17,015 research outputs found

    The Impact of User Effects on the Performance of Dual Receive Antenna Diversity Systems in Flat Rayleigh Fading Channels

    Get PDF
    In this paper we study the impact of user effects on the performance of receive antenna diversity systems in flat Rayleigh fading channels. Three diversity combining techniques are compared: maximal ratio combining (MRC), equal gain combining (EGC), and selection combining (SC). User effects are considered in two scenarios: 1) body loss (the reduction of effective antenna gain due to user effects) on a single antenna, and 2) equal body loss on both antennas. The system performance is assessed in terms of mean SNR, link reliability, bit error rate of BPSK, diversity order and ergodic capacity. Our results show that body loss on a single antenna has limited (bounded) impact on system performance. In comparison, body loss on both antennas has unlimited (unbounded) impact and can severely degrade system performance. Our results also show that with increasing body loss on a single antenna the performance of EGC drops faster than that of MRC and SC. When body loss on a single antenna is larger than a certain level, EGC is not a “sub-optimal” method anymore and has worse performance than SC

    Optimization in the design of a 12 gigahertz low cost ground receiving system for broadcast satellites. Volume 1: System design, performance, and cost analysis

    Get PDF
    The technical and economical feasibility of using the 12 GHz band for broadcasting from satellites were examined. Among the assigned frequency bands for broadcast satellites, the 12 GHz band system offers the most channels. It also has the least interference on and from the terrestrial communication links. The system design and analysis are carried out on the basis of a decision analysis model. Technical difficulties in achieving low-cost 12 GHz ground receivers are solved by making use of a die cast aluminum packaging, a hybrid integrated circuit mixer, a cavity stabilized Gunn oscillator and other state-of-the-art microwave technologies for the receiver front-end. A working model was designed and tested, which used frequency modulation. A final design for the 2.6 GHz system ground receiver is also presented. The cost of the ground-terminal was analyzed and minimized for a given figure-of-merit (a ratio of receiving antenna gain to receiver system noise temperature). The results were used to analyze the performance and cost of the whole satellite system

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Measurements and characterization of optical wireless communications through biological tissues

    Get PDF
    Abstract. Radio frequency (RF) has been predominantly utilized for wireless transmission of data across biological tissues. However, RF communications need to address several challenges like interference, safety, security, and privacy, which often hamper the communications through the tissues. To mitigate these challenges, light-based communication can be exploited, as optical wireless communications have unique advantages in terms of security, interference and safety. In this thesis work, we have utilized near-infrared (NIR) light to investigate the feasibility of optical wireless data transfer through biological tissues. To understand the basics of optical communications through biological tissues (OCBT), fresh meat samples and optical phantoms have been used as models of living biological tissues. An experimental testbed containing a data modulated light source and a photodetector was implemented to carry out different measurements regarding the OCBT concept. We have explored the influence of parameters like transmitted optical power, temperature of the tissue, tissue thickness, and position of the light source on the performance of the light-based through-tissue communication system. Analysis of the measurement data allowed us to compare and characterize the effect of used optical elements for better performance evaluation of the optical communication system. We have successfully transmitted a high-resolution image file through a 3 cm thick pork tissue sample. The maximum transmitted power through the tissue sample during the optical communication was 231.4 mW/cm2, which is well below the limits defined by standard of safety regulation. A data rate of 22 kilobits per second has been achieved with the experimental system. Practical limitations of the current testbed prevented obtaining a higher data throughput. The results indicate a dependence of optical received power with respect to the tissue temperature. Moreover, we found both thickness and compositional differences of the biological tissues have a significant impact on the transmittance rate. This thesis work can be considered as a part of the development of 6G technology. The outcomes of this pilot study are very promising, and in the future, numerous potential applications based on OCBT could be developed, including wireless communications to implanted devices, in-body sensors, smart pills, and others

    Low power CMOS IC, biosensor and wireless power transfer techniques for wireless sensor network application

    Get PDF
    The emerging field of wireless sensor network (WSN) is receiving great attention due to the interest in healthcare. Traditional battery-powered devices suffer from large size, weight and secondary replacement surgery after the battery life-time which is often not desired, especially for an implantable application. Thus an energy harvesting method needs to be investigated. In addition to energy harvesting, the sensor network needs to be low power to extend the wireless power transfer distance and meet the regulation on RF power exposed to human tissue (specific absorption ratio). Also, miniature sensor integration is another challenge since most of the commercial sensors have rigid form or have a bulky size. The objective of this thesis is to provide solutions to the aforementioned challenges

