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Summary

The task of a Database Management System (DBMYS) is to safely store (usualy large
amounts of ) consistent data, and to provide easy and fast access to these data, either for
retrieval or update purposes. The datamodel of aDBMS lays down the possible structure
of the data; to provided easy access to the user, a high-level query languageis supported.
The implementation of such a high-level query language requires an enormous effort; it
is the task of the query optimizer to ensure fast access to the data stored in the database.
A DBMS is a complex piece of software that consists of many layers. The three main
layers distinguished are (1) the user interface, (2) an intermediate layer that is called the
logical algebra, and (3) the bottom layer called the physical algebra, which providesmech-
anismsto actually accessthedatastoredinfiles. Inquery processing, the user query isfirst
mapped into alogical algebraexpression, and thisexpressionin turn is mapped into an ex-
pression of the physical algebra. Traditionally, query optimization consists of two phases:
(1) logical optimization, whichistherewriting of alogical algebraexpression into onethat
(hopefully) can be evaluated with less costs, and (2) cost-based optimization, which con-
cernsthe mapping of logical algebra expressionsinto expressions of the physical algebra.
Cost-based optimization is guided by specific database characteristics such as table size
(i.e. cardinality and tuple width), the presence of indices, et cetera. Logical rewriting does
not make use of such knowledge about the database but instead is guided by heuristics:
rules-of-thumb that are expected to have a beneficial effect.

In recent years, database research has concentrated on object-oriented data models,
which allow to store highly structured data (and even operations on them). With regard
to the data structuring concepts offered, an object-oriented datamodel can belooked upon
as an extension of the nested relational model, which allows to store relations as attribute
values. The nested relational model, inturn, isan extension of therelational model, which
alowsfor flat table structure only. With growing complexity of data structuring concepts,
the complexity of the accompanying query language growsaswell, and thus also the com-
plexity of query processing and optimization. In thisthesis, we investigate the first phase
of query processing, i.e. the trandation of an SQL-like query language into a logical al-
gebra, in the context of an advanced data model supporting complex objects. The context
for the work presented hereisthe (dlightly extended) nested relational model. We believe
that an efficient implementation of a nested relational query language forms the basis for
efficient implementation of query languages for object-oriented data models.

iX



X Summary

Theresearch topic consistsof two parts: (1) to definethelogical algebrathat issuitable
to implement the user query language called OSQL, and (2) to provide the actual transla-
tion. We definealogical algebracalled ADL, which isan extension of one of the algebras
defined for the nested relational model. ADL is a set-oriented language, extended with
constructs that allow for explicit iteration over sets, which are necessary because of the
presence of set-valued attributes. We believe that as for the relational model, also in ad-
vanced DBM Ss the logical agebra should be a set-oriented language, because set opera-
tors offer many optimization opportunities.

Traditionally, thetrang ation of the user languageinto thelogical algebrahas been con-
sidered as the task of the parser—considerations with relation to efficiency do not play
arolein this phase of query processing. However, we think that query optimization is-
sues should be taken into consideration in every step of the implementation process. We
revisit the trandation of SQL into relationa algebra, and we show that the actual trans-
lation of the query language into the logical agebra heavily influences performance, es-
pecialy when arbitrary language constructs such as universal quantification and digunc-
tion aretaken into consideration. Standard trand ation algorithmsoften result in inefficient
logical algebra expressions, and, moreover, these may be hard to optimize algebraically.
We propose to extend relational algebra with some non-standard (join) operators and we
make an attempt to provide an improved trandation algorithm: we combine transation
with optimization. Starting from a select-project-product expression, the main heuristic
used in standard relational logical optimization is to push through selections and projec-
tions, based on the wish to reduce the size of intermediate results. However, it turns out
that the trandation SQL into the algebra, aswell aslogical optimization, should be guided
by amore detailed cost model. For example, to decide between optional translation strate-
gies, acost model that estimates the relative processing load of algebraic operators can be
useful.

For thetrand ation of nested OSQL queriesintothealgebraADL , wedefinethenestjoin
operator, which is the complex object equivalent of the relational join. We show that, for
thetrandlation of OSQL, we can adhereto the same strategy astraditionally followed inthe
relational context: atransformationinto a(nested) product expression, followed by aphase
of pushing operators down the operator tree. However, this observation is of theoretical
importance mainly—to achieve more efficient algebraic expressions we need a carefully
designed trandation algorithm, al the more because logical rewriting in an algebra sup-
porting complex objectsis even more difficult than in the relational model. We provide a
heuristics-based framework for the trand ation of nested OSQL queries. We present trans-
formation rules and propose an initial rewrite strategy. The rewrite strategy, i.e. the order
of ruleapplication, determinesthe form of the transformation result—we concludethat for
an efficient trandation of (O)SQL into theal gebra, weneed alogical cost model that can be
used to choose between equivalent algebraic expressions. Appropriate cost models have
not been thetopic of our study. Aslessonslearned from our investigations, we present four
generally valid transformation rules, and we show that specific results obtained by these
rules correspond to possible definitions of more or less well-known algebraic operators.



Samenvatting

De taak van een Database Management Systeem (DBMY) is het veilig opslaan van (ge-
woonlijk grote hoeveel heden) consistente gegevens, ente voorzienin een gemakkelijkeen
snelle toegang tot deze gegevens, ofwel om ze op te vragen of om ze te wijzigen. Het ge-
gevensmodel van een DBM S legt de mogelijke structuur van de gegevensvast; om de ge-
bruiker makkelijk toegang te geven wordt een hoog-niveau querytaal (‘ vraagtaal') onder-
steund. Deimplementatievan zo’' n hoog-niveau querytaal vereist een enormeinspanning;
het isdetaak van de query optimizer een snelletoegang tot de gegevensteverzekeren. Een
DBMS is een complex geheel van software dat uit vele lagen bestaat. De drie hoofdlagen
die men onderscheidt zijn (1) het gebruikersinterface, (2) een tussenlaag welke de logi-
sche algebra genoemd wordt en (3) de fysieke algebra, die voorziet in primitieven die fei-
telijk toegang geven tot de gegevens die opgeslagen zijn in bestanden. Query processing
(‘vraag-verwerking') bestaat uit het vertalen van een vraag gesteld door de gebruiker naar
een expressiein delogischeal gebra, dievervolgenswordt vertaald naar een expressiein de
fysieke algebra. Gewoonlijk bestaat query-optimalisatie uit twee fasen: (1) logische opti-
malisatie, het herschrijven van een logische algebra-expressie naar een die (hopelijk) met
minder kosten geéval ueerd kan worden en (2) het vertalen van logische algebraexpressies
naar expressiesin defysieke algebra, gebaseerd op een kostenmodel. Optimalisatie op ba-
sis van een kostenmodel wordt gestuurd door specifieke database-karakteristieken zoals
tabelgrootte (het aantal records en attributen), de beschikbaarheid van indices, et cetera.
L ogische optimali satie maakt geen gebruik van zulke kennisbetreffende de database, maar
wordt daarentegen gestuurd door heuristieken: vuistregels waarvan men verwacht dat ze
een gunstig effect hebben.

In de afgel open jaren heeft het database-onderzoek zich toegespitst op object-georién-
teerde gegevensmodellen, die het mogelijk maken gegevens met een complexe structuur
(en zelfs operaties op de gegevens) op te slaan. Met betrekking tot de structureringscon-
cepten die aangeboden worden kan een object-georiénteerd gegevensmodel beschouwd
worden als een extensie van het geneste relationele model, dat relaties als attribuutwaar-
den toestaat. Het geneste relationele model kan op zijn beurt beschouwd worden als een
uitbreiding van het relationele model, waarin alleen vliakke tabellen toegestaan zijn. Naar-
mate de structureringsconcepten complexer worden, groeit mede de complexiteit van de
bijbehorendequerytaal, en daarmee ook de complexiteit van query-processing en -optima:
lisatie. In deze dissertatie onderzoekenwe de eerste fase van het query-processingstraject,

Xi



Xii Samenvatting

de vertaling van een SQL -achtige querytaal naar een logische algebra, in de context van
een geavanceerd gegevensmodel dat complexe objecten toestaat. Het werk dat hier gepre-
senteerd wordt kan geplaatst worden binnen de context van het geneste relationele model.
Wij zijn van mening dat een effciénte implementatie van een querytaal voor het geneste
relationele model de basis vormt voor een effciénte implementatie van querytalen voor
object-georiénteerde gegevensmodellen.

Het onderzoek bestaat uit twee delen: (1) de definitie van een logische algebradie ge-
schikt isvoor de implementatie van de gebruikerstaal (genaamd OSQL) en (2) het maken
van defeitelijke vertaling. We definiéren een logische algebra genaamd ADL, een exten-
sievan één van de algebra sdie gedefiniéerd zijn voor het genesterelationelemodel. ADL
is een verzamelings-georiénteerde taal, uitgebreid met taal constructies die expliciete ite-
ratie over verzamelingen toestaan. Deze laatste zijn nodig omdat attributen verzamelings-
waardig kunnen zijn. We zijn van mening dat, zoals in relationele systemen, ook in gea-
vanceerde systemen de logische algebra zoveel mogelijk verzamelings-georiénteerd dient
te zijn, omdat verzamelingsoperatoren vele mogelijkheden tot optimalisatie bieden.

De vertaling van de gebruikerstaal naar de logische algebra wordt traditioneel
beschouwd al's de taak van het parseeralgorithme; overwegingen met betrekking tot per-
formance (prestatie) spelen geenrol in deze fase van query-processing. Wij denken echter
dat optimalisatie een rol dient te spelen in elke stap van het implementatieproces. We be-
steden opnieuw aandacht aan de vertaling van SQL naar derelationelealgebra, enwelaten
Zien dat defeitelijke vertaling van de querytaal naar de logische algebraeen groteinvioed
heeft op de uiteindelijke performance, vooral wanneer ook willekeurige taal constructies
zoal s universele kwantificatie en digunctie in de beschouwing betrokken worden. Stan-
daard vertaalalgorithmen resulteren vaak in inefficiénte logische algebra-expressies, die
daarbij vaak moeilijk algebraisch te optimaliseren zijn. We stellen voor relationele alge-
bra uit te breiden met enkele niet-standaard (join-) operatoren en we doen een poging te
komen tot een verbeterd vertaalalgorithme: we combineren vertaling met optimalisatie.
Uitgaande van een select-project-produktexpressie is de voornaamste heuristiek die ge-
bruikt wordt in traditionele relationele optimalisatie het doorduwen van selecties en pro-
jecties. Deze heuristiek is gebaseerd op de wens de grootte van tussenresultaten zo klein
mogelijk te houden. Het blijkt echter dat zowel de vertaling van SQL naar de algebraals
logische optimalisatie gestuurd zou moeten worden door een meer gedetailleerd kosten-
model. Om te kunnen kiezen uit verschillende vertaal strategieén zou een model dat een
schatting maakt van de relatieve kosten van de diverse operatoren bijvoorbeeld nuttig kun-
nen zijn.

Voor devertaling van geneste OSQL queriesnaar de algebra definieren we de nestjoin-
operator, de equivalent van de relationel e join-operator voor modellen met complexe ob-
jecten. Wetonen aan dat we voor devertaling van OSQL expressiesdezelfdestrategie kun-
nen hanteren alsgebruikt wordt in het relationelemodel: een transformatie naar expressies
bestaande uit (geneste) produkt-expressies. Deze observatie is echter hoofdzakelijk van
theoretisch belang; teneinde meer efficiénte algebraische expressies te verkrijgen hebben
we een zorgvuldig ontworpen vertaal al gorithme nodig, temeer daar logische herschrijving
van een taal met complexe objecten nog moeilijker isdan het herschrijven van relationele
algebra-expressies. We presenteren een raamwerk voor de vertaling van geneste OSQL
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queries, gebaseerd op heuristieken. We geven transformatieregels en stellen eeninitiéle
herschrijfstrategie voor. De herschrijfstrategie (de volgorde van regeltoepassing) bepaalt
devormvan het resultaat van de transformatie. We concluderen dat we voor een efficiénte
vertaling van (O)SQL naar de algebra behoefte hebben aan een logisch kostenmodel dat
gebruikt kan worden om te kiezen tussen verschillende algebraische expressies. Geschikte
kostenmodellen zijn niet aan de orde geweest in ons onderzoek. Alsweerslag van onson-
derzoek presenteren we vier algemeen geldige transformatieregels, en we tonen aan dat
resultaten die verkregen worden middels toepassing van deze regels corresponderen met
mogelijke definities van meer of minder bekende algebraische operatoren.
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Chapter 1

| ntroduction

A Database Management System (DBMS) is a complex piece of software that consists
of many layers. A first ditinction is that between user level and interna level. The user
level may be further distinguished into the conceptual level, describing the database as
awhole, and the external level, describing only parts of the database that a specific user
group isinterested in. The internal level falls apart into the logical level and the system-
specific physical level. Thephysical level lays down the details of data storage and access
paths; thelogical level serves asthe intermediate between the user and the physical level.
On each level, a specific language is supported, consisting of a type system and a set of
operations. Operations on the data involve update and retrieval operations; in this thesis
weonly consider retrieval operations(queries). Mappingsbetween the different languages
lay down how to trandlate types and operations from one level into the other.

Query processing is the sequence of actions that takes as input a query formulated in
the user language and delivers as result the data asked for. Query processing involves
query transformation and query execution. Query transformationisthe mapping of queries
and query results back and forth through the different levels of the DBMS. Query execu-
tionisthe actual dataretrieval according to some access plan, i.e. asequence of operations
in the physical accesslanguage. Animportant task in query processing is query optimiza-
tion. Usually, user languages are high-level, declarative languages allowing to state what
datashould beretrieved, not how to retrieve them. For each user query, many different ex-
ecution plans exist, each having its own associated costs. The task of query optimization
ideally isto find the best execution plan, i.e. the execution plan that coststhe least, accord-
ing to some performancemeasure. Usually, one hasto accept just feasible execution plans,
because the number of semantically equivalent plansisto large to allow for enumerative
search.

Relational DBM Ss have become a standard tool for business data processing. How-
ever, in recent years, many new application domains have emerged, putting new demands
on data modelling and processing. The development of the nested relational model can
be considered as the first step towards meeting these new demands, allowing the data to
have a structure more complex than the flat table structure by supporting relation-valued

1



2 1. Introduction

attributes. Currently, much researchis done on object-oriented datamodel s, which support
concepts like object identity, complex objects, inheritance, etc.

Thesubject of thisthesisconcernsthefirst part of the query processingroute: thetrans-
lation of an SQL-like query languagefor advanced datamodelsinto an a gebrasupporting
complex objects. To be ableto clarify the research topic of thisthesis, we discuss the con-
cept of query processing in some more detail.

Query processing in relational systems

Processing a database query consists of the following steps: query parsing, query valida-
tion, view resolution, query optimization, plan compilation, and query execution[ Grag93].

The user query, written in some high-level declarative query language, for example
SQL, or adeductive language like Datalog, is parsed, and trandlated into an internal rep-
resentation. Usually, relational algebrais chosen as the intermediate language; other in-
termediate representations are possible, though. Asin [Grae93], we call the intermediate
language the logical algebra. In query validation (typing), it is checked that all attribute
and relation names are valid and semantically meaningful. During view resolution, and
also because of integrity constraint maintenance, the user query may be expanded beyond
its original form. Plan compilation is the trandation of the logical algebra query into an
access plan. The access language, or the physical algebra, is a system-specific language,
closely correspondingtothelogical agebra. For eachlogical algebraoperator, oneor more
physical algebraoperators exist that efficiently implement the logical operator.®

Query optimization is the process of finding the best, or, rather, a reasonably efficient
execution plan, i.e. of trandating the logical algebra expression into the physical algebra
in the best possibleway. Two types of query optimization are distinguished: heuristic and
cost-based. Heuristic (or algebraic) optimization is the rewriting of expressionsindepen-
dent of some system-specific cost model. Heuristic optimization consists of the following
steps [JaK084]: standardization (providing a starting point for optimization), smplifica-
tion (the removal of redundancy), and amelioration (rewriting into more efficient expres-
sions, for example pushing down selections). Cost-based (or systematic) optimization is
the rewriting or trand ation of expressions guided by some cost model that reflects system-
specific knowledge about operator implementations, the presence of indices, relation car-
dinalities, the selectivity of predicates, etc. Usually, cost-based optimization is guided by
heuristics as well; the complexity of the search space prohibits an exhaustive search for
the best execution plan.

Traditionally, the term query optimization is reserved for the two phases of the rewrit-
ing of logical algebra expressions (algebraic optimization) and the generation of access
plans. However, thinking about query processing as the efficient implementation of adata-
base query, the mind broadens alittle. Given the user language, the efficiency of datare-
trieval is determined by the choice of the logical and physical language, the two being
closely related, and the quality of the mappings between the languages.

1This correspondence is not exactly one to many. One physical operator may implement a sequence of log-
ical operators, and also the physical algebra may contain operators not corresponding to any one of the logica
operators, e.g. the sort operator.



In the relational context, often relational algebrais chosen as the intermediate repre-
sentation form. [Codd72] provides a (standard) algorithm for trandating relational cal-
culus into relational algebra; [CeGo85] gives an algorithm for trandating SQL into re-
lational algebra directly. The algebraic expressions that are the result of this trandation
may be very inefficient. (Algebraic) optimization is expected to reduce the inefficiency
introduced in the trandation. Not restricting ourselves to project-select-join queries, but
considering algebraic expressionsthat contain arbitrary operators such as set operatorsand
division, we are convinced that thisis quite ahard task. In our opinion, there are two pos-
sibilities for improvement. First, relational algebra may be extended with non-standard
operators. Examples of non-standard operators are the semi- and antijoin operator, effi-
ciently implementing some types of queriesinvolving (negated) quantification. Second,
the trandation algorithm may be improved,; this observation has been made el sewhere too
[Bry89, Naka90]. Algebraic expressionsthat contain arbitrary operators are hard to opti-
mize. Finding the proper rewrite rules, and to control the sequence of rule application is
difficult in a pure algebraic context. Calculus-like expressions are more succinct than al-
gebraic expressions, in which, in asense, information concerning the original query struc-
tureis scattered throughout the expression. Trying to find agood trandation from calculus
into the algebra right away does seem a better approach than trying to rewrite inefficient
algebraic expressions afterwards [Naka9Q].

Query processing in nested relational and object-oriented systems

Research into query processing in nested relational and OO systems has moved into many
directions. With respect to the nested relational model, much research has been done on
its theoretical aspects. For example, the expressive power of nested relational algebras
has been studied in depth, e.g. [PaGu92]. Also, theimplementation of nested algebrashas
been aresearch topic in the past [Scholl et al. 89, Schek et a. 90]. However, no commer-
cial nested relational DBMS has ever been brought on the marketplace. One of the miss-
ing links is a trandation of an SQL-like query language for the nested relational model
into some nested relational algebra; to our knowledge, no such transation has ever been
published.

Also for OO data models, no such trandation has been made yet. Because OO data
models offer the possibility to store user-defined operations, the need for an ad-hoc query
language was not immediately recognized. However, proposals for a declarative query
language have been madein recent years, e.g. [BaCD92, BaBZ93]. Currently, the ODMG
group is working on the standards for object-oriented database management systems
[Catt93]. The proposal includes a description of an object query language named OQL,
which is an SQL-like language. Only recently, [CIM 093] addressed the problem of opti-
mization of nested SQL-like queriesin object bases. Work on algebrasfor object-oriented
datamodelshas been published for examplein [Shzd89, Vand93]. Specific featuresof OO
data models offer many additional opportunitiesfor optimization. Object identity can be
employed to speed up join processing [ShCa90], the presence of inheritance hierarchies
and path expressions allows to design new index structures [Bert93], et cetera.
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Goal of thisthesis

Asalready stated, in thisthesisweinvestigate the mapping of an SQL -like query language
for advanced data modelsinto an algebra; the emphasis lies on the treatment of complex
objects. Mapping one language into the other involves a mapping of types and a mapping
of expressions. We restrict ourselvesin that we only consider the mapping of expressions;
mapping of types (storage design, or clustering) is an independent research areathat does
not fall within the scope of thisthesis. Thework is motivated by the observation that OO
databases need ahigh-level, declarative interface that must be implemented efficiently. A
straightforward mapping of an extended SQL language into for example C++ code does
not suffice; such an approach defeatsthe lessonslearned in the past from research into the
implementation of the relational and extended relational model. Our basic assumptions
are described below.

Our first assumption isthat it is useful to search for anal ogies between the implemen-
tation of the relational model and that of advanced datamodels. Much research effort has
been put into the implementation of the relational model; the knowledge gained should be
used whenever possible. To give an example, we believethat thelogical algebrashould be
a set-oriented language, just like relational algebra. Though it seems that navigation has
been considered asthe prevailing method to access OO databasesin the past, recently more
attention has been paid to set-oriented access methods, like pointer-based joins [ ShCa90] .

