1,605 research outputs found

    Optimization of object query languages

    Get PDF

    High Level Efficiency in Database Languages

    Get PDF
    The subject of this Ph.D. thesis is the design and implementation of database languages. The thesis consists of five articles:  [1] Joan F. Boyar and Kim S. Larsen. Efficient Rebalancing of Chromatic Search Trees. In O. Nurmi and E. Ukkonen, eds., LNCS 621: Algorithm Theory -- SWAT'92 , pp. 151-164. Springer-Verlag, 1992. [2] Kim S. Larsen. On Aggregation and Computation on Domain Values. PB-414, Computer Science Department, Aarhus University, 1992. [3] Kim S. Larsen. Strategies for Expression Evaluation Using Sort-Merge Algorithms. PB-415, Computer Science Department, Aarhus University, 1992. [4] Kim S. Larsen and Michael I. Schwartzbach. Injectivity of Unary Queries With Computation on Domain Values. Computer Science Department, Aarhus University, 1992. Revised version of PB-311. [5] Kim S. Larsen, Michael I. Schwartzbach and Erik M. Schmidt. A New Formalism for Relational Algebra. IPL , 41(3):163-168, 1992. and this survey paper. In [5], a new query language design is proposed. The expressive power of the language is determined in [2] and all reasonable extensions are considered. In [3, 4], we focus on the optimization issue of avoiding unnecessary sorting of relations. The results in these papers are directly applicable to any algebra-based query language. In addition to the query language part, a database system also has to offer update facilities. The theory of standard tuple based updates is quite well developed in the sequential case. In [1], we discuss a new concurrent implementation of balanced search trees for that purpose.This survey paper describes the results of the papers which form the thesis, and relates these results to each other and to the area in a broader sense than is customary in the introductions of individual papers. The paper is intended to be read in combination with the papers on which it is based

    ON COMPLETENESS OF HISTORICAL RELATIONAL QUERY LANGUAGES

    Get PDF
    Numerous proposals for extending the relational data model to incorporate the temporal dimension of data have appeared in the past several years. These proposals have differed considerably in the way that the temporal dimension has been incorporated both into the structure of the extended relations of these temporal models, and consequently into the extended relational algebra or calculus that they define. Because of these differences it has been difficult to compare the proposed models and to make judgments as to which of them might in some sense be equivalent or even better. In this paper we define the notions of temporally grouped and temporally ungrouped historical data models and propose two notions of historical relational completeness, analogous to Codd's notion of relational completeness, one for each type of model. We show that the temporally ungrouped models are less powerful than the grouped models, but demonstrate a technique for extending the ungrouped models with a grouping mechanism to capture the additional semantic power of temporal grouping. For the ungrouped models we define three different languages, a temporal logic, a logic with explicit reference to time, and a temporal algebra, and show that under certain assumptions all three are equivalent in power. For the grouped models we define a many-sorted logic with variables over ordinary values, historical values, and times. Finally, we demonstrate the equivalence of this grouped calculus and the ungrouped calculus extended with the proposed grouping mechanism. We believe the classification of historical data models into grouped and ungrouped provides a useful framework for the comparison of models in the literature, and furthermore the exposition of equivalent languages for each type provides reasonable standards for common, and minimal, notions of historical relational completeness.Information Systems Working Papers Serie

    ON COMPLETENESS OF HISTORICAL RELATIONAL DATA MODELS

    Get PDF
    Several proposals for extending the relational data model to incorporate the temporal dimension of data have appeared in the past several years. These proposals have differed considerably in the way that the temporal dimension has been incorporated both into the structure of the extended relations that are defined as part of these extended model, and into the operations of the extended relational algebra or calculus component of the models. Because of these differences it has been difficult to compare the proposed models and to make judgements as to which of them is "better" or indeed, the "best." In this paper we propose a notion of historical relational completeness, analogous to Codd's notion of relational completeness, and examine several historical relational proposals in light of this standard.Information Systems Working Papers Serie

    Provenance for Aggregate Queries

    Get PDF
    We study in this paper provenance information for queries with aggregation. Provenance information was studied in the context of various query languages that do not allow for aggregation, and recent work has suggested to capture provenance by annotating the different database tuples with elements of a commutative semiring and propagating the annotations through query evaluation. We show that aggregate queries pose novel challenges rendering this approach inapplicable. Consequently, we propose a new approach, where we annotate with provenance information not just tuples but also the individual values within tuples, using provenance to describe the values computation. We realize this approach in a concrete construction, first for "simple" queries where the aggregation operator is the last one applied, and then for arbitrary (positive) relational algebra queries with aggregation; the latter queries are shown to be more challenging in this context. Finally, we use aggregation to encode queries with difference, and study the semantics obtained for such queries on provenance annotated databases

    From Nested-Loop to Join Queries in OODB

    Get PDF
    Most declarative SQL-like query languages for object-oriented database systems are orthogonal languages allowing for arbitrary nesting of expressions in the select-, from-, and where-clause. Expressions in the from-clause may be base tables as well as set-valued attributes. In this paper, we propose a general strategy for the optimization of nested OOSQL queries. As in the relational model, the translation/optimization goal is to move from tuple- to set-oriented query processing. Therefore, OOSQL is translated into the algebraic language ADL, and by means of algebraic rewriting nested queries are transformed into join queries as far as possible. Three different optimization options are described, and a strategy to assign priorities to options is proposed

    Formal Representation of the SS-DB Benchmark and Experimental Evaluation in EXTASCID

    Full text link
    Evaluating the performance of scientific data processing systems is a difficult task considering the plethora of application-specific solutions available in this landscape and the lack of a generally-accepted benchmark. The dual structure of scientific data coupled with the complex nature of processing complicate the evaluation procedure further. SS-DB is the first attempt to define a general benchmark for complex scientific processing over raw and derived data. It fails to draw sufficient attention though because of the ambiguous plain language specification and the extraordinary SciDB results. In this paper, we remedy the shortcomings of the original SS-DB specification by providing a formal representation in terms of ArrayQL algebra operators and ArrayQL/SciQL constructs. These are the first formal representations of the SS-DB benchmark. Starting from the formal representation, we give a reference implementation and present benchmark results in EXTASCID, a novel system for scientific data processing. EXTASCID is complete in providing native support both for array and relational data and extensible in executing any user code inside the system by the means of a configurable metaoperator. These features result in an order of magnitude improvement over SciDB at data loading, extracting derived data, and operations over derived data.Comment: 32 pages, 3 figure

    On Aggregation and Computation on Domain Values

    Get PDF
    Query languages often allow a limited amount of anthmetic and string operations on domain values, and sometimes sets of values can be dealt with through aggregation and sometimes even set comparisons. We address the question of how these facilities can be added to a relational language in a natural way. Our discussions lead us to reconsider the definition of the standard operators, and we introduce a new way of thinking about relational algebra computations.We define a language FC, which has an iteration mechanism as its basis. A tuple language is used to carry out almost all computations. We prove equivalence results relating FC to relational algebra under various circumstances
    • …
    corecore