# Partially Ordered Pattern Algebras 

Endre Vármonostory*


#### Abstract

A partial order $\preceq$ on a set $A$ induces a partition of each power $A^{n}$ into "patterns" in a natural way. An operation on $A$ is called a $\preceq$-pattern operation if its restriction to each pattern is a projection. We examine functional completeness of algebras with $\preceq$-pattern fundamental operations.


Keywords: majority function, semiprojection, ternary discriminator, dual discriminator, functionally completeness

## 1 Preliminaries

A finite algebra $\mathbf{A}=(A ; F)$ is called functionally complete if every (finitary) operation on $A$ is a polinomial operation of $\mathbf{A}$. An $n$-ary operation $f$ on $A$ is conservative if $f\left(x_{1}, \ldots, x_{n}\right) \in\left\{x_{1}, \ldots, x_{n}\right\}$ for all $x_{1}, \ldots, x_{n} \in A$. An algebra is conservative if all of its fundamental operations are conservative.

A possible approach to the study of conservative operations is to consider them as relational pattern functions or $\rho$-pattern functions. Given a $k$-ary relation $\rho \subseteq$ $A^{k}$, two $n$-tuples $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right) \in A^{n}$ are said to be of the same pattern with respect to $\rho$ if for all $i_{1}, \ldots, i_{k} \in\{1, \ldots, n\}$ the conditions $\left(x_{i_{1}}, \ldots, x_{i_{k}}\right) \in \rho$ and $\left(y_{i_{1}}, \ldots, y_{i_{k}}\right) \in \rho$ mutually imply each other. An operation $f: A^{n} \rightarrow A$ is a $\rho$-pattern function if $f\left(x_{1}, \ldots, x_{n}\right)$ always equals some $x_{i}, i \in\{1, \ldots, n\}$ where $i$ depends only on the $\rho$-pattern of $\left(x_{1}, \ldots, x_{n}\right)$. In fact, any conservative operation is a $\rho$-pattern function for some $\rho$ - see [11]. An algebra $\mathbf{A}$ is called a $\rho$-pattern algebra if its fundamental operations (or equivalently its term operations) are $\rho$ pattern functions for the same relation $\rho$ on $A$. Several facts about functional completeness were proved, for the cases where $\rho$ is an equivalence [9], a central relation [10, 14], a graph of a permutation [13], a bounded partial order [12], or a regular relation [8] on $A$. These relations appear in Rosenberg's primality criterion [6].

In particular if $\preceq$ is a partial order or a linear order on $A$, then a $\preceq$-pattern algebra is called a partially ordered pattern algebra or a linearly ordered pattern algebra. Throughout the paper such algebras will be called $\preceq$-pattern algebras.

[^0]The aim of this article is to continue research on functional completeness of finite partially ordered pattern algebras.

In case when the relation $\rho$ on $A$ is the identity the $\rho$-pattern algebra is called pattern algebra. The basic operations of pattern algebras are called pattern functions. Pattern functions were first introduced by Quackenbush [5]. B. Csákány [1] proved that every finite pattern algebra $(A ; f)$ with $|A| \geq 3$ is functionally complete if $f$ is an arbitrary nontrivial pattern function. The most known examples of pattern algebras are $(A ; f)$ and $(A ; g)$ where $f$ is the ternary discriminator [4] $(f(x, y, z)=z$ if $x=y$ and $f(x, y, z)=x$ if $x \neq y)$ and $g$ is the dual discriminator [2] $(g(x, y, z)=x$ if $x=y$ and $g(x, y, z)=z$ if $x \neq y)$.
We need the following definitions and results.
An $n$-ary relation $\rho$ on $A$ is called central iff $\rho \neq A^{n}$ and
(a) there exists $c \in A$ such that $\left(a_{1}, \ldots, a_{n}\right) \in \rho$ whenever at least one $a_{i}=c$ (the set of all such $c$ 's is called the center of $\rho$ );
(b) $\left(a_{1}, \ldots, a_{n}\right) \in \rho$ implies that $\left(a_{1 \pi}, \ldots, a_{n \pi}\right) \in \rho$ for every permutation $\pi$ of $\{1, \ldots, n\}$ ( $\rho$ is totally symmetric);
(c) $\left(a_{1}, \ldots, a_{n}\right) \in \rho$ whenever $a_{i}=a_{j}$ for some $i \neq j$ ( $\rho$ is totally reflexive).