Our second assumption is that query optimization should not be considered as a sepa-
rate step in query processing. In our opinion, optimization should play arolein each phase
of theimplementation process. Thissecond assumption hastwo aspects. First, wefeel that
the logical algebra should be designed as a true intermediate language. The function of
the intermediate languageis to bridge the gap between the efficient access algorithms ex-
pressed by the physical algebraand the declarative constructs present in the user language,
in the best possible way. Consequently, logical algebras usually are redundant languages.
On the one hand, the logical algebramust have at least the expressive power as the user
language. On the other hand, the logical algebra must contain operators that correspond
closely to the operators (i.e., the access algorithms) offered by the physical algebra. For
example, the join can be expressed by means of a selection on a Cartesian product, how-
ever, the very reason for adding thejoin to relational algebraisthat the operator sequence
of selection and product can beimplemented much more efficiently. Second, we claim that
theactual agorithmfor thetranslation of user languageexpressionsinto thelogical algebra
expressions has a strong influence on performance. Generally, user language expressions
can be trandated into the algebrain many ways. In the relational, and also extended rela-
tional context, trandlation algorithms, being relatively simple (cf. the reduction algorithm
of Codd [Codd72]), often result in algebraic expressionsthat can be considered asthe Most
Costly Normal Form (MCNF, [KeM093]). With [Naka90], wefeel that putting moreeffort
in the trandation algorithm pays off in achieving better results, i.e. in achieving algebraic
expressions that are more efficient and less difficult to optimize than the expressions that
arethe result of standard trandlation algorithms.
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Outline of thisthesis

In Chapter 2, we give an overview of the work that has been done on query processing
in relational, nested relational, and object-oriented systems. The emphasislies on logical
(heuristic) query optimization. In Chapter 3, we give aformal definition of the language
used in this thesis. We define a language that consists of calculus-like constructs as well
as pure algebraic operators. The calculus-like part of the language can be looked upon as
asimplified version of an SQL-like language for the nested relational model. The algebra
part of the language closely resembles nested relational algebra as defined in [ScSc86].
In the next chapter, Chapter 4, we re-examine the trandation of relational calculus into
relational algebra. Thereasonsfor thisre-examination are twofold. First, we want to sup-
port our claim that the translation al gorithm strongly influences performance, and second,
we want to show that the algebraic language must be tailored towards performance, i.e.
it must contain operators that are both useful and efficient. Chapter 5 and Chapter 6 are
both reprintsfrom articles published el sewhere. Thefirst paper was presented at the EDBT
'94 conference, and treats some of the theoretical difficulties in trandating nested calcu-
lus expressions in complex object models into algebraic expressions. The second paper,
presented at the VLDB conference of 1994, describes a general approach to translate and
optimize nested queriesin complex object models. Both paperscan beconsideredasanin-
troduction on thefollowing chapter, Chapter 7, in which the actual trand ation of the cal cu-
lusinto the algebrais discussed. The chapter is presented in the form of an article aswell;
it is accepted for the EDBT conference of 1996. In Chapter 8, we present an overview
of transformation techniques and also briefly pay attention to the implementation of alge-
braic operators. In Chapter 9, we present our conclusions and give directions for future
research.
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Chapter 2

Query optimization

In this chapter, we give amore precise description of the problem addressed in thisthesis,
i.e., the trandation of an SQL-like query language for object-oriented data models into
an algebra supporting complex objects, to be defined yet. This research topic cannot be
addressedinisolation; itispart of thelarger problem of how to implement adatabase query
language. Therefore, we first present a general view on the implementation of database
query languages in Section 2.1. Having set the stage, we present an overview of query
optimization issues as found in the literature. We discuss query optimization aspects as
presentinrelational, nested relational, and obj ect-oriented database systemsin Section 2.2,
2.3, and 2.4, respectively. The overview is not complete; emphasis is placed on issues
that we consider important with respect to the performance of query evaluation. Next, in
Section 2.5, we come to a refinement of the problem as stated above. The chapter ends
with asummary in Section 2.6.

2.1 Implementation of database query languages

In this section, we give ageneral view of database system architecture. Database manage-
ment systems are complex pieces of software—layering and modularization are necessary
means to describe and build such systems.

Most end-user database query languages are high-level, declarative languages, based
on set theory and first-order predicate calculus. The basic construct of a block-structured
query language such as SQL isthe set comprehensionexpression{ f(z) | z € X A p(z)}.
Declarative languages need much optimization. A straightforward, naiveimplementation,
i.e.,, asimpledeclarativelanguageinterpretor that does not make use of special implemen-
tation techniques may result in time and/or space consuming programs. At the sametime,
declarativelanguages offer many opportunitiesfor optimization. In declarative languages
the result of a computation is described, not how it is to be computed. Declarative lan-
guages therefore leave the language implementor a great deal of freedom in choosing the
algorithmsthat will efficiently compute the desired result.

7
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Figure 2.1: General view on the implementation process

In the implementation of a general purpose programming language, the bottom layer
is the machine-dependent assembl er language. 1n database management systems, the bot-
tom layer is the file access language. The file access language, as far as retrieva is con-
cerned, hasthree basic primitives: open_file, close_file, and next_item, whereitems usually
arerecords. With these primitives, a collection of efficient file access algorithmsis built,
which constitutes the so-called physical access language, or physical algebra. Standard
techniques employed to achieve good performance are sorting, hashing, and the use of
additional access structureslikeindices. In addition, parallel query processing techniques
can be used to improve performance. The physical algebraisaset-oriented language. The
standard techniques mentioned above can be considered as set preprocessing techniques,
that operate on sets (tables) as awhole, and enable to retrieve only tuples that are really
needed, not entire sets.

The distance between a declarative query language and the physical algebrais large,
so implementation is done in a step-by-step manner. In Figure 2.1, the process of imple-
menting adatabase query language—or ageneral purpose programminglanguage, for that
matter—is depicted.

Thetransformation of expressionsof onelanguageinto those of another iscalled trans-
lation (T); applying transformationswithin one and the same languageis called rewriting
(R). Rewriting expressionsin the language L 1, the source language, is called preprocess-
ing; post-processing isthe rewriting of expressionsin thetarget languageL ,,. Preprocess-
ing in many casesinvolvesthereduction of alanguageto apredefined kernel; postprocess-
ing is usually applied for simplification purposes. In the implementation process, several
intermediate languages L; may be used. Translation consists of two parts: to provide a
mapping of data structuresand amapping of expressions. In each phase of the implemen-
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tation process, measures can be taken to improve the performance of query evaluation;
thisiscalled optimization. Optimization may be based either on heuristics, rules of thumb
that are expected to reduce the costs of query evaluation in general, or on a cost model
that provides more or less accurate estimates of the costs of query execution. Optimiza-
tion based on heuristicsis also called logical optimization; cost-based optimizationisalso
called systematic optimization.

In database systems, we distinguish between the user, the logical, and the physical
level. The top level is the end-user query language to be implemented, the second, in-
termediate language is a language in which logical transformations take place, and the
third, bottom level isthe physical algebrathat implements system-specific, efficient query
processing algorithms. For example, arelational DBMS may have an architecture as de-
pictedin Figure2.2. Theend-user query languageis SQL and theintermediatelanguageis
(some extended form of) relational algebra. SQL may be trandated into relational algebra
directly, or indirectly by using relational calculus as a second intermediate language. The
bottom layer isthe physical algebra, i.e., acollection of operatorsthat implement rel ational
algebra. For each of therelational operators, a number of physical operators or execution
methods exists. Which one to use when depends on specific database characteristics or
physical properties such as sort order, the presence of indices, etc.

As already mentioned, implementation involves a mapping of data structures, and a
mapping of expressions. Physical database design concerns the actual representation of
thedatainthedatabase. A conceptual schema, expressedin thetype system of theend-user
query language, can in several ways be mapped to a physical database schema, expressed
in the type system of the physical algebra. Given the so-called work load, i.e., a specific
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collection of user queries, thegoal of physical database designisto achieveanear optimal
mapping of data structures including placement of additional data structures likeindices.

Oncethe physical schemaand the mapping of the conceptual schemainto the physical
schema have been established, the remaining task is the mapping of the end-user queries
into the operations offered by the physical algebra. Query processing, i.e., the mapping
of expressions, roughly consists of the following steps: query validation (or typing), view
resolution, trandation into the intermediate language, logical optimization, plan compila
tion, and query execution [Grae93].

After query parsing, query validation, and view resolution, the user query is trans-
lated into the intermediate language. Depending on end-user and intermediate language
paradigms and the operations supported by both languages, translation may involveasim-
ple syntactic transformation, or some more complex algorithm. In this trandation phase,
usualy little attention is paid to performance issues. At the intermediate level, the goal
isto transform expressions into semantically equivalent expressions that have better per-
formance. Possible transformations are laid down by a collection of equivalence rules.
Logical optimization is guided by heuristics; the cost model issimple. The physical level
supportsanumber of system-specific query processing algorithms. I ntermediatelanguage
expressions are trandated into the physical algebra. Thetrandation is guided by physical
database characteristics; a complex cost model is used.

The above description of a possible database system architecture is an idealized de-
scription. Many systems do not make a clear distinction between user, logical, and physi-
cal level, in the sense that each level entails a clearly-defined language interface, and that
well-defined algorithms exist that precisely lay down how to transform expressions from
onelevel intothe other. Therefore, oftenthe different query processing steps are not bound
to specific language levels as much as described above. For example, logical optimiza-
tion can take placein the user languageitself. Examplesarethe transformation of Datalog
programs (e.g. the magic sets transformation, [BMSU86]), the rewriting of nested SQL
queries of [Kim82], and the loop optimization of [LiDe92].

Usually, only in the phases of logical optimization and plan compilation (the mapping
of thelogical into the physical algebra) considerationswith respect to performancedo play
arole. Logical optimization, the rewriting of intermediate |language expressions, is based
on heuristics, representing an implicit cost model. Plan compilation, the trandation of a
logical expression into a physical algebra expression, is based on an explicit cost model
that incorporates specific database characteristics considered important. However, given
our general view of theimplementation of database query languages, one may ask whether
performance considerations should be restricted to the two phases mentioned. Having to
deal with atuple-oriented user language and a set-oriented physical access language, and
assuming athree-level architecture, we have to make a decision about the following three
issues.

e What language to choose as intermediate language. First we have to decide about
the appropriate language paradigm. For example, both an algebra and a calculus
can be used as intermediate language [ JaK 084]. The second question is which op-
erations should be part of the intermediate language. The answer to these questions
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depends on the functionality of the user language as well asthat of the physical al-
gebra. Theintermediatelanguage should have at least the same expressive power as
the user language, but, more importantly, the intermediate language has to be such
that it provides the best opportunity for mapping the user language to the physical
algebrain the best possible way. In other words, the functionality of the interme-
diate language should allow to fully exploit the possibilities for efficient evaluation
offered by the physical algebra.

e Whereto use heuristicsto achieve better performance. For example, it can be asked
whether heuristic optimization should be restricted to the rewriting of expressions
on the intermediate language level, or that heuristic rules should play arolein the
trangdlation process as well.

e Where to use an explicit cost model to improve performance. Usually, logical op-
timization and plan compilation are separate steps in query processing. Heuristics
are used for the rewriting of intermediate language expressions and an explicit cost
model guides the trandation into the physical algebra. However, in [GrMc93], in
which the the Vol cano optimizer generator isdiscussed, it is suggested that rewriting
of logical algebraexpressions might be based on acost model aswell; the optimizer
implementor can decide whether or not to do so.

In the remainder of this chapter, we give an overview of optimizationin the relational,
extended relational, and object-oriented context. The overview is not meant to be an ex-
haustive enumeration of work donein the field of query optimization. We attempt to pro-
vide a general background on the work donein relational query optimization, and then try
to decide in what respect optimization in new data models ((X)NF? and object-oriented
models) differsfrom relational optimization.

2.2 |Implementation of relational query languages

In the survey paper of [JaK084], ageneral framework for query optimization in relational
systemsis given. The following steps are distinguished:

1. Thechoiceof asuitable internal representation: alanguagethat isintermediary be-
tween the end-user query language and the operators of the low-level access lan-
guage. |ntermediate representation forms that have been used are relational calcu-
lus, relational algebra, query graphs, and tableaux.

2. Logical optimization: the transformation of queries into equivalent ones that can
be evaluated more efficiently. The phases distinguished in logical optimization are
(1) standardization, the rewriting of expressionsinto some canonical form, (2) sim-
plification, to remove redundancy, and (3) amelioration, the rewriting of the simpli-
fied canonical form into the desired form.

3. The generation of candidate access plans. the mapping of the operations of the in-
termediate language into the operations of the physical algebra.
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4. Thechoicefor and execution of the cheapest accessplan. Thefinal task of the query
optimizer isto compute the cost for each access plan and the choice for and execu-
tion of the cheapest.

Below, we discuss each of these steps in some more detail.

2.2.1 Choice of intermediate language

A Kkey issue in the implementation c.q. optimization of a query language is the choice
of intermediate language level(s). An appropriate internal representation, according to
[JaK 084], isonethat (1) ispowerful enoughto represent alargeclassof queriesand (2) pro-
vides a well-defined basis for query representation. It goes without saying that the lan-
guage has to be powerful enough to implement the user language. However, it is not im-
mediately clear what type of language provides the best (if any) basis for query represen-
tation.

In [JaK084], relational calculus is regarded as a better starting point for query opti-
mization than relational algebra since “it provides an optimizer only with the basic prop-
erties of the query; optimization purposes may become hidden in a particular sequence of
algebraoperators (p. 118).” Below, we discuss the two language paradigmsin some more
detail.

Calculusversus algebra

Theimportant distinction between relational cal culusand relational algebraisthat between
tuple- and set-orientation.  Tuple-oriented, or tuple-at-a-time languages support the con-
cept of tuplevariables, thusallowing for nesting of expressions. For example, inacalculus-
like language, we may write:

olz:y €Y e p(z,y)|(X)

The expression above, a selection o with a predicatethat isan existential quantification 3,
can be regarded as a nested-loop expression. For each tuple z € X, the correlated sub-
query Jy € Y e p(z,y) isevaluated. Set-orientedlanguagesdo not support tuplevariables
and therefore nesting of expressionsis not possible.

SQL, relational calculus, and aso logical query languages are examples of
tuple-oriented languages. As remarked in [Date90], SQL is merely a calculus-based lan-
guage, but it also supports algebraic operatorslike set (comparison) operators. Relational
algebrais a purely agebraic, set-oriented language. The algebra of [RoK S88], for the
nested relational model, also is an example of a set-oriented language. The nested rela-
tional algebra of [ScSc86] provides set- as well as tuple-oriented constructs.

In a set-oriented language, expressions are context free, i.e., the operators of the lan-
guage embody concise, well-defined execution steps that are mutually independent. In a
tuple-oriented language, expressionsmay occur nested within others, and variablesfroma
higher level may occur freein lower level expressions. To further illustrate the differences
between calculus and algebra, consider the following (equivalent) expressions:
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(calculus) oz : Ay €Y o p(z,y)](X)
(dlgebra) X — mx (X My yp(a,y) Y)

The calculus expressionisaselection o with apredicatethat is anegated existential quan-
tifier. The algebraic expression consists of ajoin X, followed by a projection =, the result
of which is the right operand of the set difference operator —. We note the following dif-
ferences between the two formalisms:

Join processing order From an operational point of view, the cal culusexpression may be
regarded as a nested-loop expression. In this nested-loop expression, table X nec-
essarily isthe outer loop operand—for each tuplez € X the predicateis evaluated.
In contrast, the algebraic expression does not fix the join order in any way. Because
thejoin operator is commutative and associative, we may choose to evaluate either
X XY,orY X X. Physical algebraoperatorsthat implement the join usually are
not commutative, which meansthat choosing either X or Y asleft join operand may
heavily influence performance.

Intermediate results In calculus-likelanguages, intermediateresultsareinvisible. Inal-
gebraic languages, each operator creates—at least, conceptually—an intermediate
result. The presence of intermediate results offers additional opportunitiesfor opti-
mization. For example, in ajoin operator sequence, each join result can be sorted
on the attributes that are needed in a subsequent join operation.

In spite of today’s main memory sizes, intermediate results often must be written
to disk and read again later on. The creation of temporary files can be prevented
for example by means of pipelining (data-driven execution) or the use of iterators
(demand-drivenexecution) [Grae93]. Thecost of pipelininginvolvesoperating sys-
tem scheduling and interprocess communication. Using iterators, data items are
passed from one operator to the next by means of procedure calls. Each time an
operator needs an input item, it callsits input operator(s) to produce one.

Extensibility Algebraiclanguagesareextensible. Starting off withabasic set of algebraic
operators, new operators can be introduced whenever the need arises. For example,
it is easy to introduce the semi- and antijoin operator in standard relational algebra.
The above expressions are equivalent to the antijoin expression:

X > Y

z,y:p(z,y)

which can be evaluated much more efficiently than the algebraic join expression
above. Calculus-based languages are rather fixed, and not easily extensible.

We remark that the notions of tuple- and set-oriented query processing appear under
many different names in the literature: depth- versus breadth-first query processing
[KeGM91], top-down versus bottom-up query processing (in the context of logical lan-
guages, [CeGT90]), nested-loop versus sort-domain data traversal [KKWD88], object-
versus file-server (with page-server as intermediate concept) [DFMV9(Q], etc.
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In [JaKo84], query graphs and also tableaux are classified as possible internal repre-
sentation forms. |n our opinion, query graphs are not so much a different internal repre-
sentation form, but rather a graphical representation of any language whatsoever, as op-
posed to a pure syntactical representation. Both relational algebra and relational calcu-
lus for example may have a graph-based representation. Tableaux, and aso for example
the hypergraphrepresentation described in [UIIm89], are better considered as optimization
techniques, aimed at investigating specific query properties.

2.2.2 Logical optimization

L ogical optimizationisdefined asthe heuristics-based rewriting of expressionsintheinter-
mediate representation form chosen. Expressions are rewritten into expressions that have
better performance. Even for a moderately complex language like relational algebra, the
number of equivalent candidate access plans, i.e., physical algebraexpressionsfor acom-
plex query istoo large to handle. Instead of exhaustively enumerating candidate access
plans and choosing the cheapest among them directly, the search space is limited in ad-
vance by means of logical rewriting. The output of the phase of logical optimization then
is the starting point for a next phase of cost-based, or systematic optimization. Logical
optimization is guided by so-called heuristic rewrite rules: rules that are assumed to be
generally beneficial.

Asmentioned before, the phases distinguished in logical optimization by [JaK084] are
standardization, simplification, and amelioration.

Standardization

Transformation into a canonical form is the starting point of logical query optimization.
In calculus-based languages, most often the query isfirst transformed into Digunctive or
Conjunctive Prenex Normal Form (DPNF or CPNF). In algebraic rewriting, the canonical
form typically is an expression involving a sequence of (conjunctive) selections and pro-
jections on the Cartesian product of the base relationsinvolved in the query. Transforma-
tion into canonical form facilitates the rewrite process and offers additional opportunities
for optimization.

Both aCartesian product expression and an expressionin PNF are highly inefficient. A
Cartesian product expression can be thought to ‘ materialize’ the nested-loop computation
expressed by an equivalent cal culusexpressionin PNF. Inrelational optimization, pushing
through selections is considered one of the most important heuristic rules, however, the
importance of the ruleis mainly due to the method of translation c.q. optimization.

Simplification

The goal of simplification is to avoid unnecessary computations. Simplification may in-
volve the application of idempotency rules, (run-time) application of rules that concern
empty sets, and removal of common subexpressions. Other simplification techniquesmen-
tioned in [JaK 084] are constant propagation (by applyingtheruleof transitivity), theincor-
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poration of integrity constraints (semantic query optimization), and the detection of pred-
icate unsatisfiability.

Amelioration

The phase of amelioration aims at the reduction of the number, the size (the number of
attributes), and the cardinality (the number of tuples) of intermediate results. The number
of intermediate results is determined by the number of algebraic operators present in the
expression. Heuristics applied are:

e The combination of operations, for example rewriting a cascade of projectionsinto
one.

e To perform selections as early possible (pushing through selections).
e To perform projections as early as possible (pushing through projections).

¢ To perform operationsthat deliver the smallest intermediate result first, for example
executing the most restrictive join before others.

A simple algebraic rewrite algorithm based on heuristics can be found in [UIIm89].
Another example of a heuristic optimization algorithmis the Wong-Youssefi algorithm for
the optimization of QUEL select-project-join queries [WoYo076]. In [UIIm89], a descrip-
tion of this algorithm, based on the hypergraph representation, is given.

2.2.3 Generation and choice of access plans

Thegeneration of candidateaccess plansand choiceof the cheapest may becalled physical
optimization, as opposed to the preceding phase of logical optimization. The generation
of an access plan involves mapping intermediate language expressionsinto expressions of
the physical accesslanguage. In the survey paper of [Grag93], an overview of query pro-
cessing algorithms for relational DBMSs is given. Physical optimization is cost-based.
Cost-based or systematic optimization is based on knowledge of physical database char-
acterigtics: statistical information, the presence of indices, the storage structuresthat have
been chosen, etc. An example of cost-based optimization is the determination of the best
join order, together with the best join method for each join by means of combinatorial op-
timization techniques [ SwGu88].

