

N
L �n, g� & P

NL
0 .

Therefore the feasible region for this optimization problem is the shaded region F , as shown

in Figure 2.7, and the solution �n�, g�� is just the intersection point of the two contours.

To locate this solution point �n�, g�� the first need is to find the smallest number of guard

channels, g
�

, that satisfies P
h
b �g�� & P

hb
0 . Then, we fix g � g

�

. From properties 2 and 3 we

know that both P
N
b �n, g� and P

N
d �n, g� are decreasing functions of n when g is fixed, so the

sum of these two functions is also a decreasing function of n when g is fixed. Consequently,

the optimal number of channels is just the smallest n that satisfies P
N
L �n, g�� & P

NL
0 . We
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have

g
�

� minrg¶P h
b �g� & P hb

0 x (2.153)

and then

n
�

� minrn¶n ' g�, PN
L �n, g�� & PNL

0 x. (2.154)

Note that if the contour P
N
L �n, g� � P

NL
0 starts from line g � 0 and reaches line n � g at

some point �g¬, g¬� without intersecting with the other contour P
h
b �g� � P

hb
0 , which could

happen when the contour P
h
b �g� � P hb

0 is above the point �g¬, g¬�, then the optimal solution

is just (g
�

, g
�

).
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Y1 

Y2 

Y3 

Y4 

g 

n 
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𝑃𝐿𝑁(𝑛,𝑔) =  𝑃0𝑁𝐿 𝐹 

𝑛 = 𝑔 

𝑃𝑁ℎ(𝑔) <  𝑃0ℎ𝑁 

𝑃𝑁ℎ(𝑔) >  𝑃0ℎ𝑁 
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(n*,g*) 

Figure 2.7: Optimization problem O2 for the M1 model

We provide some numerical examples of optimization problem O2 with the same traffic

parameters as those chosen for illustrating optimization problem O1 (i.e., λ1 � λ2 � 20,

µ1 � µ2 � 1). As shown in Table 2.4, both n
�

and g
�

increase as P
hb
0 and P

NL
0 become

stricter and stricter. When these results are compared with the results of optimization

problem O1 in Table 2.3, we note that g
�

’s for the same P
hb
0 are exactly the same: i.e., g

�

is

not affected by the presence of P
NL
0 and depends only on P

hb
0 .

It is also possible to set separate constraints for P
N
b �n, g� and P

N
d �n, g� and form the

following optimization problem:
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Table 2.4: Results of optimization problem O2 for the M1 model

P
hb
0 P

NL
0 n

�

g
�

P
h
b P

N
L

10
�3

10
�2

55 35 6.8593 � 10
�4

0.0084

10
�4

10
�3

61 39 5.5554 � 10
�5

8.6622 � 10
�4

10
�5

10
�4

66 42 6.4520 � 10
�6

8.3133 � 10
�5

10
�6

10
�5

70 45 6.0625 � 10
�7

9.7555 � 10
�6

O3: Given λ1, λ2, µ1 and µ2, determine the optimal integer values of n and g so as to

minimize n such that

~������������������������

P
h
b �n, g� & P hb

0

P
N
b �n, g� & PNb

0

P
N
d �n, g� & PNd

0

.

The situations are depicted in Figure 2.8. The region(s) to the right of contour P
N
b �n, g� �

P
Nb
0 (or P

N
d �n, g� � P

Nd
0 ) and below line n � g will satisfy P

N
b �n, g� & P

Nb
0 (or P

N
d �n, g� &

P
Nd
0 ). Therefore, the feasible region of this optimization problem is the shaded region F

in the figure. The procedure for finding the optimal solution is similar to the procedure

developed for optimization problem O2. We first find the optimal number of guard channels

g
�

as defined in Equation 2.153. Then, starting at n � g
�

, we search for n
�

b and n
�

d such that

n
�

b � minrn¶n ' g�, PN
b �n, g�� & PNb

0 x. (2.155)

and

n
�

d � minrn¶n ' g�, PN
d �n, g�� & PNd

0 x. (2.156)

The optimal number of channels n
�

follows:

n
�

� maxrn�b ,n
�

dx (2.157)

To provide some numerical examples as illustrations, we again take λ1 � λ2 � 20 and
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n 

𝑃b𝑁(𝑛,𝑔) =  𝑃0𝑁𝑁 

𝑃𝑁ℎ(𝑔) =  𝑃0ℎ𝑁 

𝐹 

(n*,g*) 

𝑃d𝑁(𝑛,𝑔) =  𝑃0𝑁𝑁 

𝑛 = 𝑔 

𝑛𝑁∗    𝑛𝑁∗   

Figure 2.8: Optimization problem O3. Note that the relative position of contour
P
N
b �n, g� � P

Nb
0 and P

N
d �n, g� � P

Nd
0 depends on the choices of thresholds P

Nb
0 and

P
Nd
0 .

µ1 � µ2 � 1. As an easy way to break down the constraint on new call loss (P
NL
0 ) into

blocking constraint (P
Nb
0 ) and dropping constraint (P

Nd
0 ), simply set P

Nb
0 � P

Nd
0 � P

NL
0 ©2.

The results are summarized in Table 2.5. After comparing the results with those in Table

2.4, we discovered that, for the given traffic parameters (λ1, λ2, µ1, and µ2), the breakdown

of the constraint on new call loss does not affect the optimal solutions n
�

and g
�

.

Table 2.5: Results of optimization problem O3 for the M1 model

P
hb
0 P

Nb
0 P

Nd
0 n

�

g
�

P
h
b P

N
b P

N
d

10
�3

0.5 � 10
�2

0.5 � 10
�2

55 35 0.00068593 0.00427811 0.00407770

10
�4

0.5 � 10
�3

0.5 � 10
�3

61 39 0.00005555 0.00043895 0.00042726

10
�5

0.5 � 10
�4

0.5 � 10
�4

66 42 0.00000645 0.00004199 0.00004114

10
�6

0.5 � 10
�5

0.5 � 10
�5

70 45 0.00000061 0.00000491 0.00000485
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Chapter 3

Second Guard Channel Model

3.1 Motivation and model introduction

In Chapter 2, we developed the M1 model where the high-priority traffic (i.e., handoff calls)

is only allowed to simultaneously occupy a pre-determined number of channels (i.e., guard

channels). However high-priority traffic is guaranteed access to guard channels because it

has priority over low-priority traffic (i.e., new calls).

In this chapter we introduce another guard channel model with controlled preemption

where high-priority traffic is allowed to access guard channels and normal channels. In this

model, high-priority and low-priority traffic first compete with each other for the normal

channels according to the FCFS discipline. Incoming calls (both high-priority and low-

priority) can access guard channels only after all the normal channels are occupied. High-

priority traffic has priority over low-priority traffic and can preempt low-priority traffic only on

these guard channels and only when the system is full. In 2001, Harine et al. [17] introduced a

fixed guard channel model (hereafter referred to as HT’s model). In HT’s model, high-priority

traffic can access all the channels (i.e., both guard channels and the normal channels) and the

low-priority traffic is only allowed to access normal channels. This is a non-preemption model

because high-priority traffic cannot preempt low-priority traffic under any circumstances. Our

second guard channel model (hereafter referred to as the M2 model) is a modified version

of HT’s model: low-priority traffic can borrow idle guard channels when all normal channels

are occupied, but with the risk of being dropped by incoming high-priority traffic when the

system is full.

This chapter includes the same notations used in Chapter 2. New calls and handoff

calls arrives according to independent Poisson processes with rates λ1 and λ2, respectively.
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Service times for new calls and handoff calls are assumed to follow independent exponential

distributions with rates µ1 and µ2, respectively. A total of n channels are in the system,

and the number of guard channels is g. In HT’s model, the system always tries to reserve

g channels for handoff calls. Therefore, when the number of available channels (i.e., idle

channels in the system) for handoff calls is less than or equal to g, no new calls are admitted.

In the M2 model, new calls can be admitted into the system even when the number of

“available channels”
1

for handoff calls is less than or equal to g. However, new calls that are

admitted when the number of available channels for handoff calls is less than or equal to g

are marked as preemptable calls and can later be preempted by handoff calls when necessary.

Channels that are occupied by preemptable new calls are also available for handoff calls.

The call admission control process of the M2 model, therefore, can be summarized as

follows: An incoming new call will be admitted if there is a free channel. After the number

of available channels (including all the idle channels and the channels that are occupied by

preemptable new calls) for handoff calls is less than or equal to g, new calls that are admitted

will be preemptable. An incoming new call will be blocked and lost if all channels are busy.

An incoming handoff call can access any free channel and when all channels are busy, it can

preempt a preemptable new call. A handoff call will only be blocked if there are no available

channels for it.

3.2 Analysis with homogeneous service rate

In this section we consider the case where both handoff calls and new calls have homoge-

neous service rates, (i.e., µ1 � µ2 � µ), and we develop closed-form expressions for all three

performance measures of interest. Because the performance measures for the case of hetero-

geneous service rates are generally intractable and not mentioned in Harine et al. [17], they

are beyond the scope of this chapter.

1
The available channels for handoff calls in the M2 model include not only idle channels, but also busy

guard channels that are occupied with new calls.
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3.2.1 Closed form performance metrics

Blocking probability of handoff calls

Handoff calls have priority over new calls only on guard channels. Although new calls can

access idle guard channels, they get preempted by incoming handoff calls if all channels are

busy. Therefore, although we have relaxed the call admission control protocol for new calls

by allowing them to occupy idle guard channels, the blocking probability of handoff calls will

not be affected and is same as was presented in HT’s model:

P
h
b �n, g� �

ρ
n�g

n!
ρ
g
2

<n�g�1

m�0
ρm

m!
�<n

m�n�g
ρn�g

m!
ρ
m��n�g�
1

, (3.1)

where ρ � λ1©µ � λ2©µ, which is the total offered load in the system, and ρ2 � λ2©µ, which

is the offered load for handoff calls.

Blocking probability and dropping probability of new calls

If we do not allow handoff calls to preempt new calls on guard channels, then according to the

FCFS discipline, both handoff and new calls will have to compete equally for idle channels.

The system thus becomes a fully shared multiserver pure loss system, supporting two types of

traffic. Given that the total offered load is ρ � λ1©µ�λ2©µ, the common blocking probability

for both traffic is given by the Erlang B formula EB�ρ, n�. Note that when a handoff call

preempts a new call and takes over its channel, the total number of busy channels remains

unchanged (i.e., remains equal to n). Moreover, the service time distribution of the channel

taken over by the handoff call also remains unchanged due to the assumption of exponential

service times with common rate µ [18]. Therefore, preemption does not affect the blocking

probability of new calls and the blocking probability of new calls remains equal to EB�ρ, n�.
We have

P
N
b �n, g� � EB�ρ, n� � ρ

n

n!
� n

=
k�0

ρ
k

k!
��1

. (3.2)

As Equation 3.2 shows, after we allow handoff calls to preempt those new calls that are

occupying the guard channels when the system is full, the blocking probability of handoff
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calls decreases from EB�ρ, n� to P
h
b �n, g�. This decrease implies (by PASTA

2
property)

that in unit time, the average number of new calls being preempted by handoff calls is

λ2 �EB�ρ, n� � P h
b �n, g��. Therefore, the dropping probability of new calls can be calculated

as

P
N
d �n, g� � λ2 �EB�ρ, n� � P h

b �n, g��
λ1

. (3.3)

Next, consider two special cases of the M2 model: when we set g � n and when we set

g � 0.

In the first case, we set g � n, then all channels are guard channels and when the system

is full, incoming handoff calls can preempt new calls on any channel. By setting g � n in

Equation 3.1, we obtain the blocking probability of handoff calls:

P
h
b �n, g� �

ρ
0

n!
ρ
n
2

<�1

m�0
ρm

m!
�<n

m�0
ρ0

m!
ρm2

�

ρ
n
2

n!

<n

m�0
ρm2
m!

, (3.4)

which reduces to the Erlang B formula EB�ρ2, n�. This tells us that in the M2 model, the

handoff calls when g � n can be modeled by an M©M©n©n queueing system. The blocking

probability of new calls, P
N
b �n, g�, will remain unchanged because it does not depend on the

value of g. Therefore, the dropping probability of new calls when g � n is

P
N
d �n, g� � λ2 �EB�ρ, n� � EB�ρ2, n��

λ1
. (3.5)

Note that when g � n, the M1 and M2 models are essentially the same (that is, they both

become the OM model); hence, their performance measures should also match. In Table 3.1,

all three performance measures are calculated for the M1 and M2 models for different values

of n. We have assumed λ1 � 30, λ2 � 6, µ � 1, and g � n. The performance measures of

the M1 model were calculated by the composite model method introduced in Section 2.2 and

performance measures of the M2 models were calculated by the Equations 3.1, 3.2, and 3.3.

2
PASTA is the acronym for Poisson Arrivals See Time Averages.
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As predicted, both models indeed produced the same results.

Table 3.1: Performance measures for the M1 and M2 models when g � n

M1 model M2 model

n g P
h
b P

N
b P

N
d P

h
b P

N
b P

N
d

10 10 4.31% 73.19% 13.78% 4.31% 73.19% 13.78%

20 20 3.72�10
�4

% 47.26% 9.45% 3.72�10
�4

% 47.26% 9.45%

30 30 2.07�10
�10

% 23.66% 4.73% 2.07�10
�10

% 23.66% 4.73%

40 40 4.06�10
�18

% 6.54% 1.31% 4.06�10
�18

% 6.54% 1.31%

50 50 6.59�10
�27

% 0.50% 0.10% 6.59�10
�27

% 0.50% 0.10%

In the second case, we set g � 0, the absence of guard channels turns the M2 model into

a multiserver pure loss system that is fully shared by two classes of traffic. The blocking

probabilities of both handoff and new calls can be obtained by setting g � 0 in Equations

3.1 and 3.2. As expected, both blocking probabilities equal to EB�ρ, n�. Thus according to

Equation 3.3, the dropping probability of new calls is zero because P
h
b �n, g� � EB�ρ, n� and

the numerator of the left-hand side is zero. This is also as expected because when g � 0, all

channels are normal channels where both traffic are treated equally and no preemption can

occur.

Numerical aspects

In Harine et al. [17], recursive formulae to conveniently calculate the Erlang B formula and

the handoff call blocking probability of large n’s can be found as

EB�ρ, k� � ρ

k
EB�ρ, k � 1�

1 � ρ

k
EB�ρ, k � 1� (3.6)

and

P
h
b �n1 � k, k� � P

h
b �n1 � �k � 1�, k � 1�

n1�k

ρ2
� P h

b �n1 � �k � 1�, k � 1� , (3.7)

where k � 1, 2, 3, ... and P
h
b �n1, 0� � EB�ρ, n1�.
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3.2.2 Closed form solution versus simulation

In this section, call-level simulations are used to validate the closed form solutions. The

input file provided to the simulation is a time-ordered sequence of call records. Each call

record specifies its type (new call or handoff call), arrival time, departure time, and unique

identification number. This file contains exactly 20, 000 handoff calls, and the number of new

calls is approximately equal to 20000λ1©λ2. Assume that n and µ are fixed to be 10 and 1,

respectively. We varied the other three parameters (namely λ1, λ2 and g) and obtained 9

different parameter combinations. We performed 10 simulation runs using each parameter

combination and then performed T-tests to determine if the mean performance measures

generated by simulations are significantly different from those calculated by the closed form

formula developed in the previous section. Table 3.2 lists detailed results and the significant

results of T-tests (when the p-value threshold is 0.05). Because the T-test resulted in only

one case where the difference is statistically significant, we conclude that the closed form

solutions are well supported by the simulation results.

3.2.3 Properties of performance measures

This section examines the properties of the three performance measures of interest: the

blocking probability of handoff calls, the blocking probability of new calls, and the dropping

probability of new calls. By the recursive formulae presented at the end of Section 3.2.1, a

set of properties is ready to be proven for P
N
b �n, g� and P

h
b �n, g�. (For details refer to Harine

et al. [17]). The dropping probability of new calls, P
N
d �n, g�, is a new performance measure

introduced by the M2 model and its properties are also investigated.

Properties of P
N
b �n, g�

1. When n is fixed, P
N
b �n, g� remains constant for different g because it does not depend

on g. So when g & n, the following is true:

P
N
b �n, g� � PN

b �n, g � 1�. (3.8)
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Table 3.2: Validate the closed form solution by call-level simulations. Assuming µ � 1
and n � 10. The single asterisk sign indicates that the preceding performance measure
is significantly different (when the p-value threshold is 0.05) from the corresponding
mean performance measure generated by 10 simulation runs.

Parameters Simulation results Closed form solution

λ1 λ2 g P
h
b P

N
b P

N
d P

h
b P

N
b P

N
d

5 1 1 0.0075 0.0434 0.0071 0.0075 0.0431 0.0071

5 1 2 0.0014 0.0436 0.0081 0.0013 0.0431 0.0084
�

5 1 3 0.0002 0.0429 0.0087 0.0003 0.0431 0.0086

10 2 1 0.0674 0.3036 0.0468 0.0672 0.3019 0.0469

10 2 2 0.0173 0.3014 0.0565 0.0169 0.3019 0.0570

10 2 3 0.0050 0.3018 0.0592 0.0047 0.3019 0.0594

15 3 1 0.1396 0.4927 0.0707 0.1397 0.4935 0.0708

15 3 2 0.0465 0.4926 0.0890 0.0470 0.4935 0.0893

15 3 3 0.0173 0.4932 0.0946 0.0178 0.4935 0.0951

2. When g is fixed, P
N
b �n, g� is a decreasing function of n. So when n ' g, the following

is true:

P
N
b �n, g� $ PN

b �n � 1, g�. (3.9)

3. When both n and g can vary, P
N
b �n, g� decreases when both n and g decrease. So for

all pairs of n and g satisfy g & n, the following is true:

P
N
b �n, g� % PN

b �n � 1, g � 1�. (3.10)

Properties of P
h
b �n, g�

1. When n is fixed, P
h
b �n, g� is a decreasing function of g. So when g & n, the following

is true:

P
h
b �n, g� $ P h

b �n, g � 1�. (3.11)
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2. When g is fixed, P
h
b �n, g� is also a decreasing function of n. So when n ' g, the

following is true:

P
h
b �n, g� $ P h

b �n � 1, g�. (3.12)

3. When both n and g can vary, P
h
b �n, g� increases when both g and n decrease. So for

all pairs of n and g satisfy g & n, the following is true:

P
h
b �n, g� $ P h

b �n � 1, g � 1�. (3.13)

Properties of P
N
d �n, g�

The properties of P
N
d �n, g� can also be derived from Equation 3.3 and from the properties

of P
N
b �n, g� and P

h
b �n, g� presented above.

1. When n is fixed: From the properties presented in (3.8) and (3.11) and the formula

for calculating P
N
d �n, g�, we have for all g & n that

P
N
d �n, g� % PN

d �n, g � 1�. (3.14)

2. When g is fixed: From the properties presented in (3.9) and (3.12), EB�ρ, n� and

P
h
b �n, g� both decrease as n increases; the behavior of their difference �EB�ρ, n��P h

b �n, g��
is uncertain, which leads to the possibly complicated behavior of the new call dropping

probability, P
N
d �n, g�. Intuitively, when g is fixed and n increases, we would expect the

dropping probability of new calls to decrease; because when more channels are available for

both types of traffic, new calls are less likely to have to borrow idle guard channels and then

be dropped later. Furthermore, it is easy to prove that the limiting value of P
N
d �n, g� is zero

when n approaches infinity. Because both EB�ρ, n� and P
h
b �n, g� are blocking probabilities,

they should approach zero when there are infinite number of channels:

lim
n��

EB�ρ, n� � lim
n��

P
h
b �n, g� � 0, (3.15)
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and according to the formula for calculating P
N
d �n, g� (Equation 3.3), there follows

lim
n��

P
N
d �n, g� � λ2 �limn��EB�ρ, n� � limn�� P

h
b �n, g��

λ1

� 0. (3.16)

After intuitively studying the behavior of P
N
d �n, g� when g is fixed, we should also analyt-

ically study the shape of the curve of P
N
d �n, g� when g is fixed; we do this by investigating its

first order partial derivative with respect to n, namely, ∂�PN
d �n, g��« ∂n. However, before

we can compute this first order partial derivative of P
N
d �n, g�, we need to extend the domains

of EB�ρ, n� and P
h
b �n, g� from non-negative integers to non-negative real numbers, and then

the first order partial derivative follows for all n ' g, n " R as:

∂

∂n
�PN

d �n, g�� � λ2

λ1
� ∂
∂n
EB�ρ, n� � ∂

∂n
P
h
b �n, g�� . (3.17)

The analytic extension of EB�ρ, n� and P
h
b �n, g� can be obtained by Gamma functions. As

shown in Syski [54], the Erlang-B formula can be extended as follows:

EB�ρ, n� � ρ
n©n!