Let $A$ be a finite and nonempty set, $k, n \geq 1, f$ a $k$-ary function on $A$ and $\rho \subseteq A^{n}$ an arbitrary $n$-ary relation. The operation $f$ is said to preserve $\rho$ if $\rho$ is a subalgebra of the $n$th direct power of the algebra $(A ; f)$; in other words, $f$ preserves $\rho$ if for any $k \times n$ matrix $M$ with entries in $A$, whose rows belong to $\rho$, the row obtained by applying $f$ to the columns of $M$ also belongs to $\rho$. Adding this extra row to $M$ we get a so-called $f$-matrix [3].

A ternary operation $f$ on $A$ is a majority function if $f(x, x, y)=f(x, y, x)=$ $f(y, x, x)=x$ holds for all $x, y \in A$. An $n$-ary $i$-th semiprojection on $A \quad(n \geq 3$, $1 \leq i \leq n)$ is an operation $f$ with the property that $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{i}$ whenever at least two of the elements $x_{1}, \ldots, x_{n}$ are equal. The following proposition was obtained in [13] from Rosenberg's fundamental theorem on minimal clones [7].

Proposition 1. The clone of the term operations of every nontrivial finite $\rho$ pattern algebra $\mathbf{A}$ with at least three elements contains a nontrivial binary $\rho$-pattern function, or a ternary majority $\rho$-pattern function, or a nontrivial $\rho$-pattern function, which is a semiprojection.

Now we formulate the following theorem (which was got from Proposition 4 in [13]).
Theorem 2. Let $\mathbf{A}=(A ; f)$ be a finite $\rho$-pattern algebra with $|A| \geq 3$. The algebra $(A ; f)$ is functionally complete iff
(a) $f$ is monotonic with respect to no bounded partial order on $A$,
(b) $f$ preserves no binary central relations on $A$,
(c) $f$ preserves no nontrivial equivalences on $A$.

## 2 Results

Theorem 3. Let $(A ; \preceq)$ be a finite poset with at least three elements that has a least or a greatest element. If $f$ is an arbitrary binary $\preceq-p a t t e r n ~ f u n c t i o n ~ o n ~ A, ~$ then the algebra $(A ; f)$ is not functionally complete.

Proof. Let $a$ be the least or the greatest element of $(A ; \preceq)$. Let $\rho$ be the nontrivial equivalence on $A$ with blocks $\{a\}, A \backslash\{a\}$. Now $f$ preserves $\rho$ and apply Theorem 2.

Remark. Let $\underline{n}=\{0,1, \ldots, n-1\}$ be an at least three-element set, and let $\preceq$ be a linear order on $\underline{n}$ such that $0 \preceq i \preceq n-1$ holds for each $i \in \underline{n}$. If $a, b \in \underline{n}$ and $a \preceq b$ but $a \neq b$ then we write $a \prec b$. Now the following statement is true.

If $\pi$ and $\sigma$ are two different permutations of the set $\{1,2, \ldots, k\}$ then the $k$-tuples $\left(a_{1 \pi}, a_{2 \pi}, \ldots, a_{k \pi}\right),\left(a_{1 \sigma}, a_{2 \sigma}, \ldots, a_{k \sigma}\right)$ are not in the same pattern with respect to $\preceq$ where $a_{1}, a_{2}, \ldots, a_{k} \in \underline{n}$ with $a_{1} \prec a_{2} \prec \ldots \prec a_{k}$.

