156 research outputs found

    Equivalence of operations with respect to discriminator clones

    Get PDF
    For each clone C on a set A there is an associated equivalence relation, called C-equivalence, on the set of all operations on A, which relates two operations iff each one is a substitution instance of the other using operations from C. In this paper we prove that if C is a discriminator clone on a finite set, then there are only finitely many C-equivalence classes. Moreover, we show that the smallest discriminator clone is minimal with respect to this finiteness property. For discriminator clones of Boolean functions we explicitly describe the associated equivalence relations.Comment: 17 page

    A note on minors determined by clones of semilattices

    Get PDF
    The C-minor partial orders determined by the clones generated by a semilattice operation (and possibly the constant operations corresponding to its identity or zero elements) are shown to satisfy the descending chain condition.Comment: 6 pages, proofs improved, introduction and references adde

    Clones with finitely many relative R-classes

    Get PDF
    For each clone C on a set A there is an associated equivalence relation analogous to Green's R-relation, which relates two operations on A iff each one is a substitution instance of the other using operations from C. We study the clones for which there are only finitely many relative R-classes.Comment: 41 pages; proofs improved, examples adde

    Partially ordered pattern algebras

    Get PDF
    A partial order ≤ on a set A induces a partition of each power An into "patterns" in a natural way. An operation on A is called a ≤-pattern operation if its restriction to each pattern is a projection. We examine functional completeness of algebras with ≤-pattern fundamental operations

    Clones with finitely many relative R-classes

    Get PDF
    For each clone C on a set A there is an associated equivalence relation analogous to Green's R-relation, which relates two operations on A iff each one is a substitution instance of the other using operations from C. We study the clones for which there are only finitely many relative R-classes.Comment: 41 pages; proofs improved, examples adde

    The arity gap of polynomial functions over bounded distributive lattices

    Full text link
    Let A and B be arbitrary sets with at least two elements. The arity gap of a function f: A^n \to B is the minimum decrease in its essential arity when essential arguments of f are identified. In this paper we study the arity gap of polynomial functions over bounded distributive lattices and present a complete classification of such functions in terms of their arity gap. To this extent, we present a characterization of the essential arguments of polynomial functions, which we then use to show that almost all lattice polynomial functions have arity gap 1, with the exception of truncated median functions, whose arity gap is 2.Comment: 7 page
    corecore