<n

m�0 ρ
m©m!

�
ρ
n
e
�ρ

n!e�ρ<n

m�0 ρ
m©m!

�
ρ
n
e
�ρ

Γ�n � 1, ρ�
�

ρ
n
e
�ρ

D�
ρ
tne�tdt

� �ρ�neρ E �

ρ

t
n
e
�t
dt
�1

(Let x � t � ρ )

� �E �

0

�xρ � 1	n e�xdx
�1

(Then let z �
x
ρ )

� �ρE �

0

�z � 1�n e�ρzdz
�1

, (3.18)

where Γ�n�1, ρ� denotes the upper incomplete gamma function. Furthermore, the first order
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partial derivative of EB�ρ, n� w.r.t. n can be found in Jagerman [23]:

∂

∂n
EB�ρ, n� � �EB2�ρ, n� � ρ � E �

0

ln�z � 1� � �z � 1�ne�ρzdz. (3.19)

The analytic extension of P
h
b �n, g� can be obtained by Gamma functions in the same manner.

The first step is to replace n! by Γ�n � 1� in Equation 3.1:

P
h
b �n, g� �

ρ
n�g

n!
ρ
g
2

<n�g�1

m�0
ρm

m!
�<n

m�n�g
ρn�g

m!
ρ
m��n�g�
2

�
ρ
n�g

ρ
g
2©Γ�n � 1�

<n�g�1

m�0
ρm

m!
�

ρn�g

ρ
n�g
2

<n

m�n�g
ρm1
m!

. (3.20)

Then the two terms in the denominator can also be expressed with Gamma functions as

follows:

n�g�1

=
m�0

ρ
m

m!
�

e
ρ

�n � g � 1�!�n � g � 1�!e�ρ n�g�1

=
m�0

ρ
m

m!

�
e
ρ

�n � g � 1�!Γ�n � g, ρ�
�

e
ρ

�n � g � 1�! E
�

ρ

t
n�g�1

e
�t
dt (let x � t � ρ�

�
D�

0
�x � ρ�n�g�1

e
�x
dx

Γ�n � g�
�
D�

0
�x � ρ�n�g�1

e
�x
dx

D�
0
xn�g�1e�xdx

(3.21)

and

n

=
m�n�g

ρ
m
2

m!
�

n

=
m�0

ρ
m
2

m!
�

n�g�1

=
m�0

ρ
m
2

m!

�
e
ρ2

n!
Γ�n � 1, ρ2� � e

ρ2

�n � g � 1�!Γ�n � g, ρ2�
�
D�

0
�x � ρ2�ne�xdx

Γ�n � 1� �
D�

0
�x � ρ2�n�g�1

e
�x
dx

Γ�n � g�
�
D�

0
�x � ρ2�ne�xdx
D�

0
xne�xdx

�
D�

0
�x � ρ2�n�g�1

e
�x
dx

D�
0
xn�g�1e�xdx

. (3.22)
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Then it follows from Equation 3.20 that

P
h
b �n, g� � f�n, g�

h�n, g� , (3.23)

where

f�n, g� � ρ
n�g

ρ
g
2

Γ�n � 1�
�

ρ
n�g

ρ
g
2

D�
0
xne�xdx

(3.24)

h�n, g� � h1�n, g� � � ρρ2
	n�g �h2�n, g� � h3�n, g�� (3.25)

h1�n, g� � D
�

0
�x � ρ�n�g�1

e
�x
dx

D�
0
xn�g�1e�xdx

(3.26)

h2�n, g� � D
�

0
�x � ρ2�ne�xdx
D�

0
xne�xdx

(3.27)

h3�n, g� � D
�

0
�x � ρ2�n�g�1

e
�x
dx

D�
0
xn�g�1e�xdx

. (3.28)

Now we are ready to compute the first order partial derivative of P
h
b �n, g� w.r.t. n. By the

quotient rule of differentiation
3
, we have

∂

∂n
P
h
b �n, g� � h�n, g� ∂

∂n
f�n, g� � f�n, g� ∂

∂n
h�n, g�

�h�n, g��2
, (3.29)

where

∂

∂n
f�n, g� � ρg2 ln ρ � ρ

n�g D�
0
x
n
e
�x
dx � ρ

n�g
ρ
g
2 D�0 x

n
e
�x�lnx�dx

�D�
0
xne�xdx�2

(3.30)

∂

∂n
h�n, g� � ∂

∂n
h1�n, g� � � ρρ2

	n�g ln � ρρ2
	 �h2�n, g� � h3�n, g��

� � ρρ2
	n�g � ∂

∂n
h2�n, g� � ∂

∂n
h3�n, g�
 (3.31)

3
When choosing MAPLE 16 to numerically compute this partial derivative, we found that the use of

logarithmic differentiation would greatly improve the accuracy of the results.
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∂

∂n
h1�n, g� � D

�

0
�x � ρ�n�g�1

ln�x � ρ�e�xdx � D�
0
x
n�g�1

e
�x
dx

�D�
0
xn�g�1e�xdx�2

�
D�

0
�x � ρ�n�g�1

e
�x
dx � D�

0
x
n�g�1

e
�x �lnx� dx

�D�
0
xn�g�1e�xdx�2

(3.32)

∂

∂n
h2�n, g� � D

�

0
�x � ρ2�n ln�x � ρ2�e�xdx � D�0 x

n
e
�x
dx

�D�
0
xne�xdx�2

�
D�

0
�x � ρ2�ne�xdx � D�0 x

n
e
�x �lnx� dx

�D�
0
xne�xdx�2

(3.33)

∂

∂n
h3�n, g� � D

�

0
�x � ρ2�n�g�1

ln�x � ρ2�e�xdx � D�0 x
n�g�1

e
�x
dx

�D�
0
xn�g�1e�xdx�2

�
D�

0
�x � ρ2�n�g�1

e
�x
dx � D�

0
x
n�g�1

e
�x �lnx� dx

�D�
0
xn�g�1e�xdx�2

. (3.34)

Now we have the expressions for both ∂EB�ρ, n�©∂n and ∂P
h
b �n, g�©∂n. Equation 3.17 can

then be used to obtain ∂P
N
d �n, g�©∂n.

Although the expression of ∂P
N
d �n, g�©∂n is too complicated to be analytically tractable,

we can still use it to numerically study the behavior of P
N
d �n, g� when g is fixed. After exten-

sive numerical calculations we have observed two possible patterns of P
N
d �n, g�. Following

are two representative examples selected to illustrate these two patterns. In both examples

we fixed g to be 4. Example 1: We set the total offered load (ρ) and the offered load for

handoff call (ρ2) to be 26 and 6, respectively; we then vary n from 4 to 40. As shown in

Table 3.3, the first order partial derivative ∂P
N
d �n, g�©∂n is positive and decreases until n

reaches 9, indicating that the curve of P
N
d �n, g� is increasing and concave downward on the

interval of �4, 9�. Starting at n � 9, ∂P
N
d �n, g�©∂n becomes negative and keeps decreasing,

indicating that the curve of P
N
d �n, g� is now decreasing, however it is still concave downward.

The concavity of P
N
d �n, g� changes from downward to upward near n � 17 as the value of

∂P
N
d �n, g�©∂n starts to increase. Example 2: We set ρ and ρ2 to be 21 and 1, respectively.

Note that the offered load for handoff call is now less than the number of guard channels

in this case. As we can see, the value of ∂P
N
d �n, g�©∂n is always negative, indicating that

P
N
d �n, g� is always decreasing. However, the concavity of P

N
d �n, g� changes from concave
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downward to upward near n � 7 as ∂P
N
d �n, g�©∂n changes from decreasing to increasing.

Table 3.3 lists the values of P
N
d �n, g� for both examples, and Figure 3.1 plots the curves of

P
N
d �n, g� for both examples.

To conclude, P
N
d �n, g� is not necessarily a strictly decreasing function of n when g is

held constant. It could first increase until it reaches a local maxima and then decrease and

approach zero as n increases (the top plot in Figure 3.1), or it could start at its local maxima

and decrease as n increases (the bottom plot in Figure 3.1). We use n
�

c to denote the number

of total channels where the local maxima occurs.

Table 3.3: Numerical examples to study the behavior of ∂P
N
d �n, g�©∂n and P

N
d �n, g�.

Example 1: A=26, A1=6, g=4 Example 2: A=21, A1=1, g=4

n ∂P
N
d �n, g�©∂n P

N
d �n, g� n ∂P

N
d �n, g�©∂n P

N
d �n, g�

4 NA 0.11488 4 NA 0.04020
5 0.06325 0.13620 5 -0.03940 0.03851
6 0.04537 0.15253 6 -0.04251 0.03644
7 0.02725 0.16340 7 -0.04312 0.03429
8 0.01124 0.16910 8 -0.04304 0.03214
9 -0.00155 0.17047 9 -0.04269 0.02999
10 -0.01109 0.16849 10 -0.04220 0.02787
11 -0.01790 0.16408 11 -0.04160 0.02578
12 -0.02260 0.15796 12 -0.04089 0.02371
13 -0.02576 0.15068 13 -0.04007 0.02169
14 -0.02783 0.14261 14 -0.03911 0.01971
15 -0.02910 0.13406 15 -0.03801 0.01778
16 -0.02981 0.12521 16 -0.03674 0.01591
17 -0.03009 0.11622 17 -0.03569 0.01411
18 -0.03005 0.10719 18 -0.03367 0.01238
19 -0.02975 0.09821 19 -0.03180 0.01075
20 -0.02922 0.08936 20 -0.02976 0.00921
25 -0.02379 0.04905 25 -0.02501 0.00332
30 -0.01461 0.01990 30 -0.00377 0.00068
35 -0.00549 0.00513 35 -0.00073 0.00007
40 -0.00113 0.00075 40 -0.00005 0.00000

81



0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

n

N
ew

 c
al

l d
ro

pp
in

g 
pr

ob
ab

ili
ty

(a) Shape 1: ρ � 26, ρ2 � 6 and g � 4
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(b) Shape 2: ρ � 21, ρ2 � 1 and g � 4

Figure 3.1: Two possible shapes of the curve of P
N
d when g is fixed.

3.2.4 Optimization problems

In practical situations, we would like to minimize each of the three performance measures:

new call blocking probability, new call dropping probabilities, and handoff call blocking prob-

ability. Hence we have a multi-objective optimization problem [22]. The decision variables

are the number of guard channels (g) and the total number of channels (n). Several different

methods are available for setting up the optimization problem for multiple objectives. In

this section, we choose one of the three performance measures as the objective function to

be minimized and impose constraints on the other two. Two representative optimization
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problems will be considered below.

Optimal number of guard channels

In the first optimization problem, we fix the total number of channels n and search for the

optimal number of guard channels g
�

to achieve all the objectives. Note that when the total

number of channels n is fixed, the blocking probability for new calls, i.e., P
N
b �n, g�, is also

determined and thus is not considered as an objective for this optimization problem. The two

remaining performance measures, i.e., handoff call blocking probability (P
h
b �n, g�) and new

call dropping probability (P
N
d �n, g�), are candidates can be considered as objective functions.

Since handoff calls are of high priority, it is more reasonable to set a hard constraint on handoff

call blocking probability than on new call dropping probability so that handoff calls perform

satisfactorily. Therefore, we chose new call dropping probability as the objective function

and formed the following optimization problem:

O1: Given ρ, ρ2 and n, determine the optimal integer value of g so as to

minimize P
N
d �n, g� s.t. P

h
b �n, g� & P hb

0 . (3.35)

To solve this optimization problem we need to use the first property of P
N
b �n, g� (Equation

3.8) and the first property of P
N
d �n, g� (Equation 3.14). Because P

h
b �n, g� is a decreasing

function of g when n is fixed, we first determine the smallest value of g (& n), denoted by

g0, such that P
h
b �n, g� & P

hb
0 . If we fail to find such g0 then this optimization problem has

no feasible solution for the given parameters. If such g0 exists, then by the first property of

P
N
d �n, g�, such g0 minimizes P

N
d �n, g� and is the optimal number of guard channels.

Table 3.4 provides numerical examples where we use ρ � 80, ρ2 � 40, µ � 1, and n � 100.

Optimization results for HT’s model are also listed for comparison. As the results suggest,

both models require the same number of optimal guard channels and therefore produce the

same handoff call blocking probabilities. However, when using the M2 model, the new call

loss probability can be reduced between 40% and 90%.
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Table 3.4: Optimization problem O1: numerical examples. This table lists results
from the M2 model and HT’s model. P

N
L is the total loss probability of new call, which

is P
N
b for HT’s model and the sum of P

N
b and P

N
d for the M2 model.

Constraint M2 Model HT’s Model

P
hb
0 g

�

P
h
b P

N
L g

�

P
h
b P

N
L

10
�2

0 0.003992 0.003992 0 0.003992 0.003992

10
�3

3 0.000504 0.007490 3 0.000504 0.012528

10
�4

6 0.000065 0.007920 6 0.000065 0.023195

10
�5

9 0.000008 0.007976 9 0.000008 0.038967

10
�6

13 0.00000058 0.007983 13 0.00000058 0.069839

Optimal number of channels

In this second optimization problem, we want to find the optimal n so as to meet the con-

straints imposed on the three performance measures. We formed the following optimization

problem: O2: Given ρ and ρ2, determine the optimal integer value of g and n so as to

minimize n s.t.

~������������������������

P
N
b �n, g� & PNb

0

P
h
b �n, g� & P hb

0

P
N
d �n, g� & PNd

0

. (3.36)

From Equation 3.2 we know that P
N
b �n, g� depends only on n and is independent of g. In

order to reduce the complexity of this problem, we can handle the constraint P
N
b �n, g� & PNb

0

separately from the other two constraints by solving two independent subordinate optimiza-

tion problems and then combine their results to obtain the final optimal solution (n
�

, g
�

).

Therefore the procedure for solving optimization problem O2 can be broken down into three

steps.

Procedure for solving optimization problem O2

In the first step we solve the first subordinate optimization problem in which we only
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consider the constraint for new call blocking probability P
N
b �n, g� & PNb

0 . The smallest n that

satisfies P
N
b �nNb, g� & P

Nb
0 , denoted by nNb, can be found. The optimal n for optimization

problem O2 should be at least nNb.

In the second step we need to solve the second subordinate optimization problem O
¬

2

defined as

minimize n s.t.

~��������������
P
h
b �n, g� & P hb

0

P
N
d �n, g� & PNd

0

. (3.37)

The procedure for solving optimization problem O
¬

2 is more complicated and will be intro-

duced later in this section. For now let us assume that (n
�¬

, g
�¬

) is the solution.

In the third step we find the final solution (n
�

, g
�

) to the optimization problem O2. Of

all three performance measures, only P
N
d �n, g� can be a nonmonotonic function of n when g

is fixed (see the second property of P
N
d �n, g�); therefore, we need to determine the value of n

, denoted by n
�

c , at which P
N
d �n, g�¬� reaches its local maxima. We can then determine the

optimal solution to optimization problem O2 based on the relationship among nNb, n
�¬

, and

n
�

c as follows:

1. If n
�¬

' nNb, then the solution to O2 is just (n
�¬

, g
�¬

);

2. If n
�

c $ n
�¬

$ nNb, then we have P
h
b �nNb, g�¬� $ P

h
b �n�¬, g�¬� & P

hb
0 and P

N
d �nNb, g�¬� $

P
N
d �n�¬, g�¬� & P

Nd
0 . Therefore the optimal number of channels is just nNb and the

solution to O2 is (nNb, g
�¬

).

3. If n
�¬

$ n
�

c $ nNb or n
�¬

$ nNb $ n
�

c , we have P
h
b �nNb, g�¬� $ P

h
b �n�¬, g�¬� & P

hb
0 but

the relationship between P
N
d �nNb, g�¬� and P

Nd
0 is not certain. In this case, we have to

start with nNb and search for the optimal combination (n
�

, g
�

) that satisfies

~������������������������

n
�

' nNb

P
N
d �n�, g�� & PNd

0

P
h
b �n�, g�� & P hb

0

(3.38)
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The procedure for searching for the solution (n
�

, g
�

) for this scenario is as follows:

Step 1: Set n � nNb

Step 2: Find the smallest g that satisfies P
h
b �n, g� & P hb

0

Step 3:

if P
N
d �n, g� & PNd

0 then

return (n, g) as solution to O2

else

n � n � 1 and goto Step 2

end if

Procedure for solving optimization problem O
¬

2

In order to solve the optimization problem O
¬

2, we consider the region that is in the

first quadrant of the �n, g� plane and below line n � g. First, we examine the contour

diagram of both P
h
b �n, g� and P

N
d �n, g�. As Figures 3.2 and 3.3 indicate, the contour curves

of P
N
d �n, g� have three different patterns (Figure 3.3b - 3.3d) and the contour curves of

P
h
b �n, g� all follow the same pattern (Figure 3.3a). These patterns of contour curves can be

verified by the properties of P
h
b �n, g� and P

N
d �n, g� presented in Section 3.2.3. Therefore, for

the problem at hand, we need to first determine the pattern to which the contour curve of

P
N
d �n, g� � PNd

0 belongs by the following procedure:

1) If P
N
d �1, 1� % P

Nd
0 , then it follows pattern 3

2) If P
N
d �1, 1� & P

Nd
0 , then it follows either pattern 1 or pattern 2. In either case, the

contour curve intersects the n � g line twice and therefore it has two points of intersection,

which can be denoted by c (the point on the left) and d (the point on the right), respec-

tively. Let n
1
d (or n

2
d) be the n-coordinate associated with point c (or d). Then we can

distinguish pattern 2 from pattern 1 by checking if there exists a number n0 " �n1
d, n

2
d� such

that P
N
d �n0, 1� % P

Nd
0 . If such n0 can be found, then the contour curve follows pattern 2.

Otherwise it follows pattern 1.

After the pattern of contour curve P
N
d �n, g� � P

Nd
0 is determined, it is time to con-

sider contour curve P
h
b �n, g� � P

hb
0 and to look for the feasible region that satisfies both

P
N
d �n, g� & PNd

0 and P
h
b �n, g� & P hb

0 .
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Pattern 3

The following investigates when contour curve P
N
d �n, g� � P

Nd
0 follows pattern 3 (see

Figure 3.4). Three different cases will each lead to different solutions to optimization problem

O
¬

2.

� Case a1: Contour curve P
h
b �n, g� � P hb

0 is to the left of contour curve P
N
d �n, g� � PNd

0

and they do not intersect, as shown in Figure 3.4a. The region to the right of contour

curve P
N
d �n, g� � PNd

0 and below line n � g, as well as all the points on its boundaries

(i.e. line n � g, contour curve P
N
d �n, g� � P

Nd
0 and line g � 0) will satisfy the

constraint P
N
d �n, g� & PNd

0 . Note that all points on line g � 0 will also satisfy constraint

P
N
d �n, g� & P

Nd
0 because P

N
d �n, 0� is always zero. The region to the right of contour

curve P
h
b �n, g� � P

hb
0 and bounded by line n � g and g � 0 will satisfy P

h
b �n, g� & P hb

0 .

Clearly, the optimal solution to optimization problem O
¬

2 is one of the following two

points, whichever has a smaller n coordinate: (1) the point on line g � 0 whose n

coordinate is the smallest possible value of n such that P
h
b �n, 0� & P

hb
0 , or (2) the

point labelled as f on line g � 1 whose n coordinate is denoted by n
¬

h, which will be

introduced shortly. These two candidates of optimal solution to O
¬

2 are indicated in

Figure 3.4a as P
¬

1.

� Case a2: Contour curve P
h
b �n, g� � P

hb
0 intersects contour curve P

N
d �n, g� � P

Nd
0 at

point P2(n2, g2), as shown in Figure 3.4b. As indicated in Figure 3.4b, the two contour

curves divide the area under line n � g into four regions, namely,

– R1: in which all �n, g� satisfy P
h
b �n, g� % P

hb
0 and P

N
d �n, g� $ PNd

0 .

– R2: in which all �n, g� satisfy P
h
b �n, g� % P

hb
0 and P

N
d �n, g� % PNd

0 .

– R3: in which all �n, g� satisfy P
h
b �n, g� $ P

hb
0 and P

N
d �n, g� % PNd

0 .

– R4: in which all �n, g� satisfy P
h
b �n, g� $ P

hb
0 and P

N
d �n, g� $ PNd

0 .

Because region R1 and R4 satisfy P
N
d �n, g� & P

Nd
0 , and region R3 and R4 satisfy

P
h
b �n, g� & P hb

0 , the feasible region is then region R4. As shown in Figure3.4b, in region

R4, the point labeled as P2 has the smallest n coordinate and because n
�¬

and g
�¬

must

be integers, the solution (n
�¬

, g
�¬

) should be the point that is in region R4 and has the

shortest distance to point P2 among all the points in R4. Algorithm P2, which will be
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introduced shortly, can be used to find the solution (n
�¬

, g
�¬

).