2.2.4 Discussion

Degpite al the work done on relational query optimization, the performance of relational
query processing can still be improved. |mprovement can be achieved by (1) extending
relational algebrawith non-standard relational algebra operators such as the semijoin, an-
tijoin, et cetera, and (2) by improving the algorithm for the trand ation of the user language
into the algebra.
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Standard a gorithmsfor trandlating rel ational user languagesinto relational algebraof-
tenresultin expressionsthat are unnecessarily inefficient. We giveasimpleexample. Con-
sider the SQL expression:

SELECT *
FROM X
WHERE NOT EXISTS (SELECT * FROM Y WHERE X.a=Y.a)

The SQL expression given aboveisin our formalism denoted as:
olz:Ay €Y ez.a =y.a)(X)
and this expression can be mapped to the antijoin expression:

X > Y

z,y:2.a=y.a

Assume that each SQL -construct has a naive execution plan, then naive execution of the
antijoin operation by meansof nested-loop processing has performanceequivalent to naive
execution of the SQL expression. Performance of the antijoin can beimproved by the use
of techniques such as sorting and hashing. Trand ation of the SQL expression into a stan-
dard relational algebraexpression:

(X W Y):Y

T,y:z.aFy.a

in accordance to the reduction algorithm of [Codd72], or, equivalently, into:

X—mx(X X Y)

z,y:z.a=y.a

asisdonein [CeGo85], resultsin expressionsthat have performance most probably worse
than that of naive execution, regardless of theimplementation of the two algebraic expres-
sions. Unlesswe haveat our disposal logical equivalencerulesthat can beappliedto trans-
form the join expressions into the antijoin expression, trandation into the logical algebra
has a negative effect that cannot be undone.

This example shows that to handle the SQL expression properly, either the antijoin
must beincluded into relational agebra, which requiresto adapt the trandlation algorithm
or the logical rewrite process, or that the logical algebra and the physical algebra haveto
be extended such that the quantification can be dealt with properly. With respect to this
example, the set of standard relational algebra operators and query processing algorithms
does not suffice to achieve good performance.

We continue our overview considering query optimization in the (extended) NF? data
models.
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2.3 Implementation of nested relational query languages

Dropping the First Normal Form constraint from the relational data model has led to the
development of the NF? (Non-First Normal Form) data model in which attributes are al-
lowed to berelation-valued. Becausethe NF? datastructuresare an extension of relational
data structures, query languages for the NF? model usually are an extension of relational
query languages. Several SQL -likequery languages, calculi, and algebrasfor the NF? data
model have been developed. An SQL -like language for the NF? data mode! is described
for examplein [RoK B88]; bel ow we discuss some al gebraic languages for the NF> model.

2.3.1 NF? algebras

Two types of nested algebras can be distinguished: the nest/unnest algebra, and the nested
algebra, with and without explicit nesting. Therespectivealgebrasdiffer inthe provisions
that are taken for accessing attributes of relations nested within relations (subrelations).
In the nest/unnest algebra, tuples of relation-valued attributes are brought to the top level
by unnesting these attributes. In the nested algebras, the operations to be applied to sub-
relations are brought to the subrelations concerned, either by using one or more algebraic
operators as a navigator, or by employing path expressions. For a complete overview of
algebrasfor the nested relational model, we refer to [Vand93]. Below, we discuss the dif-
ferent types of algebrasin more detail.

Nest/unnest algebras

Themost simplesolutionto thetask of defining an algebrafor the nested relational model is
to extendrelational algebrawith operatorsnest (v) and unnest (i) [ ThFi86]. Thesimplicity
of this approach is attractive, however, theoretical aswell as practical problems arise.

Asiswell-known, theoretical problems arise because the nest operator is not the in-
verse of the unnest operator. Unnesting can be undone by nesting only if (1) the nested re-
lationisin Partitioned Normal Form (PNF), and (2) no tuplein therelation being unnested
does have the value () (the empty set) for the attribute being unnested. A nested relation
isin PNF if the atomic attributes form a key for the relation, and if, recursively, also the
subrelations are in PNF. Unnesting/nesting a table that is not in PNF will result in ata
blein which grouping is different from that in the original table; unnesting/nesting atable
with empty set-valued attributes will cause aloss of tuples. The above consideration has
led to the study of PNF relations and investigation of keying methods to allow unnesting
of arhitrary nested relations [OzWa92]. In [RoK S88], a calculus and algebrafor PNF re-
lations is defined. The algebra supports the nest and unnest operators, and the standard
relational operators have been extended such that the property of PNF is preserved (the
algebrais closed under PNF). Theoretical results concerning the expressive power of the
nest/unnest algebraare given in [PaGu88, PaGu92]. When applied to flat relations, having
flat relations as output as well, the nest/unnest algebra has the same expressive power as
relational algebra.
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From a practical point of view, having to unnest and later on to nest relations to be
able to access nested attributes may cause a major performance problem. First, unnest-
ing causes data redundancy, replicating the values of other attributes for each element of
the set-valued attribute. Second, restructuring just to allow access to relation-valued at-
tributes can be considered as pure computational overhead if anavigator isincluded in the
language (see below). Itisnot clear, though, whether unnesting/nesting should be avoided
inany case. For example, if the nesting phase can be skipped, unnesting may be afeasible

strategy.

Explicit nesting

Another approach to support access to attributes of subrelations is to provide a naviga-
tor, i.e., an operator that can be used to apply operationsto subrelations. In the algebra of
[ScSc86], the projection operator can be used as navigator; arbitrary algebraic expressions
may occur in the projection list. In addition, the select and project operator may be used
in selection predicates, as well as set comparison operators and set constants. Nesting of
operationsis explicit, i.e., visible in the syntactic form of expressions.

Implicit nesting

In the algebra of [Colb89, Colb90], explicit navigation is avoided by using path expres-
sions. Algebraic operatorslike selection, projection, and join, but a so nest and unnest can
be applied to subrelations by writing down the path through the hierarchical structurelead-
ing to the subrelation(s) of interest. Two kinds of set operator are supported—-the standard
version and an extended version in which the operation is propagated to subrelations. The
extended versions are variations of the extended operators defined in [RoK S88].

Actually, the notation employing path expressionsis a convenient abbreviation for ex-
plicit nesting of expressions. For example, assume we have a nested relation R with two
attributes A and X . Attribute X isrelation-valued, with only one attribute B. The appli-
cation of some condition p to restrict the relation-valued attribute X of R isinthe algebra
of [Colb89, Colb90] expressed aso (R(X,)). Inthe algebraof [ScSc86], with its explicit
nesting of operators, the query is formulated as 7|4, o[p] (X)](R), using the projection
as navigator. In our algebra, as we will see, the map operator « is used as navigator, and
wewritea[r : r except (X = o[c: p](r.X))](R). (The except construct can be used to
modify one or more attribute values.)

From atheoretical point of view, it does not matter whether projection is used as nav-
igator, or a special-purpose navigation operator like the map. From a practical point of
view, relational projection is a special case of the map operator for which many special-
purpose implementations exist, so it may be inconvenient to modify the definition of pro-
jection. In addition, it must be noted that to use projection as a navigator, and also to
shorten notation by means of path expressionsis possiblein the NF> mode! only, because
NF? relations are orderly tree structures in which each attribute can be reached from the
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root by a unique path. In extended NF? data models, in which the types of the elements
of collections (sets, lists, etc.) are not necessarily tupletypes, it isnot possibleto reach all
values by means of path expressions.

2.3.2 The extended NF? data model

Themain difference between the NF? and eXtended NF? (XNF?) datamodels such asthat
of the AIM DBMS[SI1Li90], is that XNF? data models (1) support additional data types
such aslists and (2) alow for arbitrary nesting of type constructors.

From the viewpoint of query optimization, these additional features are not essential.
For each additional data type, type-specific operators have to be supported and imple-
mented efficiently, and also equivalence rules must be added. The first concernin query
optimization, however, isto deal with iteration over bulk or collection types, and to reduce
the number of (nested) iterationsthat hasto be carried out. The type of the collection that
isiterated over, e.g. set or list, isimportant, but how to deal with for example ordering may
be considered as a secondary problem.

2.3.3 Query optimization

While there do exist proposals for SQL-like query languages for the (extended) NF? data
model, direct translations of any of these languages into any one of the nested algebras
have not been presented in the literature, to our knowledge. Trandationsfrom nested cal-
culi to nested algebras do exist though, e.g. [RoKS88]. However, in these trandations
usualy little emphasisis placed on performance aspects; often the major goal isto prove
equivalence of calculus and algebra.

With regard to logical optimization of NF? algebras, algebraic equivalence rules for
the nested relational algebra are given in [Scho88]. In [Buss91], logical optimization of
single-pass selectionsis studied. It is shown that complex object selections do not always
commute. However, thisis dueto the definition of acomplex object selection used in that
paper, which is a combination of one-level restriction and navigation.

In the Verso [Scholl et al. 89] and DASDBS [Schek et al. 90] projects, agreat deal of
work has been done on the use of nested relations as storage structures for the relational
model. Inthisapproach, themain task inlogical optimizationisto removeredundant joins
from flat queries. With respect to the implementation of algebraic operators, emphasisis
placed on single-pass queries, i.e., on queries that can be evaluated in a single hierarchi-
cal scan over the data. In the DASDBS-project, it was decided to include only operators
needed for processing single-pass queriesinto the kernel (the physical algebra).

An example of anew query processing algorithm is given by [DelL a92], that presents
ahash-based join processing method for ajoin between arelation and asubrelation. Inthe
nested algebra of [ ScSc86], any operation that occurs nested with the projection list, hav-
ing relation-valued and/or base tables as operands, can be executed asit is. For example,
apossible evaluation strategy for the nested join expression:

alz:z.c X Y](X)

2,y:p(2,y)
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joining set-valued attribute ¢ of X with base table Y, is to evaluate the nested operation
for each of thetuplesz € X, using standard relational processing algorithmsfor the join.
Another approach isto come up with anew algorithm (implying anew logical operator as
well) for the evaluation of such an expression in which asubrelationis joined with abase
table, asisdonein [DelLa92].

2.3.4 Discussion

In the past, a world of knowledge has been gained with respect to optimization of rela-
tional query languages. Comparing the work done on the relational model with that done
on the NF? model, we feel that the latter is rather incomplete. The main part of the work
concernsthe definition of algebras, not their function, whichisto facilitate efficient query
evauation. A largenumber of algebrasfor the nested rel ational model has been devel oped.
The algebrasdiffer in the formalisms used, in assumptions about the structure of the data,
in the facilities offered to access nested values, and in expressive power. |n our opinion,
the algebra of [ScSc86] is the most orthogonal language proposal, allowing to apply al-
gebraic operatorsto relationswherever they may occur, using the projection operator asa
navigator. To abbreviate expressions by making use of path expressionsasin the algebra
of [Colb90] may be very convenient, but is not essential.

Research into NF? database management systems has paid little attention to the fol-
lowing issues:

e Thetrandation from nested relational SQL into an algebra.
e A logical rewrite algorithm.

e Theimplementation of arbitrary logical algebra operations, e.g. nested algebra ex-
pressions unlike single-pass queries.

To our knowledge, it has not been investigated how to transate an SQL -like query lan-
guage for the NF? model (say, X SQL) into an algebrafor the nested relational model. Our
explanation is the following. Trandating XSQL into a nest/unnest algebrais a task com-
parableto that of trand ating a calculusfor nested relationsinto anest/unnest algebra. The
latter exercise has been carried out in the past, and is worthwhile for theoretical reasons
mainly, asexplained. Trandating X SQL into anested algebralikethat of [ ScSc86] israther
trivial, just because the algebra, a quite orthogonal language, supports nesting of expres-
sions, and thereforeall owsfor an almost one-to-onemapping. However, such aone-to-one
mapping that leaves nested expressions as they are does not solve everything—part of the
problem of how to implement (relational) SQL efficiently is essentially solved in the step
of trandation into the (relational) algebra, which means a transition from atuple-oriented
query processing model, in which nesting of expressions (subqueries) may occur, to aset-
oriented one. Subqueriesarereplaced by joins, thusallowing to employ set-preprocessing
techniques like sorting and hashing.

Because the nested relational model oftenis considered asthe basisfor object-oriented
models, the state of affairs as described above is not exactly promising. 1n the following



2.4. Implementation of object-oriented query languages 21

section we discuss some important features of object-oriented datamodels, and try to dis-
cover the implicationsfor query processing.

2.4 |Implementation of object-oriented query languages

Therelational model iswell-suited for usein traditional, administrative environmentswith
large amounts of data having relatively little structure. Set-oriented query processing is
the best way to handle large amounts of data that have similar structure. Object-Oriented
DBMSs (OODBMSs) are being designed and built to support new application domains
like GIS and CAD/CAM. In new applications, the characteristics of data collections may
bevery different from those present in the traditional administrative environment. For ex-
ample, inaCAD/CAM application, classes may contain relatively few objects, but with a
relatively deep structure.

24.1 Object-oriented features

Someimportant features of object-oriented model snot present in extended rel ational mod-
elsareinheritance, object identity, the use of classes as attribute domains, and the presence
of methods.

Inheritance

Inheritance is a key concept of object-oriented data models. In [Atkinson et al. 89], four
of the possible forms of inheritance are described: substitution, inclusion, constraint, and
specialization inheritance.

Theimplementation of specialization (attribute) inheritance, and hence of substitution
(method) and constraint inheritance is mainly a matter of physical database design. In
[EINa89] some optionsfor mapping the EER concept of generalization/specialization(i.e.,
attribute inheritance) to the relational model are described. Attribute inheritance may be
implemented by means of oid equality, by means of clustering of sub- and supertype at-
tributes, or by using flags together with clustering of (possibly NULL-valued) sub- and
supertype attributes. Each way of implementing attribute inheritance has its own perfor-
mance penaltiesfor query and constraint evaluation.

Implicit joins

In object-oriented data models, classes may be used as attribute domains. In the sequel,
these kinds of domainsare called class referencetypes. Implementation of classreference
typesis also anissue of physical database design.

Typicaly, classreferenceswill beimplemented by means of object identifiers (instead
of fully materializing the attribute domain instance). In the implementation, the object-
oriented schemais mapped to a schemain which class reference types are replaced by the
object identifier type. In the object-oriented query language, attribute values of domains
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that are classes are accessible by means of attribute selection; in the literature thisis of -
ten called an implicit join. In our view, implicit joins will often be mapped to explicit
joins; depending on the implementation of the type object identifier type, these joins may
be pointer-based or value-based. (In the literature sometimes explicit joins are defined as
value-based joins).

In many object-oriented algebras, attribute selection is supported as an algebraic prim-
itive.

Object identity

Object identity is a property that can be useful in several ways. Conceptually, an object
identifier is just a unique system-generated identifier. In actual implementations, object
identifiers are used as (typed) pointers. Using object identifiers as pointers allows for re-
cursive schema definitions, enables sharing, facilitates to check referential integrity, and
may offer special advantages with respect to query optimization.

Object identifiers may be implemented as physical pointers, in some way or the other
reflecting the object location on disk, or aslogica pointers.

Implementing object identifiers as physical pointers means that the relationships be-
tween objects laid down in the schema by class references can be used as (user-defined)
fast access paths. Join execution methods making use of these predefined fast access paths
are called pointer-based join methods. 1n [ShCa90] a performance comparison is made
between some of the traditional value-based join methods and their pointer-based coun-
terparts. The comparison has been made for full joins and joins with a selection on the
join operand referencing the other join operand (forward traversal). To speed up back-
ward traversal, backward references (that also may greatly facilitate checking referential
integrity) can be maintained. Pointer-based join methods following the predefined access
paths (forward traversal) are generally faster than the traditional relational join methods.
However, the pointer-based nested loop method (naive pointer traversal or pointer chas-
ing) was shown to perform poorly in almost al cases. For small joins, though, the pointer-
based nested |oop method proved to be the best. Implementing object identifiersaslogical
pointers means that no special advantage can be gained; in that case object-oriented joins
are standard value-based joins.

Intheliterature, it is sometimes stated that in object-oriented database systems value-
based joins are no longer necessary [Bert93]. However, we believe that there do exist
meaningful join queriesthat relate objectsin other waysthan by means of the user-defined
relationshipslaid down in the schema.

M ethods

Optimization of methodsis often considered aproblem, mainly dueto thefact that in many
existing object-oriented DBM Ss methods for the most part are written in a third genera-
tion general purpose programminglanguagelike C++. Optimization of such ageneral pur-
pose programming language in the context of database applications seems ahard problem
indeed. Writing methods in a language more amenable to optimization, for example the
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(declarative) query language, will partially solve the problem. For example, in the object-
oriented data model TM, methods are written in a high-level, declarative language of ex-
pressions. Method calls in a query can then be textually substituted by their definition,
which allows for optimization. TM retrieval methods can ssmply be looked upon as pa-
rameterized view definitions. As with view definitions, method code may be optimized
locally, or the code may be substituted into the expression containing the method call.

2.4.2 Optimization

A number of object-oriented algebras have been proposed in the literature, e.g. [ShZd89,
CIM093]. Seeadso [Vand93] for an overview. In most of the proposal's, aspecial navigator
(map, image, etc.) isincluded in the language, which allows for nesting of expressions.

2.4.3 Discussion

In our view, an object-oriented datamodel that supportsahigh-level declarative query lan-
guageisimplemented asfollows. Thetarget language (the language the model is mapped
to, for example an algebra) does not support inheritance, object identity, implicit joins,
methods, and views. It isassumed that datatype constructors supported by the source and
target language are the same; the target language has an additional basic type oid. In the
sequel we describe theissuesinvolved in mapping an object-oriented data model to lower
levels.

From theviewpoint of optimization, the most significant new feature of object-oriented
data models is object-identity. Complex objects are already present in (X)NF? models,
inheritance is amatter of physical database design, and implicit joins, if not materialized,
will be transformed into explicit joins at the logical level.

On the other hand, OODBMSs are tailored towards technical applicationsin which
data collections may have statistical properties differing from those in traditional admin-
istrative environments. It is not sure whether set-oriented query processing will have the
same benefits that it hasin traditional application domains.

2.5 Our view on optimization

In database systems, performanceis of crucial importance. Data volume may belarge and
complex, and used by many applications at the sametime. Performance may be measured
in terms of responsetime, CPU costs, /0 costs, storage costs, communication costs, etc.,
or combinationsthereof. Naive, i.e. interpretative evaluation of user querieswill resultin
unacceptable performance.

The subject of this thesis concerns the trandation of an SQL language for object-
oriented database systems, say, OSQL, into an algebrafor complex objects. The ultimate
goal isto achieve an efficient implementation of OSQL . We assume athree-level database
system architecture. Thetop layer isOSQL. The bottom layer providesuswith at |east the
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efficient query processing techniquesthat areavailablein relational systems. Theinterme-
diate language is an algebra supporting complex objects. Naive query processing can be
improved in two different ways:

1. By providing efficient access algorithms. Efficient access algorithms form the ba-
sisfor efficient query processing. The basic techniquesemployed to speed up query
evaluation in comparison to naive execution are sorting, hashing, and the use of in-
dices.

2. By providing a good trandation. The user query has to be mapped to the physical
level in the best possible way.

Theproblem studiedin thisthesisishow to trandateasubset of OSQL into an algebra
such that the result of the transformation is efficient.

Why a subset?

In our opinion, the two features of OSQL that are the most important with respect to effi-
cient query processing are the orthogonality of thelanguage and the presence of set-valued
attributes. Languageorthogonality allowsfor arbitrary nesting of OSQL constructs. While
nesting in the WHERE-clause has been studied extensively in the relational moddl, it is
not known how to handle queries with nesting in the SEL ECT-clause, that, in general, ex-
presses the formation of complex results.

The presence of set-valued attributes is a second important language feature. In an
orthogonal query language for a data model that supports set-valued attributes, such at-
tributes can be used in any place where base tables can be used (except at the top level
of course). Set-valued attributes may occur as operand of a SELECT-FROM-WHERE
query block, asthe operands of set (comparison) operators, as quantifier ranges, and even
injoin predicates. Operationson set-val ued attributes can beintermingled with operations
on base tablesin arbitrary ways. How to deal with queriesinvolving set-valued attributes
and basetablesisan open problem. Asexplained before, oneoptionisto unnest set-valued
attributes to enable to access the elements, however, such an approach may be inefficient
and causes problems of atheoretical nature.

Asdescribed, somework hasbeen doneon logical optimizationfor the NF? datamodel.
Comparatively little work has been done on the design of physical algebra operators for
theimplementation of arbitrary queriesinvolving complex objects. Most of thework done
on access algorithmsfor systems supporting complex objectsis focussed on resolution of
references, or the evaluation of path expressions, i.e., theretrieval of complex objects ac-
cording to user-defined relationships. The assembly operator of [KeGM91], isdesigned to
assembl e complex objectsusing astrategy that isacombination of object-at-a-time (depth-
first) and set-oriented (breath-first) retrieval. Index structures for evaluating path expres-
sions have been surveyed in [Bert93]. For queries that establish arbitrary relationships
between complex objects, little work has been done yet. A notable exception is the paper
of [DeLa92], that studies how to implement a join between a set-valued attribute of one
nested relation and a second flat relation. An example of an arbitrary query concerning
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other than user-defined relationships (or pre-defined access paths) is the following: select
all supplierstogether with the set of suppliersthat supply at least the same parts. In OSQL
thisis:

select s except sps=select §
from s in SUPPLIER
where s .parts C s.parts
from sin SUPPLIER

Theabovequery isajoin betweentwo tables(or classinstances) of whichthejoin predicate
is complex, testing the subset relationship between two set-valued attributes.