    Ultra-Low Power Wake Up Receiver For Medical Implant Communications Service Transceiver

    Get PDF
    This thesis explores the specific requirements and challenges for the design of a dedicated wake-up receiver for medical implant communication services equipped with a novel “uncertain-IF†architecture combined with a high – Q filtering MEMS resonator and a free running CMOS ring oscillator as the RF LO. The receiver prototype, implements an IBM 0.18μm mixed-signal 7ML RF CMOS technology and achieves a sensitivity of -62 dBm at 404MHz while consuming \u3c100 μW from a 1 V supply

    Evaluation of the Wi-Fi technique for use in a navigated orthopedic surgery

    Get PDF
    Following text focuses on use of wireless technologies in OrthoPilot navigation system developed by B.Braun company. Description of OrthoPilot software is followed by overview of available wireless technologies highlighting their both advantages and disadvantages. Practical part consists of two main parts, mostly dealing with electronic circuits. First part describes development process of camera-wireless printed circuit board which substitutes currently used RS-422 cable connection between PC and stereo camera. Part of this chapter covers programming in C++ in order to make interface compatible with the rest of current OrthoPilot software. Second bigger part deals with remote controller development using prototyping board mikroMedia for XMEGA. Besides electrical circuits design, chapter describes also software part - microcontroller programming in C language. Thesis is concluded by discussing system limitations and ideas for future development.Following text focuses on use of wireless technologies in OrthoPilot navigation system developed by B.Braun company. Description of OrthoPilot software is followed by overview of available wireless technologies highlighting their both advantages and disadvantages. Practical part consists of two main parts, mostly dealing with electronic circuits. First part describes development process of camera-wireless printed circuit board which substitutes currently used RS-422 cable connection between PC and stereo camera. Part of this chapter covers programming in C++ in order to make interface compatible with the rest of current OrthoPilot software. Second bigger part deals with remote controller development using prototyping board mikroMedia for XMEGA. Besides electrical circuits design, chapter describes also software part - microcontroller programming in C language. Thesis is concluded by discussing system limitations and ideas for future development.