Now we can formulate the following theorem.
Theorem 4. Let $(A ; \preceq)$ be a finite linearly ordered set with $|A|=n \geq 4$, and let $f$ be $a \preceq$-pattern function that is a majority function on $A$. Then the algebra $(A ; f)$ is functionally complete iff for arbitrary elements $a_{1}, a_{2}, a_{3} \in A$ with $a_{1} \prec a_{2} \prec a_{3}$ exactly one of the following statements holds:
(a) there exist permutations $\pi, \sigma$ of the set $\{1,2,3\}$ for which the values $f\left(a_{1}, a_{2}, a_{3}\right), f\left(a_{1 \pi}, a_{2 \pi}, a_{3 \pi}\right), f\left(a_{1 \sigma}, a_{2 \sigma}, a_{3 \sigma}\right)$ are pairwise distinct,
(b) $f\left(a_{1 \pi}, a_{2 \pi}, a_{3 \pi}\right) \in\left\{a_{1}, a_{3}\right\}$ for every permutation $\pi$ of $\{1,2,3\}$, and there exists a permutation $\pi^{\prime}$ of $\{1,2,3\}$ for which $f\left(a_{1 \pi^{\prime}}, a_{2 \pi^{\prime}}, a_{3 \pi^{\prime}}\right) \neq f\left(a_{1}, a_{2}, a_{3}\right)$.

Proof. We will use Theorem 2. We may suppose, without loss of generality, that $A=\underline{n}$. First, we prove that if one of the conditions $(a)$ or $(b)$ hold for the algebra $(\underline{n} ; f)$ then $f$ preserves neither the bounded partial orders nor the binary central relations on $\underline{n}$. We need the following claims.

Claim. Let $\unlhd$ be an arbitrary bounded partial order on $\underline{n}$ with the least element $m$ and the greatest element $M$, then $f$ does not preserve $\unlhd$.

Proof of Claim. If $a \in \underline{n}, a \neq m, M$, then $f(m, a, M)=m$ or $f(m, a, M)=M$ or $f(m, a, M)=a$. Consider the following $f$-matrices

$$
\begin{array}{cccc}
m & m & m & a \\
a & a & a & a \\
a & M & M & M \\
\hline f(m, a, a) & f(m, a, M) & & f(m, a, M) \\
\hline
\end{array}
$$

where $f(m, a, a)=f(a, a, M)=a$. If $f(m, a, M)=m$, then the first $f$-matrix shows that $f$ does not preserve $\unlhd$. If $f(m, a, M)=M$, then by the second $f$-matrix $f$ does not preserve $\unlhd$. If $f(m, a, M)=a$, then by $(a)$ or (b) we get that at least
one of the elements $f(m, M, a), f(M, m, a), f(M, a, m), f(a, m, M), f(a, M, m)$ is equal to $m$ or $M$. In this case we can get the suitable $f$-matrix by permuting the first three rows of one of the two $f$-matrices above. Now from this $f$-matrix we get that $f$ does not preserve $\unlhd$. The proof of the claim is complete.

Claim. If $\tau$ is an arbitrary binary central relation on $\underline{n}$, then $f$ does not preserve $\tau$.

Proof of Claim. If $c \in \underline{n}$ is a central element of $\tau$ and $a, b \in \underline{n}$ so that $(a, b) \notin \tau$, then consider the following matrices

$$
\begin{array}{cc}
a & a \\
b & b \\
c & b \\
\hline f(a, b, c) & f(a, b, b)
\end{array}
$$

$$
\begin{array}{cc}
a & a \\
b & b \\
c & a \\
\hline f(a, b, c) & f(a, b, a)
\end{array}
$$

where $f(a, b, b)=b$ and $f(a, b, a)=a$. If $f(a, b, c)=a$, then the first $f$-matrix shows that $f$ does not preserve $\tau$. If $f(a, b, c)=b$, then the second $f$-matrix will be used. If $f(a, b, c)=c$, then by $(a)$ or $(b)$ we see that $f(a, c, b), f(b, a, c), f(b, c, a)$, $f(c, a, b)$ or $f(c, b, a)$ is equal to $a$ or $b$. Now we can also get the suitable $f$-matrix by permuting the first three rows of one of the two $f$-matrices above. In this case from this $f$-matrix we get that $f$ does not preserve $\tau$. The proof of the claim is complete.

Now we will prove that if one of the conditions $(a)$ or $(b)$ holds for the algebra $(\underline{n} ; f)$, then $f$ does not preserve the nontrivial equivalences on $\underline{n}$.

Claim. If $\rho$ is an arbitrary nontrivial equivalence on $\underline{n}$, then $f$ does not preserve $\rho$.