� Case a3: Contour curve P
h
b �n, g� � P hb

0 is to the right of contour curve P
N
d �n, g� � PNd

0

and they do not intersect with each other, as shown in Figure 3.4c. The only active

constraint for this case is P
h
b �n, g� & P

hb
0 , as the entire region to the right of con-

tour curve P
h
b �n, g� � P

hb
0 and below line n � g will satisfy both P

h
b �n, g� & P

hb
0 and

P
N
d �n, g� & P

Nd
0 . The optimal number of channels n

�¬

would be the smallest n such

that P
h
b �n, n� & P hb

0 , and we have g
�¬

� n
�¬

. This solution is labeled as P3 in Figure 3.4c.

The above introduced the three different cases of the optimization problem O
¬

2 when con-

tour curve P
N
d �n, g� � PNd

0 follows pattern 3. The following is the procedure for determining

which of the above three cases can be applied given a set of parameters:

1) Find point a, which is the intersection point of line n � g and contour curve P
h
b �n, g� �

P
hb
0 . Starting with n � 1 and set g � n, search for the smallest integer n, denoted by nh,

such that P
h
b �nh, nh� & P

hb
0 .

2) Find point d, which is the intersection point of line n � g and contour curve P
N
d �n, g� �

P
Nd
0 . Starting with n � 1 and set g � n, search for the smallest integer n, denoted by nd,

such that P
N
d �n, n� & PNd

0 .

3) If nh ' nd, hence case a3 applies.

4) If nh $ nd, fix g to be 1, let n vary, and search for the smallest integer n
¬

h (which is

associated with point f in Figure 3.4), such that P
h
b �n¬h, 1� & P hb

0 ; also search for the smallest

integer n
¬

d, such that P
N
d �n¬d, 1� & P

Nd
0 . Then if n

¬

h $ n
¬

d, the two contours do not intersect,

hence case a1 applies. On the other hand, if n
¬

h ' n
¬

d is the case, it implies that the two

contours do intersect hence case a2.

The following algorithm P2 can be used to find the optimal solution (n
�¬

,g
�¬

) when the

two contours intersect (i.e., case a2). This algorithm is based on the bisection technique

introduced in Harine et al. [17], but it implements a different search pattern.
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Algorithm P2

Part A: Set g to be 1. First determine n
¬

h, the smallest value of n such that P
h
b �n¬h, 1� &

P
hb
0 . Then determine n

¬

d, the smallest value of n such that P
N
d �n¬d, 1� & PNd

0 .

g � 0

Nmax � n
¬

h

Nmin � n
¬

d

Step 1:

if Nmax� Nmin % 1 then

Nmid � �Nmax �Nmin�©2

N � Nmid

else g � g � 1 and then use Part B to find the solution

end if

Step 2: g � g � 1

if g % N then

go to Part B

else calculate P
h
b �N, g� and P

N
d �N, g�

if �N, g� " R1 then

go to Step 2

else if �N, g� " R2 then

Nmin � Nmid

g � g � 1;

go to Step 1

else if �N, g� " R3 then

Use Part B to find the solution

else � This is the case when �N, g� " R4

Nmax � Nmid

g � g � 1

go to Step 1

end if

end if
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End Part A

Part B:

for N � Nmin to Nmax by 1 do

for g
¬

� g � 1 to g � 1 by 1 do

Find the smallest N s.t. P
h
b �N, g¬� & P

hb
0 and P

N
d �N, g¬� & PNd

0 and break

end for

end for

n
�¬

� N

g
�¬

� g
¬

End Part B

Figure 3.2: Sample contour curves of P
N
d and P

h
b . A): contour curves of P

N
d . B):

Contour curves of P
h
b . Both are generated by the same parameters (λ1 � 49, λ2 � 21,

µ � 1)

Pattern 2

Next, we investigate when contour curve P
N
d �n, g� � P

Nd
0 follows pattern 2 (see Figure

3.5). In order to solve optimization problem O
¬

2 when contour curve P
N
d �n, g� � PNd

0 belongs

to pattern 2, we need to first establish several important values of n associated with points

a through f labeled in Figure 3.5a - 3.5b.
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(a) contour curve of P
h
b (b) contour curve of P

N
d : Pattern 1

(c) contour curve of P
N
d : Pattern 2 (d) contour curve of P

N
d : Pattern 3

Figure 3.3: Different patterns for contour curves of P
h
b and P

N
d .

Point a: Set g � n. Starting with n � 1, search for the smallest integer n, denoted by nh,

such that P
h
b �nh, nh� & P

hb
0 .

Point b: Set g � 1. Starting with n � 1, search for the smallest integer n, denoted by n
¬

h,

such that P
h
b �n¬h, 1� & P

hb
0 .

Point c: Set g � n. Starting with n � 1, search for the smallest integer n, denoted by n
1
d,

such that P
N
d �n1

d, n
1
d� & P

Nd
0 and P

N
d �n1

d � 1, n
1
d � 1� % P

Nd
0 .

Point d: Set g � n. Starting with n � 1, search for the smallest integer n, denoted by n
2
d,

such that P
N
d �n2

d � 1, n
2
d � 1� % P

Nd
0 and P

N
d �n2

d, n
2
d� & P

Nd
0 .

Point e: Set g � 1. Starting with n � 1, search for the smallest integer n, denoted by n
1¬
d ,

such that P
N
d �n1¬

d , 1� & P
Nd
0 and P

N
d �n1¬

d � 1, 1� % P
Nd
0 .
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(a) Case a1 (b) Case a2

(c) Case a3

Figure 3.4: Different scenarios when the contour curve of P
N
d belongs to pattern 3.

Point f : Set g � 1. Starting with n � 1, search for the smallest integer n, denoted by n
2¬
d ,

such that P
N
d �n2¬

d � 1, 1� % PNd
0 and P

N
d �n2¬

d , 1� & PNd
0 .

Now according to the relative positions of these 6 points we can break the optimization

problem O
¬

2 down into 2 different cases:

� Case b1: As shown in Figure 3.5a, point a is to the left of point c. This can be

determined by checking if nh & n
1
d is true. For this case, the region below line n � g

and to the left of the left branch of contour curve P
N
d �n, g� � P

Nd
0 (curve yce), or to

the right of the right branch of contour curve P
N
d �n, g� � P

Nd
0 (curve ydf), including

all the points on line g � 0 will satisfy P
N
d �n, g� & P

Nd
0 . The region below line n � g

and to the right of contour curve P
h
b �n, g� � P hb

0 will satisfy P
h
b �n, g� & P hb

0 . Therefore

because only integer values of n
�¬

and g
�¬

are allowed, the optimal solution (n
�¬

,g
�¬

)
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(a) Case b1
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(b) Case b2

Figure 3.5: Different scenarios when the contour curve of P
N
d belongs to pattern 2.

should be point (nh, nh).

� Case b2: This case happens when nh % n
1
d, that is, when point a is to the right of

point c (Figure 3.5b). Since the region to the left of contour curve P
h
b �n, g� � P hb

0 will

violate the constraint P
h
b �n, g� & P

hb
0 , we can ignore the left branch of contour curve

P
N
d �n, g� � PNd

0 and focus on its right branch (curve ydf ) together with contour curve

P
h
b �n, g� � P

hb
0 . The situations in this case are exactly same as the situations when

contour curve P
N
d �n, g� � PNd

0 follows pattern 1:

1) If nh ' n
2
d, then point a is to the right of point d and the situation is same as case

a3.

2) If nh $ n
2
d and n

¬

h $ n
2¬
d , then point a is to the left of point d and point b is to the

left of point f . Therefore curves yab and ydf do not intersect and the situation is same

as case a1.

3) If nh $ n
2
d and n

¬

h ' n
2¬
d , then curves yab and ydf do intersect and the situation is same

as case a2.

Pattern 1

Finally we investigate when contour curve P
N
d �n, g� � PNd

0 follows pattern 1 (see Figure

3.6). As illustrated in Figure 3.6, the left and right branches of contour curve P
N
d �n, g� � PNd

0
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Figure 3.6: Different scenarios when the contour curve of P
N
d belongs to pattern 1.

connect with each other and form a single curve. First, the n values associated with points

a to d can be obtained as introduced on Page 90. Then we have three different cases:

� Case c1: When nh & n
1
d, point a is to the left of point c. Similar to case b1, the

optimal solution (n
�¬

,g
�¬

) is just (nh, nh).

� Case c2: When n
1
d $ nh $ n

2
d, point a is in between point c and d. Similar to case a2,

the optimal solution can be found by algorithm P2.

� Case c3: When nh ' n
2
d, point a is to the right of point d. Similar to case a3, the

optimal solution (n
�¬

,g
�¬

) is just (nh, nh).

To summarize, complete procedures have been established to find the optimal solution

(n
�¬

, g
�¬

) to optimization problem O
¬

2 when the contour curve P
N
d �n, g� � P

Nd
0 follows each

of the three patterns.

Numerical experiments

In this section we use numerical experiments to compare the optimal number of channels

required by the M2 model and HT’s model. Our goal is to answer the following questions:

1. Is there a difference between the two models?

2. If there is a difference, then how does one model differ from the other?

First, as a numerical illustration, we take the same parameters as those used in Harine

et al. [17]: λ1 � λ2 � 40, µ � 1, and we calculate the solutions to optimization problem
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O2. Various constraints on handoff call blocking (P
hb
0 ) and new call loss (P

NL
0 ) are used

and the results are summarized in Table 3.5. Note that the new call loss in the M2 model

has two components—new call blocking and new call dropping—for HT’s model the new

call loss only includes new call blocking. In the optimization problem O2 we set separate

constraints for each of the two components, i.e., P
Nb
0 (constraint for new call blocking) and

P
Nd
0 (constraint for new call dropping). In order to compare the M2 model to HT’s model, we

define P
NL
0 � P

Nb
0 �P

Nd
0 . In this numerical illustration, we simply set P

Nb
0 � P

Nd
0 � P

NL
0 ©2.

As shown in Table 3.5, the differences between the optimal number of channels (n
�

) required

by these two models are insignificant.

Table 3.5: Optimization problem O2: An illustration. This table lists optimal n’s and
g’s required to meet various performance constraints by the M2 model and HT’s model
. P

N
L is the total loss probability of new call, which for the M2 model equals the sum

of P
N
b and P

N
d , and for HT’s model equals P

N
b .

Constraints M2 Model HT’s Model

P
hb
0 P

NL
0 n

�

g
�

P
h
b P

N
L n

�

g
�

P
h
b P

N
L

10
�3

10
�2

100 3 0.00050421 0.0074798 101 2 0.00079145 0.0077859

10
�4

10
�3

108 3 0.00005835 0.0008741 109 2 0.00008556 0.0009482

10
�5

10
�4

115 3 0.00000553 0.0000829 116 2 0.00000763 0.0000933

10
�6

10
�5

121 3 0.00000052 0.0000079 122 2 0.00000069 0.0000091

A series of numerical experiments were then conducted to thoroughly investigate the

difference between the number of optimal channels (n
�

) required by HT’s model and by the

M2 model to meet various call performance constraints. In particular, we were interested in

studying the relative difference (in percentage) in n
�

between the two models. The relative

difference (in percentage) with respect to the HT’s model is defined as:

D �
n
�

M2 � n
�

HT

n�HT
� 100%, (3.39)

where n
�

M2 and n
�

HT are the optimal number of channels required by the M2 model and HT’s

model, respectively. Therefore a negative value of D indicates that the M2 model requires

fewer channels than HT’s model to meet the given call performance constraints. Without

95



loss of generality, we set µ � 1. The remaining parameters and their levels are shown in Table

3.6, as are a set of constraints used for setting up the optimization problems. Two points

are worth noting: (1) The constraint on handoff call blocking (P
hb
0 ) is always less than the

constraint on new call loss (P
NL
0 ) because handoff calls are high priority traffic and need to

be protected with a stricter constraint; (2) When breaking down the constraint on new call

loss (P
NL
0 ) into two components—i.e., constraints on new call blocking (P

Nb
0 ) and dropping

(P
Nd
0 )—we set P

Nb
0 to be 50%, 75%, or 90% of P

NL
0 . Note that P

Nb
0 is at least 50% of P

NL
0

because we want to ensure that P
Nd
0 & P

Nb
0 . The reasoning behind this is that dropping an

ongoing call is more serious than blocking an incoming call [62] and therefore it is better to

have a stricter constraint for call dropping than for call blocking.

Table 3.6: Experiment parameters and levels used to compare the M2 model and HT’s
model

Parameter Level(s)

λ1 20

λ2 1, 1.5, 2, 4, 10, 20, 40, 80, 100, 200

P
hb
0 10

�2
, 10

�3
, 10

�4
, 10

�5
, 10

�6

P
NL
0 % P

hb
0 and � 10

�k
, k � 1, 2, ..., 5

P
Nb
0 50% � P

NL
0 , 75% � P

NL
0 , 90% � P

NL
0

Based on all the parameters listed in Table 3.6, there are a total of 450 different combina-

tions
4
of parameters. For each combination, we solve optimization problem O2 for optimal

number of channels (n
�

) for both the M2 model and HT’s model. The procedures developed

in this chapter will be used for the M2 model, and the procedures presented in Harine et al.

[17] will be adopted for HT’s model. The relative difference in percentage, D, is calculated

for each parameter combination by Equation 3.39. The results suggest that about 67% of all

D values are negative; this means that about 67% of the time, employing the M2 model will

reduce the optimal number of channels required. Focusing on the more significant differences

(where ¶D¶ ' 5%), we found that out of 450 parameter combinations, 130 (about 30%) pro-

4
Note that the value of P

NL
0 must be greater than the value of P

hb
0 , so there are only 450 combinations

instead of 750.
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duced D values that satisfied ¶D¶ ' 5% and 123 (about 95%) were negative. These statistics

indicate that choosing the M2 model over HT’s model will notably reduce the number of

channels required. Therefore, the answer to the first question—is these a difference between

the two models?—is a definitive, “YES.”

To address the question about how the models differ, we first investigate the effect of

relative offered load (the ratio of λ1©µ to λ2©µ, or just λ1©λ2) on the relative difference D.

Figure 3.8 presents boxplots of D grouped by different values of λ1©λ2. No obvious pattern

has been found from these plots except in Figure 3.7B (when P
Nb
0 � 50% � P

NL
0 ), where

the median of D first decreases as λ1©λ2 increases until λ1 � λ2, and then it increases and

approaches zero as λ1©λ2 increases. To conclude, the median of D does not seem to be

affected significantly by the value of λ1©λ2 and is almost always less than zero, suggesting

that the M2 model generally requires fewer channels than HT’s model.

Next, we examine the effect of the ratio of constraints (P
hb
0 ©PNL

0 ) on D. As explained be-

fore, the call performance constraint on high-priority traffic (handoff calls) should be stricter

than that on low-priority traffic (new calls). Therefore, we set the ratio P
hb
0 ©PNL

0 to be less

than one and let it vary from 10
�5

to 10
�1

. Figure 3.8 presents the boxplots of D grouped

by different values of P
hb
0 ©PNL

0 . The pattern exhibited is consistent across all the subplots in

the figure: the relative difference D increases as P
hb
0 ©PNL

0 increases. Therefore, in channel

utilization, where the call loss constraint for high-priority traffic is much stricter than for

low-priority traffic, the M2 model offers a substantial advantage over HT’s model. On aver-

age, employing the M2 model when P
hb
0 ©PNL

0 � 10
�5

reduces the total number of channels

required by 10%.
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Figure 3.7: Boxplots of relative difference D at different values of λ1©λ2. A) All data

points are included. B) When the new call blocking constraint P
Nb
0 is 50% of P

NL
0 .

C) When the new call blocking constraint P
Nb
0 is 75% of P

NL
0 . D) When the new call

blocking constraint P
Nb
0 is 90% of P

NL
0 .
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Figure 3.8: Boxplots of relative difference D at different values of P
hb
0 ©PNL

0 . A) All

data points are included. B) When the new call blocking constraint P
Nb
0 is 50% of P

NL
0 .

C) When the new call blocking constraint P
Nb
0 is 75% of P

NL
0 . D) When the new call

blocking constraint P
Nb
0 is 90% of P

NL
0 .
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Chapter 4

Comparison of Models

We have introduced two new guard channel models: the first guard channel model (the M1

model) and the second guard channel model (the M2 model). Both are controlled preemption

models: high priority traffic (handoff calls) can preempt low priority traffic (new calls) on a

subset of the total channels (guard channels). It is important to know how these two new

models compare to the existing guard channel models: HT’s model, a non-preemption model,

and the OM model, a full preemption model. In this chapter we use extensive numerical

studies to compare the following models:

1. Model(s) with full preemption (MWFP): OM model

2. Model(s) with controlled preemption (MWCP): M1 model, M2 model

3. Model(s) with no preemption (MWNP): HT’s model

Note that both MWCP and MWFP can also be considered as model(s) with preemption

(MWP).

In this chapter, we compare three characteristics of the models:

1. Their optimal number of channels required to meet a set of pre-determined constraints

on call loss.

2. Their new call performances after the total number of channels is fixed and predeter-

mined handoff call blocking constraint is met, and

3. Their ability to meet performance constraints in various traffic environments.

4.1 Optimal number of channels

The optimal number of channels (n
�

) is defined as the minimum number of channels required

for a model to meet the given constraints on both handoff call and new call performances.
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In Section 3.2.4 we compared the optimal number of channels required by the M2 and HT’s

models. In this section we conduct similar experiments but compare all four models: the M1

model, the M2 model, HT’s model, and the OM model. The model parameters and their

levels used in the experiments are summarized in Table 4.1.

Table 4.1: Experiment parameters and levels for Experiment 1

Parameter Level(s)

λ1 10

µ 1

λ2 1, 2, 5, 10, 20, 30, 40, 50

P
hb
0 10

�2
, 10

�3
, 10

�4
, 10

�5
, 10

�6

P
NL
0 � k � P

hb
0 and k � 1, 5, 10, 10

2
, 10

3
, 10

4
, 10

5

P
Nb
0 50% � P

NL
0 , 75% � P

NL
0 , 90% � P

NL
0

For a given set of parameters, n
�

for the M1 model can be calculated by solving opti-

mization problem O3, which was introduced in Section 2.6.2. For the M2 model, n
�

can be

calculated by solving optimization problem O2, which was introduced in Section 3.2.4; and

for HT’s model, n
�

can be calculated by the procedures described in Harine et al. [17]. The

OM model is a special case of the M1 model, where the number of guard channels g is always

equal to the total number of channels n. Therefore, n
�

for the OM model can be determined

by starting at n � 1, searching for the smallest n until all given constraints are met. After

repeating these calculations for each model to determine n
�

for all possible combinations of

parameters, we make the following pairwise comparisons between models:

1. M2 versus M1: We compare the two MWCP to each other;

2. M2 versus OM and M1 versus OM: We compare each MWCP to the MWFP;

3. M2 versus HT’s and M1 versus HT’s: We compare each MWCP to the MWNP.

For each pairwise comparison and each combination of model parameters, the relative differ-

ence (in percentage) D can be calculated as:

D �
n
�

1 � n
�

2

n�2
� 100%, (4.1)
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where n
�

1 and n
�

2 stand for the optimal number of channels required for the first and the

second model involved in the pairwise comparison, respectively. Therefore, a positive D

indicates that the first model requires more channels to meet the given constraints than the

second model requires. For example, in the comparison ”M2 versus M1”, the M2 model is

the first model in the comparison and the M1 model is the second model; therefore, in order

to calculate the relative difference D, n
�

1 is the optimal number of channels for the M2 model,

and n
�

2 is the optimal number of channels for the M1 model.

The following four parameters/quantities may have an effect on the model performance.

They are:

1. Mobility, which is defined as λ2©λ1, is the ratio of total handoff call arrival rate to the

total new call arrival rate [45]. High mobility is when mobility is greater than 1 and

low mobility is when mobility is less than 1.

2. Constraint for handoff blocking probability, i.e., P
hb
0 . The smaller the value of P

hb
0 , the

stricter the constraint is.

3. Ratio of constraints, denoted by R, is defined as P
hb
0 ©PNL

0 , where P
hb
0 is the constraint

for handoff blocking and P
NL
0 is constraint for new call loss.