Why an algebra?

To bridge the gap between the tuple-oriented user language and the set-oriented physi-
cal algebra, we propose to use an algebra. The set-oriented query evaluation paradigm
seems appropriate at the logical level too. In Section 2.2 we have shown that an algebraic
language is easily extensible, and does not fix the processing order like a calculus does.
Usually, the logical algebrais used to perform logical optimization. However, as will be
discussed in more detail below, logical optimization of an algebraic expression involving
arbitrary operators (not only select-project-join) can be very difficult. Therefore, wetry to
perform optimization during the trandlation of OSQL into the algebra.

Which logical algebra?

Thelogical algebrahasto support operatorssuch that an OSQL expression can be mapped
to alogical expression that, when mapped to a physical algebra expression, has perfor-
mance at least equal to, but preferably better than that achieved by means of naive query
evaluation. The goal isto map OSQL expressions to that logical algebra expression that
can be mapped to the best physical algebra expression, given the database characteristics.
In other words, the logical algebramust contain operators such that the cost of evaluation
of algebraic expressionsissmaller than the cost of naiveevaluation. For example, asmple
nest/unnest algebrais not suited for implementing a nested relational query language.

Why efficient?

Traditionally, the term query optimization is restricted to the phases of logical rewriting
and plan compilation. Asexplained, logical optimization isthe heuristics-based rewriting
of alogical algebra expression into an expression that can be evaluated more efficiently.
For each logical algebraexpression, alarge number of possible query evaluation plans ex-
ist; thetask of plan compilationisto pick the plan that isthe best, given the database state.
Usually, the phases of logical optimization and plan compilation are viewed as separate
stagesin query processing. However, in [GrMc93], it is proposed to combine both in one
optimizer.
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Intheframework sketched above, trandation of the user query into the al gebradoesnot
haveany performancerelated aspects. Even stronger, trandlationintothe algebragenerally
resultsin an expression that can be considered as the most costly normal form [KeMo093].
A naive, standard transl ation may result into an algebraic expression that has performance
far worse than the original query when evaluated by means of nested-loop processing, and
rewriting such an expression into the desired form may be a complex task [Naka9(]. In-
stead of performing logical optimization after trandation, we propose, asis also donein
[Naka9Q], to perform some logical optimization during trandation of OSQL into the logi-
cal algebra. Purealgebraicrewriting, i.e., rewriting using algebraic equivalencerulesonly,
becomes more complicated as expressions grow larger and the algorithms expressed by
source and target expression differ more from each other.

2.6 Summary

The general approach of thisthesisisasfollows. Thetask isto achieve an efficient imple-
mentation of asubset of the object-oriented declarative query language OSQL . We assume
athree-level architecture consisting of end-user query language, theintermediatelanguage
inwhich logical optimization takes place and aphysical accesslanguageimplementingthe
intermediate language. It is assumed that a phase of preprocessing deals with the object-
oriented features of inheritance, class references, and methods; in this thesis we will dis-
cuss neither clustering algorithms nor optimization of methods. The OSQL subset that is
the output of the preprocessing phase is further restricted in that we do not consider up-
date queries, and that the type system of the OSQL subset, and that of theintermediatelan-
guage, isthe NF? type system. The intermediate language is a combination of a calculus-
likelanguage and apure algebraiclanguage. Thetrandation of therestricted OSQL subset
into theintermediate languageis anaive, amost one-to-onetranglation; transformation of
the calculus-like expressions that are the result of the trandation will be done guided by
equivalence or rewrite rules and will be based on a simple cost model. The access lan-
guageis a so-called physical algebra, alanguage that supports one or more operator exe-
cution methods for each logical algebra operator. The emphasisin this thesis will be on
the efficient transformation of calculus into algebraic expressions, which we call logical
transformation.
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Chapter 3

L anguages and transfor mation
goal

Inthisthesis, we investigate query processing in the context of a data model that supports
complex objects. Starting from an SQL-like query language, the task is (1) to define an
algebra for complex objects, (2) to provide a trandation of the end-user query language
into the algebra, and (3) to study logical optimization in the algebra. In this chapter, we
describe the end-user query language OSQL and the language ADL, which isused asin-
termediate language between OSQL and the system-specific physical algebra.

Various SQL-like languages for data models that support complex objects exist, e.g.
[RoKB88, PiIAN86, BaCD92, Catt93]. Inthis chapter, we define alanguage called OSQL.
OSQL is not a new language; it is a prototype of block-structured SQL -like query lan-
guages for advanced data models. OSQL can be considered as a subset of the object-
oriented database specification language TM [BaBZ93, BaVr9l]. In the definition of
OSQL, the emphasisis placed on the language constructs that we consider important with
respect to optimization, i.e. orthogonality and the presence of set-valued attributes. Asex-
plained in the previous chapter, we do not consider specific object-oriented features like
inheritance, methods, etcetera. Structurally, our datamode! is NF?, extended in the sense
that attributes may be arbitrary sets and tuples, not only relations. This extension is not
essential but merely simplifies the presentation. The main language construct of OSQL
isthe select-from-wher e (sfw-) expression, comparable to the SEL ECT-FROM-WHERE
construct of SQL, and also HDBL [PiANn86].

The language ADL is an extension of OSQL ; the extension consists of a number of
pure algebraic or set operators. ADL isdefined as an extension of OSQL becauseit isun-
certain whether each and every OSQL |anguage construct can (and should) be mapped into
a set-oriented expression that consists of algebraic operatorsthat are part of the extension
only. Calculus-based concepts such as quantifiers and the support for nesting of opera-
tions are part of the intermediate language as well because they are needed to deal with
set-valued attributes. The algebraic part of the language ADL is an extension of the alge-
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braof [ScSc86] that was defined for the NF? datamodel. Most importantly, the extension
involves a number of non-standard join operators.

Theaim isto transform OSQL expressionsinto algebraic expressionsin the best pos-
sibleway. Possible transformationsarelaid down in equivalencerules. We take a step-by-
step approach to trandation and optimization. |n Chapter 4, we investigate trandation and
optimization of an OSQL subset that is equivalent to relational calculus. 1n subsequent
chapters, we consider more advanced issues, the most important of them being the pres-
ence of set-valued attributes and arbitrary nesting of operatorsin the select-from-where
query block.

The outline of this chapter is as follows. In Section 3.1 we describe the data types
that we use. In Section 3.2 and Section 3.3, we present the languages OSQL and ADL,
respectively. In Section 3.4, the semantics of the operators of OSQL and ADL is given.
(Because both OSQL and ADL are rather simple languages, we not pay much attention to
aspects of formality.) Because ADL is defined as a superset of OSQL, the transformation
goal hasto be clearly stated. In Section 3.5, we present a classification of expressions, and
an initial proposal how to handle the respective classes in the trandation. In Section 3.6,
some considerations with respect to a cost model are presented.

3.1 Datastructures

OSQL and ADL are typed languages; below we describe the data types used. We do not
introduce function types. Function types are needed to give typing rules for the operators
presentin OSQL and ADL, but werefrainfrom giving theserulesfor reasonsof simplicity.
It is assumed that a number of basic or atomic types is supported; one of them isthe
type oid, used to represent object identity. The type constructors supported are the tuple
constructor (-) and the set constructor {-}, which may be alternated in arbitrary ways. As-
sume we have a set of labels or attribute names a, then the types are defined as follows:

Definition 3.1 Types
1. Bisatype, whenever 8 € {oid, bool, string, num} (basic types)
2. (a1 : 71, ,an : Tn) iSAtype, (tuple types)
whenever al o;’s aredistinct labels, al r;’saretypes, 1 <i < n
3. {7} isatype, whenever r isatype (et types)
0

The types of the base tables, i.e., of the values stored in the database are assumed to
be set-of-tuple types, of which the attributes may be arbitrarily typed. Whenever a value
v isof type T, wewrite v : 7. We give some examples.
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Example 3.1 Tabletypes

e DEPT : {(doid : oid,
dname : string,
address : (street : string, city : string),

emps : {oid})}

e EMP: {(eoid : oid,
ename : string,
sal : num)}

Both DEPT and EMP are sets of tuples. Attribute address of DEPT hasatuple typethat consists of
atributes street and city that are of atomictype; attribute emps represents aset of object identifiers
that refer to employees in EMP, which is a standard relation.

3.2 OSQL

Below, we present the expression formsthat are part of the language OSQL . Thelanguage
issimplein that fairly basic constructs are supported. The language is split into a kernel
and an extension. The OSQL kernel consistsof those constructsthat we consider necessary
with respect to expressive power. The extension consists of constructs that usually are
included into SQL languages, but that can be expressed in the OSQL kernel. We stress
that, although the extension is not strictly needed with regard to expressive power, it is
necessary from theviewpoint of trangl ation and optimization. A reduction of the extension
tothekernel will result into atrand ation that in some casesis unnecessarily inefficient. For
example, set intersection can be expressed by means of set difference:

XNY=X—-(X-Y)

However, because it is possible to provide an efficient implementation of intersection as
well as difference, the performance of the difference expression probably is much worse
than that of the intersection, so it would not be wise to exclude that operator from the lan-
guage.

We notethat OSQL as presented in this section is not a complete query language—we
have tried to find a compromise between expressive power and language constructs that
we consider important with respect to trandlation and optimization.

Below, we first present the syntax of the OSQL kernel and extension. Next, we give
the syntax of the full language in BNF notation, and then we describe the meaning of the
various language constructs. In Section 3.4, the semantics of some of the language con-
structs is given in aless (but till) informal manner. Finally, we briefly describe how to
express the extension in the kernel.
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Definition 3.2 OSQL kerne

Assume we have constants ¢, variables z, and labels a, then the following are OSQL
expressionse:

c (constants)

z (variables)

(e) (brackets)

select e; from z in e; where e;3 (sfw-query block)

e; Ues (set operators)

el(e) (element pick)

U(e) (generalized union, or flatten)

e.a (attribute selection)

(a1 = e1,...,a, = e,) (distinct a;)  (tuple construction)

—e (negation)

e1 Neg (conjunction)

dr ceioey (existential quantification)

O
Definition 3.3 OSQL extension
The following expressions are added to the OSQL kernel as given in Definition 3.2.
ewith (z1 =e1,... ,z, = €,) (local definitions)
erfeyforf e {N,—, x} (set operators)
ela, ... ,an] (distinct a;) (tuple projection)
e; ++ e (tuple concatenation)
e except (a1 = ey,... ,a, = €,) (distincta;)  (record modification)
erfexforf e {e,c,C,=,2,D} (set comparison operations)
e1 Ve (digunction)
Vz € e; 062 (universal quantification)
if e; then e, else e; (conditional)
O

Note that we did not include arithmetical operationsin our language; it can easily be
extended. Below, we present the syntax of full OSQL in BNF notation.
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0SQL

cop

=1

(top level expressions)

i:= select e; from z in e; where p

n= clz|t|i]s]

if p then e; else e; | el(e) |

(e) | e with (z1 = ey, ..
m= U(e) | e1 sop es

(expressions)

.,.’En=6n)

(set expressions)

s= uUln|—|x (set operators)

n= e.alela,...,an]| e ttea| (tuple expressions)
(01 = €1y yan = ) |
e except (a1 =e1,... ,an, = €,)

= ejcopes | (predicates)

“p|p1Vp [P AP |
Jrceep| VzEeep
= elcicl=]2]>

(set comparison operators)

The main construct of the language is the expression is the sfw-query block:

select e; from z in e; where e3

which is comparable to the SELECT-FROM-WHERE query block from SQL, and many
extensions of SQL such as HDBL [PiAn86] and the query language OQL that is part of
the ODMG proposal [Catt93]. Expressions e; in the expression above may be arbitrary
OSQL expressions (provided they are well-typed), in which also other sfw-blocks may
occur. Thewher e-clauseisoptional. Inthe select-clauseexpressione; andinthepredicate
es, £ may occur asafreevariable. Theexpression e, iscalled the operand of the sfw-block.
Informally, the meaning of the sfw-expressionisasfollows. Theexpressione;, the select-
clausefunction, isevaluated for thosetuplesz inthe collection e, that satisfy the predicate

es. Below,

we give two examples.

Example 3.2 Sfw-query block

e Select the names of the departments located in Amsterdam, together with the names of the
employees working for the department.

select (dname = d.dname, enames = (select e.ename

from d in DEPT
whered.address.city = Amsterdam

from e in EMP
where e.eoid € d.emps))

e Select the departments that have employees that earn more than 100K.

select d

from d in DEPT

where Js € (select e.sal
from e in EMP

where e.coid € d.emps) e s > 100K
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Besides the sfw-expression, the language OSQL supports the standard set operators
U, N, and — (set difference), the extended Cartesian product x of the relational model, the
operandsof which are sets of tuples, the operatorsel, to retrieve the element of asingleton
set, andflatten | J, to ‘ collapse’ aset of setsinto one. Set comparison operatorse, C, C, D,
and D areincluded, and equality is defined for all types. Existential and universal quan-
tification are important language constructs; the conditional if - then - else - is included
for reasons of convenience. Furthermore, a number of tuple (or record) operationsis sup-
ported. Tuple operationsaretuple construction, tuple concatenation ++ , tuple projection,
and attribute (or field) selection, as usual expressed by the dot operator.

The except congtruct is included for reasons of convenience. In TM, except is used
for record modification, enabling to change the value of record fields without having to
use tuple construction, which may become quite elaborate for tuples that have many at-
tributes. Thetypes of tuple fields may not be altered. In ADL, considering retrieval only,
we use amore genera form of except in that attribute types may be modified, and in that
itisalso alowed to add fiel ds—attribute names that do not occur in the original tuple are
assumed to represent new fieldsin the ‘ updated’ tuple. We give an example of except. Let
t denote the tuple (a = 1,b = true), then the expression t except (a = 2) evaluatesto
(a=2,b=true), and the expresson ¢except(c= 'Joe') evaluaes to
(a =1,b=true,c= "Joe).

The with-construct is used for local definitionsasin:

z.a+zbwithz ={(a=1,b=2)

The with-construct may be used to handle common subexpressions.

Besides the sfw-expression, the language TM supports set comprehension. The gen-
eral format of set comprehensionis {z : § | p}. Inthis expression, ¢ isadomain that is
built up from regular types and/or Class names by using the type constructors of the lan-
guage. Dueto this general format of set comprehension, problems of safety and construc-
tiveness have to be dealt with. Asthislies outside of the scope of this thesis, we restrict
ourselves to the sfw-expression, which is equivalent to the restricted and safe form of set
comprehension {f(z) | z € X A p(z)}.

The expressionsformsthat belong to the extension can be easily expressed in the ker-
nel. For example, set differencecan be expressed using asfw-block and negated existential
quantification, set intersection can be expressed with the use of set difference, and set com-
parison operatorscan berewritten by meansof quantification. We show thetransformation
for the Cartesian product that can be expressed by means of the sfw-expression, attribute
selection, tupleconstruction, and the operator flatten, under the conditionthat the top-level
attribute names of the two operands are known. Let X : {{a; : 01,... ,a, : o)}, and
Y {(by:71,... by Tm)}, thenwe have:

X xY = J(select select {a1 = z.a1,... ,an = .an,b1 = y.b1... ,bm = y.bm)
fromyinY
from z € X)
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3.3 ADL

Thelanguage ADL isahybridlanguage: amixture of atuple calculusand set algebraic ex-
pressions. ADL isdefined asasuperset of thelanguage OSQL ; in Section 3.5, we motivate
the ideas that underly the definition the language ADL, and also the goal in the transfor-
mation/optimization of OSQL expressions. The calculusfeatures of ADL are the support
for arbitrary nesting of expressions and the presence of quantifiers. The algebraic part of
the language, the operators listed below together with the standard set operators, is an ex-
tension of the algebrafor nested relations of [ScSc86].

Definition 3.4 ADL expressions

The set of ADL expressionse isthe set of OSQL expressions according to Definition 3.2,
extended with the following algebraic expressions:

oz : pl(e) (selection)
afz : f](e) (function application or map)
mwal(e) (projection)
er 0 exforfe {X,x,>} (join operators)
T1,T2:p
e1 A €2 (nestjoin)
El,$2¢f|P;a
e1 + e (division)
Vasa(e) (nest)
Ha(€) (unnest)

O

Roughly, the algebraic operators of the language ADL are the standard set operators,
the extended Cartesian product, in which operand tuples are concatenated, and division,
the map operator «, selection o, projection 7, and the restructuring operators nest (v) and
unnest (w). The map operator, which is aconstruct well-known from functional program-
ming languages, is used to apply afunction to every element of aset. Furthermore, anum-
ber of join operatorsis supported: the regular join X, the semijoin x, and the antijoin r>.
The semijoin x (aregular join followed by the projection on the attributes of left-hand
operand) is a join operator that is useful in processing certain kinds of queries, namely
treequeries[Kamb85]. Theantijoin t> isdefined asasemijoin followed by aset difference
of the left-hand join operand and the semijoin result. The antijoin operator is less known
than the semijoin operator; it can be usefully employed to process tree queries involving
universal quantification. The nestjoin operator A isanew join operator that is useful for
the trandlation of non-relational queries; it will be discussed extensively throughout this
thesis. In principle, in selection predicates, map functions, and join predicates, arbitrar-
ily complex expressions can be used, including expressions that contain quantifiers, set
(comparison) operators, and base tables.
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3.4 Semantics

In this section, we give the semantics of some of the ADL operators. We first list some
conventions:

¢ Weusethefollowing assynonyms: type and domain; tuple and record; attribute and
field; label and attribute name; query and expression.

e A tabletype is a set-of-tuple type. A tableis avalue that is of some table type.
Vauesstored inthe database aretables, and are called base tables. Basetable names
are denoted by capitals R, S, for relations, or X, Y, Z, in case tables are of amore
complex type. Attributes may be atomic, tuple-valued, or set-valued. In examples,
attribute names a, b often denote atomic or tuple-valued attributes; attribute names
¢, d, or s are often used to denote set-valued attributes.

o A list of attribute namesis denoted asalabel sequenceof theformay, ... ,a,. Cap-
itals A and B are used as abbreviationsof attributelistsa, ... ,a, andby,... , by,
respectively. Concatenation of attribute lists A and B is denoted as AB, and also
as A, B. The concatenation AB denotes the attributelist a1, ... ,a,,b1,... ,bm.
An expression a B or a, B denotesthe concatenation of label a and attributelist B,
resultingina, by, ... , by,.

¢ For atable expression (an expression of some table type), the schema is the set of
top-level attribute names. In algebraic expressions, often base table names are used
to denote the corresponding schema. For example, in the expression rx (X X Y),
the projection list X denotes the list of top-level attribute names of table X. The
expression Sch(T') deliversthe schemaof table T

e For predicates p, the expression Attr(p) delivers the set of attribute names refer-
encedin p.

e Theexpressionselect f from z in e where p isaso denoted as:

Llz : flpl(e)

The above operator I is called the collect operator. The symbol | servesto separate
predicate p from function f.

e The symbol = isused to denote equivalence of expressions.
e Theexpression F'V (e) denotesthe set of variable namesthat occur freeine.

e Whenever predicate and function names are parameterized with variable names, it
holdsthat the actual set of variablesthat occur freein the predicateis asubset of the
set of variable nameslisted. For example, predicate p(z, y) denotesapredicatep is
which variables z and/or y occur free, but no others.
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Figure 3.1: Example operations
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Below, we give the semantics of some of the ADL operators. In Figure 3.1, we give
some examplesthat illustrate the effect of the semijoin, antijoin, division, nestjoin, unnest,
and nest.

Definition 3.5 Semantics

1. (Element)
el({e}) = e
The operand of el isasingleton set, the element of whichis delivered as result.
2. (Flatten)
Ule) ={z|3Isceoxc s}
Expression e denotes a set of sets; the operator flatten delivers the set that consists
of elements of elements of e.
3. (Product)
e1 Xeg={xy+t+tzy| 21 €E€1 ANTs € €3}
The product operator is the extended Cartesian product operator of the relational
model. Both e; and e, aretables; it is required that the schemas of e; and e, are
digoaint.
4. (Collect)
Lz : f(z)lp(x)](e) = {f(z) | z € e Ap(x)}
Thecollect operator deliverselementsof operand e that satisfy predicate p, modified
according to function f.
5. (Selection)
olz:p(z)](e) ={z |z €eAp(z)}
Selection restricts operand e according to predicate p.
6. (Application)
afz : f(z)|(e) = {f(z) |z € e}
Operator map appliesfunction f to every element of operand e.
7. (Projection)
ma(e) = {z[A] | z € €}

The operand e of the projection operator 7 isatable; it isrequired that attribute list
A isa(not necessarily consecutive) subsequence of the schema of operand e.
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8.