Proof of Claim. Now there exist elements $a, b, c \in \underline{n}$ with $a \neq b,(a, b) \in \rho$, $(a, c) \notin \rho$.
First, suppose that $(a)$ holds. If $f(a, b, c)=c$, then we can use the following $f$-matrix to show that $f$ does not preserve $\rho$

$$
\begin{array}{cc}
a & a \\
a & b \\
c & c \\
\hline a & \mathrm{c}
\end{array}
$$

where $f(a, a, c)=a$. If $f(a, b, c)=a$ or $f(a, b, c)=b$, then by $(a) f(a, c, b), f(b, a, c)$, $f(b, c, a), f(c, a, b)$ or $f(c, a, b)$ equals $c$. In this case we get the suitable $f$-matrix by permuting the first three rows of the $f$-matrix above. From this $f$-matrix we get that $f$ does not preserve $\rho$.

Now we suppose that $(b)$ is true.
(i) First, we suppose that $a \prec b \prec c$. If $f(a, b, c)=c$, then the $f$-matrix above does the job. If $f(a, b, c)=a$, then by (b) $f(a, c, b), f(b, a, c), f(b, c, a)$, $f(c, a, b)$ or $f(c, b, a)$ equals $c$. We get the suitable $f$-matrix by permuting the first three rows of the $f$-matrix above.
(ii) Secondly, we suppose that $c \prec a \prec b$. If $f(c, a, b)=c$ then we get the suitable $f$-matrix by permuting the first three rows of the $f$-matrix above. If $f(c, a, b)=b$, then by (b) $f(c, b, a), f(a, b, c), f(a, c, b), f(b, a, c), f(b, c, a)$ equals $c$. For example, if $f(c, b, a)=c$, then the following $f$-matrix shows that $f$ does not preserve $\rho$

$$
\begin{array}{cc}
c & c \\
b & a \\
a & a \\
\hline c & a
\end{array} .
$$

In the remaining cases we get the suitable $f$-matrices by permuting the first three rows of the $f$-matrix above.
(iii) If there do not exist elements $a, b, c \in \underline{n}$ with $a \neq b,(a, b) \in \rho,(a, c) \notin \rho$ for which $a \prec b \prec c$ or $c \prec a \prec b$ hold, then it is easy to see that $\rho$ has a unique nonsingleton block, namely $\{0, n-1\}$. Now $|A| \geq 4$ and we can suppose that $a=0, b=n-1$ and $\left\{c_{1}, \ldots, c_{n-2}\right\}=\underline{n} \backslash\{a, b\}$.
First, assume $f\left(a, c_{1}, c_{2}\right)=a$. If $f\left(b, c_{1}, c_{2}\right)=c_{1}$, then the following $f$-matrix

$$
\begin{array}{ll}
a & b \\
c_{1} & c_{1} \\
c_{2} & c_{2} \\
\hline a & c_{1}
\end{array}
$$

will be used. If $f\left(b, c_{1}, c_{2}\right)=b$, then $f\left(c_{2}, a, c_{1}\right)=c_{2}$ since the patterns $\left(b, c_{1}, c_{2}\right)$ and $\left(c_{2}, a, c_{1}\right)$ are the same with respect to $\preceq$. We need the following $f$-matrices


If $f\left(c_{2}, b, c_{1}\right)=c_{1}$, then the first $f$-matrix shows that $f$ does not preserve $\rho$. If $f\left(c_{2}, b, c_{1}\right)=b$, then the second $f$-matrix does the job.

Secondly, assume $f\left(a, c_{1}, c_{2}\right)=c_{2}$. Now we will use the following $f$-matrices


If $f\left(b, c_{1}, c_{2}\right)=c_{1}$, then the first $f$-matrix shows that $f$ does not preserve $\rho$. If $f\left(b, c_{1}, c_{2}\right)=b$, then the second $f$-matrix will be used.

The proof of the claim is complete.