4. P
Nb
0 percentage, the ratio of new call blocking constraint to new call loss constraint

expressed as a percentage, is defined as

P
Nb
0

PNL
0

� 100%. (4.2)

We also have P
NL
0 � P

Nb
0 � P

Nd
0 . Therefore, when P

NL
0 (new call loss constraint)

is given, a higher P
Nb
0 (new call blocking constraint) implies a lower P

Nd
0 (new call

dropping constraint), and vice versa. Since dropping an ongoing call is less desirable

than blocking an incoming call, we want P
Nd
0 & P

Nb
0 ; therefore, P

Nb
0 percentage is set

to be at least 50%.

We compared all models at different mobilities. The results are plotted in Figure 4.1.

When comparing the M2 model to the M1 model, the difference between their required

optimal number of channels becomes noticeable when mobility is % 1. We also noticed that

the M2 model almost always uses fewer channels than the M1 model.
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When comparing the M1 and M2 models to HT’s model, the difference D in the optimal

number of channels required by the models changes as mobility changes. The medians of

D are about 5% (for both M1 versus HT and M2 versus HT) at the lowest mobility (0.1)

and approach 0% as mobility increases to 5. Also, the difference is more significant at low

mobilities (& 1) than at high mobilities (% 1).

However, this pattern is reversed when comparing the M1 and M2 models to the OM

model. As shown in Figure 4.1, at lower mobilities, there are nearly no differences in the

optimal number of channels required between the M1 and OM models (or between the M2

and OM models); because most othen, D � 0. However, the results differ at higher mobilities.

Also, out data suggest that the M1 and M2 models never require more channels than the

OM model. Therefore, we can conclude that the M1 and M2 models use fewer channels than

HT’s model at low mobility and use fewer channels than the OM model at higher mobility.

To explain the conclusion drawn from Figure 4.1, we should understand how the priori-

tizing mechanism works for each model. MWP allow new calls to access idle guard channels,

while MWNP prohibit such call admission. Therefore, it is intuitively easy to see that MWP

(i.e., the M1, M2 and OM models) use channels more efficiently. Such advantage of MWP

over MWNP (i.e., HT’s model) is more significant at low mobilities, when the offered load

of new call is higher than the offered load of handoff call. Because new call traffic dominates

handoff call traffic, an incoming new call is more likely to be blocked in MWNP, where there

are idle guard channels. Such blocking would not happen in MWP. Therefore, MWNP re-

quire more channels than MWP to compensate for inefficiency in channel utilization. As a

result, the difference in number of channels required by HT’s model versus the M1 or M2

models is more significant at low mobilities: HT’s model requires more channels than the

M1 or the M2 model. The advantage of allowing new calls to access idle guard channels,

however, decreases as mobility increases. This is because when the offered load of handoff

call is higher than new calls, the possibility of a guard channel being idle is low; even when

a new call finds an idle guard channel, it has a high probability of being preempted by an

incoming handoff call and terminated prematurely. Therefore, the difference in the number

of channels required by HT’s model and the M1 or M2 models is less significant at higher

mobilities.
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On the other hand, when MWCP (the M1 and M2 models) are compared to the MWFP

(the OM model), the difference is more significant (where the OM model uses more channels)

at higher mobilities than at lower mobilities. When the offered load of handoff call is higher

than that of new calls, the effect of full preemption on new call performance is more substan-

tial because new calls are more likely to get preempted by handoff calls; therefore, to meet

the performance constraints (in particular, the constraint on call dropping) for new calls, the

OM model requires more channels than the M1 and M2 models. This effect diminishes as

mobility decreases, until the difference between the models is negligible.

In Figure 4.2, models are compared at different ratios of constraints, R. We first examined

the difference between the M1 and M2 models. The first boxplot in Figure 4.2 suggests that

the M2 model uses fewer channels when R is greater than 10
�4

, especially when R is equal

to 0.1 and 0.2 (which implies that P
hb
0 is more similar to P

NL
0 ). This is because with the

M2 model, when P
hb
0 and P

NL
0 have the same order of magnitude, most of the channels are

set up as normal channels (i.e., non-guard channels), which are fully shared by both types of

traffic. At the same time only a few channels are guard channels to ensure that the constraint

for handoff calls, which is a little stricter than the constraint for new calls, can also be met.

Such set up is more efficient than the set up in the M1 model, where the non-guard channels

can only be accessed by new calls. However, when R is small and P
hb
0 is several orders of

magnitude less than P
NL
0 , most channels in both the M1 and M2 models are guard channels

and therefore, the difference between them is negligible.

We also compared the M1 and M2 models to HT’s model. The patterns shown in the

fourth and fifth boxplots in Figure 4.2 suggest that at low values of R, the M1 and M2 models

use significantly fewer (10% to 20%) channels than HT’s model. This is expected because

the goal of preemption is to prioritize handoff calls. MWP use channels more efficiently

when the constraint for handoff call blocking is much stricter than the constraint for new call

loss. However, the value of relative difference, D, approaches zero as R increases, indicating

that MWCP and MWNP do not significantly differ when similar constraints are adopted for

handoff calls and new calls.

As shown in Figure 4.2, when the M1 and M2 models are compared to the OM model,

the difference in optimal number of channels required is minimal for small values of R but is

104



more significant for larger values of R. Because the MWFP (the OM model) priorities low

handoff call blocking over performance of new calls, it functions best when the constraint on

handoff call blocking is several orders of magnitude stricter than constraint for new call loss.

However, when the constraints for handoff call blocking and new call loss are comparable, the

MWFP cannot control the new call loss by adjusting the number of guard channels. Because

of this inflexibility, MWFP has to use more channels than MWCP in order to simultaneously

meet the similar constraints on handoff call blocking and new call loss.

As shown in Figure 4.3, when all models are compared at different constraints for handoff

call blocking (i.e., P
hb
0 ), a similar pattern merges: when P

hb
0 is strict ($ 10

�3
), MWCP (the

M1 and M2 models) use fewer channels than MWNP (HT’s model). This advantage decreases

as P
hb
0 increases, and the HT’s requires less channel than the M1 model when P

hb
0 ' 10

�2
.

In Figure 4.4, models are compared at different P
Nb
0 percentages. In the first plot, the M1

and M2 models are compared, and the boxplot shows that the M2 model uses fewer channels

at higher P
Nb
0 percentages (75% and 90%). When comparing the M1 and M2 models to HT’s

model, the median of relative differences D with respect to the HT’s model is below zero

(indicating that MWCP use fewer channels than MWNP) when P
Nb
0 percentage is at 50%

(i.e., P
Nb
0 � P

Nd
0 ) and increases as P

Nb
0 percentage approaches 90%. When comparing the

M1 and M2 models to the OM model, the values of relative differences D with respect to

the OM model (as shown in the second and third boxplots) are always below zero, indicating

that MWCP always require few channels than MWFP. These patterns are closely related

to the principle of preemption. The performance of high-priority traffic (i.e., handoff call)

is guaranteed by allowing high-priority traffic to preempt low-priority traffic (i.e., new call);

therefore, because of the increased number of new call dropping events due to preemption, the

performance of low-priority traffic is deteriorated. When we impose a separate performance

constraint on new call dropping, the advantage of MWP (OM, M1 and M2 models) over

MWNP (HT’s model) decreases as the constraint becomes stricter (i.e., when P
Nb
0 percentage

increases). Similarly, MWCP (M1 and M2 models) also outperform full MWFP (OM model)

at higher P
Nb
0 percentage.
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4.2 New call performance

In the second experiment we compare the new call loss probability of different guard channel

models. Three models (HT’s model, the M1 model, and the M2 model) are compared with

each other by the method outlined below.

1. We consider a reference cell containing n � 50 channels, and

2. for a given constraint on handoff call blocking, we calculate the optimal number of

guard channels required for each model in order to meet this constraint (i.e., solving

the optimization problem O1).

3. We then use the number of optimal guard channels calculated in Step 2 to calculate

the new call loss probability between different models.

Note that the OM model is excluded from this comparison because when the total number

of channels n is fixed, the new call loss probability (P
N
L ) for the OM model will always be less

than or equal to that of the M1 model. This is because the OM model is a special case of the

M1 model where all the channels are guard channels. When the number of guard channels is

less than the number of total channels (i.e., g $ n, the more general case of the M1 model),

P
N
b and P

N
d will both decrease; therefore, provided that n is fixed, the M1 model always has

fewer new call losses than the OM model. Accordingly, we choose not to include the OM

model in our comparison.

The new call performance are compared under two considerations: (1) There is no ad-

ditional penalty for new call droppings, and (2) There is an additional penalty imposed on

new call droppings. In the first case, the new call dropping and blocking are treated equally,

that is, the new call loss probability can be calculated as the sum of new call blocking and

new call dropping probabilities:

P
N
L � P

N
b � P

N
d .

In the second case, however, the new call dropping is more serious than the new call blocking

as an additional penalty is imposed on new call dropping. The calculation of new call loss

probability for this case will be introduced in Section 4.2.
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When there is no additional penalty for new call dropping

The values of model parameters used in this experiment are summarized in Table 4.2.

Table 4.2: Experiment parameters and levels for Experiment 2-1

Parameter Level(s)

n 50

λ1 Vary from 10 to 100

µ 1

Mobility 0.1, 0.5,1, 2, 3

P
hb
0 10

�2
, 10

�3
, 10

�4
, 10

�5
, 10

�6

The following pairwise comparisons between models will be carried out in this experiment:

1. M2 versus M1: the two MWCP are compared with each other;

2. M2 versus HT’s and M1 versus HT’s: each MWCP is compared to MWNP.

For each of the pairwise comparison, the relative difference in new call loss probability with

respect to the second model involved in the comparison (i.e., the model being compared to),

denoted by L, is calculated for each combination of model parameter as:

L �
P
N
L1 � P

N
L2

PN
L2

� 100%, (4.3)

where P
N
L1 is the new call loss probability of the first model involved in the comparison and

P
N
L2 is the new call loss probability of the second model involved in the comparison. As we

can see, a negative value of L indicates that the new call loss probability of the first model

is lower than that of the second model.

Figure 4.5 shows the results of comparing models at different levels of mobility. When

comparing the M2 model to the M1 model, mobility does not appear to affect the relative

performance of new calls in an obvious pattern. We found that L � 0, indicating that two

models perform similarly, occurs at most parameter combinations at lower mobility, and

L $ 0, indicating that the new call loss probability for the M2 model is less than the new

call loss probability for the M1 model, occurs at higher mobility. When the M1 and M2
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models are compared to HT’s model, however, an obvious pattern merges in both the second

and third boxplots: The new call loss of MWCP (the M1 and M2 models) is much lower

(up to 100% lower) than that of MWNP (HT’s model), especially at higher mobility. Also

the new call loss of the M2 model is always less than or equal to that of HT’s model. The

dramatic improvement in new call performance when using MWCP is as expected, because

these models allow new calls to use idle guard channels. When the total number of channels

n is fixed, as mobility increases, so does the number of guard channels required to meet the

constraint on handoff call blocking. Therefore, the use of MWCP significantly improves new

call performance (that is, decreases new call loss probability).

Figure 4.6 presents the comparison results at different constraints of handoff call blocking,

P
hb
0 . Again, the difference in new call loss between the M1 and M2 models is insignificant

(refer to the first boxplot). However, when the M1 and M2 models are compared to HT’s

model, a trend clearly emerges in the second and third boxplots: The medians of L are always

negative and increase as P
hb
0 increases, indicating that MWCP (the M1 and M2 models)

produce fewer new call losses than does MWNP (HT’s model). MWCP reduces new call loss

even more substantially (up to 100%) when the constraint for handoff call blocking is stricter

(i.e., when P
hb
0 $ 0.01); however, this effect diminishes as P

hb
0 increases, and it becomes

negligible when P
hb
0 � 0.01. The reason for this trend is that MWCP use channels more

efficiently then does MWNP: MWCP allow new calls to access idle guard channels to reduce

new call blocking probability. This efficiency increases as the number of guard channels

increases. When stricter handoff blocking constraint is applied, more guard channels are

required for models to meet this constraint, and as a result, substantial reductions in new

call loss is likely to be observed for MWCP.

When there is an additional penalty for new call dropping

In the previous section, we calculate the new call loss probability as:

P
N
L � P

N
b � P

N
d .
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This is a special case of the Grade of Service (GoS) cost function, where there is no additional

penalty for dropping a call. Although sophisticated cost functions for new calls have been

proposed in Barcelo [4], in practice, a simple weighted average is useful for most design

purpose. Such a function should reflect the penalty of the call dropping over the call blocking

probability [45]. The GoS of new call can then be defined as:

GoS of new calls � P
N
b �W � P

N
d , (4.4)

where W ' 1 and can be considered as the additional penalty imposed on new call dropping.

Note that smaller values of GoS are associated with better new call performance, and larger

values of GoS are associated with worse new call performance. In the previous experiment

we set W � 1, i.e., no additional penalty for new call dropping. In the following experiment

we want to impose a penalty for new call dropping (i.e., W % 1) to investigate how different

values of the penalty affect the GoS of new calls for different models.

The traffic parameters used in this experiment are taken from Salamah [45]. The total

number of channels is fixed to be 50. Constraint on handoff call blocking, P
hb
0 , can vary from

10
�5

to 10
�2

(see Table 4.3). Given a set of traffic parameters, a penalty W and a constraint

on handoff call blocking P
hb
0 , one can obtain the number of guard channels required by each

model to meet P
hb
0 by solving optimization problem O1. Equation 4.4 can then be used to

obtain each model’s GoS of new calls.

Table 4.3: Experiment parameters and levels for Experiment 2-2

Parameter Level(s)

n 50

µ 1©180

Total offered load
1

0.6 � n � 30(moderate to high load)

Mobility 0.5(low), 1(moderate), 2(high)

P
hb
0 10

�2
,10

�3
, 10

�4
, 10

�5

1
The total offered load is defined as λ1©µ � λ2©µ
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In Figure 4.7 through 4.10, GoS of new calls is plotted against penalty W under four

different constraints for handoff call blocking. In each plot, the GoS of new calls for different

models are compared at different mobilities. For MWNP (HT’s model), since the new call

dropping probability is zero (because preemption is not allowed), its GoS is not affected

by different values of W and therefore stays constant against W . On the other hand, for

MWCP (the M1 and M2 models), their GoS curves in the plot are so close to each other

that they almost always overlap. Furthermore, the GoS curves of the M1 and M2 models

increase with W ; and when W � 1, they start below the corresponding GoS curve of HT’s

model, indicating that the new call performance of MWCP is better than that of MWNP.

This confirms our results from the previous experiment, that when there is no additional

penalty imposed on new call dropping, MWCP outperform MWNP in new call performance.

Looking at each plot and studying the effect of mobility on the comparison results between

MWCP and MWNP, it is interesting to know at what penalty the new call performance of

MWCP starts to become worse than that of MWNP, i.e., at what value of W the GoS curves

of MWCP surpass the corresponding GoS curve of MWNP. It is apparent that the GoS

curves of MWCP are more likely to surpass the corresponding GoS curve of HT’s model at

low penalties when mobility is low, or at high penalties when mobility is high. For example,

in Figure 4.9 the constraint for handoff call blocking is 10
�4

. Notice that the GoS curves of

MWCP (square dotted and square dashed lines) at mobility 0.5 surpass the corresponding

GoS curve of MWNP model (square solid line) at penalty 6; however, when mobility is 2,

the GoS curves of MWCP (asterisk dotted and asterisk square lines) do not surpass the

corresponding GoS curve of MWNP (asterisk solid line), not even at penalty 10. Similar

patterns can also be observed when we study the effect of P
hb
0 across all four figures: the

GoS curves of MWCP are more likely to surpass those of MWNP at low penalty when P
hb
0 is

loose, or at high penalty when P
hb
0 is strict. Note that when P

hb
0 is 10

�5
, the GoS curves of

MWCP never surpass those of MWNP (within the area of Figure 4.10) at both low (i.e., 0.5)

and moderate (i.e., 1) mobilities. To conclude, MWCP (the M1 and M2 models) can tolerate

high penalty on new call dropping and still outperform MWNP in new call performance when

the mobility is high and/or when the constraint on handoff call blocking is strict.
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4.3 Ability to meet constraints

Another topic that we explored was how the different models adapt to various traffic condi-

tions (i.e., various combinations of λ1, µ, and mobility) and how they meet predetermined

constraints on call loss. In the next experiment, we use numerical examples to compare the

abilities of each model to meet constraints on call loss. The model parameters and their

levels used in this experiment are summarized in Table 4.4.

Table 4.4: Experiment parameters and levels for Experiment 3

Parameter Level(s)

n 50

λ1 vary from 1 to 50

µ 1

Mobility 0.1, 0.5, 1, 2, 3, 4, 5

P
hb
0 10

�2
, 10

�3
, 10

�4
, 10

�5
, 10

�6

P
NL
0 � k � P

hb
0 and k � 2, 5, 10, 50, 10

2
, 10

3
, 10

4
, 10

5

For each of the parameter combinations, we examine each of the four models and deter-

mine if the model can meet a given set of constraints on call loss (P
hb
0 and P

NL
0 ). Note that

we do not set separate constraints for new call dropping and blocking probabilities. We only

set one constraint for the total new call loss. The total new call loss is simply the sum of

new call blocking and new call dropping (i.e., no penalty is imposed on call dropping). The

following method is used to determine whether a certain model can meet given constraints:

1. For HT’s model, the M1 model, and the M2 model, we set n � 50 and search ex-

haustively for the smallest number of guard channels g (& n) such that both the given

constraints are met. If such g can be found, then the given constraints can be met;

otherwise the constraints cannot be met when there are only 50 channels.

2. For the OM model, since all the channels are guard channels, we only need to set n � 50

and check whether all the given constraints can be met.

We summarized the results by calculating the constraint met percentage for each model,
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which is defined as the percentage of the total sets of constraints that can be met by each

model. Figure 4.11 to 4.15 plot constraint met percentages against λ1, mobility, P
hb
0 , P

NL
0 ,

and P
NL
0 ©P hb

0 . Note that we only recorded where the total offered load is less than or equal

to n; this is because when the total offered load is greater than n, the systems are overloaded

and all models performed equally poorly in meeting given call loss constraints.

In Figure 4.11, constraint met percentages for each model are plotted against different

values of new call arrival rate λ1. The trend exhibited in the figure is as expected: the

constraint met percentage decreases as λ1 increases for all models. This is because increases

in the new call arrival rate cause an increase in total offered load, making it difficult for

models to meet given constraints. As shown in Figure 4.11, the three MWP (the M1 model,

the M2 model, and the OM model) have almost the same performance, and the performance

of the MWNP (HT’s model) is close to those of the MWP at smaller λ1 but worsens as λ1

increases.

In Figure 4.12, constraint met percentages of each models are plotted against mobility. As

we can see, the constraint met percentages are high at low mobility and decrease as mobility

increases. The explanation is straightforward: high mobility implies high handoff call offered

load (when call service time is holding constant), and therefore only relatively low constraint

met percentage can be achieved. When we look at individual models, the M1 and the M2

models are slightly better than the OM model. The constraint met percentage of HT’s model

is about 2% to 4% less than those of the M1 and M2 models.

Figures 4.13 and 4.14 illustrate the effects of constraints for handoff blocking (P
hb
0 ) and

new call loss (P
NL
0 ) on constraint met percentages. Stricter constraints correspond to lower

constraint met percentage (as low as 45% to 55%), and looser constraints correspond to

higher constraint met percentage ( up to 85% to 95%). When we compare the performance

between models, Figure 4.13 presents an interesting pattern. The gap between MWP and

HT’s model is about 5% at extremely strict P
hb
0 (i.e., 10

�6
), and the gap closes when P

hb
0

becomes loose.

Finally, Figure 4.15 plots the constraint met percentages against P
hb
0 ©PNL

0 , the ratio of

constraints defined in Section 4.1. The pattern exhibited in this plot suggests that for all

models, the constraint met percentages are higher when P
hb
0 is several orders less in magnitude
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than P
NL
0 (i.e., when P

hb
0 ©PNL

0 is close to zero), and decrease to about 60% when both P
NL
0

and P
hb
0 have the same order of magnitude (P

hb
0 ©PNL

0 � 0.5). Also, when P
hb
0 ©PNL

0 & 10
�2

,

the difference in constraint met percentages between MWP and MWNP is more significant

(i.e., MWNP meets about 10% fewer constraints than MWP).

To conclude, MWP always outperform MWNP (HT’s model) in meeting constraints under

various traffic conditions. Among the three MWP, MWCP (the M1 and M2 models) perform

slightly better than MWFP (the OM model).
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Figure 4.1: Experiment 1: Boxplots of relative differences. Models are compared at
different mobilities
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Figure 4.2: Experiment 1: Boxplots of relative differences. Models are compared at
different ratios of constraints.