10.

11.

12.

13.

(Join)
el X ex ={z1++z3 | 21 E€e1 ATy € e2 Ap(z1,22)}
9717972117(ELZ2)

The join corresponds to a selection on the Cartesian product; the schemas of the
operands have to be digoint.

(Semijoin)
e X e ={z1 | z1 €1 Adzs € eg @ p(z1,22)}
E11E2:p(mlvz2)

The semijoin deliversthose |eft operand tuples for which thereis some tuple in the
right operand such that the join predicate holds.

(Antijoin)

el > e2={z1 | z1 €1 A Bxs € e @ p(z1,22)}

z1,z2:p(21,22)

The antijoin is the complement of the semijoin operator. It deliversthose left ope-
randtuplesfor which thereisnotuplein theright operand such that thejoin predicate
holds.

(Nestjoin)

€1 A €y =
o1,22:f(z1,2) |p(z1,22)5a

{z1++(a=X) |21 €es NX ={f(21,22) | z2 € e2 Ap(21,22)}}

The nestjoin is a new operator that combines grouping, join, and function applica-
tion. For each left operand tuple z1, the set of right operand tuplesthat satisfy pred-
icate p is determined. For each element z5 in this set, the expression f(zy,z2) IS
evaluated, giving theset X, and intheresult z; isconcatenated with the unary tuple
(a = X). Attribute name a may not occur in the schema of e;. The left nestjoin
operand must be a table, however, the right operand may be a set of arbitrary type.

(Division)

e1+ey={x1[A] | z1 € e1 Nea C {z|[B] | 2} € e1 A z1[A] = ! [A]}}
Division is an operation that is difficult to understand. Both operands are tables.
The schema of the dividend e; is AB, that of the divisor is B (the underlying types
of B attributes being compatible). In division, the tuples of the left operand e; are
grouped accordingtothe A attributevalues, and then it ischecked whether the corre-
sponding set of B attribute valuesis a superset of the divisor e;. Theresult consists

of those | eft operand (dividend) tuples such that the latter condition holds, restricted
to their A attribute values.

(Nest)
vagole) ={z[B]++(a=W) |z ce AW = {2'[4] | ' € eN2'[B] = z[B|}}
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The schema of operand e is AB; a isalabel that does not occur in attribute list B.
Nest groups the operand tuples according to the B attribute values, i.e., according
to the attributes that do not occur in attribute list A, and then, for each partition,
concatenatesthe tuple z[ B] with the unary tuple (a = W), inwhich W denotesthe
set of z[A] tuples belonging to each partition.

14. (Unnest)
po(e) ={z' ++z[B] |z € e Az’ € z.a}

Theschemaof operande, whichisatable, isaB; attributea isof atabletypeaswell.
Unnest concatenates each tuple in the operand, restricted to its B attribute values,
with the tuplesthat are present in its a attribute.

O

Definitionsof, for example, set (comparison) operatorsand predicatesare straightforward,
and not given here. Below, we list some obvious equivalencesfor the purposeillustration.

Rule3.1 Equivalences

Ple  2lp(@))(X) = ol : p@)](X)

Pl : f(2)true)(X) = alz : f(2)](X)

e X X  Y=ov:pX],v[YD(X xY)

z,y:p(z,y)

e X x Y=ax(X X Y)

z,y:p(z,y) z,y:p(z,y)
e X > Y=X—-(X «x Y)
z,y:p(z,y) z,y:p(z,y)

3.5 Transformation goal

In this section, we state the goal in the transformation of OSQL expressions. Wefirst give
some definitions concerning operators and expressions, and present a classification of ex-
pressions. Next, we describe the transformation goal.

3.5.1 Classification of expressions
Definition 3.6 Operators

e The collection of set operators includes the standard set (comparison) operators,
and aso flatten, nest, unnest, and projection. Set operators are operators that have
set-valued operands, and do not allow for nesting of expressions (see below).

e The operator I" and its simplifications a and o, quantifiers 3 and Vv, and aso the
various join operators are called iterators. Iterators are those operators that allow
for nesting of expressions. Note that projection = is not an iterator.
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e Expresson e in T'[z : e€](o0), where e abbreviates some expression e |es, in
oz : e](o)andaz : €](0),inTz € oo eandVz € o e e,andinoy Oy, z,.c 02, Where
f denotes an arbitrary join operator, is called the parameter expression of the it-
erator concerned. A variable z, z; is called aloop variable; an expression o, o; is
called aniterator operand.

e For a quantification (3z € o e e) or (Vz € o e e), operand o is aso called the
quantifier range, and e the quantifier scope.

Definition 3.7 Expressions

e Anexpression issaid to occur nested if it is contained in some iterator parameter
expression.

Expressionsthat occur nested are called embedded expressions, nested occurrences,
and also nested expressions; thelatter are not to be confused with nested expressions
as defined below.

e A nested expression isan expression that contains nested occurrences of operators
with set-valued operand(s); otherwiseit is called flat.

Operatorsthat have set-valued operandsare the set operatorsand iterators as defined
abovein Definition 3.6.

A flat expression correspondsto a expression of relational algebrain the sense that
both do not involve nesting. However, aflat expression may contain non-relational
operatorslike flatten, nest, and unnest, and al so tuple operators that are not present
in relational algebra.

e A subquery isan iterator expression that occurs nested and that has a base table or
asubguery operand. A nested base table occurrenceis not by definition considered
asubquery.

A correlated subquery is asubquery that contains one or more free variables.
An expression that contains a subquery is also called a subquery expression.

e An expression that does not contain any nested base table occurrencesis called a
single-table expression.
Single-table expressions may contain nested iterators and nested set operators; the
operands of these are set-valued attributes however.

e A set expression isan expression that contains nested set operator occurrenceswith
base table operand(s). O
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contains nested operators with set-valued operands

no yes

(flat) (nested)
contains nested base table occurrences

no yes

(singl ‘T‘ltabl ®  contains base table that is

PN

operand of set operator .-~ . operand of iterator

y N
(set) (subquery)

il contains subquery that is

~
N

uncorrelated .- > correlated

- N
- ~

s \
v \Y

Figure 3.2: Query classification

In Figure 3.2, we have depicted the various types of queries. Five classes are distin-
guished. Thefirst distinction is that between flat and nested expressions. Nested expres-
sions may contain nested base table occurrences or not. In the latter case, the nested ex-
pressions are called single-table expressions. Single-table expressions may till contain
nested iterators or set operators, but the operands are set-valued attributes instead of base
tables. Nested expressions that contain base table occurrences are classified as set and/or
subquery expressions. In a set expression, a nested base table isthe operand of a set oper-
ator; in asubquery expression, anested baseisthe operand of an iterator. The two classes
are not digoint. A fina distinction is that between expressions that involve either corre-
lated or uncorrelated subqueries. Below, we give some exampl es.

Example 3.3 Classification of expressions

Typel: flat ofz : z.a = 1](X)
The above expression isasimple flat (relational) expression that does not contain any nested
set operators or iterators.

Typell: single-table
e glz:3z € xz.coz=1](X)

This expression, which does not contain any nested base table occurrences, contains a
nested existential quantification of which the operand is a set-valued attribute.

e o[z : 3z E€z.cox.a=2al(X)
The above expression contains a nested, correlated quantifier expression.
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e afz : z except (c = o[z : z.name = 'Joe']|(z.c))](X)
The set-valued attribute ¢ of X isrestricted by means of a nested selection.
e glz:z.cC z.d|(X)

The selection predicate of the above expression is not atomic, but complex, involving
a set comparator with operands that are set-valued attributes.

Typelll: set

e glz:z.c=Y]|(X)
Note that this set expression corresponds to the query that selects suppliers (X) that
supply al parts (Y). Parts supplied are represented as a set-valued attribute (c).

e afz:z.c—Y|(X)
This query might be considered as one that checksreferential integrity, foreachz € X
delivering the referencesin ¢ that do not occur intable Y.

TypelV: uncorrelated subquery afz : z.cU o[y : y.a = 1](Y)](X)
The nested selection does not contain z as a free variable.

Type V: correlated subquery

e glz:Jy €Y ez.a =y.a](X)
The above expression isasimple (relational) subquery expression that can be mapped
to the semijoin operator. However, attributes a need not be atomic.

e glz:3z€zcoe AycY e z.a=y.al(X)

In this query, iteration over a base table is nested within iteration over a set-valued at-
tribute.

Note that the five classes are not digoint. The classes of flat and nested expressions, and
the classes of single-table and subquery expressions are digoint, though.

3.5.2 Transformation

We assume that each and every OSQL expression can be evaluated asit is, i.e., aswritten
by the user, using a naive, nested-loop execution strategy for nested expressions. The goal
istoimproveover naive query processing, in which anested-loop strategy isfollowed and
each operator is evaluated naively. This can be donein two ways:

o Improvetheefficiency of singleoperators. Thisisthetask carried out at the physical
level, that provides efficient implementations. One logical operator can be mapped
to several physical operators; aphysical operator may implement several logical op-
erators.

e Improve the efficiency of operator sequences. Thisis done at the logical level by
changing the order within operator sequences (algebraic rewriting), or by replacing
(combinations of) operators by others.
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Thegoal in trandation is to transform nested expressionsinto flat or single-table ex-
pressions. Explicit iteration is to be transformed into set operators, and nested base table
occurrencesareremoved from parameter expressionsby rewritinginto join expressions, as
much aspossible. In addition, in the transformation the overall goal isto keep the number,
size, and cardinality of intermediate results as small as possible. Theresult of the tranda-
tion should be as efficient as possible—we combine trandlation with optimization, as also
was proposed in [Naka90]. Below, we briefly, and inevitably vaguely, describe some op-
tions for handling the various types of expressionsin the transformation.

Typel: flat Flat OSQL queries are left as they are, and optimized by means of algebraic
rewriting, as much as possible.

Typell: single-table Single-tablequeries, expressionsthat do not contain nested baseta-
ble occurrences, may contain nested iterators or nested set operators that have set-
valued operands. For example, consider the expression:

oz :3z € z.coz=1](X)

The above expression can be evaluated by means of a straightforward nested-loop
execution strategy. However, it is al'so possible to transform the query into an ex-
pression with a nested set operator:

olz: 1€ z.c(X)

The replacement of iteration by set operators allows for different execution strate-
gies. In case the comparison operator is < instead of =, such atransformationisnot
possible, which meansthat quantification must beincluded in the algebra. Alterna-
tively, type Il queries may be handled by the unnesting of set-valued attributes.

Typelll: set Type Il concerns expressions that contain some nested base table occur-
rence that is the operand of a nested set (comparison) operator. Consider the ex-
pression:

oz :z € Y|(X)

The query may be executed as it is, (efficiently) evaluating the set difference oper-
ator for each z € X . Also, the query may be rewritten into:

olz:Jy €Y ez =y|(X)
and then into ajoin operation:

X x Y

z,yz=y
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The above transformation is standard in the relational context, but it is not certain
whether all nested expressions of type 11 can be handled thisway; thisis one of the
research topics of thisthess.

Aswith uncorrel ated subqueries (see below), we may need thewith-clauseto ensure
that constant expressions are evaluated only once. For example, the expression:

afe :z.cu| J)(X)
isrewritteninto:
afz:z.cUY'](X) withY' = U(Y)

so that the expression | J(Y') is not evaluated for each z € X, but only once.

Type | V: uncorrelated subquery Uncorrelated subqueries are constants, which can be
evauated independently. Independent evaluation can be expressed by means of a
local definition facility. For example, the expression:

alz :z.cUoly:y.a = 1](Y)|(X)
is rewritten into:
afz:z.cUY'|(X) withY' = oy : y.a = 1](Y)

sothat Y is evaluated only once.

TypeV: correlated subquery Correlated subqueries are removed whenever possible.
Theremoval of correlated subqueriesmeans ashift from tuple- to set-oriented query
processing. In a naive evaluation strategy, queries that have subqueries are evalu-
ated by means of a nested-loop execution, in which the subquery is evaluated for
each of the tuplesin the surrounding iterator operand(s). After the transformation
of queries with subgueriesinto join queries, other execution strategies can be em-
ployed. It isuncertain whether in complex object modelsremoval of all subqueries
is possible; again, thisissue is one of the research topics of thisthesis. Seefor in-
stance the second expression of type V given in Example 3.3 above:

olz:3z€z.ce AYyeY oz.a < y.a|(X)

Theiteration over Y is embedded within iteration over the set-valued attribute ¢ of
X. The explicit iteration can be removed by the introduction of a nested antijoin
operation:

olz:3z € (z.c > Y) e true](X)

z,y:z.a<y.a

but the result till is a subquery expression.



46 3. Languages and transfor mation goal

3.6 Cost model

In thisthesis, we will not, and cannot provide a detailed cost model. As explained in the
previouschapter, traditionally only in the phase of plancompilation, i.e., duringtrandation
of alogical algebraexpression into the physical algebra, adetailed cost model incorporat-
ing physical database characteristicsis used. Logical optimization is based on heuristics,
using rewrite rules that are assumed to be generally beneficial. In logical rewriting, the
cost model isimplicit; simple performance measures are the number of times base tables
are accessed, the number and size of intermediate result tables, etc. Generally speaking,
in trand ation/optimization, we strive to:

1. Avoid duplicate computations, which are computations that have been carried out
before.

2. Avoid unnecessary computations, which are those that do not contribute to the re-
sult, in the end.

On the logical level, we try to reduce the number, size, and cardinality of intermediate
results. We give some examples:

¢ Common subexpressions are evaluated only once.

e Preference is given to cheap operators. For instance, the expression
ol : By €Y e z.a = y.a](X) istrandated intotheantijoin X >, y.z.4=y.0 Y, and
notinto (X M, y.z.044.¢ Y) =+ Y, @an expression that contains the expensive opera-
tor division and also two occurrences of basetableY .

¢ |tisavoidedto computeresultsthrown away later on anyway. Consider for example
theexpressiono|z : false](E),0Or E Xy .0 02y.o 0. TOTetrieve or evaluate subex-
pression E is useless, because the result is empty anyway.

¢ Non-qualifying data are eliminated as soon as possible, i.e., projections and selec-
tionsare pushed through, reducing the cardinality and size (tuplewidth) of operands.

Onthephysical level, it istried to reduce the number and the size (number of attributes) of
tuples actually retrieved and/or compared. This can be done by the use of access methods
likeindices, by caching of results, etc.

3.7 Summary

We have described the end-user query language OSQL and the algebraic language ADL
that serves asthe intermediate language between OSQL and the physical accesslanguage.
OSQL isaprototypeof SQL-like query languagesfor datamodel s supporting complex ob-
jects. Emphasisin the definition of OSQL ison aspectswe consider important with respect
to optimization. ADL isahybridlanguage: it containspurealgebraic operatorsinthestyle
of the NF? algebra of [ScSc86], aswell as calculus-like constructs such as quantifiers. In
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complex object models, the presence of set-valued attributes places specific demands on
the functionality of the intermediate language. In addition to well-known al gebraic oper-
ators such as selection and join, the intermediate language has to support nesting of oper-
ations, set-comparison operators, and also quantifiers.

We have set the main goal for thisthesis: the transformation of nested OSQL expres-
sionsinto efficient set-oriented expressions. We consider an OSQL expression nested if it
contains nested operations having sets (base tables or set-valued attributes) as operands;
otherwiseit isconsidered flat. Transformation of nested expressionsintoflat (join) expres-
sionsisinlinewiththeideathat underliesthe classical relational calculus-to-algebratrans-
lation, i.e., to move from tuple- to set-oriented query processing. Tuple-oriented query
processing generally comes down to nested-loop processing; performance can be much
improved by the use of clever access algorithmsthat operate on sets as awhole.

The language ADL is defined as an extension of OSQL ; possible transformations can
be laid down in the form of eguivalence rules. This approach to trandation/optimization
enablesto provethe correctness of transformation steps, and also gives more insight into
the decisions taken.

Inthe next chapter, asastarting point, weinvestigate thetransformation of (arestricted
form of) relational calculus into relational algebra. In traditional trandation algorithms
[Codd72, CeGo85], little attention is paid to the performance of the resulting algebraic
expressions; the task of obtaining acceptable performance has been left to the optimizer.
To enable efficient transformation of arbitrary relational calculus expressions, relational
algebra, which isasubset of the language ADL, is extended with some non-standard join
operators. In the chapters thereafter, more advanced features are discussed.
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Chapter 4

Trandation of relational calculus
torelational algebra

Thelanguage OSQL asdefined in the previouschapter can be considered as an extension of
relational query languages. Therefore, in this chapter, we first discuss trandation and op-
timization of arelational calculuslanguage. In the chaptersto follow, the more advanced
language features are discussed. Motivation of the work presented in this chapter is that,
in general, in relational trandation algorithms, e.g. [Codd72, CeGo85], little attention is
paid to efficiency.

In the literature, several algorithms for the trandation of SQL into relational algebra
can befound. SQL may be trandated into relational algebra directly [CeGo85], or using
relational calculusasintermediate language [UIIm89, PBGG89]. Thereduction algorithm
of [Codd72] providesaway to trandate relational calculus expressionsinto algebraic ex-
pressions. Calculusconstructsthat are hard to trandate efficiently are universal quantifica-
tion and digunction. In [CeGo85], universal quantification and digjunction are handled by
means of the set difference and the union operator, respectively. In [Codd72], disunction
is handled by means of set union also; for universal quantification the division operator is
used. A disadvantage of the above-mentioned approaches to universal quantification and
digunction is that in the resulting algebraic expressions (base) tables are accessed multi-
pletimes. In[Bry89], an improvement in trandating relational calculus expressionsinto
algebraic expressions is proposed. In this proposal, as far as possible, (base) tables are
accessed only once; however, universal quantification and digunction are handled sepa-
rately, and no complete trandation algorithm is given. In this chapter, we follow a sys-
tematic approach to provide a complete and efficient trandation of relational calculusinto
relational algebra.

To provide apoint of referencefor further discussions, in Section 4.1 wefirst describe
thereduction al gorithm of [Codd72]. To avoid problemswith safety, the cal culuslanguage
we use is somewhat restricted. Next, we discuss some alternative ways of handling uni-
versal quantification and digunction in Section 4.2. In Section 4.3, we give a description

49
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of an agorithmto transformrelational calculusinto relational algebraextended with some
non-standard join operators; the goal isto obtain an efficient trandation, i.e. atrandation
that resultsinto efficient relational algebra expressions. Roughly, the transformation con-
sists of aphase of preprocessing, described in Section 4.4, aphase of translation, discussed
in Section 4.5, and a phase of postprocessing, to which we do not pay much attention. The
algorithm for the actual trandation of the calculusinto the algebrais presented in the form
of aset of rewriterules. Asproposed in [Naka90], we strive to perform optimization dur-
ing trandation; expressions are rewritten in alanguage that is a mixture of calculus and
algebra. In Section 4.6, we discuss some of the decisions taken in the trandlation, and we
describe additional rewrite techniquesand alternativetrandation rulesthat might give bet-
ter results. The algebraic expressions that are the result of translation sometimes can be
rewritten further; in Section 4.7, we give some algebraic equivalence rules for the trans-
formation of join expressions. Next, in Section 4.8 we evaluate the results on the basis of
some extensive rewrite examples that are given in Appendix B. A summary isgivenin
Section 4.9.

4.1 Codd'sreduction algorithm rephrased

In this section, we describein asimple but formal way the algorithm of Codd for the trans-
lation of relational calculusinto relational algebra[Codd72]; this description serves as a
point of referencefor further discussions. To explain the essence of the algorithm, a quite
restricted form of relational calculus suffices.

Definition 4.1 Relational calculus The language RC is given by the following syntax:

RC == 1 (top level expressions)

i = ofz:pl(e) | male) (iterators)

e = cli|s (expressions)

s n= ejUes|eg Xe (set expressions)

t H= z.a (tuple expressions)

p = ccopt|ticopts| (predicates)
—p|p1Vp2|pi Aps |
Jrceep| Vzeeep

cop = <|<|=[>]|> (comparison operators)

O

In the syntax above, ¢ denotes base tables and constants of atomic type al'so. However, in
comparisonsc cop t, c is of aomic type only.

An expression w4 (o[z : p|(e)) corresponds to the so-called apha expression of
[Codd72], which denotes a projection on a selection. For example, the expression:

ma(ofz : z.b = 2](X))
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correspondsto the a pha expression:
(z[a]) :z € X ANz[b] =2

The language defined by the syntax above differsfrom standard relational calculusin
that all variablesarerange-restricted, i.e. thelanguageis safe. Inthe calculusof [Codd72],
thebasic construct isthe a phaexpression (that is, set comprehension), inwhich tuplevari-
ables are bound by means of range-coupled quantifiers or by means of range terms of the
form z € X, where X isarelation. Formulas of the language have to satisfy certain re-
strictionsto ensure that all variables have clearly defined ranges. To simplify our presen-
tation, we do not use set comprehension, but the selection operator instead.® As a con-
sequence, we have to include the Cartesian product and set union in our language; these
operators cannot be expressed by means of selection. Furthermore, in our language pro-
jections are made explicit. In the calculus of [Codd72], the target list (alist of tuple vari-
ables or indexed tuple variables, e.g. the expression (z[a]) in the alpha expression above)
indicates the attribute values needed in the result; we use the projection operator.