From now we show that the algebra $(\underline{n} ; f)$ is not functionally complete if $(a)$ and (b) are not satisfied. Further also suppose that $a_{1}, a_{2}, a_{3} \in \underline{n}$ and $a_{1} \prec a_{2} \prec a_{3}$. We have the following three cases:

If $a_{i}=f\left(a_{1}, a_{2}, a_{3}\right)=f\left(a_{1 \pi}, a_{2 \pi}, a_{3 \pi}\right)$ equalities hold for every permutation $\pi$ of $\{1,2,3\}$, then $f$ preserves one of the three binary central relations $\tau_{1}, \tau_{2}, \tau_{3}$ on $A$ defined below:

For $i=1$, let the center of $\tau_{1}$ be $C=\{0,1, \ldots, n-3\}$ and $(n-2, n-1) \notin \tau_{1}$,
for $i=2$, let the center of $\tau_{2}$ be $C=\{1,2, \ldots, n-2\}$ and $(0, n-1) \notin \tau_{2}$,
for $i=3$, let the center of $\tau_{3}$ be $C=\{2,3, \ldots, n-1\}$ and $(0,1) \notin \tau_{3}$.
Now let $f\left(a_{1 \pi}, a_{2 \pi}, a_{3 \pi}\right) \in\left\{a_{1}, a_{2}\right\}$ be for every permutation $\pi$ of $\{1,2,3\}$ (or let $f\left(a_{1 \pi}, a_{2 \pi}, a_{3 \pi}\right) \in\left\{a_{2}, a_{3}\right\}$ be for every permutation $\pi$ of $\{1,2,3\}$ ), and suppose that there exists a permutation $\pi^{\prime}$ of $\{1,2,3\}$ for which $f\left(a_{1 \pi^{\prime}}, a_{2 \pi^{\prime}}, a_{3 \pi^{\prime}}\right) \neq f\left(a_{1}, a_{2}, a_{3}\right)$. Then it is easy to show that $f$ preserves the nontrivial equivalence with a unique nonsingleton block, namely $\{0,1, \ldots, n-2\}$ (or $\{1,2, \ldots, n-1\}$ ).

Proposition 5. Let $A=\{0,1,2\}$ be a linearly ordered set with $0 \prec 1 \prec 2$, and let $f$ be a $\preceq-p a t t e r n ~ f u n c t i o n, ~ w h i c h ~ i s ~ a ~ m a j o r i t y ~ f u n c t i o n ~ o n ~ A . ~ T h e n ~ t h e ~ a l g e b r a ~$ $(A ; f)$ is functionally complete iff there exist permutations $\pi, \sigma$ of $A$ for which the values $f(0,1,2), f(0 \pi, 1 \pi, 2 \pi), f(0 \sigma, 1 \sigma, 2 \sigma)$ are pairwise distinct.

Proof. Suppose that there exist permutations $\pi, \sigma$ of $A$ for which the values $f(0,1,2), f(0 \pi, 1 \pi, 2 \pi), f(0 \sigma, 1 \sigma, 2 \sigma)$ are pairwise distinct. Then the algebra $(A ; f)$ is functionally complete. (Let us observe that the proof of this statement is included in the proof of Theorem 4, since in the case (a) of Theorem 4 every $f$-matrix has exactly three elements.)

If $f(0,1,2)=f(0 \pi, 1 \pi, 2 \pi)$ for every permutation $\pi$ of $A$, then we obtain that $f$ preserves one of the three binary central relations $\tau_{1}, \tau_{2}, \tau_{3}$ on $A$ defined below:

For $f(0,1,2)=0$ let the center of $\tau_{1}$ be $\{0\}$, and $(1,2) \notin \tau_{1}$,
for $f(0,1,2)=1$ let the center of $\tau_{2}$ be $\{1\}$, and $(0,2) \notin \tau_{2}$,
for $f(0,1,2)=2$ let the center of $\tau_{3}$ be $\{2\}$, and $(0,1) \notin \tau_{3}$.

Now let assume that at least one of the inclusions: $f(0 \pi, 1 \pi, 2 \pi) \in\{0,1\}$, $f(0 \pi, 1 \pi, 2 \pi) \in\{1,2\}, f(0 \pi, 1 \pi, 2 \pi) \in\{0,2\}$ holds for every permutation $\pi$ of $A$, and suppose that there exists a permutation $\pi^{\prime}$ of $A$ for which $f\left(0 \pi^{\prime}, 1 \pi^{\prime}, 2 \pi^{\prime}\right) \neq$ $f(0,1,2)$. Then it is also easy to observe that $f$ preserves the nontrivial equivalence with unique nonsingleton block, namely $\{0,1\},\{1,2\}$ or $\{0,2\}$. Using Theorem 2, the proof is complete.