4.4 Conclusions

In this chapter, we divided four guard channel models into three groups: MWNP (HT’s

model), MWCP (the M1 and M2 models) and MWFP (the OM model). We compared three

characteristics of these groups: (1) their optimal number of channels required to meet a set

of pre-determined constraints on call loss, (2) new call performances after the total number

of channels is fixed and predetermined handoff call blocking constraint is met, and (3) their

ability to meet performance constraints in various traffic environments. From our extensive

numerical experiments, we conclude that MWCP (the M1 and M2 models) are overall the

best models for maximizing channel utilization and balancing the performance between high-

priority and low-priority traffic. When compared to MWNP (HT’s model), MWCP are
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Figure 4.3: Experiment 1: Boxplots of relative differences. Models are compared at
different handoff call blocking constraints.

more efficient in channel utilization and, therefore, often produce much lower new call loss,

especially when the mobility is high or the when constraint on handoff call blocking is strict.

When compared to MWFP (the OM model), MWCP also exhibit the advantages of efficient

channel utilization because they can adjust the number of guard channels according to the

given offered load and the given constraints on call losses. Our conclusion are well supported

by the first experiment in which MWCP almost always required fewer channels than MWFP.

Such flexibility also helps MWCP to achieve lower new call loss probability than MWFP.

Finally, when the two MWCP, the M1 and M2 models, are compared to each other, the M2

model slightly outperformed the M1 model in most of the experiments, but the difference is

not significant.
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Figure 4.4: Experiment 1: Boxplots of relative differences. Models are compared at
different P

Nb
0 percentages.
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Figure 4.5: Experiment 2-1: Boxplots of relative differences. Models are compared at
different mobilities.
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Figure 4.6: Experiment 2-1: Boxplots of relative differences. Models are compared at
different handoff call blocking constraints.
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Figure 4.11: Experiment 3: Plot of constraint met percentage against λ1.
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Figure 4.12: Experiment 3: Plot of constraint met percentage against mobility.
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Figure 4.14: Experiment 3: Plot of constraint met percentage against new call loss
constraint, P
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Chapter 5

TheM©M©�C©�C Queueing System and Markov

Regenerative Process

5.1 Introduction

In most systems, especially in traditional call centres, the server capacity is a constant value

over time. However, in cellular communication the system capacity usually can vary over

time due to many complicated factors in the networks, such as channel failure, frequency

borrowing, competition among different classes of traffic, channel preemption and so forth.

In the guard channel models analyzed in the previous chapters, the system capacity for

the low priority traffic (new calls) varies due to the existence of the high priority traffic

(handoff calls). The performance metrics, that is, the blocking and dropping probabilities

could be calculated by numerical or analytic methods. In this chapter we analyze the more

general case of systems with stochastic capacity: the M©M©�C©�C queueing system, which

was first studied by Sun et al. [52] and then by Luo and Williamson [32]. In both cases

the literature show that the Markov regenerative process (MRGP) can be used to model

the M©M©�C©�C system where the capacity variation process is a skip-free process; but

no explicit formulae for calculating the dropping probability are developed. In [32], three

different distributions of capacity interchange times are considered but no explicit formulae

are presented for calculating the steady state probabilities of the MRGP under different

distributions. In this chapter, we first review the theory of MRGP. Then, as an illustration,

the MRGP method is applied to the M1 model where n � 1 and g � 1. Finally, the MRGP

method is applied to the M©M©�C©�C queueing system where three different distributions

of capacity interchange times (exponential, Pareto and gamma) and three capacity variation
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types (skip-free, uniform-based, and distance-based) are discussed. Explicit formulae are

derived for calculating the steady state probabilities as well as the dropping probability. The

analytic solutions using the derived explicit formulae are verified by simulation results.

5.2 Review of Markov regenerative theory

Markov regenerative theory is used to analyze Semi-Markovian queueing systems. This type

of queueing systems is characterized by having an MRGP as its queue length process, which

indicates that the sojourn time of each state is not necessarily exponentially distributed. In

this section, the theory of MRGP is briefly reviewed.

Definitions and theorems in this section follow Kulkarni (2010). Consider a stochastic

process wherein there exist time points where the process satisfies the Markov property.

These time points are referred to as regeneration points. In an MRGP the stochastic evolution

between two successive regeneration points depends only on the state at regeneration, not

on the evolution before regeneration. Furthermore, due to the time homogeneity of the

embedded Markov renewal process, the evolution of the MRGP becomes a probabilistic

replica after each regeneration. As a consequence, all memory other than the state must be

reset at a regeneration point. The concepts of MRGP are given below.

Definition 2 Markov renewal sequence. A sequence of bivariate random variables r�Yn, Sn�, n '
0x is called a Markov renewal sequence if

�i� S0 � 0, Sn�1 ' Sn;Yn " r0, 1, 2, ...x and

�ii� for all n ' 0,

PrYn�1 � j, Sn�1 � Sn & t¶Yn � i, Sn, ..., Y0, S0x
�PrYn�1 � j, Sn�1 � Sn & t¶Yn � ix

(Markov property)

�PrY1 � j, S1 & t¶Y0 � ix
(Time homogeneity).
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Definition 3 Semi-Markov process. Let r�Yn, Sn�, n ' 0x be a Markov renewal sequence and

N�t� � suprn ' 0 � Sn & tx. Let

X�t� � YN�t�, t ' 0.

The stochastic process rX�t�, t ' 0x is called a semi-Markov process (SMP).

Definition 4 Markov regenerative process. A stochastic process rZ�t�, t ' 0x on its discrete

state space, Ω, is called an MRGP if there exists a Markov renewal sequence r�Yn, Sn�, n ' 0x
of random variables such that all conditional finite dimensional distributions of rZ�Sn�t�, t '
0x given rZ�u�, 0 & u & Sn, Yn � ix are the same as those of rZ�t�, t ' 0x given Y0 � i,

i " Ω
¬

L Ω.

Note that the above definition implies that in this case rZ�S�n �, n ' 0x or rZ�S�n �, n ' 0x
is an embedded discrete time Markov chain (DTMC) or just the embedded Markov chain in

rZ�t�, t ' 0x, and also that Sn is a stopping time (regeneration points) of rZ�t�, t ' 0x. As

a special case, the definition implies that

PrZ�Sn � t� � j¶Z�u�, 0 & u & Sn, Yn � ix
�PrZ�t� � j¶Y0 � ix.

We denote the conditional probability PrY1 � j, S1 & t¶Y0 � ix by Kij�t�, i, j " Ω
¬

. The

matrix K�t� � �Kij�t�� is called the global kernel of the Markov renewal sequence. Define

Ei,j�t�, where i, j " r0, 1, 2, ...x, as follows:

Ei,j�t� � PrZ�t� � j, S1 % t¶Y0 � ix.
Then the matrix E�t� � �Ei,j�t�� describes the behavior of the MRGP between two transition

epochs of the embedded Markov chain, that is, over the time interval �0, S1�. We call the

matrix E�t� the local kernel.

To study the limiting behavior of the MRGP, we need to define three variables:

� Vector m, where mi � E�S1¶Y0 � i�, is the mean time the embedded Markov chain
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spends on state i.

� αi,j � E�time spends by the system in state j during �0, S1�¶Y0 � i� � D�
0
Ei,j�t�dt

is the mean time the MRGP spends in state j between two successive regeneration

instants, given that it stayed in state i after the last regeneration. Note thatmi � <
j

αi,j.

� v is the steady state probability vector of the embedded Markov chain:

v � vP, =
k"Ω¬

vk � 1 (5.1)

where P � K��� is the one-step transition probability matrix of the embedded Markov

chain.

The following theorem describes the limiting behavior of MRGPs:

Theorem 5 Let rZ�t�, t ' 0x be an MRGP on Ω with Markov renewal sequence r�Yn, Sn�, n '
0x with kernel K���. Let N�t� denotes the total number of state changes by time t, i.e.

N�t� � suprn ' 0 � Sn & tx. Suppose that

�i� the sample paths of rZ�t�, t ' 0x are right continuous with left limits,

�ii� the SMP rYN�t�, t ' 0x is irreducible, aperiodic, and positive recurrent,

�iii� v is the positive solution to Equation 5.1.

Then the steady state probability of the MRGP is given by

πj � lim
t��

PrZ�t� � jx � 1
vm =

k"Ω¬

vkαk,j (5.2)

where vm � <i"Ω¬ vimi.

For more details and examples see Kulkarni [27].

5.3 Application to the first guard channel model

As illustrated in this section, the theory of MRGP was used to analyze the M1 model pre-

sented in Chapter 2. This model was re-examined as a composition of a series of traffic

models and a capacity model. The traffic model focuses on activities of new calls and the

126



capacity model, on the other hand, accounts for the capacity fluctuation to new calls caused

by handoff call. Note that the M1 model serves as a special case where every event is Marko-

vian. The use of MRGP to model non-Markovian queueing systems are presented in later

sections.

5.3.1 General procedure

Traffic models

We use N�t� to denote the number of new calls in the system at time t (or, in other words,

the system occupancy of new calls at time t). A new call arrives according to a Poisson

process with rate λ1 and spends an amount of time in the system according to an exponential

distribution with rate µ1. Given that the system capacity for new calls is i, the stochastic

process rN�t�, t ' 0x is a homogeneous continuous time Markov chain and can be solved as

an M©M©i©i queueing system. The steady state probabilities are given by

P �N � k� � �λ1
µ1
	k k!

<i

l�0 �λ1µ1	l l!

, k � 0, 1, 2, ..., i. (5.3)

The capacity model

Let C�t� be the system capacity for new calls at time t and Si be the time of i
th

capacity-

change. The stochastic process of the capacity model can be denoted by rC�t�, t ' 0x,
where C�t� � n � g, n � g � 1, ... n. The system capacity is determined by the difference

between n, the maximum number of channels in the system, and the number of handoff

calls in the system. The time between two consecutive capacity changes is just the time

between two consecutive handoff-call-events (arrival or completion) and its distribution is

state dependent. Because both handoff call interarrival times and completion times are

independently exponentially distributed, capacity interchange times also follow exponential

distributions. Let Ei�t� denote the distribution function of capacity interchange times given

that the capacity is at state i. Then Ei�t� is an exponential distribution function with
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rate λ
�i�

. Refer to Figure 2.2 as the state transition diagram of the capacity model. For

instance, when the capacity is at n� g, the capacity interchange time follows an exponential

distribution En�g�t� with rate λ
�n�g�

� gµ2. It is not difficult to obtain the expression for

λ
�i�
�

λ
�i�
� �n � i�µ2 � I�i j n � g� � λ2 (5.4)

where

I�i j j� �
~��������������

1 if i j j

0 if i � j

. (5.5)

Let Hi,j be the probability at which the capacity will change from i to j at the capacity-change

instant:

Hi,j � PrC�S1� � j¶C�S0� � ix. (5.6)

Based on the state transition diagram it is not hard to see that Hn�g,n�g�1 � Hn,n�1 � 1. The

capacity process rC�t�, t ' 0x is a finite birth and death process. Note that the stochastic

variation of the system capacity is independent of the traffic variation of new calls.

The composite model

Let the stochastic process r�C�t�, N�t��, t ' 0, N�t� & C�t�x represent the traffic-capacity

composite process with state space Ω � r�i, k�¶n � g & i & n, k & ix. It can be proven that

this stochastic process is indeed a Markov regenerative process.

Proof. Let Yi be the i
th

sojourn time of the capacity process rC�t�, t ' 0x, then let

Sn � <n

i�1 Yi. Let Nn be the number of new calls in the system immediately after the nth

capacity change and Cn be the system capacity at that time. Then r�Cn, Nn�, Sn�x is a

Markov-renewal sequence with kernel K�t� (which will be discussed later) because

Pr�Cn�1,Nn�1� � �i, j�, Sn�1 � Sn & x¶�Cn, Nn� � �k, l�, Sn, �Cn�1, Nn�1�,
Sn�1, �Cn�2, Nn�2�, Sn�2, ...�C0, N0�, S0x
� Pr�Cn�1, Nn�1� � �i, j�, Sn�1 � Sn & x¶�Cn, Nn� � �k, l�x (5.7)

� Pr�C1, N1� � �i, j�, S1 & x¶�C0, N0� � �k, l�x,
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and the process r�C�t�, N�t��, t ' 0x is an MRGP because r�C�t � Sn�, N�t� Sn��, t ' 0x
given r�C�u�, N�u��, 0 & u & Sn, �C�Sn�, N�Sn�� � �k, l�x is stochastically identical to

r�C�t�, N�t��, t ' 0x given �C�0�, N�0�� � �k, l�. In other words, r�C�t� Sn�, N�t� Sn��,
t ' 0x depends on r�C�u�, N�u��, 0 & u & Sn, �C�Sn�, N�Sn�� � �k, l�x only through

�C�Sn�, N�Sn��. The state space for this MRGP is Ω.

Expressions for global kernel and local kernel

The global kernel The entries of the global kernel K��� � limt�� K�t� are given by

K�i,k�,�j,l���� � lim
t��

K�i,k�,�j,l��t�
� lim

t��
Prr�C�S1�, N�S1�� � �j, l�, S1 & t¶ �C�S0�, N�S0�� � �i, k�x. (5.8)

As a matter of fact, the state transition described by K�i,k�,�j,l��t� is a two-step transition.

The first step transition is the evolution of the MRGP between two consecutive Markov

regeneration epochs (the capacity-change epochs) and the second step transition is caused

by the change of capacity. Assume that the system is at state �i, k� immediately after the

most recent capacity-change. Then the system will first transit from state �i, k� to state �i, l�
immediately before the next capacity change and then because of the change of capacity the

system will then transit from state �i, l� to state �j, l�. Note that if the new capacity j

is less than l then call dropping occurs and the new state after capacity change is �j, j�.
For those state transitions that are invalid, for instance, where capacity changes more than

one unit at a time or does not change at all, K�i,k�,�j,l��t� equals to zero. The evolution of

the MRGP between the Markov regeneration epochs can be described by the infinitesimal

generator Qi of the subordinated CTMC, where the subscript i indicates the current system

capacity before the next capacity-change epoch. Let P
i
k,l�t� � P�i,k�,�i,l��t� be the probability

that the subordinated CTMC will be in state �i, l� at time t given that it was in state �i, k�
initially, and P

i
k,l�t� can be obtained by solving

dP
i�t�
dt

� P
i�t�Qi. (5.9)
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Since the subordinated CTMC in this model is actually a finite birth and death process, its

transient solution is given by ([44])

P
i
k,l�t� � ρ

l©l!
<i

m�0 ρ
m©m!

�
i!

l!
ρ
i�k
�

i

=
r�1

Dk�xr�Dl�xr�
xrDi�xr�D¬

i�xr � 1�exrµt, (5.10)

where

ρ � λ©µ,

Dn�x� �

~������������������������

1, n � 0

x � ρ, n � 1

�x � ρ � n � 1�Dn�1�x� � �n � 1�ρDn�2�x�, n � 2, 3,�, C

,
(5.11)

and Xr, r � 1, 2,�, i, are the roots of Di�x � 1� � 0. Then the expressions of the entries

in K��� � rK�i,k�,�j,l����x can be obtained. Since system capacity for new calls, C�t� can

only vary one unit at a time (i.e., it is skip-free), all the state-transitions of this MRGP can

be classified into two cases:

� Case 1: Transitions may involve new call dropping. Call dropping would only oc-

cur when the capacity decreases at the capacity-change epoch and the system is full

immediately after that. Therefore case 1 happens when

i � j � 1, j � l and i j n � g, (5.12)

and the entry of the global kernel can be expressed as

K�i,k�,�j,l���� � lim
t��

K�i,k�,�j,l��t�
� lim

t��
�E t

0

P
i
k,l�x� �Hi,jdEi�x� � E t

0

P
i
k,i�x� �Hi,jdEi�x�


� E
�

0

P
i
k,l�x� �Hi,jdEi�x� � E �

0

P
i
k,i�x� �Hi,jdEi�x�. (5.13)

Note that the first integral of the right-hand side of the above equation describes the
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scenario when no dropping occurs because the number of new calls in the system

immediately before and after the capacity-change are both equal to l. However, the

second integral accounts for the scenario when a new call is dropped: the number of

new calls in the system is i �� j � 1� immediately before the capacity-change and j

immediately after the capacity-change.

� Case 2: Transitions that would not involve new call dropping. The indicator of such

transitions is that the system is not full immediately after the capacity-change epoch,

that is, j % l. The kernel entries of such transitions can be expressed as

K�i,k�,�j,l���� � lim
t��

K�i,k�,�j,l��t�
� lim

t��
E

t

0

P
i
k,l�x� �Hi,jdEi�x�

� E
�

0

P
i
k,l�x� �Hi,jdEi�x�. (5.14)

To summarize, we have

K�i,k�,�j,l���� �

~��������������������������������

D�
0
P
i
k,l�x� �Hi,jdEi�x�

� D�
0
P
i
k,i�x� �Hi,jdEi�x�

when i � j � 1, j � l,

and i j n � g.

D�
0
P
i
k,l�x� �Hi,jdEi�x� when j % l, j � i � 1.

0 otherwise.

(5.15)

The integrals in K��� can be expressed as

E
�

0

P
i
k,l�x� �Hi,jdEi�x�

� E
�

0

� ρ
l©l!

<i

m�0 ρ
m©m!

�
i!

l!
ρ
i�k
�

i

=
r�1

Dk�xr�Dl�xr�
xrDi�xr�D¬

i�xr � 1�exrµx� �HijdEi�x�
� E

�

0

ρ
l©l!

<i

m�0 ρ
m©m!

HijdEi�x� � E �

0

i!

l!
ρ
i�k
�

i

=
r�1

� Dk�xr�Dl�xr�
xrDi�xr�D¬

i�xr � 1�exrµxHijdEi�x�
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�
ρ
l©l!

<i

m�0 ρ
m©m!

Hij E
�

0

dEi�x� � i!

l!
ρ
i�k
�

i

=
r�1

� Dk�xr�Dl�xr�
xrDi�xr�D¬

i�xr � 1�Hij E
�

0

e
xrµxdEi�x�
 .

(5.16)

Let

fi�x�dx � dEi�x� � λ�i�
e
�λ

�i�
x
dx, (5.17)

and since

E
�

0

dEi�x� � 1 (5.18)

E
�

0

e
xrµxdEi�x� � E �

0

e
xrµxfi�x�dx

� E
�

0

e
xrµxλ

�i�
e
�λ

�i�
x
dx

�
λ
�i�

λ�i�
� xrµ

, (5.19)

we have

(5.16) �
ρ
l©l!

<i

m�0 ρ
m©m!

Hij

�
i!

l!
ρ
i�k
�Hij

i

=
r�1

� Dk�xr�Dl�xr�
xrDi�xr�D¬

i�xr � 1� � λ
�i�

λ�i�
� xrµ

� . (5.20)

The local kernel The local kernel matrix E�t� � �E�i,k�,�j,l��t�� describes the behavior of

the embedded BDP between two consecutive capacity-change epochs. Define

E�i,k�,�j,l��t� � P r�C�t�, N�t�� � �j, l�, t & S1¶ �C �S0� , N �S0�� � �i, k�x
�

~��������������
P
i
k,l�t��1 � Ei�t�� when i � j, �i, k� and �j, l� " Ω,

0 otherwise.

(5.21)
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Since Ei�t� is the cumulative distribution function of an exponential distribution with rate

λ
�i�
, its complementary cumulative distribution function can be expressed as

E
c
i �t� � 1 � Ei�t� � e�λ�i�

t
. (5.22)

Equation 5.21 becomes

E�i,k�,�j,l��t� �
~��������������
P
i
k,l�t�e�λ�i�

t
when i � j, �i, k� and �j, l� " Ω

0 otherwise

. (5.23)

Then in order to study the limiting behavior of this MRGP, we need to compute

a�i,k�,�j,l� � E
�

0

E�i,k�,�j,l��t�dt, (5.24)

which is the mean time this MRGP spends in state �j, l� between two consecutive capacity-

change epochs given that the system starts at state �i, k� immediately after the last capacity-

change. When i � j, �i, k� and �j, l� " Ω, we have

a�i,k�,�j,l� � E
�

0

P
i
k,l�t�e�λ�i�

t
dt

� E
�

0

� ρ
l©l!

<i

m�0 ρ
m©m!

�
i!

l!
ρ
i�k
�

i

=
r�1

� Dk�xr�Dl�xr�
xrDi�xr�D¬

i�xr � 1�exrµt
� e�λ
�i�
t
dt

�
ρ
l©l!

<i

m�0 ρ
m©m!

E
�

0

e
�λ

�i�
t
dt �

i!

l!
ρ
i�k

i

=
r�1

� Dk�xr�Dl�xr�
xrDi�xr�D¬

i�xr � 1� E
�

0

e
xrµte

�λ
�i�
t
dt


�
1

λ�i�
� ρ

l©l!
<i

m�0 ρ
m©m!