For reasons of convenience, we allow to apply the equality operator to tuples (z = y)
and alsoto subtuples(z[A] = y[A]), whichisnot allowed in standard rel ational languages.
Recall that an expression z[A] denotes tuple projection. In the sequel, a tuple projection
z[A] will also bedenoted as z 4.

Relational algebraRA, asusual, consists of operators, o, X, and -+ together with the
set operators x, U, N, and —. The proof of equivalence of RA and RC consists of two
parts. providing a trandation of RA into RC, and vice versa. The trandations are given
below.

4.1.1 Reduction of RA intoRC
Thereduction of RA to RCisrather trivial. We only show thetrandation of set difference,
set intersection, and division:

e Let X andY berelationsthat have identical schemas, then:
X-Y=oz:VyeY ez #y|(X)
XNY =oz:JyeY ez =y|(X)

e Let X (A4, B) and Y (B) be relations, which means that the schema of Y is a sub-
schema of that of X, then:
XY =mu(oz:Vy €Y o3z € X o z[A] = z[A] A 2[B] = y](X))

4.1.2 Reduction of RC to RA

Reduction of the calculusto the algebra, following the ideas of [Codd72], consists of the
following steps:

1A sdection o[z : p](X) isequivalent to the safe set comprehension expression {z € X | p}.
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1. Remove nested selections and projections. In Section 4.4.1, it is explained how this
is done.

2. Transform predicatesinto digunctive Prenex Normal Form (PNF). A predicateisin
PNFif it is of theform:

I/Vz1 € X1 03/Vzy € Xo0---F/Va, € Xp0p

and p isquantifier-freeexpression. If p isaconjunctionof digunctions, the predicate
is said to be in Conjunctive Prenex Norma Form (CPNF); if p is adigunction of
conjunctions, the predicate is in Digunctive Prenex Normal Form (DPNF). In the
transformation, negation is pushed through as far as possible.

3. Apply the following rules, exhaustively, from left to right:

@ ofz:

(b) ofz:Vy € Y°p( 'Y
[
[

©) olz:pVg(X)=0cz:p|(X)Uolz :q|(X)

J(X)

1(X) = (o]v: plox,vy) (X xY)) =Y
[ : p](

(d) olz:pAgl(X) =0z pl(

For reasons of simplicity, it is assumed that no name clashes occur in the formation of
Cartesian productsin the rules presented above. In the rules for existential and universal
quantification, predicates p(z, y) have to be adapted syntactically to take into account the
tuple concatenation that is implicit in the product. In the predicate, each occurrence of
variables z and y is replaced by variable v, projected on the attributes of left- and right-
hand operand, denoted as vx and vy, respectively.

With respect to the reduction algorithm given above, we note the following.

e As pointed out elsewhere [JaK 084, Klug82], empty ranges must be taken into ac-
count in thetransformation of predicatesexpressionswith range-coupled quantifiers
into PNF. For example, the transformationof p AVxz € X egintoVz € X epAgq
isincorrect; acorrect transformation is:

if X =0thenpelseVz € X epAgq

(it is assumed that x isnot freein p). Thistype of expression clearly is not part of
standard relational algebra, but can easily be included.

e Inthetransformation of select expressionsof theformo[z : Vy € Y o p(z,y)](X),
empty ranges must be dealt with aswell. The correct transformation is:

if Y = 0 then X else (o[v : p(vx,vv)](X xY))+Y
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e In[Codd72], conjunctive queries are handled by set intersection:
ofz : p(z) A q(2)|(X) = o[z : p(z)|(X) No[z : q(z)](X)

Thetrandation of conjunctive queries by means of composition of selectionsasin-
dicated in Rule 3(d) above is an easy improvement from the viewpoint of perfor-
mance.

So far, we have sketched the basic trandation algorithm. Below, we give an exam-
ple trandation, presented in the form of a sequence of rewrite steps (refraining from the
necessary substitution of variable names).

Rewriting example 4.1 Trandlation of calculusinto algebra

olz:By €Y ep(z,y) A3z € Z 0 q(z,2)](X)

= ofz:AyeY eIz e Zeop(z,y) Aq(z,2)](X) (moving 3 out)
olz:Vy€eY e Az € Zep(z,y) Ag(z,2z)](X) (moving —in)
olz:VyeYeVze Ze-p(z,y)V q(z,2)](X) (Moving - in)
(o]z :Vz € Z e =p(z,y) V —¢q(z,2)](X xY)) +Y (trandating outer V)
((olz : 7p(z,y) V ~q(z,2)](X xY) x Z)) + Z) + Y (trandating inner V)
(ol  ~p(&,))(X X Y) x Z) U

olz:—q(z,2)]((X xY) x Z)) + Z) + Y (handling v by U)

The resulting algebraic expression is inefficient due to:
o thecreation of thefull Cartesian product of the base relationsthat occur in the query,
e theuse of thedivision in a standard way, and
¢ the use of the union operator to handle digunction.
Theseissueswill befurther discussed in thefollowing section. Theinefficiency introduced
in the tranglation phase is expected to be reduced in the optimization phase. If weredlize

that the above expression is equivalent to, for example, the much simpler and more effi-
cient algebraic expression:

X-((X x Y) x 2

z,y:p(z,y) z,2:q(z,2)

this seems quite a hard task. In this chapter, the goa is to investigate possibilities to im-
prove the trand ation of [Codd72] as described and illustrated above.
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4.2 Discussion

As explained in the previous section, the reduction algorithm of Codd may result in in-
efficient algebraic expressions. Efficiency can, and must be improved by means of logi-
cal and/or cost-based optimization. Logical optimization is defined as the attempt to im-
proveefficiency by rewriting an expression into an equivalent expression that islesscostly,
without making use of specific database characteristics. Logical optimization generally
involves pushing through selections and projections; determination of the join order usu-
ally is done cost-based. With regard to logical optimization, three approaches can be dis-
tinguished, in which optimization is performed either before, during, or after trandation;
these are described below.

In the first place, a naive trandation may be followed by a phase of algebraic opti-
mization (optimization after trandation). Using the algorithm given in the previous sec-
tion, trandation of the calculus language into the algebrais straightforward—only a few
rewriterules are needed. However, the result of the translation isinefficient in general; in
the phase of algebraic optimization the task is reduce the inefficiency as much as possible.
Logical optimization of algebraic expressions produced by a naive trandlation algorithm
may involve complicated algorithms [UIIm89].

Secondly, optimization can be carried out during trandation, which impliesthe rewrit-
ing of expressions in a mixture of calculus and algebra. In [Naka9(Q] it is claimed that
“tranglation with optimization is more effective and more promising than optimization af -
ter trandation, because it seems difficult to optimize complicated algebraic expressions
(p. 519).” Optimization of algebraic expressions is said to be difficult because compli-
cated algebraic expressions may lose essential structural information about a query, and
also because it is difficult to control the sequence of rewrite rule application, i.e. to find
the meta-rules to guide the rewrite process. In trandation with optimization, many more
rewrite rules are needed than in a naive trandation. In [Naka90], a distinction has been
made between a set of basic rewrite rules and a set of so-called heuristic rewrite rules; the
heuristic rewrite rules are given higher priority than the basic rewrite rules.

Thirdly, it is possible to perform logical optimization before translation. In [Bry89],
it is proposed to transform predicates into the Miniscope Normal Form (MNF) instead of
the Prenex Normal Form (PNF). Bry claimsthat MNF isimportant becauseit givesriseto
an improvement of the algebraic trandation. A formulaisin MNF if, and only if, none of
its quantified subformulas F contains an atom in which only variables quantified outside
F occur. Inthe approach of [Bry89], before tranglation predicates are rewritten into MNF.

Another approach to improve efficiency is to extend relational algebra with new op-
erators, asfor examplein [Daya87A, Bry89]. In the past, relational algebra as defined in
[Codd72] was extended for two reasons. to enhance expressive power, and to improve
performance. To enhance expressive power, for example, the outerjoin has been added to
overcome problemswith dangling tuples; aggregate functions have been included for sta-
tistical computations. To improve performance, several non-standard join operators have
been proposed. The semi- and antijoin can be used for existentially and universally quan-
tified chain or tree queries, i.e. join queriesin which the right-hand join operand tuple val-
ues are not needed in the result. In [Bry89], an operator called the constrained outerjoin
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is proposed to alow for more efficient processing of disunctions. The addition of such
non-standard join operators, that usually are not commutative and do not associate easily,
complicates logical optimization; for each operator new rules have to be discovered and
added to the set of rewrite rules.

We give an example that illustrates some of the points made in the discussion above.
Recall the calculus expression:

olz:Ay €Y ep(z,y) A3z € Z 0 q(z,2)](X)

As shown in Rewriting example 4.1, in which the algorithm of Codd is followed, this ex-
pression istrandated into:

(ol : —p(z, YI((X x Y) x Z) Uo[z: ~q(z,2)](X xY) x Z)) + Z) + Y

To run ahead at things, the calculus expression is easily trandated into a more efficient
algebraic expression as follows:

Rewriting example 4.2
olz: Ay €Y ep(z,y) Az € Z 0 g(z,2)](X)
= X-—olz:3yeY ep(z,y) NIz € Z e q(z,2)](X) (negation to difference)
X —ofz:(3z€ Zeq(z,2)) A(Jy €Y o p(z,y))](X) (descope)
= X—-oz:FyeYep(z,y)|(X )Z) (unnest)

z,z:q(x,z

= X-(X x 2 x Y (unnest)
z,2:q(,2) z,y:p(,y)
We use set differencefor the negation, transform the predicate into MNF, and employ the
semijoin operator whenever possible (the rewrite techniques used will be extensively dis-
cussed in the sequel). To find the pure algebraic equivalencerulesthat are needed to trans-
late the former algebraic expression into the latter will be difficult.

In the remainder of this section, we discuss the possibilities to improve the standard
trandation in some more detail. The discussion focuses on the following issues: (1) the
(dis)advantages of combining the phases of translation and optimization, (2) the (dis)ad-
vantages of using the Prenex Normal Form or the Miniscope Normal Form, (3) the use of
the division operator, and (4) the treatment of diunctions.

4.2.1 Point of optimization

Asexplained, logical optimization may take place before, during, or after trandation. The
(dis)advantages of combining the phases of trandation and optimization are not immedi-
ately clear. Algebraic optimization of relatively simple expressions that consist of joins
(or products), selections, and projections only has been studied extensively in the past.
However, as we have seen above, whenever other operators than the regular join or semi-
join, for exampledivision (seeal so Section 4.2.3), comeinto play, purealgebraic rewriting
becomes more and more complicated. In our approach, asin [Naka90], we combine opti-
mization with tranglation, in the attempt to reach a conclusion about the pros and cons of
this approach.
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4.2.2 PNF versus MNF

Trandlation of relational calculusinto relational algebra usually begins with the transfor-
mation of the calculus expression into conjunctive or disjunctive PNF. The rules used in
this transformation are the laws of De Morgan (for pushing negation inwards), the laws
for distribution of Boolean connectives, the laws that concern negated quantifiers, and the
law of double negation. Application of the laws of De Morgan and the laws for distri-
bution of Boolean connectives may turn a disjunctive query into a conjunctive one, and
vice versa; application of the laws for distribution of connectives creates common subex-
pressions. In [JaKo084], the phase following standardization is called simplification. The
Prenex Normal Form offers some specific opportunities for query transformation in that
logical equivalence rules may be applied to the matrix of the PNF expression. Rules that
areused in simplification are for examplethe rules of transitivity, for constant propagation
and breaking cycles (see Section 4.4.3) and of idempotency, for the removal of redundant
computations.

In [Bry89], a different canonical form, called the Miniscope Normal Form (MNF) is
proposed. A formulaisin MNF if and only if none of its quantified subformulas F' con-
tain atoms in which only variables quantified outside F' occur. In MNF, quantifiers are
pushed inwards, reducing variable scopes as much as possible. Also, in [Bry89], uni-
versal quantification is rewritten into negated existential quantification, and negation is
pushed through. MNF allegedly provides opportunities to improve the trandation of the
calculus into the algebra. In this trandation, the initial Cartesian product is avoided as
much as possible. Whenever possible, universal quantification is handled by an operator
called complement-join (whichisequal to the antijoin), instead of division. Inaddition, in
[Bry89] it isproposed to handle digunction by meansof an operator called the constrained
outerjoin. Both operatorswill be discussed further in the sequel. In[Bry89], no complete
trangdlation algorithmisgiven. Instead, for thetrandlation of calculusexpressionsinto rela-
tional algebra, alimited set of rewrite rules concerning nested expressionswith quantifiers
isgiven that is claimed to be easily extensible.

4.2.3 Universal quantification

The reduction algorithm of [Codd72] handles universal quantification by means of divi-
sion. Algebraic rewriting of expressionsthat contain divisionisdifficult. Inaddition, divi-
sionisan expensive operator. Therefore, whenever possible, it is better to avoid division,
for example by using the antijoin operator. Below, we further discuss these issues.

Somerulesfor division

Very few algebraic rewrite rules for expressions that contain division have appeared in
the literature. As an exception to the rule, some important equivalence rules are given in
[Naka90]; we present them below (in their pure algebraic version; in [Naka90], equiva
lence rules are presented in the form of rewrite rules that transform calculus expressions
into algebraic expressions.) We remark that the rules as given below are difficult to under-
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stand; they are merely given for illustrative purposes. The main effect of the rulesis the
removal of redundant joins from the dividend expression. Let X, and Y, denote the list
of attributesof X and Y neededinthejoin X X, ... () Y, respectively.

Rule4.1 Division
1. ﬂxy((X X Z) X Y)+Y5ﬂxzq(X X Z)%ﬂ'yq(Y)
p(z,z) a(y,z) p(z,z)
if g isaconjunctive equijoin predicate
2. ny((X X Z) X Y)+YEX X (sz,zq(Z)+7ryq(Y))
p(z,z) q(y,2) p(z,z)
if both p and ¢ are conjunctive equijoin predicates

3. 7rA((7er((X p(z?z) Z) q(zi]z) Y)) = Y) = TFA(’Irzp,zq (X) = Y, (Y))

if both p and ¢ are conjunctive equijoin predicates, Z isequal to X or some selection on X,
and attribute list A iscontained in Z,, (or, equivalently, X,,)

Let usgivean examplethat concernsthe classical supplier-supplies-part database. Let
S(sno), SP(sno,pno), and P(pno) bethe schemas of the supplier, supplies, and part re-
lations. For simplicity, in the example given below we use attribute numbers instead of
attribute names so that we do not haveto takeinto account name clashes, and use adlightly
adapted form of division in which the attributes concerned are explicitly indicated.

Example 4.1 Select the supplier numbers of the suppliersthat supply all partsInthe caculus,
the query may be expressed as follows:

mi(ofz :Vy € Pe3z € SPez[l1] = z[1] Ay[1] = 2[2]](SP))
The reduction algorithm of [Codd72] as described above resultsin the expression:
mi(my,2,3(0z : 2[1] = z[4] A 2[3] = z[6]]((SP x P) x SP)) + [2/1]P)
Now, by the application of the third alternative of Rule 4.1 as stated above, and some other algebraic

equivalence rules, this expression can be rewritten into the much simpler expression:
SP +[2/1]P

Asan aside, weremark that in acomplex object model the supplier-supplies-part data-
base may be modelled by means of a set-valued attribute of the supplier or of the part re-
lation. Assume we have schemas S(sno, parts(pno)) and P(pno) for the (nested) sup-
plier and (flat) part relation, respectively, then the example query may be expressed as
Tsno (0] : P C z.parts](S)).

Antijoin
To handle universal quantification, different solutions have been sought. One proposal to
deal with universal quantification is described in [Daya87A]. Asthis proposa does not

lie within an algebraic framework, it will not be considered here. Another solution isto
rewrite universal quantification into negated existential quantification, and to handle the
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negation by meansof set difference. Both waysof dealing with theuniversal quantifier, i.e.
using the division operator and using set difference, may result in inefficient expressions
that are hard to optimize. Below, we show that the antijoin operator can be of good use to
handle universal quantification.
The semijoin operator can belooked upon asthenatural algebraic equivalent of anested
query that involves an existential quantifier:
X X Y=o[z:JyeY ep|(X)
z,Y:p
Using a semijoin operation whenever possiblein general improves performance; much re-
search hasbeen done on the replacement of join operatorsby semijoins[ Kamb85, UlIm89].
Theantijoin [RoGa90], aso known ascomplement-join[Bry89] or asthe anti-semijoin
[Graed3], can be used to express a query that contains a negated existential quantifier:
X > Y=oz:8y €Y ep|(X)
z,Y:p
The antijoin is less known than the semijoin operator, however, it is very useful for pro-
cessing querieswith universal quantifiers. Assume X and Y aretableswith attributesa, b,
and ¢, respectively, and consider the simple expression:

olz:Vy €Y ez.a # y.b)(X)

Trangdlation of this calculus expression into the algebra may be done by means of the set
difference operator, division, or the antijoin operator. We show the result of each:

Set difference Assumethat the universal quantifier isrewritten into anegated existential,
then the result of rewriting, in which the negation is handled by set difference (we
have the equivalence o[z : —p|(X) = X — o[z : p|(X)), s
X —7mx(X X Y)
z,y:z.a=y.b
Division Handling universal quantification by means of division, asin [Codd72], results
in the expression:

(X X Y)+Y
z,y:x.aFy.b

Antijoin We simply write:

X > Y
z,y:z.a=y.b

Of the solutions above, clearly the latter is the most efficient—tables X and Y are ac-
cessed only once. However, as we shall see, to use the antijoin operator to deal with uni-
versal (negated existential) quantification is not possible in all cases. Whenever queries
arecyclic, i.e. whenever theright-hand join operand tuple values are needed in subsequent
computations, instead of the semijoin operator, the regular join operator can be used. For
the antijoin there is no such natural extension which preservesthe right-hand tuples, just
because the antijoin delivers the non-matching (dangling) left operand tuples. So, for cer-
tain types of queries, we have to resort to either division or the set difference operator.
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4.2.4 Digunction

In[Bry89], it is proposed to use an operator called the constrained outerjoin to solve dis-
junctive queries. Consider the expression:

ole:Jy €Y ep(z,y) VIz e Zeoq(y,2)](X)
The standard way of handling this query is by using set union:
Rewriting example 4.3

olz: Iy €Y ep(z,y) VIz € Zeoq(y,2)](X)

mx (o[z : p(vx,vy) V Iz € Z 0 g(vy, 2)](X X Y))

mx (oz : p(vx,vy)|(X xY)Uo[z : 3z € Z e g(vy, 2)|(X x Y))
= (X x Y)uX x (Y x 2))

z,y:p(z,y) z,y:true y,2:q(y,2)

Clearly, the disadvantage of this approach is that tables are accessed multiple times, and
also that duplicates have to be removed from the result of the union operator. In [Bry89],
an operator called the constrained outerjoinis defined. Each left operand tuplein the con-
strained outerjoin is marked with a value that indicates whether the tuple is matched by
some right operand tuple or not. The marker is used in subsequent operations. In fact, the
constrained outerjoin is a combination of the semijoin that preserves only the left-hand
operand attributes, and the outerjoin that preservesall |eft operand tuples, either matched
or not. Using the constrained outerjoin, which we call the markjoin, denoted by the symbol
— (to be defined in Section 4.5), the above cal culus expression can be expressed as:
X X (Y —
z,y:p(z,y)Vy.m Y,2:q(y,2)im

Theaboveresultislinear, i.e. each of the base table occurrences of the calculusexpression
occur in the algebraic expression once. The markjoin does not suffice to handle cyclic
querieswith digjunction because of the loss of the actual right-hand operand tuple values.

425 Summary

As we have shown in Section 4.1, the standard reduction algorithm of [Codd72] for the
trangdlation of relational calculusinto relational algebramay result in algebraic expressions
that areinefficient and hard to optimize. Calculus constructsthat cause problemswith re-
gard to efficiency are universal quantification and digunction. In[Naka90], it is proposed
to perform logical optimization during trandation. In addition to a set of basic rewrite
rules, anumber of heuristic rewriterulesis given for rewriting expressionsin amixture of
calculus and algebra, among which some rules for efficient trandation of universal quan-
tification. No special attention is given to digunctive queries. In [Bry89] it is proposed to
rewrite predicatesinto MNF, and to employ the antijoin and constrained outerjoin opera-
torsfor universal quantification and digjunction, respectively. A disadvantage of [Bry89]
isthat no complete transformation algorithm is given.
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In this chapter, we study the transformation of relational calculus into relationa al-
gebra. We combine the ideas of [Naka90] and [Bry89], and try to give a complete and
efficient transformation algorithm. In the next section, we give an outline of our proposal.