    On-chip adaptive power management for WPT-Enabled IoT

    Get PDF
    Internet of Things (IoT), as broadband network connecting every physical objects, is becoming more widely available in various industrial, medical, home and automotive applications. In such network, the physical devices, vehicles, medical assistance, and home appliances among others are supposed to be embedded by sensors, actuators, radio frequency (RF) antennas, memory, and microprocessors, such that these devices are able to exchange data and connect with other devices in the network. Among other IoT’s pillars, wireless sensor network (WSN) is one of the main parts comprising massive clusters of spatially distributed sensor nodes dedicated for sensing and monitoring environmental conditions. The lifetime of a WSN is greatly dependent on the lifetime of the small sensor nodes, which, in turn, is primarily dependent on energy availability within every sensor node. Predominantly, the main energy source for a sensor node is supplied by a small battery attached to it. In a large WSN with massive number of deployed sensor nodes, it becomes a challenge to replace the batteries of every single sensor node especially for sensor nodes deployed in harsh environments. Consequently, powering the sensor nodes becomes a key limiting issue, which poses important challenges for their practicality and cost. Therefore, in this thesis we propose enabling WSN, as the main pillar of IoT, by means of resonant inductive coupling (RIC) wireless power transfer (WPT). In order to enable efficient energy delivery at higher range, high quality factor RIC-WPT system is required in order to boost the magnetic flux generated at the transmitting coil. However, an adaptive front-end is essential for self-tuning the resonant tank against any mismatch in the components values, distance variation, and interference from close metallic objects. Consequently, the purpose of the thesis is to develop and design an adaptive efficient switch-mode front-end for self-tuning in WPT receivers in multiple receiver system. The thesis start by giving background about the IoT system and the technical bottleneck followed by the problem statement and thesis scope. Then, Chapter 2 provides detailed backgrounds about the RIC-WPT system. Specifically, Chapter 2 analyzes the characteristics of different compensation topologies in RIC-WPT followed by the implications of mistuning on efficiency and power transfer capability. Chapter 3 discusses the concept of switch-mode gyrators as a potential candidate for generic variable reactive element synthesis while different potential applications and design cases are provided. Chapter 4 proposes two different self-tuning control for WPT receivers that utilize switch-mode gyrators as variable reactive element synthesis. The performance aspects of control approaches are discussed and evaluated as well in Chapter 4. The development and exploration of more compact front-end for self-tuned WPT receiver is investigated in Chapter 5 by proposing a phase-controlled switched inductor converter. The operation and design details of different switch-mode phase-controlled topologies are given and evaluated in the same chapter. Finally, Chapter 6 provides the conclusions and highlight the contribution of the thesis, in addition to suggesting the related future research topics.Internet de las cosas (IoT), como red de banda ancha que interconecta cualquier cosa, se está estableciendo como una tecnología valiosa en varias aplicaciones industriales, médicas, domóticas y en el sector del automóvil. En dicha red, los dispositivos físicos, los vehículos, los sistemas de asistencia médica y los electrodomésticos, entre otros, incluyen sensores, actuadores, subsistemas de comunicación, memoria y microprocesadores, de modo que son capaces de intercambiar datos e interconectarse con otros elementos de la red. Entre otros pilares que posibilitan IoT, la red de sensores inalámbricos (WSN), que es una de las partes cruciales del sistema, está formada por un conjunto masivo de nodos de sensado distribuidos espacialmente, y dedicados a sensar y monitorizar las condiciones del contexto de las cosas interconectadas. El tiempo de vida útil de una red WSN depende estrechamente del tiempo de vida de los pequeños nodos sensores, los cuales, a su vez, dependen primordialmente de la disponibilidad de energía en cada nodo sensor. La fuente principal de energía para un nodo sensor suele ser una pequeña batería integrada en él. En una red WSN con muchos nodos y con una alta densidad, es un desafío el reemplazar las baterías de cada nodo sensor, especialmente en entornos hostiles, como puedan ser en escenarios de Industria 4.0. En consecuencia, la alimentación de los nodos sensores constituye uno de los cuellos de botella que limitan un despliegue masivo práctico y de bajo coste. A tenor de estas circunstancias, en esta tesis doctoral se propone habilitar las redes WSN, como pilar principal de sistemas IoT, mediante sistemas de transferencia inalámbrica de energía (WPT) basados en acoplamiento inductivo resonante (RIC). Con objeto de posibilitar el suministro eficiente de energía a mayores distancias, deben aumentarse los factores de calidad de los elementos inductivos resonantes del sistema RIC-WPT, especialmente con el propósito de aumentar el flujo magnético generado por el inductor transmisor de energía y su acoplamiento resonante en recepción. Sin embargo, dotar al cabezal electrónico que gestiona y condicionada el flujo de energía de capacidad adaptativa es esencial para conseguir la autosintonía automática del sistema acoplado y resonante RIC-WPT, que es muy propenso a la desintonía ante desajustes en los parámetros nominales de los componentes, variaciones de distancia entre transmisor y receptores, así como debido a la interferencia de objetos metálicos. Es por tanto el objetivo central de esta tesis doctoral el concebir, proponer, diseñar y validar un sistema de WPT para múltiples receptores que incluya funciones adaptativas de autosintonía mediante circuitos conmutados de alto rendimiento energético, y susceptible de ser integrado en un chip para el condicionamiento de energía en cada receptor de forma miniaturizada y desplegable de forma masiva. La tesis empieza proporcionando una revisión del estado del arte en sistemas de IoT destacando el reto tecnológico de la alimentación energética de los nodos sensores distribuidos y planteando así el foco de la tesis doctoral. El capítulo 2 sigue con una revisión crítica del statu quo de los sistemas de transferencia inalámbrica de energía RIC-WPT. Específicamente, el capítulo 2 analiza las características de diferentes estructuras circuitales de compensación en RIC-WPT seguido de una descripción crítica de las implicaciones de la desintonía en la eficiencia y la capacidad de transferencia energética del sistema. El capítulo 3 propone y explora el concepto de utilizar circuitos conmutados con función de girador como potenciales candidatos para la síntesis de propósito general de elementos reactivos variables sintonizables electrónicamente, incluyendo varias aplicaciones y casos de uso. El capítulo 4 propone dos alternativas para métodos y circuitos de control para la autosintonía de receptores de energíaPostprint (published version
    corecore