� � i!

l!
ρ
i�k

i

=
r�1

� Dk�xr�Dl�xr�
xrDi�xr�D¬

i�xr � 1� � 1

λ�i�
� xrµ


 . (5.25)
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Performance measures

The steady state distribution of this MRGP can then be calculated using Equation 5.2:

π�i,k� � lim
t��

P rC�t� � i, N�t� � kx
�
<�j,l�"Ω v�j,l�a�j,l��i,k�

<�j,l�"Ω v�j,l�β�j,l�

, (5.26)

where β�j,l� � <�m,r�"Ω a�j,l��m,r� and v � �v�j,l�� are the solution of

v � vK��� and = v�j,l� � 1. (5.27)

From the steady state distribution, the following performance measures can be easily ob-

tained:

New call blocking probabilty: P
N
b �n, g� � <i�k π�i,k�,

New call dropping probability: P
N
d �n, g� � λ2

λ1
<i�k,ijn�g π�i,k�, and

Handoff call blocking probability: P
h
b �n, g� � <i�n�g π�i,k�.

(5.28)

5.3.2 A simple case when n � 1 and g � 1

In this section we solve a special case of the first guard channel model where n � 1 and g � 1

using the MRGP procedure. The state space of this system is Ω � r�0, 0�, �1, 0�, �1, 1�x.
The capacity model

The capacity for new calls at any time t, C�t�, could be either 0 (1 handoff call) or 1 (no

handoff call). The state transition diagram for the capacity model can be found in Figure
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5.1a. The distributions of interchange times

Ei�t� �
~��������������

exponential with rate µ2, if the capacity is at 0,

exponential with rate λ2, if the capacity is at 1.

(5.29)

The one step transition probabilities, Hij, are also not difficult to obtain. From the transition

diagram we have

H0,1 � 1 and H1,0 � 1. (5.30)

Traffic models

The traffic process rN�t�, t ' 0x is a BDP. The number of states in this BDP depends on

the current system capacity. When the capacity is at 0 the BDP has only one state and

the transient probability P
�0�
0,0 �t� � 1. When the capacity is at 1, the traffic process is then a

two-state BDP (see Figure 5.1b) and its transient solution can be calculated using Equations

5.10 and 5.11. Firstly we calculate functions Di:

(a) Capacity Model (b) Traffic Model

Figure 5.1: State transition diagram of the capacity and the traffic model of the M1
model when n � 1 and g � 1

D0�x� � 1 (5.31)

D1�x� � x � ρ (5.32)

D
¬

1�x� � 1 (5.33)
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D1�x � 1� � x � 1 � ρ (5.34)

and the solution to D1�x � 1� � 0 is x1 � ��1 � ρ�. Then we have

D0�x1� � 1 (5.35)

D1�x1� � �1 (5.36)

D
¬

1�x1 � 1� � 1. (5.37)

Using Equation 5.10 all the four transient probabilities when the capacity is at 1 can be

obtained:

P
1
01�t� �

λ1

λ1 � µ1
�

λ1

λ1 � µ1
e
��λ1�µ1�t (5.38)

P
1
00�t� �

µ1

λ1 � µ1
�

λ1

λ1 � µ1
e
��λ1�µ1�t (5.39)

P
1
10�t� �

µ1

λ1 � µ1
�

µ1

λ1 � µ1
e
��λ1�µ1�t (5.40)

P
1
11�t� �

λ1

λ1 � µ1
�

µ1

λ1 � µ1
e
��λ1�µ1�t. (5.41)

Computing the global and local kernels

As stated in Section 5.3.1, the non-zero entries of the global kernel K��� can be divided

into two categories:

� Case 1: New call dropping may occur, and two of them fall into this category:

K�1,0�,�0,0���� � E �

0

P
1
01�x�H10dE1�x� � E �

0

P
1
00�x�H10dE1�x�

� E
�

0

1 �H10dE1�x�
� 1 (5.42)

K�1,1�,�0,0���� � E �

0

P
1
11�x�H10dE1�x� � E �

0

P
1
10�x�H10dE1�x�

� E
�

0

1 �H10dE1�x�
� 1. (5.43)
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� Case 2: New call dropping cannot occur. There is only one entry of K��� that belongs

to this category:

K�0,0�,�1,0���� � E
�

0

P
0
00�x�H01dE0�x� (5.44)

� 1. (5.45)

After ordering all the states lexicographically as r�0, 0� �1, 0� �1, 1�x, the global kernel

K��� can be expressed as

K��� �
Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
^̂̂̂̂̂
\̂

0 1 0

1 0 0

1 0 0

[_______________________]
. (5.46)

Solve

v � vK��� and = v�j,l� � 1 (5.47)

for v and we have ~������������������������

v�0,0� �
1

2

v�1,0� �
1

2

v�1,1� � 0

(5.48)

Following equation 5.23 the non-zero entries of local kernel E�t� can be easily obtained:

E�1,0�,�1,1��t� � � λ1

λ1 � µ1
�

λ1

λ1 � µ1
e
��λ1�µ1�t� � e�λ2 (5.49)

E�1,1�,�1,0��t� � � µ1

λ1 � µ1
�

µ1

λ1 � µ1
e
��λ1�µ1�t� � e�λ2 (5.50)

E�1,0�,�1,0��t� � � µ1

λ1 � µ1
�

λ1

λ1 � µ1
e
��λ1�µ1�t� � e�λ2 (5.51)

E�1,1�,�1,1��t� � � λ1

λ1 � µ1
�

µ1

λ1 � µ1
e
��λ1�µ1�t� � e�λ2 (5.52)

E�0,0�,�0,0��t� � 1 � e
�µ2 . (5.53)
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And therefore all the non-zero a�i,k�,�j,l�s can also be obtained:

a�1,0�,�1,1� � E
�

0

E�1,0�,�1,1��t�dt � λ1

λ2�λ1 � µ1� �
λ1

λ1 � µ1

1

λ1 � λ2 � µ1
(5.54)

a�1,1�,�1,0� �
µ1

λ2�λ1 � µ1� �
µ1

λ1 � µ1

1

λ1 � λ2 � µ1
(5.55)

a�1,0�,�1,0� �
µ1

λ2�λ1 � µ1� �
λ1

λ1 � µ1

1

λ1 � λ2 � µ1
(5.56)

a�1,1�,�1,1� �
λ1

λ2�λ1 � µ1� �
µ1

λ1 � µ1

1

λ1 � λ2 � µ1
(5.57)

a�0,0�,�0,0� �
1
µ2
. (5.58)

Computing the steady state probabilities and performance measures

Now that we have all the ingredients and are ready to compute the steady state probabilities

π�i,k�. By Equation 5.26, there follows

π�0,0� �
<�j,l�"Ω v�j,l�a�j,l��0,0�

<�j,l�"Ω v�j,l�<�m,r�"Ω a�j,l��m,r�
�

λ2

λ2 � µ2

π�1,0� �
<�j,l�"Ω v�j,l�a�j,l��1,0�

<�j,l�"Ω v�j,l�<�m,r�"Ω a�j,l��m,r�
�

�µ1 � λ2�µ2�λ1 � µ1 � λ2��λ2 � µ2� (5.59)

π�1,1� �
<�j,l�"Ω v�j,l�a�j,l��1,1�

<�j,l�"Ω v�j,l�<�m,r�"Ω a�j,l��m,r�
�

λ1µ2�λ1 � µ1 � λ2��λ2 � µ2� .
If these steady state probabilities were calculated using the composite model approach

(Refer to Chapter 2), that is, by solving the following system of equations for π�i,k�, the same

formulae as presented in (5.59) could be obtained:

~������������������������

�µ2π�0,0� � λ2π�1,0� � λ2π�1,1� � 0

��λ1 � λ2�π�1,0� � µ2π�0,0� � µ1π�1,1� � 0

π�0,0� � π�1,0� � π�1,1� � 1

. (5.60)
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The performance measures of this example follows Equation 5.28:

P
N
b �n, g� � π�0,0� � π�1,1� �

�λ1 � µ1 � λ2�λ2 � λ1µ2�λ1 � µ1 � λ2��λ2 � µ2� (5.61)

P
N
d �n, g� �

λ2

λ1
π�1,1� �

λ2µ2�λ1 � µ1 � λ2��λ2 � µ2� (5.62)

P
h
b �n, g� � π�0,0� �

λ2

λ2 � µ2
. (5.63)

Note that P
h
b �n, g� can be rewritten as ρ2©�1 � ρ2� which is just the Erlang B formula

EB�ρ2, 1�, which agrees with Equation 2.7.

Although closed form solutions can be found when n is small, for general n and g the

steady state distribution of the M1 model is intractable and no closed form solutions have

been found. In the next section the performance measures of the M1 model for larger n and g

are computed numerically using both the MRGP method and the composite model method.

5.3.3 Numerical examples

In this section we verify the MRGP method by comparing its results (new call blocking and

dropping probabilities) to the results calculated using the composite model approach (as

described in Chapter 2). Both methods are implemented in Matlab in which the function

mldivide is used to numerically solve a system of linear equations and the function roots is

used to numerically find the roots of a polynomial equation. Let n � 20, g � 10, µ1 � µ2 � 1,

λ1 � 10 and the mobility can vary from 0.1 to 5. As Figure 5.2 suggests, the solutions

calculated by the MRGP method and the composite model method agree with each other

very well. However, the CPU time of running MRGP is almost 50 times the CPU time needed

for applying the composite model method. Therefore, using the method of MRGP to solve

Markovian queues is inefficient. In the next section we apply MRGP on the M/M/�C/�C

system where capacity interchange times follow non exponential distribution and therefore

cannot be analyzed using the composite model method.
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Figure 5.2: The M1 model: results for the MRGP method and the composite model
method

5.4 Application to the M©M©�C©�C queueing systems

The M©M©�C©�C queueing system is a variant of the loss system M©M©C©C where the

system capacity may change over time. The maximum possible capacity for this system is C.

As stated in Chapter 1, the system capacities of wireless networks may vary randomly with

time for various reasons such as the channel status, the dynamics of protocols used for channel

assignment, bandwidth allocation, rate control and mobility management [52]. In this section

we analyze the M©M©�C©�C queueing system. We assume that capacity interchange times

are independent and identically distributed with a general cumulative distribution function

G���; we further assume that the value of the capacity can change from its current value i

to a different value j drawn randomly from {j¶0 & j & C, j j i}. Then we examine three

specific distributions of capacity interchange times (exponential, gamma and Pareto) and

three capacity variation patterns (skip-free, distance-based and uniform-based). Numerical

and simulation results are presented to conclude this section.
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5.4.1 Analytical model

Traffic models

The system occupancy at any time t is denoted by N�t�, t ' 0. The traffic arrives according to

a Possion process with rate λ. The service times follow independent exponential distributions

with common rate µ. Given that the system capacity is i, the stochastic process rN�t�, t ' 0x
is a homogeneous continuous time Markov chain (CTMC) with state space ΩN � r0, 1, . . . , ix.
This model can be analyzed as an M©M©i©i queueing system. The steady state probabilities

are given by

P �N � k� � �λ
µ
�k©k!

i<
l�0

�λ
µ
�l©l! , k � 0, 1,�, i. (5.64)

The capacity model

The capacity variation model is again represented by the stochastic process rC�t�, t ' 0x with

state space ΩC � r0, 1, . . . , Cx, where C stands for the maximum possible capacity for this

system. The random variable C�t� represents the capacity of the system at time t. The time

between two consecutive capacity changes is generally (non-exponentially) distributed with

cumulative distribution function G���, density function g��� and mean µc. Define λc � 1©µc
as the average capacity-change rate. At capacity-change time epochs, the system capacity

may change from its current state to any other state in the state space. Note that capacity-

change is independent of the traffic variation. When capacity drops at the capacity-change

instant, empty channels will be dropped first to avoid unnecessary call droppings. The

capacity process rC�t�, t ' 0x can be modeled as a SMP: let us assume that it starts at

the initial state C0 at time t � 0 and stays on that state for a sojourn time of Y1 before

jumping to the next state, C1. In general it stays in state Cn, n ' 0 for a duration of Yn and

then jumps to the next state Cn�1. Then Yis are i.i.d. with cumulative distribution function

G���. Let τi � <i

j�1 Yj, which is the i
th

capacity-change instance. Let J�t� be the number of

capacity changes up to time t. Then the sequence rC0, �Cn, Yn�, n ' 1x can be used to define
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the capacity process rC�t�, t ' 0x by

C�t� � CJ�t�, t ' 0. (5.65)

And rC�t�, t ' 0x is an SMP because the sequence rC0, �Cn, Yn�, n ' 1x satisfies

Pr�Cn�1 � j, Yn�1 & y¶Cn � i, Yn, Cn�1, Yn, ..., C1, Y1, C0�
�Pr�C1 � j, Y & y¶C0 � i�, i, j " ΩC , n ' 0. (5.66)

Assume that there are a finite number of capacity-changes during a finite time, then rCn, n '
0x is called the embedded DTMC in the SMP with transition probabilities

Hi,j � Pr�Cn�1 � j¶Cn � i�, i, j " ΩC , n ' 0. (5.67)

The composite model

Let the stochastic process r�C�t�, N�t��x represents the traffic-capacity composite model.

Define Ω to be the state space of this stochastic process and we have

Ω � r�i, k�¶0 & i & C, 0 & k & ix. (5.68)

Define N
¬

n � N�τn�, which is the number of calls in the system at the n
th

capacity-change

instance. Then the sequence t�C0, N
¬

0�, ��Cn, N ¬

n�, Yn� , n ' 1z can be used to define the two

dimensional process r�C�t�, N ¬�t��, t ' 0x by

�C�t�, N ¬�t�� � �CJ�t�, N ¬

J�t��, t ' 0. (5.69)

It is not difficult to see that this process is an SMP because it only possesses Markovian

property at capacity-change epochs. Define the kernel of this SMP as follows:

K�t� � �K�i,k�,�j,l��t���i,k�,�j,l�"Ω, t ' 0, (5.70)
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where

K�i,k�,�j,l��t� � Prr�C1, N
¬

1� � �j, l�, Y1 & t¶�C0, N
¬

0� � �i, k�x. (5.71)

Define v � �v�i,k���i,k�"Ω. Then an SMP is completely described by its kernel K�t� and the

initial distribution

v�i,k� � Pr ��C�0�, N ¬�0�� � �i, k�� , �i, k� " Ω. (5.72)

Clearly r�Cn, N ¬

n�, n ' 0x is a DTMC (called the embedded DTMC in the SMP) with

transition probabilities

K�i,k�,�j,l���� � Prr�Cn�1, N
¬

n�1� � �j, l�¶�Cn, N ¬

n� � �i, k�x, �i, k�, �j, l� " Ω, (5.73)

and the initial distribution of the embedded DTMC, v, is a positive solution to solution to

v � vK��� and =
�i,k�"Ω

v�i,k� � 1. (5.74)

The Markov regenerative process (MRGP)

The following proof shows that the stochastic process for the composite model r�C�t�, N�t��x
is indeed an MRGP.

Proof. As defined before, Yn is the n
th

sojourn time of the capacity process rC�t�, t ' 0x and

τn � <n

j�1 Yj denote the n
th

capacity jump epoch. Let Nn and Cn be the number of customs

in the system and the system capacity, respectively, which are observed immediately after

the n
th

capacity-change (and insures right continuous with left limit at each capacity-change

epoch). Then r��C�t�, N�t�� , τnx is a Markov-renewal sequence because

Prr�Cn�1, Nn�1� � �i, j�, τn�1 � τn & x¶�Cn, Nn� � �k, l�, τn,
�Cn�1, Nn�1�, τn�1, �Cn�2, Nn�2�, τn�2,�, �C0, N0�, τ0x
� Prr�Cn�1, Nn�1� � �i, j�, τn�1 � τn & x¶�Cn, Nn� � �k, l�x
� Prr�Cn�1, Nn�1� � �i, j�, τ1 & x¶�C0, N0� � �k, l�x,

(5.75)
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and the process r�C�t�, N�t��, t ' 0x is a MRGP because r�C�t � τn�, N�t � τn��, t ' 0x
given r�C�u�, N�u��, 0 & u & τn, �C�τn�, N�τn�� � �k, l�x is stochastically identical to

r�C�t�, N�t��, t ' 0x given rC�0�, N�0� � �k, l�x. In other words, r�C�t�τn�, N�t�τn��, t '
0x depends on r�C�u�, N�u��, 0 & u $ Sn, C�τn�, N�τn�x only through �C�τn�, N�τn��. τ ¬ns
are called the Markov regeneration epochs of this MRGP. The state space for this MRGP is

Ω.

Expressions for global kernel and local kernel

The global kernel

We can write out the expression of the global kernel K��� as follows:

K��� � lim
t��

K�i,k�,�j,l��t�

� lim
t��

~����������������������������������

D t
0
P
i
k,l�x�Hi,jdG�x�, i j j, l $ j and l $ i

D t
0
P
i
k,j�x�Hi,jdG�x�

�

i<
m�j�1

D t
0
P
i
k,m�x�Hi,jdG�x�

i j j, l � j and i % j

0 otherwise

�

~������������������������

D�
0
P
i
k,l�x�Hi,jdG�x�, i j j, l $ j and l $ i

i<
m�j

D�
0
P
i
k,m�x�Hi,jdG�x� i j j, l � j and i % j

0 otherwise.

(5.76)

Denote f̂�s� as the Laplace transformation of function f�t� :

f̂�s� � L rf�t�x � E �

0

e
�st
f�t�dt. (5.77)

After using (5.10) to substitute all the transition probabilities of the traffic model in (5.76),
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it is not difficult to show that when l $ j and l $ i, the global kernel can be expressed as

K�i,k�,�j,l���� � ρ
l©l!

<s ρ
s©s!Hi,j

�
i!

l!
ρ
i�k
Hi,j �

i

=
r�1

Dk�xr�Dl�xr�
xrDi�xr�D¬

i�xr � 1� ĝ��xrµ�,
(5.78)

and when l � j and i % j, the global kernel has entries

K�i,k�,�j,l���� � Hi,j

�

i

=
m�j

� ρ
m©m!

<s ρ
s©s! � i!

m!
ρ
i�k
�

i

=
r�1

Dk�xr�Dm�xr�
xrDi�xr�D¬

i�xr � 1� ĝ��xrµ�� ,
(5.79)

where ĝ��� denotes the Laplace transform of the probability distribution function g���.
The local kernel

The local kernel matrix E�t� describes the behavior of the process during the time between

two consecutive capacity changes (starting from the state of the system immediately after

the last capacity-change), and it can be written as

E
�i,k�,�j,l�

�t� �
~��������������
P
i
k,l�t� � �1 �G�t�� �i, k�, �i, l� " Ω

0 Otherwise

(5.80)

where P
i
k,l�t� are defined in Equation 5.10.

To study the limiting behaviors of the MRGP we will need the following quantity:

a�i,k�,�j,l� � E
�

0

E�i,k�,�j,l��t�dt � E �

0

P
i
k,l�t� � �1 �G�t��dt, (5.81)

which is the mean time that the MRGP spends in state �j, l� between two successive capacity-

change epochs when the system is initially in state �i, k� immediately after the last capacity-

change. The closed form expression of a�i,k�,�j,l� can also be obtained by expanding P
i
k,l�t� in
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(5.81) using (5.10):

a�i,k�,�j,l� � � ρ
l©l!

<s ρ
s©s!�E

�

0

�1 �G�t��dt
�
i!

l!
ρ
i�k
�

i

=
r�1

Dk�xr�Dl�xr�
xrDi�xr�D¬

i�xr � 1�Ĝc��xrµ� (5.82)

� µc � ρ
l©l!

<s ρ
s©s!� � i!

l!
ρ
i�k
�

i

=
r�1

Dk�xr�Dl�xr�
xrDi�xr�D¬

i�xr � 1�Ĝc��xrµ�,
where µc is the mean time between capacity changes or the mean of the probability density

function g���, and Ĝ
c��� is the Laplace transform of the complementary cumulative distribu-

tion function of G���.
Steady state probabilities

The steady state probabilities, v � �v�i,k��, of the embedded DTMC is a positive solution to

v � vK��� and =
�i,k�"Ω

v�i,k� � 1. (5.83)

The steady state probabilities π� �π�i,k�� of the MRGP are calculated as follows:

π�i,k� � lim
t��

PrrC�t� � i, N�t� � kx
�
<�j,l�"Ω V�j,l�a�j,l�,�i,k�

<�j,l�"Ω V�j,l�β�j,l�

,
(5.84)

where β�j,l� � <�m,r�"Ω a�j,l�,�m,r�.