4.3 Outline of thetransformation

Our goal isto achieve arewrite algorithm for transformation of arbitrary calculus expres-
sions into efficient algebraic expressions. We combine optimization with trandation, re-
writing expressionsinto a mixture of calculus and algebra. Our algebrais extended: we
usethe semi- and antijoin operatorsaswell asthe markjoin. Inrewriting, wetakeasystem-
atic, top-down approach. Nested cal culusexpressionsare standardized, next predicatesare
rewritteninto MNF, and then join operationsareintroduced. We first present abasic set of
rewrite rules, and next, in Section 4.6, we discuss some techniques that can be employed
to further improvethe trandation. In the remainder of this section, we give an overview of
the transformation algorithm. We first describe the desired output, and then briefly list the
main stepsinvolved. In sectionsto follow, each of these stepsis discussed in more detail .

The output of the trandlation/optimization algorithm is an algebraic expression such
that, as much as possible:

e Thetransformation islinear: each of the base tables in the calculus expression oc-
cursin the algebraic expression at most once.

e Selections and projections are pushed down the operator tree.

e Cartesian products are avoided, and semijoin and antijoin operators are given pref-
erenceto the regular join operator.

The above three trangl ation/optimization objectives are based on the wish to:
¢ reduce the number of operations,

¢ reduce the cardinality (the number of tuples) and size (the number of attributes) of
operands, and

e give preferenceto cheaper operators.

The primary goal in the transformation of calculus expressionsinto algebraic expressions
isto achieve aso-called linear trandation, i.e., atrandation in which the algebraic expres-
sionthat istheresult of the transformation process containsat most one occurrenceof each
base table that occurs in the calculus expression. Trying to achieve a linear trandation
means that a nested calculus expression of nesting depth n, should be trandated into an
algebraic expression containing n join operators. Aswe shall seg, it is not always possi-
ble to obtain alinear trandation.

Theinput of the agorithmis an expression o[z : p](e) or w4 (e) of RC. According to
the syntax givenin Section 4.1, iterator operand e may be abasetable, another selection or
projection, or a Cartesian product or union of the above. In selection predicates quantifier
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expressionsmay occur that possibly contain other selections, projections, and/or quantifier
expressions. Inthe sequel, selections, projections, and quantifications are called iterators.
Thegoal inthe transformation isto remove nested iterator occurrences. The main stepsin
the transformation of a calculus expression into an expression of the extended relational
algebra are the following.

1. Preprocessing

(8) Composition Iterator operands are transformed into base tables: operators o
and 7 are removed from iterator operandse.
Composition is necessary because the user-determined order of processing is
not necessarily the most efficient.

(b) Standardization Selection predicates are transformed into Prenex Normal
Form (PNF). Universal quantificationisrewritteninto negated existential quan-
tification to enablethe use of the antijoin operator; negationis pushed through.
Transformation into PNF is done because PNF offers some specific opportu-
nities for optimization (see below).

(c) Global transformation ‘Global’ transformation rules that are considered ap-
propriate are applied to the matrix of the PNF expression. In [JaKo084], this
simplification phase is described extensively. An appropriate rule is the rule
of transitivity; also important is the exchange of quantifiers, whenever possi-
ble and desired, to be able to push quantifiersinwards as much as possible in
the next step.

(d) Transformation into MNF In composition and standardization, expressions
have been brought under iterator scopes unnecessarily. In the transformation
into MNF, subformulasthat do not depend on quantifier variablesare removed
from quantifier scopes.

2. Trandation Here, thegoal isto actually trandlate calculusor mixed expressionsthat
possibly contain nested quantifiers into pure algebraic expressions. This phaseis
discussed in detail in Section 4.5.

3. Postprocessing

Postprocessing may involve combining sequences of projectionsand selectionsinto
one, pushing through projections, smplifying joins with constant predicates, etc.
Depending on the attributes used in join predicates, projections can be inserted in
the algebraic expression.

4.4 Preprocessing
In this section, we present the rules used in the preprocessing phase of the rewrite algo-

rithm described above. Rules are applied from left to right, unless stated otherwise. The
set of rulesisnot complete. For instance, we do not include rulesfor the transformation of
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Boolean expressions, e.g. the rules for commutativity, associativity, etc. (some are listed
in Appendix A though). Our goal isto enlighten the core of the transformation algorithm
by presenting the most important rules and to describe when they are applied. Inthischap-
ter, no proofs are given; some of them can be found in Appendix A, together with some
additional rulesthat are not needed to get a global understanding of the algorithm, but are
used often, or are uncommon.

4.4.1 Composition

Theinput to this phaseis an expression e of RC that is a selection or a projection. Within
the selection predicate, other nested sel ections and/or projectionsmay occur, and a so quan-
tifier expressions. The operand of a selection, a projection, or a quantifier may be a base
table, a set union or a Cartesian product expression, or, recursively, another expression e
of RC. Inthisthesis, the emphasislies on the transformation of nested expressions, there-
fore, we do not consider optimization of expressions that contain iterators with operands
that are set unions or Cartesian products.

Inthefirst step of thetransformationa gorithm, (1) projections, except for thetop-level
one, are removed, and (2) operands of selections and quantifiers that are iterator expres-
sionsare transformed into base tables. Composition is necessary because the user-defined
order of operationsis not necessarily the most efficient. Projection operators ssimply can
be omitted, except for the outermost one that specifies the attributes that are needed in the
result. In step (2), the following rules are used:

Rule4.2 Composition Let z not occur in p, then:
1 ofe: ql(oly : pI(X)) = olo : pla/y] A q)(X)
2. 3z € (oly : p](X))eg=3z € X e p[z/y] A q
3. Vz e (oly:p|(X))eg=Vz e Xe-p[z/y]Vq

(Inthe expression p[z /y], variable y is substituted by z.)

Compositionis applied without exception. However, if the operands of selectionsand
guantifiers are expressions that do not contain free variables, composition is not strictly
necessary. For example, the expression:

olz:3Jy €Y ez.b=y.ub|(oz:z.a =1](X))
can in one step be trandated into the algebraic expression:

olz : z.a = 1)(X) X Y
z,y:2.b=y.b

in which the selection on table X is evaluated before the join, asit should be. However,
assume that the join predicateis z.a = y.b, then by omitting composition we would miss
the opportunity for constant propagation (see Section 4.4.3).
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4.4.2 Transformation into PNF

Predicatesare put into PNF, by meansof the standard transformationrules(seefor example
[Zhon89]), and universal quantification isrewritten into negated existential quantification,
pushing through negation. We may chooseto rewritethe quantifier matrix into conjunctive
or digunctive normal form, or leave it as it is. We choose for the latter, as we want to
investigate in what way the specific form of the matrix influencesthe rewrite process, and
hence the result of the transformation.

Thefact that quantifier variables are bound causes a problem in the case the scope of a
universal quantifier is a conjunction, and in case the scope of an existential quantifier isa
disunction: empty ranges have to be taken into account. The rulesfor moving quantifiers
out are:

Rule4.3 Scoping Letz ¢ F'V(p), then:
1L pANdzeXeg=dxz e XepAg

I ifxX=0
Z-PVEQJGX'q_{EImEXOqu otherwise

I if X =0
3_p/\/3mequ—{ Az € X e—pVgq otherwise

4. pV Bre Xeg=Are Xe-pAq

Of course the latter two rules can be easily derived; they are added for reasons of con-
venience. Cases (2) and (3) of Rule 4.3 listed above do pose a problem. Consider the
expression:

Example 4.2 Scoping

ole:p(z) V Iy €Y o q(z,y)|(X)

{ oz : p(z)](X) ify =20
olz:3y €Y ep(z)Vq(z,y)](X) otherwise

The outcome of this phase of rewriting, and hence the outcome of subsequent rewrite
phases, depends on the value of Y, to be determined at run-time. The process of trans-
lation and optimization (as a compile-time activity) is complicated by rules such as the
above: both aternatives have to be dealt with separately. For reasons of simplicity, we do
not take into account the possibility of empty set-valued operands in our rewritings (we
always choose the “ otherwise” aternative).

4.4.3 Global transformation

After transformation into PNF, some global transformations may be applied to the matrix
of the predicate. In [JaKo84], the phase following standardization (transformation into
PNF) is caled simplification. The goal of simplification is the removal of redundancy,
for example by the application of the idempotency rules, or of rulesthat deal with empty
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relations. Another important rule is the rule of transitivity, that can be used for constant
propagation:

z.a=ybAyb=3=1ra0=3
and for breaking cycles by the addition of join predicates and thereby transforming cyclic

queries into tree queries, allowing for (generalized) semijoin processing [Kamb85]. For
example, the query:

(X X Y) ™ Z)

z,y:z.a=y.a v,2:0y.a=z.aAvx.b=2.b
is equivalent to the expression:
mx (X X Y) X 7Z)

z,y:z.a=y.a v,zivx.a=z.aAvx.b=z.b

(notethat the semijoin predicateis changed so that instead of testing vy .a = z.a itistested
whether vx.a = z.a) so that thejoin can be replaced by a semijoin:

(X X Y) X Z

z,y:z.a=y.a v,z2:vx.a=z.a\vx.b=2.b

Another techniquethat can be applied in this phase is the exchange of quantifiers. De-
termination of afavourable join order by the exchange of quantifiersin a separate step of
thetransformation algorithmis profitable, asit can help to avoid Cartesian products. Also,
the number of rewrite stepsis reduced. Adjacent existential or universal quantifiers may
be exchanged:

Rule4.4 Exchanging quantifiers
1 3zeXedycYep=dyecYedzec Xep
2 VzeXeVycYep=VycYeVzec Xep

We give an example. Consider the expression:
olz:Jy €Y eIz € Zeog(z,z) Ar(y,2)|(X)

that, using the rules of Section 4.5, istrandated into:
mx((X xY) X 7Z)

v,2:q(vx,2)Ar(vy,2)
The above expression needs further algebraic optimization. The exchange of quantifiers
and descoping (see Rule 4.5) resultsin:
ole:3z€ Zeg(z,z) ANy € Y o r(y, 2)](X)
that, by means of the same set of rewrite rules, is trandated into:

X x (Z x Y)
z,2:q9(z,2) z,y:r(y,z)
We see that the exchange of quantifiers enables descoping, and hence an easy trandation
into a semijoin expression. However, we suspect that the problem of determination of the
best quantifier order, given that thereis a choice, is not easily solved in general.
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4.4.4 Transformation into MNF

If selection predicates are left in PNF, then the application of the rewrite rules of Sec-
tion 4.5, for the transformation of nested calculus expressions into algebraic ones, will
result in inefficient expressions containing Cartesian products, not very different from the
result achieved by the algorithm of Codd. Following trandation, we still have to perform
algebraic optimization to push through selections and projections. Therefore, we trans-
form predicatesinto MNF. In the transformation into PNF, expressions have been moved
under the scope of quantifiers unnecessarily, i.e., quantifier scopesinclude expressionsin
which the quantifier variable doesnot occur free. Inthetransformationinto MNF, this pro-
cessisreversed: quantifiersare pushed inwardsasfar as possible. Subformulasof quanti-
fier expressionsin which the quantifier variable does not occur free are removed from the
quantifier scope. The rules that are needed for a full transformation into MNF are given
in[Bry89]. In[Bry89], however, quantifier variablesare not range-restricted; therulesfor
moving subformulas out of quantifier scopes must be adapted as follows.

Rule4.5 Descoping Let z ¢ F'V(p), then:
1L d3z€eXepAg(z)=pAdz € X eq(z)

pvVdze Xeq ifX #0

2. JzeXepVy(z)= { false otherwise

pAVz € Xeog(z) ifX#0

3. Vee XepAg(z) = { true otherwise

4. Vee XepVq(z)=pVVe € X og(z)

In our system, universal quantifiers are rewritten into negated existential quantifiers; the
rules concerning universal quantification are added for completeness. Again, we have to
take into account the possibility of empty set-valued operands, but we will not do so for
reasons of smplicity.

In descoping, we search for the largest subexpression p of the quantifier scope such
that z ¢ F'V (p). For example,

olz: 3y €Y o (p(z) Vq(z)) Ar(z,y)](X)
is transformed into:
oz : (p(z) Va(z)) Ay €Y e r(z,y)](X)
However, the expression:
olz: 3y €Y ep(y) V (a(z) Ar(z,y))|(X)
cannot be rewritten into MNF by means of the descoping rules only. A complete trans-

formation into MNF, i.e., the removal of all independent subexpressions from quantifier
scopes, may require distribution of the existential quantifier:
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Rewriting example 4.4

ofz: 3y € Y ep(y) V (g(z) A r(z,y))](X)
olz: (FyeYep(y)V Ty ey eqg(z)Ar(z,y)(X)
= ofz:(FyeYep(y)V(ez) Ay €Y er(z,y))(X)

Also, a complete transformation into MNF may require distribution of Boolean connec-
tives:

olz: 3y €Y ep(z,y) A(g(e) Vr(z,y))(X)

Itisnot clear whether distribution of quantifiers, whichisanon-linear transformationtech-
nique, and distribution of Bool ean connectives, which introducescommon subexpressions,
are profitable strategies. |n some cases it might be better not to transform a predicate into
MNF. Distribution of quantifiersis further discussed in Section 4.6.5.

The output of the phase of transformation into MNF is a (projection on @) selection of
which the predicate consists of atomic predicates, quantifier expressions, or both. Quanti-
fier scopes also have thisformat. For each quantifier, it holds that the subformulas of the
quantifier scope depend on the quantifier variable.

45 Trandation

To enable efficient trandation of relational calculus expressions, we extend standard rela-
tional algebra that consists of operatorsuU, —, N, o, 7, x, X, and -+, with the semijoin x,
the antijoin > and the markjoin —. Asexplained in Section 4.2.4, the markjoin, which is
defined below, correspondsto the constrained outerjoin of [Bry89].

Definition 4.2 Let m bealabel, then:
T = {{(m = true)} and F,,, = {(m = false)} O

Definition 4.3 Markjoin (—) Marksmatched and unmatched | eft operand tupleswith val-
uestrue and false, respectively.
X — Y=((X x VVxTp,)U((X > Y)xF,) O
z,y:p;m T,y:p T,Y:p
The markjoin can be implemented by a simple modification of any semijoin
algorithm—all that is needed is to extend the left-hand operand tuples with the marker
attribute.

In the algebra defined so far, we have a number of join operatorsthat do not preserve
right-hand join operand tuples, i.e. the semi-, anti-, and markjoin, and some operatorsthat
do preserve these values, i.e. the regular join and the Cartesian product. We call the latter
full, the former partial joins. In Table 4.5, we have listed the join operators used in this
thesis, indicating which tuples of the left and right operand are present in the result. For
illustrative purposes, we have a so included the left outerjoin.
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operator left operand  right operand

product al al

left outerjoin  matched matching
unmatched  NULL

markjoin matched true

unmatched  false
regularjoin  matched matching
semijoin matched none
antijoin unmatched  none

Table4.1: Join operators and tuples present in the result

451 Transformation rules

For thetrandation of quantifier expressionsthat do not contain quantificationin their scope,
partial join operatorscan be used. A quantifier expression that does not contain quantifiers
in its scope is called a basic quantification. The first step in the trandation is to remove
nested basic quantifications from calculus expressions. First, we need a definition of two
classes of formulas: conjunctive and disjunctive path formulas. Path formulasare used in
transformation rules, to allow for some concision.

Definition 4.4 Con- and digunctive path formulas

e P, (t) is defined as a formula such that ¢ is equal to P, or ¢ is a subformula of
P, and the path from the root of the operator tree corresponding to P to ¢ contains
conjunctionsonly. In BNF thisis:

Poon(t) i=t | p A Peon(t)

e P;;(t) isdefined asaformulasuch that ¢ isasubformulaof P, and the pathfromthe
root of the operator tree corresponding to P to ¢ contains one or more digunctions,
and possibly conjunctionsas well. In BNF:

Pdis(t) n=pVt | pV Pdis(t) |p/\Pdis(t) O

The first step in the transformation is to remove basic quantification from selection
predicates, if possible, i.e. if the quantification is contained in a conjunctive or disjunctive
path formula as defined above. Consider a selection of which the predicate isin MNF.
We check whether the predicate containsabasic quantification that is part of acon- or dis-
junctive path formula, i.e. aquantification that does not occur within the scope of another
quantification. If so, we apply one of the following transformation rules:
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Rule4.6 Introduction of partial joins (unnest) Let b be a predicate that does not contain quan-
tification, let F'V'(b) = {z, y}, and let 2 not occur freein Y, then:

1 oz : Peon(Fy € Y 0 b(z,y))|(X) = o[z : Peon(true)](X x Y)

z,y:b(z,y)
2. o[z : Peon(By €Y 0b(z,y))|(X) = o[z : Peon(true)|(X i y:bD(m ” Y)
3. olz: Pyis(Jy € Y o b(z,y))]|(X) = 7x (o]z : Pais(z.m)](X m)y:b(;,y);m

Note that we do not need arule for negated existential quantification in a digunctive con-
text. In the transformation, the subquery expression is removed from the selection pred-
icate by the introduction of a partial join operation. It isrequired that both join variables
occur freein the join predicate—ajoin with amonadic or constant join predicate does not
make much sense. The join predicate is closed—we do not allow join expressions with
free variables. In the original predicate, the subquery expression is substituted, either by
true, if the subquery is contained in a conjunctive path formula, or by a term testing the
markjoin mark attribute, if the subquery is contained in a disjunctive path formula. The
proof of the above equivalences is by induction on the length of the path. We give the
proof of thethird rule:

Proof Rule 4.6 Introduction markjoin

o[z : Pais(Jy € Y 0 b(z,9))](X) = nx (o]z : Pais(z.m)](X —

z,y:b(z,y);m
We abbreviate the expression b(z, y) to b.
(Base case)
olz :pV Iy €Y e b|(X)
oflz:(pA By€Y eb)VIyeY eb](X)
oz :pl(ofz: By € Y ¢b](X)) Uc[z: Ty € Y ¢ b](X)
oz : pl(X milb Y)U(X x Y)

z,Yy:p

Note that, in the first rewrite step, we use the logical equivalencea Vb = a V (—a A b). Next, dis-
junction is transformed into union, and then the definition of the semi- and antijoin is used. The
right-hand side of the equivalence is rewritten by expanding the markjoin definition:
mx(olz:pVz.m](X ” Y))
z,y:0m
= wx(ofz:pVem](X x Y)xTn)U (X Db Y) x Fp)))
z,y:b z,y:
= wx(ofz:pVem](X x Y)xTy)Uc[z:pVezm]((X l>l7 Y) x Fy))
z,y:b z,y:
mx(o[z :pVirue]((X x Y)xTwm)Uolz:pV false]((X Db Y) x Fp))
z,y:b T,y

mx (X x Y)xTpn)Uo[z:p]((X m,li:b Y) X F,))

z,y:b

mx (X z[);:b Y) x T)Uo[z: p](rx (X m,li:b Y) x Fp))
(X x Y)Uo[z:p|(X mIZ:b Y)

z,y:b
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The definition of the markjoin is expanded, the selection is pushed through, the selection predicate
issimplified, and finally the projection is pushed through.

(Induction step)
(Digunction)

olz:pV Pyis(Fy € Y o b)](X)
= oz :pl(X)Uo[z: Pyis(Fy € Y ¢ b)](X)
= oz :pl(X)Urx(o[z : Pas(z.m)](X e Y’)) (induction)

Digjunction istransformed into union, and then induction is used. On the other hand we have:

mx(olz:pV Paus(z.m)](X — Y))

z,y:b;m
= wx(ofz:p](X e Y)Uo[z : Pyis(z.m)](X e Y))

= 7wx(oz:p)(X ohm Y))Unx(o[z : Pais(z.m)|(X e Y))
.m)|(X
)

= oz :pl(X)Urx(o[z: Pus(z.m)](X — Y))

z,y:b;m

— Y))

z,y:b;m

= oz :pl(rx (X e Y))Urx(o[z: Pais(z

Digjunctionistransformed into union, and next theleft union operand issimplified by pushing through
the projection.

(Conjunction)

olz :p A Pys(Jy € Y 0 b)](X)
= o[z :pl(ofz: Psis(Jy € Y 0 b)](X))
oz : p](rx (o[z : Pais(z.m)](X . Y))) (induction)

= nx(oz:p](ofz: Pus(z.m)|(X — Y)))

z,y:b;m

= wx(o[z:pA Pus(z.m)](X — Y))

z,y:b;m

We give two example applications of Rule 4.6:

Rewriting example 4.5 Introduction of partial joins
Let b be an atomic predicate, then:
e glz:p(z) N By €Y eb(z,y)|(X) = mx(o]z : p(z) Atrue](X > Y))
o ofz:q(x) A (p(x) vV Ay €Y e b(z,y))](X) =

mx(olz : q(@) A (ple) Vmzm)))(X = V)

A second step in the trandation is to check whether the scope of some quantifier con-
tains one or more basic quantifier expressions that do not occur within the scope of yet
another quantifier. If so, we apply the following transformation rules:
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Rule4.7 Introduction of partial joins(rangenest) Let b be apredicatethat doesnot contain quan-
tification, and let FV (b) = {z, y}, then:

1L 3z€eXoPop(TyceYeb)=Tz € (X X Y) e Pou(true)

z,y:b

2 3z€XoPon(AyeYeb)=Tz € (X > Y)e P,n(true)

z,y:b
3 dz€XeoPy,(FyeYeb)=dz€ (X — Y)ePy(zm)

z,y:b;m

The third step is to remove the remaining quantifiers. This is done by means of the
standard ruleslisted below:

Rule4.8 Basicrules

ol : (X)) (split)

X) Uolz : g(X) (split)

= 7x(ofv : p(ux,vy)](X x Y)) (unnest)

= (ofv: =p(vx,vy)|(X x Y)) + Y (unnest)

3 olz:AyeYep
4. olz:AyeYep

Top-level selection predicates, which are in MNF, are split until the quantifiers present
occur at the top level, and then the quantification is removed by rewriting into a product,
followed by division in case the quantifier is negated. The application of the basic rules
may result in intermediate expressions that allow for the introduction of partia joins, so
Rule 4.6 and 4.7 always are applied prior to the basic rules.