Theorem 6. Let $(A, \preceq)$ be an arbitrary finite poset with $3 \leq|A|$. Let $f$ be a -pattern function, which is a majority function on A, and for which there exist permutations $\pi$, $\sigma$ of $\{1,2,3\}$ such that the values $f\left(a_{1}, a_{2}, a_{3}\right), f\left(a_{1 \pi}, a_{2 \pi}, a_{3 \pi}\right)$, $f\left(a_{1 \sigma}, a_{2 \sigma}, a_{3 \sigma}\right)$ are pairwise distinct, then the algebra $(A ; f)$ is functionally complete.

Proof. Such an operation $f$ always exists. (For example: $f(x, x, y)=f(x, y, x)=$ $f(y, x, x)=x$, and $f(x, y, z)=x$ if $x, y, z$ are pairwise different). Now it is easy to prove that such operations do not preserve the bounded partial orders, the binary central relations and the nontrivial equivalences on $A$. Applying Theorem 2, the proof is complete.

Theorem 7. Let $(A ; \preceq)$ be an arbitrary finite poset with $3 \leq|A|$. Then for every $k$ with $3 \leq k \leq|A|$ there exists a $k$-ary $\preceq$-pattern function $f$, which is a semiprojection and the algebra $(A ; f)$ is functionally complete.

Proof. If $3 \leq k \leq|A|$, then the $k$-ary $\preceq$-pattern function
$f_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)= \begin{cases}x_{1} & \text { if the elements } x_{1}, x_{2}, \ldots, x_{k} \text { are pairwise distinct and } \\ & x_{k-1} \nprec x_{k}, \\ x_{k} & \text { otherwise }\end{cases}$
is a semiprojection on $A$. By Lemma 7 of [3] $f_{k}$ has no compatible bounded partial order on $A$.

Let $\tau$ be an arbitrary binary central relation on $A$, let $c \in A$ be a central element of $\tau$, and let $a, b \in A$ be so that $(a, b) \notin \tau$. We will need the following matrices

| $a$ | $a$ |  | $a$ |
| :---: | :---: | :---: | :---: |
| $d$ | $d$ | $d$ | $d$ |
| $\vdots$ | $\vdots$ |  | $\vdots$ |
| $e$ | $e$ |  | $\vdots$ |
| $c$ | $b$ |  | $e$ |
| $b$ | $b$ |  | $b$ |
|  | $b$ |  | $c$ |
| $a$ | $b$ | $b$ |  |

where the entries above the line in the first column are pairwise distinct in both $f_{k}$-matrices.

If $c \nprec b$, then we will use the first $f_{k}$-matrix. If $c \prec b$, then the second $f_{k}$-matrix will work. In both cases we get that $f_{k}$ does not preserve the relation $\tau$.

Let $\rho$ be an arbitrary nontrivial equivalence, and let $a, b, c \in A$ with $a \nprec b$, $(a, b) \in \rho$ and $(a, c) \notin \rho$. Now we will use the following $f_{k}$-matrix to show that $f_{k}$ does not preserve $\rho$

| $c$ | $c$ |
| :---: | :---: |
| $d$ | $d$ |
| $\vdots$ | $\vdots$ |
| $e$ | $e$ |
| $a$ | $a$ |
| $b$ | $a$ |
| $c$ | $a$ |

where the entries above the line in the first column of the $f_{k}$-matrix are pairwise distinct. Using Theorem 2 we get that the algebra $\left(A ; f_{k}\right)$ is functionally complete.