The important quantities required to calculate the steady state probabilities are summa-

rized below:

� P
i
k,j�t�: This is the transient solution to the subordinate CTMC when the system

capacity is i. Formulae for computing them are presented in (5.10) and (5.11). Note

that in (5.10) the roots Xrs to polynomial equations can be found using the Matlab

function roots.
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� Hi,j: This is the probability for the system capacity to change from i to j at the

capacity-change epoch (as defined in (5.67)). Formulae for calculating Hi,j for capacity

variation patterns are developed in section: Capacity variation patterns.

� ĝ��xrµ� and Ĝ
c��xrµ�: These are the Laplace transforms of the probability density

function g��� and the complementary cumulative distribution function G
c��� at �xrµ,

respectively. These two quantities are required in the calculation of K�i,k�,�j,l���� and

a�i,k�,�j,l�. For different distributions of capacity interchange times, formulae for calcu-

lating ĝ��xrµ� and Ĝ
c��xrµ� are presented in section: The distribution of capacity

interchange times.

� v: This is the steady state distribution of the embedded DTMC. v can be obtained by

solving the system of linear equations defined in (5.83) numerically using the Matlab

function mldivide.

Performance measures

The performance measures of interest of the M©M©�C©�C system are the blocking probabil-

ity (denoted by Pb) and the dropping probability (denoted by Pd). The blocking probability

Pb is the sum of all the steady state probabilities (π�i,k�’s) where i � k. Following the idea

presented in Equation 2.9 in Chapter 2, the dropping probability Pd can be calculated. How-

ever, the formula for calculating Pd is more complicated because there are more state tran-

sitions that can cause call dropping, and capacity interchange times are non-exponentially

distributed. The dropping probability can be calculated as

1

λ
=

�i,k�"Ωd

π�i,k� =
�j,l�"Ω�i,k�

R�i,k�,�j,l�N
d
�i,k�,�j,l�Hij, (5.85)

where:

� R�i,k�,�j,l� is the expected transit rate for the system to transit from state �i, k� to state

�j, l� for i j j. If the capacity interchange time is exponential then this quantity is a

constant and equal to 1©µc. But when capacity interchange times are non exponential,

this quantity is no longer a constant. It depends on the mean time the system will

spend before entering state �i, k� since the last capacity-change.
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� λ is the traffic arrival rate.

� Ωd is a subset of the system state space and includes all the states that are the ini-

tial state of a state transition that involves dropping events. For instance, when this

queueing system transits from state �4, 4� to state �3, 3�, one dropping event happens,

and therefore the initial state of this transition, �4, 4�, will be included in Ωd. In other

words, Ωd is a collection of all states that, when system is at one of these states, can

lead to transitions involving dropping events. It is not hard to see that Ωd should

include all the states when the system is not empty (that is, these is at least one call

in the system). We can write Ωd � r�i, k�¶�i, k� " ΩM , i j 0 and k j 0x.
� Ω�i,k� is a subset of the system state space ΩM and includes all the terminal states of

the transitions involving dropping event(s) initiated from state �i, k�.
� π�i,k� is the steady state probability of state �i, k� calculated by Equation 5.84.

� N
d
�i,k�,�j,l� is the number of calls that have been dropped caused by the transition from

state �i, k� to �j, l�.
� Hij is the probability (as defined in Equation 5.67) that the capacity will change to j

at the capacity-change instant given that its current value is i.

However, difficulty arises when capacity interchange times are non-exponential. For non-

exponential capacity interchange times (any that do not possess memoryless property), the

expected time left until the next capacity-change epoch is not always equal to 1©λc. As a

matter of fact, the mean residual time for a given state depends on the amount of time that

has already elapsed since the last capacity-change. Therefore, the transition rates (R�i,k�,�j,l�)

in the above formula are difficult to obtain. In the following section we develop a new

method to calculate dropping probabilities which can be easily applied to cases when capacity

interchange times are non-exponential.

Calculating dropping probability for non-exponential cases

Since call dropping events can only occur at capacity-change epochs, they can be completely

captured by the SMP r�C�t�, N ¬�t��, t ' 0x. Suppose that the system is in state �i, k�
immediately after a capacity change epoch, and transits to state �j, l� at the second capacity-

change epoch. The necessary and sufficient conditions for a dropping event to occur at the
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second capacity-change epoch are:

1. The system is full immediately after the second capacity-change epoch, that is,

j � l (5.86)

and

2. There are more than l calls in the system immediately before the second capacity-

change. Let �i,m� be the system state immediately before the second capacity-change,

then we have

i % j and m % l. (5.87)

Therefore, when the states �i, k� and �j, l� satisfy:

~��������������
j � l

i % j

(5.88)

the probability for the system to transit from �i, k� to �j, l� via state �i,m� (where m % l,

and the system stays on �i,m� until it transits to state �j, l� at the capacity-change instant)

can be found as part of the expression of K��� in Equation 5.76, which is

E
�

0

P
i
k,m�x�Hi,jdG�x� (5.89)

and during such transition, λc�m � j� calls are dropped, where λc is the average capacity-

change rate. Therefore, the expected number of calls that are dropped when the system

transits from �i, k� to �j, l� can be calculated as

i

=
m�j�1

�λc�m � j�E �

0

P
i
k,m�x�Hi,jdG�x�
 . (5.90)

Given the initial distribution v of the embedded DTMC (which is, in fact, also the initial

distribution of the SMP r�C�t�, N ¬�t��, t ' 0x), and the traffic arrival rate λ, the total
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dropping probability for the system can be obtained as

1

λ
� =

for all pairs of
�i,k� and �j,l�

satisfy j�l and i%j

�v�i,k� � i

=
m�j�1

�λc�m � j�E �

0

P
i
k,m�x�Hi,jdG�x�
� . (5.91)

The distribution of capacity interchange times

As studied in Luo and Williamson [32], Sun and Williamson [50, 51], Sun et al. [52], the

characteristics of the capacity variation process can have a large impact on the performance

measures such as call blocking and dropping probabilities. As stated in Luo and Williamson

[32], we assume that the probability distribution function of capacity interchange times is

G��� with mean µc and consider three domains: �0, µc� (the ”head”), �µc, 3µc� (the ”body”),

and �3µc,�� (the ”tail”) respectively and then three different kinds of distribution functions

are considered: gamma distribution (with the shape parameter less than 10), which has a

larger density function at the ”head”, Pareto distribution with shape parameter 1 $ a $ 2,

which has a larger density function at the tail, and exponential distribution whose density

is relatively evenly distributed over the three domains. We will use these three kinds of

probability distribution functions as the distributions followed by capacity interchange times

in the M©M© � C© � C system. The focus is on developing formulae for ĝ��xrµ� and

Ĝ
c��xrµ� in Equation 5.79 and 5.82.

Exponential distribution

When the cumulative distribution function G��� of capacity interchange times is an ex-

ponential distribution with mean µc, we have

g�x� �
1
µc
e
�
x
µc (5.92)

G
c�x� � e

�
x
µc . (5.93)

The Laplace transform of the probability density function g�x� at �xrµ is

ĝ��xrµ� � E �

0

e
xrµx 1

µc
e
�
x
µc dx
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�

1

µc
1

µc
� xrµ

. (5.94)

The Laplace transform of the complementary cumulative distribution function can be ob-

tained using

Ĝ
c�s� � 1 � ĝ�s�

s , (5.95)

and we have

Ĝ
c��xrµ� � 1

s �
ĝ��xrµ�

s

�
1

1

µc
� xrµ

. (5.96)

Gamma distribution

Gamma distribution is a two-parameter family of continuous probability distributions.

Let α be its shape parameter and β be the inverse scale parameter. If we only consider the

case where α is a positive integer, then the distribution represents an Erlang distribution; that

is, the sum of k independent exponentially distributed random variables, each of which has

a mean of 1©β. Based on this parametrization we can write its probability density function

as well as the probability distribution function:

g�x, α, β� � β
α 1

Γ�α�xα�1
e
�xβ

(5.97)

G�x, α, β� � E
x

0

β
α 1

Γ�α�tα�1
e
�tβ
dt. (5.98)

The Laplace transform of g�x, α, β� can be found in Hogg and Craig [20] and the Laplace

transform of G
c�x, α, β� can be obtained using Equation 5.95. Then ĝ��xrµ� and Ĝ

c��xrµ�
can be calculated as

ĝ��xrµ� � E �

0

e
xrµxg�x, α, β�dx
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�
β
α

��xrµ � β�α (5.99)

Ĝ
c��xrµ� � 1 � ĝ��xrµ�

�xrµ

�
1

�xrµ
�

β
α

��xrµ��β � xrµ�a . (5.100)

Pareto distribution

Pareto distribution is also a two-parameter family of continuous probability distributions.

Let xm be the scale parameter and a the shape parameter and the probability density function

is

g�x� �
~��������������

ax
a
m

xa�1
for x ' xm

0 for x $ xm

. (5.101)

A transformed probability density function of the Pareto distribution, which is widely used

in modeling communication networks, is defined as

f�y� � ax
a
m�xm � y�a�1

, y ' 0 (5.102)

where y � x � xm.
1

So we have

g�x� � f�x � xm�, x ' xm (5.103)

and

G�x� � E x

0

g�t�dt
� E

x

xm

g�t�dt
� E

x

xm

f�t � xm�dt (Let u � t � xm)

� E
x�xm

0

f�u�du
1
x is the original Pareto random variable used in Equation 5.101 and y is the transformed Pareto random

variable used in Equation 5.102.

152



� F �x � xm�, x ' xm, (5.104)

where G��� and F ��� are the cumulative distribution function of g��� and f ���, respectively.

Then the explicit expressions (in terms of well-known functions) for the Laplace transform

of the transformed Pareto distribution can be represented as follows (refer to Nadarajah and

Kotz [36]):

L rf�x�x �s� � f̂�s� � a�xms��a�1�©2
� e

xms©2
�W��a�1�©2,�a©2�xms�, (5.105)

where Wλ,µ�x� stands for the Whittaker W function, which is defined as

Wλ,µ�x� � x
µ�1©2

e
�x©2

Γ�µ � λ � 1©2�
� E

�

0

t
µ�λ�1©2�1 � t�µ�λ�1©2

e
�xt
dt, (5.106)

where

Γ�x� � E �

0

t
x�1

e
�t
dt (5.107)

is the gamma function. It then follows Equation 5.95 that the Laplace transform of its

complementary cumulative probability distribution is

L sF c�y�y �s� � 1 � f̂�s�
s

�
1 � a�xms��a�1�©2

� e
xms©2

�W��a�1�©2,�a©2�xms�
s . (5.108)

In order to obtain the Laplace transform of the original Pareto probability density function,

we apply the following property of Laplace transform (The time delay property):

L rf�x � xm� � U�x � xm�x �s� � e�xmsL rf�x�x �s�, (5.109)
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where U�x � xm� is the unit step function defined as

~��������������
U�x � xm� � 1, x ' xm

U�x � xm� � 0, x $ xm

(5.110)

on Equation 5.105 and yields

L rg�x�x �s� � L rf�x � xm� � U�x � xm�x �s�
� e

�xmsL rf�x�x �s�
� e

�xms
� a�xms��a�1�©2

� e
xms©2

�W��a�1�©2,�a©2�xms�
� a�xms��a�1�©2

� e
�xm©2�xm�s

�W��a�1�©2,�a©2�xms�
� a�xms��a�1�©2

� e
�xms©2

�W��a�1�©2,�a©2�xms�. (5.111)

Then Equation 5.95 applies and we have

L sGc�x�y �s� � 1 � ĝ�s�
s

�
1 � a�xms��a�1�©2

� e
�xms©2

�W��a�1�©2,�a©2�xms�
s . (5.112)

At last we can obtain the explicit expressions of ĝ��xrµ� and Ĝ
c��xrµ� by replacing s with

��xrµ� in Equation 5.111 and 5.112.

Capacity variation patterns

The capacity value process
2
, which can be represented by a DTMC rCn, n ' 0x with state

space {i¶i � 0, 1, 2, ..., C} (see Section 5.4.1), can also affect the performance of the system

significantly [50, 51]. Three different kinds of capacity variation patterns
3

are introduced

2
It is important to distinguish between the capacity process (which is a CTMC denoted by rC�t�x) and

the capacity value processs (which is a DTMC denoted by rCnx.)
3
In Sun and Williamson [50, 51] the capacity value was drawn from a Normal distribution with predeter-

mined mean and standard deviation. The difficulty of using a Normal distribution is that we are generating
positive integers from a continuous probability function that is defined on ���,��. Therefore we propose
some other techniques to generate capacity values at capacity-change instants.
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and the corresponding transition probabilities Hijs (defined by Equation 5.67) are derived.

Then some numerical examples are provided to study the characteristics of the capacity value

processes under different capacity variation patterns.

Skip-free variation

A skip-free variation is the type of variation where the capacity can only change one unit

at a time. In Luo and Williamson [32] the capacity value process rCn, n ' 0x is assumed to be

a skip-free process. Given that the current capacity is i, and at any capacity-change instant,

the capacity can increase by one with probability f��i� or decrease by one with probability

f��i�. It is certain that f��i� � f��i� � 1. Also f��0� � 1 and f��C� � 1 because C is

the maximum capacity of the system. The expression of Hij for a skip-free capacity-change

process can be expressed as

Hij �

~������������������������

f��i� if j � i � 1

f��i� if j � i � 1

0 otherwise

. (5.113)

The probabilities f��i� and f��i� can be functions of i or some predetermined values such as

0.5 and 0.5.

Distance-based variation

The second capacity variation pattern is the distance-based variation. The idea of

distance-based variation is that we allow the capacity to transit from its current value to

any other value in {0, 1, 2, ..., C} to increase the variability of the capacity value process.

However we want to control the variability in such a way that the capacity is more likely

to change to a value that is close to its current value than to a value that is distance away.

Therefore, the probability that the capacity will change from its current value i to another

value j should depend on the distance (defined as ¶i � j¶) between i and j: the larger the

distance is, the smaller the probability would be. The following derivation of Hij explains

how the distance-based transition probabilities are calculated.
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1. Assume that the current capacity is i. Then the distance from i to another value j (j "

�0, C� and j j i) is defined as dij � ¶i � j¶ .
2. Because we would like the transition probability Hij to be inversely related to the

distance dij, we define rij � 1©dij.
3. To meet the normalization condition we multiply rij by the constant �<ijj rij��1

.

Therefore

Hij �

~��������������

rij

<ijj rij
if i j j

0 if i � j

. (5.114)

Uniform-based variation

In order to allow even more variability in the capacity value process we propose the

uniform-based variation, where the system capacity can transit from its current value to

other values in 0, 1, ...i � 1, i � 1, ..., C with equal probability. Therefore, at the capacity-

change instant, the probability that the capacity will change from i to any other value in

0, 1, ...i � 1, i � 1, ..., C is always equal to 1©C. The transition probabilities Hij for this case

is

Hij �

~��������������
1©C if i j j

0 if i � j

. (5.115)

Numerical examples of capacity variation patterns

In this section, numerical examples are used to study the characteristics of these three

capacity variation patterns. Assume that C � 10 and the capacity value process starts at full

capacity. For the skip-free variations we further assume that f��i� � f��i� � 0.5 when i j 0 or

C. First, as plotted in Figure 5.3, a typical sample path consisting of 100 sample points was

generated for each capacity variation patterns. As Figure 5.3 shows, the skip-free variation

(Figure 5.3a) is characterized by a sample path with modest fluctuations. The sample path for

the uniform-based variation fluctuates more dramatically. The variability of distance-based

variation is in the middle. From the simulated autocorrelation plots in Figure 5.4 it is clear

that the series of skip-free variations has the strongest autocorrelation; because lag-1 has high
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autocorrelation and slowly declines and goes towards negative autocorrelation. The series

of distance-based variations has weaker autocorrelation than those of skip-free variations as

the autocorrelation starts high at lag-1 but decreases quickly and reaches negative values

at lag-5. The series of uniform-based variations is the most random series since almost all

the autocorrelation lie within the confidence limits and there is no apparent pattern in the

correlation.

(a) A typical sample path of skip-free
variation

(b) A typical sample path of
distance-based variation

(c) A typical sample path of uniform-
based variation

Figure 5.3: Typical sample paths of different types of capacity variation process

5.4.2 Numerical study

Analytical solution vs. simulated solution

In this section, call-level simulation was used to verify analytic solutions. The solutions based

on the MRGP method were calculated in Matlab. Our experiments covered all 9 different

combinations of the distribution of capacity interchange times and the capacity variation
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Figure 5.4: Simulated autocorrelation and partial autocorrelation function plots for
three different types of variations

patterns. For each experiment, considering a reference cell with n � 10 total channels, 10

simulation runs were performed and then one sample T-tests were carried out to test the

null hypothesis that the sample mean of each of the performance measures produced by the

10 simulation runs is equal to the solution calculated using the MRGP method. The model

parameters used for our experiments are: λ � 5 and µ � 1, and the capacity-change rate λc

can vary from 0.1 to 10. Results displayed in Figure 5.5 suggest that the analytic solutions

are well supported by simulated solutions. Detailed results are also provided in Tables A.1 -

A.9 in Appendix.

The impact of the distributions of capacity interchange times and capacity vari-

ation patterns on performance metrics

We have introduced three different distributions of capacity interchange times as well as three

different capacity variation patterns. Experiments are carried out to investigate their impact
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on performance metrics.

The performance metrics were calculated using the MRGP method developed in Section

5.4. We fixed the total number of channels, n, to be 10 and the call completion rate, µ, to

be 1. For the skip-free variation we assume that f��i� � 0.5 for 0 $ i $ C. The remaining

model parameters can vary for different experiments.

We then conducted two experiments. The first experiment focused on the effect of offered

load on performance metrics. In this experiment, the offered load (λ©µ) varied from 1 (low

traffic load) to 20 (overload). The mean capacity-change rate λc � 1. The three distributions

of capacity interchange times under study were: exponential (λ � 1), gamma (α � 10,

β � 10), and Pareto (a � 1.2, xm � 1©6). Among which, the Pareto (a � 1.2, xm � 1©6)

distribution had the heaviest tail and the gamma(α � 10, β � 10) distribution had the

lightest tail.

Figure 5.6a plots blocking probabilities against offered load, and a clear trend can be

observed: The blocking probability increases as offered load increases for all types of capacity

variation patterns. The distribution of capacity interchange times has little impact on the

blocking probability; because under the same capacity variation pattern, the call blocking

curves for different distributions of capacity interchange times overlay with each other.

The capacity variation patterns, on the other hand, have impact on the blocking probabil-

ity to some extent: The capacity variation pattern with less dramatic fluctuations (skip-free)

is able to produce lower blocking probability than capacity variation patterns with more dra-

matic fluctuations (distance-based and uniform-based) at lower offered load ($ 5). However,

the relationship is reversed at higher offered load (% 5): the distance-based and uniform-based

variations produce the lower blocking probabilities and the skip-free variation produces the

highest blocking probability. The reason is that the fluctuation of capacity has the effect of

reducing call blocking probability by first clearing the system (when capacity decreases and

ongoing calls are dropped) and then producing free channels for incoming calls (when the

capacity increases). When the offered load is higher and when the capacity fluctuates more

dramatically, this effect is more significant; therefore, capacity variation patterns with more

dramatic fluctuations (distance-based and uniform-based) produce lower blocking probabili-

ties than the capacity variation pattern with less dramatic fluctuations (skip-free).
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In Figure 5.6b, dropping probabilities are plotted against offered load, and several inter-

esting patterns are displayed. First, the dropping probabilities of different capacity variation

patterns are quite different: Uniform-based variation produces the highest dropping probabil-

ity (because its capacity fluctuates the most dramatically). The skip-free variation achieves

the lowest dropping probability (because its capacity fluctuates the least dramatically). The

dropping probability produced by distance-based variation is in between. Second, for skip-

free variation, dropping probability decreases as offered load increases. For uniform-based

and distance-based variations, the dropping probabilities vary nonmonotonically as offered

load increases. As a matter of fact, the dropping probabilities produced by uniform-based

and distance-based variations increase first and start to decrease after reaching the max-

ima (which occurs at offered load = 6 Erlangs). At first glance it seems that our results

contradicts to what was presented in Sun and Williamson [50], where the authors draw the

conclusion through simulation studies that call dropping ratio should increase as offered load

increases. However, after examining closely the parameters they were using, we found out

that the ”contradiction” may be caused by insufficient data in their experiments. Note that

the capacity variation process in Sun and Williamson [50] had a mean capacity of 40 while

the offered load only varied from 20 to 60 (which is 150% of the mean capacity). In our ex-

periment, with the mean capacity being about 5 for both uniform-based and distance-based

variations, we let offered load vary from 1 to 20 (which is 400% of the mean capacity) and

were able to detect the decreasing portions of the dropping probability curves. Third, for

the most dramatic capacity variation pattern, that is, the uniform-based variation, we are

able to see the difference in dropping probabilities between different distributions of capacity

interchange times: for the gamma distribution (which has the lightest tail) we see the high-

est dropping probability, whereas for the Pareto distribution (which has the heaviest tail)

we observe the lowest dropping probability. The dropping probability of the exponential

distribution is in between.

In the second experiment we studied the effect of λf on performance metrics. λf , the

relative scale of capacity fluctuation, was defined by Luo and Williamson [32] as the ratio of

λc to µ. In this experiment we fixed n to be 10 and µ to be 1. We then chose a medium offered

load of 5 and let λf varies from 0.05 to 20. When λf � 0.05 capacity-change events occur less
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frequently than call completion events, and when λf reaches 1, capacity-change events occur

as frequently as call completion events. When λf is greater than 1, capacity-change events

occur more frequently than call completion events and is expected to have more significant

impact on call loss probabilities. This is well supported by the results displayed in Figures

5.7a and 5.7b: As λf increases, the differences in both call blocking and dropping probabilities

between different distributions of capacity interchange times become more observable.

In Figure 5.7a, blocking probabilities are plotted against λf . Blocking probabilities de-

crease as λf increases. Also the distribution with heavier tail (Pareto) produces higher

blocking probabilities than the distribution with lighter tail (gamma). Last but not the

least, we notice that lower blocking probabilities are often associated with capacity variation

patterns that fluctuate more dramatically (distance-based and uniform-based); and higher

blocking probabilities are associated with the capacity variation pattern that fluctuates less

dramatically (skip-free variation).

In Figure 5.7b, dropping probabilities are plotted against λf and opposite patterns to

Figure 5.7a are displayed. First, the dropping probabilities increases as λf increases. Sec-

ond, for the same capacity variation pattern, high dropping probabilities are observed for

distributions associated with low blocking probabilities (gamma and exponential); and low

dropping probabilities are observed for the distribution that is associated with high blocking

probability (Pareto). Finally, capacity variation patterns that fluctuate more dramatically

(distance and uniform-based) produce high dropping probability, whereas the capacity vari-

ation pattern that fluctuates modestly (skip-free) leads to low dropping probability, which is

expected.

To summarize, distributions of capacity interchange times and capacity variation patterns

have great impact on call blocking and dropping probabilities. For instance, distributions

with a lighter tail, and capacity variation patterns with higher variability (i.e., can vary

more dramatically at the capacity-change instant) can lead to higher dropping probabilities.

Furthermore, high dropping probability is usually associated with low blocking probability.

An intuitive explanation would be: When capacity decreases by a significant number of

channels, it also terminates many ongoing calls; therefore, the system has more free channels

to accommodate incoming calls when the capacity increases. The average time for calls to

161



spend in the system is reduced due to call droppings. This effect is defined as the dropping-

induced speed-up effect by Luo and Williamson in Sun and Williamson [50]. This speed-up

effect is more significant when the change of capacity happens more frequently than the

completion of calls, that is, when the rate of capacity-change is higher than the rate of call

completion.

162



0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6
Exponential − Distance

Mobility

C
al

l l
os

s 
pr

ob
ab

ili
ty

 

 

Blocking (sim)
Blocking (MRGP)
Dropping(sim)
Dropping (MRGP)

(a) Exponential - Distance

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6
Exponential − Skipfree

Mobility

C
al

l l
os

s 
pr

ob
ab

ili
ty

 

 

Blocking (sim)
Blocking (MRGP)
Dropping(sim)
Dropping (MRGP)

(b) Exponential - Skipfree
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(c) Exponential - Uniform
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(f) Gamma - Uniform
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Figure 5.5: Verify the method of MRGP using simulations
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Figure 5.6: Effect of offered load on call loss. λ varies from 1 to 20, µ � 1, λc � 1
and n � 10. a): Blocking probabilities are plotted against offered load. b): Dropping
probabilities are plotted against offered load.
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Figure 5.7: Effect of λf on call loss. λf is defined as the ratio of mean capacity-change
rate (λc) to call departure rate (µ). λ � 5, µ � 1, n � 10 and λf varies from 0.05 to
20. a): Blocking probabilities are plotted against λf . b): Dropping probabilities are
plotted against λf .
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The explosive growth of cellular networks has attracted many researchers to study the tech-

nology from various perspectives. An important characteristic of cellular networks is the

stochastically fluctuating system capacity, which can have significant impact on system per-

formance. Therefore, the study of systems with fluctuating capacity is of great interest. In

this thesis, we first studied priority queueing systems by proposing and analyzing two guard

channel models with controlled preemption. Then the M©M©�C©�C system was directly

analyzed using the MRGP method. Our contributions are described below:

� We developed two analytic methods and two approximate methods to analyse the

performance of our first guard-channel model (the M1 model). The four methods were

compared to simulation results. Approximate methods took negligible time to finish;

but they overestimated the call loss probabilities at high offered load. On the other

hand, two of the analytic solutions agreed very well with simulation results; but they

took a substantial amount of time to run. Therefore, approximate methods can be

used when the number of channels is large (i.e., n ' 120) and/or the computational

power is limited; otherwise, the analytic methods are recommended. Algorithms were

developed to find an optimal number of total channels (n) and guard channels (g) to

meet given call performance thresholds.

� For the second proposed guard channel model (the M2 model), closed expressions of

the call loss probabilities were derived when call holding times for both traffic types are

homogeneous. The property of the new call dropping probability was studied through

the investigation of its first partial derivative. The results showed that when g was
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fixed, the new call dropping probability can be a non-monotonic function of n (Figure

3.1). Then the contours of loss probabilities were examined and algorithms for solving

optimization problems were developed based on the different patterns of the contour

plot. In the last section of Chapter 3, the M2 model was compared to the HT’s model

and results showed that the M2 model required about 10% fewer channels on average to

meet performance constraints when the performance constraint on high-priority traffic

was much stricter than on low-priority traffic

� In Chapter 4, a series of numerical experiments were conducted to thoroughly compare

four models at hand (M1, M2, OM, and HT’s models). The following characteristics

were compared between models: (i) channel utilization, (ii) low priority call (i.e., new

call) performance, and (iii) flexibility to meet various constraints. The results suggested

that the proposed controlled preemption models were the best models overall; this is

because they use channels more efficiently than the non-preemption model, and they

have more flexibility than fully preemption model.

� In Chapter 5 a loss system with stochastic capacity (the M©M©�C©�C system) was

studied using the MRGP method in which three different distributions (exponential,

gamma, and Pareto) of the capacity interchange times and three different capacity vari-

ation patterns (skip-free, distance-based, and uniform-based) were considered. Explicit

expressions for call blocking and dropping probabilities were obtained and were verified

by call-level simulations. Further numerical results showed that the blocking probabil-

ity in this system was affected by different distributions of capacity interchange times

and capacity variation patterns. Especially when the ratio of mean capacity change

rate to call departure change rate, λf , was greater then 2, the effects of different dis-

tributions and capacity variation patterns begin to aggregate: the gamma distribution

(which has the lightest tail among all the three distributions under study) produced

the lowest blocking probability; and the capacity variation patterns with more variabil-

ity (distance-based and uniform-based variation) produced lower blocking probabilities

than the capacity variation pattern with limited variability (skip-free variation).
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6.2 Future work

Three projects that could extend the work done in this thesis and improve the technology of

cellular networks are described.

1. Zhou and Beard [68] also proposed an MWCP which deals with a delay system that

supports three classes of traffic: new calls from public users, handoff calls from public

users, and the emergency calls (in order of low to high priority). In Zhou and Beard’s

model, when an incoming emergency call fails to find a free channel, and the number

of active emergency calls is within a predetermined limit, the incoming emergency call

can preempt an ongoing public call. The difference between Zhou and Beard’s model

and the M1 model is that in Zhou and Beard’s model, although the high priority traffic

(emergency calls) can only preempt low priority traffic (public calls) when the system

is full and when the number of active emergency calls is within a predetermined limit

(which is similar to the M1 model), the emergency calls can also access free channels

when the system is not full even when the number of active emergency calls is over the

limit, which is not allowed in the M1 model. It would be interesting to see how the call

loss probabilities of Zhou’s model compares to those of the M1 and M2 models.

2. Recently, studies that question the validity of the assumption of handoff arrival being

Poissonian have appeared in the literature Chlebus and Ludwin [9], Rajaratnam and

Takawira [40, 41]. The MRGP method could be used to analyze the M1 model with

generally distributed handoff call interarrival times.

3. Recently, 4G cellular networks have started supporting high speed transmission of mul-

timedia traffic, including video, audio, and text. One important extension to our pro-

posed guard channel models would be to apply them in a system carrying multiclass

traffic, in which each class of traffic originates from either the cell under study (new

traffic) or from any one of the neighbouring cells of the reference cell (handoff traffic).
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Appendix

A. Numerically stable methods for computing steady state proba-

bilities (recursive methods for Erlang)

A recursion method proposed in [2] to avoid overflow problems when calculating Erlang B

formula:

EB�A, k� � A

k
EB�A, k � 1�

1 � A

k
EB�A, k � 1� , k � 1, 2, ..., N (A.1)

with EB�A, 0� � 1.

B. Proof of the pattern of recursive solution to the 1st handoff

model

Now Let us prove Equation 2.91:

C
r
�n,j�1� � C

r
�n�1,j�1� �

ρ
j�1
1�j � 1�! , r � 1, 2 and j � 0, 1, 2, ..., n � 1.

Proof. The L.H.S of the above equation is

C
r
�n,j�1� � C

r
�n�1,j�1�

�
αρ1 � ρ2 � jα�j � 1�α C

r
�n,j� �

ρ1�j � 1�Cr
�n,j�1� �

1�j � 1�αCr
�n�1,j�

�
αρ1 � 1 � jα�j � 1�α C

r
�n�1,j� �

ρ1

j � 1
C
r
�n�1,j�1� �

ρ2�j � 1�αCr
�n,j�

� �αρ1 � ρ2 � jα�j � 1�α �
ρ2�j � 1�α
Cr

�n,j� �
ρ1�j � 1�Cr

�n,j�1�

� � �1�j � 1�α � αρ1 � 1 � jα�j � 1�α 
Cr
�n�1,j� �

ρ1

j � 1
C
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�n�1,j�1�
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�
ρ1 � j�j � 1�Cr

�n,j� �
ρ1�j � 1�Cr
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which is just the R.H.S. of the equation 2.91.

C. Laplace transform of Gamma CDF

The cumulative distribution function of Gamma distribution can be witten as

G�x, α, β� � E
x

0

g�t;α, β�dt
� E

x

0

β
α 1

Γ�α�tα�1
e
�tβ
dt (Let y � βt)

�
1

Γ�α� E
xβ

0

y
α�1

e
�y
dy

�
γ�a, xβ�

Γ�α� (A.2)

where Γ�α� is the gamma function and

γ�a, x� � E x

0

t
α�1

e
�t
dt (A.3)

is the lower incomplete gamma function. The upper incomplete gamma function is given by:

Γ�a, x� � Γ�a� � γ�a, x� (A.4)

and its Laplace transform is

LrΓ�a, t�x�s� � Γ�a�1 � �1 � s��a
s . (A.5)
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Take Laplace transform of Equation A.4 we have

LrΓ�a, tx�s� � LrΓ�a� � γ�a, t�x�s�
� LrΓ�a�x�s� � Lrγ�a, t�x�s�
� E

�

0

e
�st

Γ�a�dt � Lrγ�a, t�x�s� (A.6)

� Γ�a�1 � �1 � s��a
s �

Γ�a�
s � Lrγ�a, t�x�s� (A.7)

Lrγ�a, t�x�s� �
Γ�a�
s �1 � s��a (A.8)

Now we are ready to calculate the Laplace transform of the Gamma cumulative distribution

function G�x, α, β�:
LrG�x, α, β�x�s� � Lrγ�a, xβ�
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�sx
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�
1

Γ�α� 1

β

Γ�a�
s©β �1 � s©β��a

�
1

s�1 � s©β�a (A.9)

D. Generalized Pareto distribution in Matlab

The probability density function of generalized Pareto distribution used in Matlab is defined

as:

y � f�x¶k, δ, θ� � �1

δ

 �1 � k

�x � θ�
δ


�1� 1
k

(A.10)

for θ $ x, when k % 0, or for θ $ x $ �δ©k when k $ 0. We want to reparameterize it and

obtain the pdf of Pareto distribution defined in Equation 5.101.

176



Let k % 0 and θ � δ©k we have

f�x¶k, δ, δ©k� � �1

δ

 �1 � k

�x � δ©k�
δ


�1� 1
k

� �1

δ

 �kx

δ

�1� 1

k

� �1

δ

 � δ

kx

1� 1

k

�
δ

1
k

�kx�1� 1
k

�
δ

1
k

k1� 1
kx1� 1

k

�

1

k
� δ
k
� 1
k

x1� 1
k

(A.11)

Compare with Equation 5.101 and we should adopt the following reparameterization:

k �
1
α (A.12)

δ � kxm �
xm
α (A.13)

E. Proof of the relationship between L rf�x�x �s� and L rF
c
�x�x �s�

If f�x� is a probability density function defined on �a,�� and F
c�x� is the corresponding

complementary cumulative density function, then we must have

L sF c�x�y �s� � 1 � L rf�x�x �s�
s (A.14)

where L rf�x�x �s� stands for the Laplace transform of a function f�x�.
Proof. We start with writing out the L.H.S. of Equation A.14 explicitly as:

L sF c�x�y �s� � L r1 � F �x�x �s�
� L r1x�s� � LrF �x�x �s�
�

1
s � E

�

a

e
�st
F �t�dt

177



�
1
s � E

�

a

e
�st �E t

a

f�x�dx
 dt
�

1
s � ���1

se
�sy E

t

a

f�x�dx
»»»»»»»»
�

a

� E
�

a

��1
se

�st
 f�t�dt�
�

1
s � 0 �

1
s E

�

a

e
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which is just the R.H.S. of Equation A.14.

F. Supplementary material

The following tables list detailed results of the numerical experiments for verifying the MRGP

method using simulations presented in Section 5.4.2.

Table A.1: MRGP vs. simulation: Exponential - Distance

Model Parameters Simulation results MRGP solution

λ µ λc Blocking Prob. Dropping Prob. Blocking Prob. Dropping Prob
5 1 0.1 0.3589 0.0097 0.3641 0.0097
5 1 0.5 0.3495 0.0452 0.3524 0.0459
5 1 1 0.3417 0.0859 0.3392 0.0857
5 1 2 0.3169 0.1520 0.3165 0.1522
5 1 5 0.2690 0.2888 0.2687 0.2893
5 1 8 0.2384 0.3770 0.2382 0.3773
5 1 10 0.2240 0.4208 0.2231 0.4213

A
�

indicates that the T-test is significant at level 0.05.
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Table A.2: MRGP vs. simulation: Exponential - Skipfree

Model Parameters Simulation results MRGP solution

λ µ λc Blocking Prob. Dropping Prob. Blocking Prob. Dropping Prob
5 1 0.1 0.3420 0.0030 0.3630 0.0031
5 1 0.5 0.3659 0.0156 0.3549 0.0153
5 1 1 0.3549 0.0305 0.3456 0.0296

�

5 1 2 0.3246 0.0555 0.3290 0.0559
5 1 5 0.2895 0.1197 0.2910 0.1207
5 1 8 0.2640 0.1707 0.2640 0.1714
5 1 10 0.2498 0.2009 0.2498 0.2001

A
�

indicates that the T-test is significant at level 0.05.

Table A.3: MRGP vs. simulation: Exponential - Uniform

Model Parameters Simulation results MRGP solution

λ µ λc Blocking Prob. Dropping Prob. Blocking Prob. Dropping Prob
5 1 0.1 0.3728 0.0162 0.3748 0.0167
5 1 0.5 0.3628 0.0739 0.3618 0.0740
5 1 1 0.3485 0.1300 0.3475 0.1307
5 1 2 0.3236 0.2147 0.3240 0.2151
5 1 5 0.2766 0.3656 0.2777 0.3641

�

5 1 8 0.2494 0.4495 0.2492 0.4494
5 1 10 0.2352 0.4898 0.2354 0.4899

A
�

indicates that the T-test is significant at level 0.05.

Table A.4: MRGP vs. simulation: Gamma - Distance

Model Parameters Simulation results MRGP solution

λ µ α β Blocking Prob. Dropping Prob. Blocking Prob. Dropping Prob
5 1 10 1 0.3637 0.0097 0.3641 0.0099
5 1 10 5 0.3507 0.0486 0.3517 0.0484
5 1 10 10 0.3375 0.0921 0.3371 0.0914
5 1 10 20 0.3126 0.1617 0.3123 0.1622
5 1 10 50 0.2624 0.3033 0.2621 0.3037
5 1 10 80 0.2312 0.3927 0.2312 0.3922
5 1 10 100 0.2161 0.4361 0.2163 0.4359

A
�

indicates that the T-test is significant at level 0.05.
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Table A.5: MRGP vs. simulation: Gamma - Skipfree

Model Parameters Simulation results MRGP solution

λ µ α β Blocking Prob. Dropping Prob. Blocking Prob. Dropping Prob
5 1 10 1 0.3724 0.0033 0.3630 0.0032
5 1 10 5 0.3601 0.0160 0.3545 0.0158
5 1 10 10 0.3530 0.0321 0.3441 0.0313
5 1 10 20 0.3232 0.0599 0.3250 0.0604
5 1 10 50 0.2819 0.1308 0.2823 0.1303
5 1 10 80 0.2552 0.1831 0.2542 0.1825
5 1 10 100 0.2400 0.2121 0.2401 0.2112

A
�

indicates that the T-test is significant at level 0.05.

Table A.6: MRGP vs. simulation: Gamma - Uniform

Model Parameters Simulation results MRGP solution

λ µ α β Blocking Prob. Dropping Prob. Blocking Prob. Dropping Prob
5 1 10 1 0.3794 0.0171 0.3747 0.0173
5 1 10 5 0.3638 0.0821 0.3610 0.0818
5 1 10 10 0.3439 0.1444 0.3457 0.1448
5 1 10 20 0.3211 0.2321 0.3210 0.2338

�

5 1 10 50 0.2736 0.3827 0.2733 0.3834
5 1 10 80 0.2442 0.4672 0.2445 0.4670
5 1 10 100 0.2308 0.5062 0.2307 0.5065

A
�

indicates that the T-test is significant at level 0.05.

Table A.7: MRGP vs. simulation: Pareto - Distance

Model Parameters Simulation results MRGP solution

λ µ a xm Blocking Prob. Dropping Prob. Blocking Prob. Dropping Prob
5 1 2 5 0.3686 0.0102 0.3641 0.0099
5 1 2 1 0.3515 0.0473 0.3518 0.0478
5 1 2 0.5 0.3365 0.0884 0.3377 0.0892
5 1 2 0.25 0.3149 0.1580 0.3142 0.1566
5 1 2 0.1 0.2662 0.2922 0.2669 0.2918
5 1 2 0.0625 0.2375 0.3779 0.2373 0.3776
5 1 2 0.05 0.2215 0.4223 0.2227

�

0.4204
�

A
�

indicates that the T-test is significant at level 0.05.
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Table A.8: MRGP vs. simulation: Pareto - Skipfree

Model Parameters Simulation results MRGP solution

λ µ a xm Blocking Prob. Dropping Prob. Blocking Prob. Dropping Prob
5 1 2 5 0.3474 0.0030 0.3630 0.0032
5 1 2 1 0.3544 0.0161 0.3545 0.0158
5 1 2 0.5 0.3452 0.0312 0.3443 0.0311
5 1 2 0.25 0.3233 0.0589 0.3260 0.0592
5 1 2 0.1 0.2906 0.1274 0.2866

�

0.1254
5 1 2 0.0625 0.2590 0.1741 0.2604 0.1753
5 1 2 0.05 0.2479 0.2047 0.2469 0.2032

A
�

indicates that the T-test is significant at level 0.05.

Table A.9: MRGP vs. simulation: Pareto - Uniform

Model Parameters Simulation results MRGP solution

λ µ a xm Blocking Prob. Dropping Prob. Blocking Prob. Dropping Prob
5 1 2 5 0.3751 0.0174 0.3747 0.0173
5 1 2 1 0.3626 0.0801 0.3612 0.0796
5 1 2 0.5 0.3457 0.1369 0.3466 0.1383
5 1 2 0.25 0.3239 0.2200 0.3231 0.2217
5 1 2 0.1 0.2777 0.3650 0.2775 0.3656
5 1 2 0.0625 0.2493 0.4490 0.2496 0.4478
5 1 2 0.05 0.2359 0.4864 0.2361 0.4872

A
�

indicates that the T-test is significant at level 0.05.
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