Remark. Let $(A ; \preceq)$ be a finite linearly ordered set with $3 \leq|A|$, and let $f$ be a nontrivial $k$-ary $\preceq$-pattern function, which is a semiprojection on $A$. If for any elements $a_{1}, \ldots, a_{k} \in A$ with $a_{1} \prec \ldots \prec a_{k}$, and for any permutations $\pi$ of $\{1, \ldots, k\}$ one of the following conditions is satisfied:
(a) $a_{i}=f\left(a_{1 \pi}, \ldots, a_{k \pi}\right), 3 \leq k \leq|A|$, or
(b) $f\left(a_{1 \pi}, \ldots, a_{k \pi}\right) \in\left\{a_{1}, a_{2}, \ldots, a_{k-2}\right\}, 4 \leq k \leq|A|$, or
(c) $f\left(a_{1 \pi}, \ldots, a_{k \pi}\right) \in\left\{a_{2}, a_{3}, \ldots, a_{k-1}\right\}, 4 \leq k \leq|A|$, or
(d) $f\left(a_{1 \pi}, \ldots, a_{k \pi}\right) \in\left\{a_{3}, a_{4}, \ldots, a_{k}\right\}, 4 \leq k \leq|A|$
then the algebra $(A ; f)$ is not functionally complete.
Proof of Remark. We may suppose, without loss of generality, that $A=\underline{n}$. If condition (a) holds, then $f$ preserves one of the binary central relation $\tau_{1}, \tau_{2}, \tau_{3}$ on $A$ defined below:
(1) for $i=1$, let the center of $\tau_{1}$ be $C=\{0,1, \ldots, n-3\}$ and $(n-2, n-1) \notin \tau_{1}$,
(2) for $1<i<k$, let the center of $\tau_{2}$ be $C=\{1,2, \ldots, n-2\}$ and $(0, n-1) \notin \tau_{2}$,
(3) for $i=k$, let the center of $\tau_{3}$ be $C=\{2,3, \ldots, n-1\}$ and $(0,1) \notin \tau_{3}$.

It is also easy to see that if $(\mathrm{b})$ holds, then $f$ preserves the central relation $\tau_{1}$. If (c) (or (d)) holds, then $f$ preserves the central relation $\tau_{2}$ (or $\tau_{3}$ ). Using Theorem 2 , the proof of the remark is complete.

Let $(A ; \preceq)$ be an arbitrary finite bounded poset with at least three elements. Define the following two operations on $A$ :

$$
\begin{aligned}
& t(x, y, z)= \begin{cases}z & \text { if } x \preceq y, \\
x & \text { otherwise }\end{cases} \\
& d(x, y, z)= \begin{cases}x & \text { if } x \preceq y \\
z & \text { otherwise }\end{cases}
\end{aligned}
$$

The operation $t$ is the ternary order-discriminator, and $d$ is the dual order-discriminator. The algebras $(A ; t),(A ; d)$ are called order-discriminator algebras. In [12] we proved that the order-discriminator algebras $(A ; t)$ and $(A ; d)$ are functionally complete. The following theorem is a generalization of this result.

Theorem 8. If $(A ; \preceq)$ is an arbitrary finite poset with at least three elements, then the order-discriminator algebras $(A ; t)$ and $(A ; d)$ are functionally complete.

Proof. It is sufficient to prove that $t$ and $d$ do not preserve the relations $(a),(b)$, and (c) in Theorem 2.
(a) Let $\unlhd$ be an arbitrary bounded partial order on $A$ with the least element $m$ and the greatest element $M$. Now we show that the operations $t, d$ do not preserve the bounded partial order $\unlhd$ on $A$. Let $a \in A$ be an arbitrary element different from $m$ and $M$. The following two $t$-matrices and two $d$-matrices will be used

| $m$ | $m$ | $a$ | $M$ | $a$ | $M$ | $a$ | $a$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $m$ | $a$ | $m$ | $M$ | $a$ | $a$ | $a$ | $M$ |
| $M$ | $M$ | $m$ | $m$ |  |  |  |  |
| $M$ | $m$ | $a$ | $m$ |  |  |  |  |$\quad$| $\frac{m}{a}$ | $m$ |
| :--- | :--- |
| $m$ | $\frac{m}{a}$ |
| $m$ | $m$ |
| $M$ |  |

If $a \prec m$ then the first $t$-matrix, if $a \nprec m$ then the second $t$-matrix shows that $t$ does not preserve $\unlhd$. If $a \prec M$ then the first $d$-matrix, if $a \nprec M$ then the second $d$-matrix shows that $d$ does not preserve $\unlhd$.
(b) Let $\tau$ be an arbitrary central relation on $A$, and let $a, b, c \in A$ so that $a \neq b$, $(a, b) \notin \tau$ and $c$ is a central element of $\tau$. We may suppose that $a \nprec b$. Consider the following $t$-matrix and $d$-matrix
$\left.\begin{array}{llll}a & c & a & a \\ b & c & a & c \\ c & b \\ \hline a & b\end{array} \quad \begin{array}{l}c \\ \hline a\end{array}\right]$.

The first $t$-matrix shows that the operation $t$ does not preserve $\tau$. If $a \npreceq c$ then by the $d$-matrix we see that the operation $d$ does not preserve $\tau$. If $a \preceq c$, then by permuting the first two rows of the $d$-matrix we get again that $d$ does not preserve $\tau$.
(c) Let $\varepsilon$ be an arbitrary nontrivial equivalence on $A$, and let $a, b, c \in A$ so that $(a, b) \in \varepsilon$ and $(a, c) \notin \varepsilon$. We will need the following two $t$-matrices and two $d$-matrices:

| $a$ | $b$ | $a$ | $a$ | $a$ | $b$ | $a$ | $a$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $a$ | $a$ | $a$ | $b$ | $a$ | $a$ | $a$ | $b$ |
| $c$ | $c$ | $c$ | $c$ |  |  |  |  |
| $c$ | $b$ | $\frac{c}{a}$ | $\frac{c}{a}$ | $c$ | $c$ | $c$ |  |
| $a$ | $c$ | $\frac{a}{c}$ |  |  |  |  |  |.

If $a \prec b$, then by the first $t$-matrix, if $a \nprec b$, then by the second $t$-matrix we get that the operation $t$ does not preserve the relation $\varepsilon$. If $a \prec b$, then the first $d$-matrix, if $a \nprec b$, then the second $d$-matrix does the job. In all cases we see that the operations $t$ and $d$ do not preserve $\varepsilon$.

## References

[1] Csákány, B. Homogeneous algebras are functionally complete. Algebra Universalis, 11:149-158, 1980.
[2] Fried, E. and Pixley, A.F. The dual discriminator function in universal algebra. Acta Sci. Math., 41:83-100, 1979.
[3] Pálfy, P.P., Szabó, L., and Szendrei, Á. Automorphism groups and functional completeness. Algebra Universalis, 15:385-400, 1982.
[4] Pixley, A.F. The ternary discriminator function in universal algebra. Math. Ann., 191:167-180, 1971.
[5] Quackenbush, R.W. Some classes of idempotent functions and their compositions. Coll. Math. Soc. J. Bolyai, 29:71-81, 1974.
[6] Rosenberg, G. Über die functionale Vollständigkeit in den mehrwertigen Logiken (Structur der Functionen von mehreren Veränderlichen auf eudlichen Mengen). Rozpravy Československé Akad. Věd. Řada Math. Přírod. Věd., 80:393, 1970.
[7] Rosenberg, G. Minimal clones I: The five types. Coll. Math. Soc. J. Bolyai, 43:635-652, 1981.
[8] Szabó, L. and Vármonostory, E. On characteristically simple conservative algebras. Publicationes Mathematicae, 57:425-433, 2000.
[9] Vármonostory, E. Relational pattern functions. Finite Algebra and Multiplevalued Logic (Proc. Conf. Szeged, 1979), Coll. Math. Soc. Bolyai, 28:753-758, 1981.
[10] Vármonostory, E. Central pattern functions. Acta Sci. Math., 56:223-227, 1992.
[11] Vármonostory, E. Generalized pattern functions. Algebra Universalis, 29:346353, 1992.
[12] Vármonostory, E. Order-discriminating operations. Order, 9:239-244, 1992.
[13] Vármonostory, E. Permutation-pattern algebras. Algebra Universalis, 45:435448, 2001.
[14] Vármonostory, E. Totally reflexive, totally symmetric pattern algebras. Mathematica, 47(72)(2):223-300, 2005.

Received 19th February 2007


[^0]:    *University of Szeged, Gyula Juhász Faculty of Education, Hattyas sor 10., H-6725 Szeged, Hungary. E-mail: varmono@jgypk.u-szeged.hu