Starting from a selection with the predicate in MNF, the rules presented here are suf-
ficient to obtain a fully unnested algebraic expression, in which base tables occur at the
top level only. To further improvethe result, we need rulesfor pushing through selections
to joins and join operands; these rules, and the rules for pushing through projections are
listed in Appendix A.

Rules in which quantification is removed from selection predicates are called unnest
rules; the rules for pushing through predicates to quantifier ranges (Rule 4.7) are called
range nest rules. Below, we describe the steps our trand ation agorithm consists of:

1. Whenever possible, push through selections to joins and join operands. However,
join predicates are allowed to be basic predicates only, i.e. predicates in which no
quantification occurs.

2. Whenever possible, introduce partial join operators by means of Rule 4.6 (unnest)
and Rule 4.7 (range nest).

3. If theaboveisnot possible, and sel ection predicatesstill contain quantification, then
apply the basic rules for splitting predicates, until quantification occurs at the top
level, and then use the basic rules for unnesting.

In the trandation, we do not pay much attention to projections. Of course, for each oper-
ation, it suffices to preserve only the attributes that are needed in the computation, or in
subsequent operations.
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45.2 Exampletrandations

In this section, we illustrate the results obtained by our proposed rewrite algorithm by
showing the trandlation of the following expression:

olz: Qy €Y ep(z,y) c Qz € Z o q(z,2) c r(y,2)|(X)

Quantifiers @ may be 3 or A; connectivesc are either v or A (both occurrencesof Q and
¢ may be different). We distinguish between chain, treg(l), tree(l1), and cyclic queries:

Chain olz: Qy € Y o p(z,y) € Qz € Z o 1(y, 2)|(X)

Tree(l) ofz: Qy € Y e p(z,y) ¢ Qz € Z o q(z, 2)|(X)
Tree(ll) ofz: QyeY 0 Qz € Z e g(z,2) cr(y,2)](X)

Cyclic oz : Qy € Y e p(z,y) ¢ Qz € Z 0 q(z,2) c r(y, 2)](X)

Isis assumed that predicates p, ¢, and r are atomic predicates. In Tables 4.2 and 4.3, the
trandation of the expressions above is given, varying the type of the quantifiers and the
connective present. In each of the expressions above except for the last only one connec-
tiveis present; the precise format of the second connective of cyclic queriesis not consid-
ered. The number of variantsthus achieved is 32.

Notethat tree(l) queriesare notin MNF, so thefirst step in trandationisto obtain MNF
by means of descoping. Tree(I1) queriesarein MNF, however, in some cases exchange or
distribution of quantification makesit possible to improvetheresult. The set of rulesthat
consists of Rule 4.6, 4.7, and 4.8, in combination with the rules for descoping (Rule 4.5),
for the exchange of quantification (Rule 4.4), and for pushing through selections and pro-
jections (Rule A.7 and A.6, given in Appendix A) isreferred to as the standard rule set
R. Rewriting by means of rule set R is called standard rewriting.

Table4.2liststhe resultsfor digunctive queries, and Table 4.3 for conjunctiveones. In
therewritingsand tables, we have omitted the projectionsnecessary dueto theintroduction
of markjoin operators. In the tables, we have also omitted selection and join variables, as
we assume they are clear from the context.

Thefull rewritings arelisted in Appendix B. Note that the resultsin thefirst and third
part of the tables are the complement of the corresponding results listed in the second and
fourth part of the tables, respectively, and vice versa.

For chain queries, which are the easiest to handle, the first step is to apply Rule 4.7,
i.e. to push through the quantification 3z € Z e r(y, 2) to table Y'; this step was called
‘rangenest’. Thisresultsinto anested semi- or antijoin in case the quantification is part of
aconjunction, and into a nested markjoin in case the quantificationis part of adisjunction.
Further rewriting is easy. In all cases, the result islinear.

Tree(l) queries are rewritten by first applying the descoping rules, transforming the
query into aquery with multiple subqueries.? Whenever the quantification with rangeY is

2Recall that in applying the descoping rules we do not take into account the possibility of empty quantifier
ranges.
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33 [chan |1 X x (Y - Z)
tree(l) | 2 ofm v m')((X '—”%) - v)
tree(ll) | 3 X x (2’7:% Y)
cydlic | 4 e (op v mI((X x ¥) )
A3 | chan |5 X pv>m Y i 7)
tree(l) | 6 X>2)>pY
tree(ll) | 7 X QVDZ (Z :im Y)
cyclic | 8 ((XEiY)q%TZ)+Y
3 A | chan |9 X x (Y = 2)
tree(l) | 10 ofmm v m((X .—WZ) - v)
tree(ll) | 11 | if (V > Z)#0 the(;n(LX Y.T; Z) else )
cyclic | 12 y’:r;(f;[)p v -m]((X x Y) qc—q(m)Z))
A A | chan | 13 vaEm Y o Z)
tree(l) | 14 (XxZ)>Y
tree(ll) | 15 | if (Y y,z:?(y,Z) Z)#0 tqhen (pX E’ZHI;(LZ) Z) else X
cyclic | 16 ((XEiY)qer)+Y
Table 4.2: lllustration of the trandation algorithm—digunction
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33 chain | 17 X x (Y x 2)
tree(l) | 18 (Xplx Z)r1>< Y
tree(ll) | 19 X xq(z pr)
cyclic | 20 ﬂx((XqIfY rqbérZ)
A3 |chan |21 X> (Y x2)
treel) | 22| of-mv-m(X — 2) - )
tree(ll) | 23 X (2 iémy) o
cyclic | 24 | (o[-pV ﬂm](()q( X Yr) 4 Crim Z)+Y
3 A | chan |25 Xx (Y >2)
tree(l) | 26 (Xp> Z) "y
tree(ll) | 27 WX((qu Y)}T Z)
cyclic | 28 mx (X MY) 3 Z)
72 A | chan | 29 X> (Y5> 2)
treg(l) | 30 a[mVﬁm’]z()(X : zZ) -Y)
tree(ll) | 31 (XxY) % 2) =Y
cyclic | 32 | (o[-pV -m]((X xq};) 2 Crim Z)+Y

Table 4.3: lllustration of the trangation algorithm—conjunction
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negated (cases 6, 14, 22, and 30), the connective changes due to descoping, i.e. aconjunct
becomesadigjunct, and viceversa. Therefore, if the quantification over Y isnegated, then
theresult isgood if the connectiveis Vv (cases 6 and 14), and not to good if the connective
iSA (cases22 and 30). Inthelatter case, the result containstwo markjoin operators, which
should beavoided, if possible—probably the use of set unionispreferable. Tree(l) queries
of which the quantification is not negated and the connectiveis A (cases 18 and 26) do not
pose aproblem; in case the connectiveis Vv (cases 2 and 10), again the result containstwo
markjoin operators.

Tree(ll) queries are rewritten by exchanging the quantifier, if possible (cases 3, 7, 19,
and 23), transforming the query into achain query, and then theresult issatisfactory in gen-
eral. In case quantifier exchangeis not possible, the quantification over Z is distributed,
if possible (cases 11 and 15). Theresultissimple. If distribution is ot possible (cases 27
and 31), the result contains a Cartesian product, and has to be optimized further.

Inthetrangation of cyclic queries, theonly rulesused arethebasic rulesfor unnesting,
removing quantifiers by rewriting into a product, possibly with a division. Certainly in
case of cyclic queries, but possibly for other queriesaswell, the results achieved by means
of our set of rewriterulesR can beimproved. Inthenext section, we discuss some optional
solutions for the trandation of calculusinto algebra.

4.6 Optimizations

In the previous section, we discussed some example trandlations. Our trandation is such
that:

¢ MNF isthe starting point for trandation; for digunctive tree(l) queries, which are
not in MNF, wefirst apply descoping.

e Quantifiers are exchanged if possible, for tree(l1) queries, which enables to apply
descoping.

e Quantification is distributed, but only for disunctive tree(l1) queries, in case ex-
changeis not possible.

¢ The semi- and antijoin are used whenever possible.

e Themarkjoinisused to handle disjunction whenever possible, and set unionisused
otherwise.

e Divisionis used to handle universal quantification.

In this section, we evaluate the results achieved by our trandation, and discuss additional
rewrite techniques and optional solutions that might give better results.
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4.6.1 Markjoin versus set union versus bypass processing

Trandation of tree(l) queries often results in an expression that contains two markjoin op-
erators (cases 2, 10, 22, and 30). For example, expression 2 istrandated into:

olz:z.mVzm'|(X — Z) - Y)

z,2:q(z,2z);m z,y:p(z,y);m’

The trandation is linear, in the sense that each base table that occurs in the calculus ex-
pression occurs in the algebraic expression at most once. The price paid for the use of
the markjoin is the non-reduction of left markjoin operands and the additional selection.
Using set union to handle the disjunction, the result for expression 2 is:

(X x Z2)UX x Y)

z,2:q(2,2) z,y:p(z,y)

Thetrang ation by means of set unionisnot linear, and also duplicates haveto be removed
from the result. Yet another equivalent algebraic expression can be achieved by scoping
the digunct z.m that is obtained due to the introduction of the first markjoin operator:

Rewriting example 4.6 (2) Tree(l)

olz:Jy €Y e(p(z,y)VIz e Zeq(z,z2))](X)
= olz:3z€ Zeg(z,2)VIy €Y ep(z,y)](X) (descope)

= olz:z.mVIyeYep(z,y)(X - Z) (unnest)
z,z:q(z,z);m
olz:yeYezmVp(z,y)|(X oo Z) (scope)
z,z:q(2,z);m

(X — Z) X Y (unnest)

z,z:q(z,z);m z,y:z.mVp(z,y)

Of course, the question iswhich of the above algebrai c expressionsis the best with respect
to performance. The answer is not clear. For example, the higher the selectivity of pred-
icates p and ¢, the less disadvantageous the operand-preserving property of the markjoin
operator, and al so, thelarger the number of duplicatesthat is present in the union operands.
It does seem wise to prevent the second markjoin operator by means of scoping as shown
above. The semijoin can beimplemented such that predicate p istested only for the tuples
marked false in the preceding markjoin operation.

We next discuss the result of the trandation of expression 4. Rewriting using our set
of rules R proceeds as follows:

Rewriting example 4.7 (4) Cyclic

ole:Jy €Y ep(z,y) VIz € Zeoq(z,z2)cr(y,2)|(X)
= 7x(o[v:p(vx,vy)V Iz € Zeqg(vx,2) er(vy,2)](X xY)) (unnest)
= 7x(ofv:plvx,vy)Vom]((X xY) — Z)) (unnest)

v,2:q(vx,2) Cr(vy,z);m
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In this case, the rules presented so far do not give especially good results. The result con-
tains a Cartesian product that is the left operand of a markjoin operator that preserves
its left operand. Let us abbreviate predicate q(z, 2) ¢ r(y, z) to t(z,y, z), then standard
rewriting using the union to solve the digjunction and pushing through selections and pro-
jections proceeds as follows:

Rewriting example 4.8 (4) Cyclic

ole:Jy €Y ep(z,y) VIz e Zeot(z,y,2)|(X)
= [v:p(vx,vy)V 3z € Z o t(vx,vy, 2)](X X Y)) (Unnest)
(olz :p(z,y) (X xY)Uolv: Iz € Z o t(vx,vy, 2)]|(X x Y)) (split)
= mx(X X Y)U(XxY) X 7)) (unnest)

z,y:p(z,y) v,z:t(vx,vy,2)
= (X X Y)Urx((X xY) X Z) (push)

z,y:p(z,y) v,z:t(vx,vy,2)

mx (o
X

The result contains a simple semijoin, and a product that is the left operand of another
semijoin. Theresult achieved by standard rewriting using R can be rewritten using one of
therules for the simplification of markjoin expressions (Rule A.9) in the following way:

Rewriting example 4.9

mx (o[v: p(vx,vy) Vo.m]((X x Y) — 7))

v,z:t(vx,vy,2);m

= wx(nxy((ofv:plvx,vy) Vom]((X xY) — Z)))

v,z:t(vx,vy,2)im

= mx(((X xY) X Z)Uo[v: plvx,vy)]((X xY) > 7))

v,2:t(vx,vy ,2) v,z:t(vx,vy,z)
= 7x((X xY) X ZYU((X ™MW YY) > 7))
v,z:t(vx,vy,2) z,y:p(z,y) v,2:t(vx,0y ,2)
Compared to the solution achieved by the use of the union operator, the advantage of the
latter result is that there are no duplicates present in the union operands. Expression 4
seems hard to trandate efficiently—the markjoin does not seem very well suited for the
trandation of this expression.

In[KMPSQ4], another solution to handle disunctivequeriesis proposed: atwo-stream
selection operator 2. In[KMPS95], theideaof two-stream operator isgeneralized to two-
stream semi- and regular join, denoted by x2 and X2, respectively. Let -+ denote union
without duplicate removal (merge). We have the following equivalences:

Rule4.9 Bypassprocessing

L ofz:p(z) Va(@)](X) =
T+ ole : a@)(
2 oz:(yey op(ﬁ:

T+ ofz : q(z ( with (T,F) = X .I><(2 )Y
3. ofz:(By €Y ep(z,y)) Vq(z)](X) =
F 4oz :q@)](T) with (T,F) =X x?> Y

z,y:p(2,y)
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4 ofz:Jy €Y ep(z,y) Vq(z,y)|(X) =
7x (T + o[z : g(z,y)](F)) with (T, F) =X x> Y

z,y:p(z,y)

The above equivalence rules are based on the simple logical equivaence:
aVb=aV (-aAb)
We have, for a selection with arbitrary predicates p and g:

Rewriting example 4.10 Two-stream selection

olz:pVql(X)
= ofz:pV(=pAg)(X)
ofz : pl(X) + oz : =p A q](X)
ofz : p](X) + oz : q](o]z : —p](X))
T + o[z : q](F) with (T, F) = o’[z : p(z)](X)

Instead of set union, the merge operator +, i.e. set union without duplicate removal, can
be used to solve the disjunction, because the two sets o[z : p](X) and o[z : —p A ¢](X)
aredigoint. The sets are complementary aswell, therefore, atwo-stream selection can be
implemented as a simple modification of selection, splitting the output into a positive and
a negative stream. The negative stream is processed further, the positive stream can be
included into the result right away. We also derive the equivalence for the join:

Rewriting example 4.11 Two-stream join

olz: 3y €Y ep(z,y) Vq(z,y)]|(X)

mx (o[v: p(vx,vy) V q(vx,vy)](X x Y))

7x (T + ofv : q(vx,vy)|(F)) with (T, F) = ¢*[v : p(vx,vy)](X x Y)
(F)) with (T,F) =X X*> Y

z,y:p(2,y)

7x (T + olv : ¢(vx, vy

We note that two-stream semijoin can be looked upon as the dynamic version of the
markjoin operator—recall that we used the equivalencea V b = a V (—a A b) in the proof
concerning introduction of the markjoin. The markjoin marks the positive stream with
true, the negative with false. Assuming a conditional or, for examplew.r.t. the selection
ingfz:z.mVq(z)](X =4 y:q(z,y);m Y), itisonly necessary to evaluate g for the tuples
marked false; the tuples marked true can be included into the result without further pro-
cessing. The ideas underlying both operators are the same: the partitioning of the input
set, the further processing of only one partition, and the avoidance of duplicate removal.

The predicate of two-stream selection (and a so two-stream semi- and regular join) is
required to be predicate without quantification; two-stream operator expressions cannot be
rewritten further at will.

We adhereto thefollowing heuristic rule for the transformation of queriesthat contain
digunction:
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Heuristicrule 4.1 For digunctive selections we use two-stream operators whenever
possible, and set union otherwise.

Returning to our example expressions, their trandlations are:
2 T+F x Zwith(T,F)=X x Y

z,2:q(z,2) z,y:p(z,y)

(4) 7x(T + (F X Z)) with (T,F) =X X* Y

v,2:t(vx,vy ,2) z,y:p(z,y)

We show the latter rewriting:

Rewriting example 4.12

ole:Jy €Y ep(z,y) VIz e Zeot(z,y,2)|(X)
= 7x(T + olv:3z € Z o t(vx,vy,2)|(F)) with (T, F) = X M(Z )Y
z,y:ple,y
= 7mx(T+ (F X Z))with (T,F)=X x> Y
v,z:t(vx,vy,z) z,y:p(z,y)

Note that the projection cannot be pushed through, because then the two merge operands
might contain duplicates: m4(X +Y) Z wa(X) + wa(Y).

4.6.2 Division versus set difference

Theresultsof queries8, 16, 24, 31, and 32 containthe expensivedivision operator. Negated
existential (universal) quantification can be handled by means of set difference aswell as
division:

olz:AyceYep|(X)=X —ofz:Ty €Y op|(X)
Inthetrandation, we have chosen to use division to handle universal quantification. How-

ever, in some cases the use of set difference gives better results. Consider for examplethe
expression (case 24 of our list):

olz:Ay €Y ep(z,y) A3z € Z o t(z,y,2)|(X)
that was rewritten into:

(ov: —p(vx,vy) V-v.m]((X xY) — Z)+Y

v,2:t(vx vy ,2)m
A much better result is achieved if we use set difference:
Rewriting example 4.13

olz:Ay €Y ep(z,y) A3z € Z 0 t(z,y,2)|(X)
= X-—o[z:JyeYep(z,y) Az € Zet(z,y,2)](X)
X —nx((X X Y) X Z)

z,y:p(z,y) v,2:t(vx,vy,2)
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Because the scope of the quantification with rangeY isaconjunction, set differencegives
a better result than division. In the latter case, the conjunction becomes a digjunction,
whereas set difference leavesthe predicate asit is.

On the other hand, a standard use of set difference can give results much worse than
those achieved with division. For example, consider case 31 of our list:

olz:Ay €Ye Az € Z eg(z,z) Ar(y,2)|(X)

which, using set difference for both negations, is trandated into:

X—mx((X xY)—((X xY) X 7))
v,2:q(vx,2)Ar(vy,2)
instead of:
(X xY) X Z)+Y

v,2:9(vx,2)Ar(vy,2)

Whenever the operand of a selection of which the predicateis anegated quantification
isan expensiveexpression (inthiscasetheproduct X xY’), it doesnot seem wiseto use set
difference, because set difference creates common subexpressions. Moreover, in further
rewriting either the common subexpression (a Cartesian product) is factorised (1), or itis
undone by moving around predicates g and r in further algebraic optimization.

Our conjectureis that set difference should be used only if the selection operand is a
basetable, or some algebraic expression roughly correspondingto abasetable, i.e. asemi-
or antijoin. However, probably not even with base table operands set difference should be
used in a standard way. Handling the first negation by set difference and the second by
division, the result for expression 31 is:

X —mx((X x Y) ” Z) + 2)

v,z:—t(vx,vy ,2)

The standard solution that handles negation by division undoes the second. In the latter
case, we have obtained an additional set difference, but predicatet isnegated. In caset is
adigunction, thishas a positive effect, but the effect is negative in case t isa conjunction.

In short, it is difficult to determine exactly when to use set difference instead of divi-
sion. We adhereto the simple heuristic rule:

Heuristicrule 4.2 Set difference is used to handle negated existential quantification
whenever the scope of the quantifier concerned is a conjunction. Division is used oth-
erwise, unless the quantifier scope itself is a non-negated existential quantification.

Thusfor queries 24 and 32 of our list adifferent result is achieved:

(24) X —7x((X ™ Y) x 2
z,y:p(z,y) v,z:t(vx,vy,z)
(32) X—mx(X X Y) > 2

z,y:p(2,y) v,z:t(vx,vy,2)
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Notethat theresultsare precisely the complement of theresults obtained for expressions20
and 28, respectively.

In the previous section, we discussed bypass processing. W.r.t. queries 8 and 16, we
may use differenceto handle the negated quantification, and then apply bypass processing
for the digunction. For query 8, rewriting proceeds as follows:

Rewriting example 4.14 (8) Cyclic

olz:Ay €Y ep(z,y) V3Iz € Z o t(z,y,2)|(X)
= X-olz:JyeYep(z,y)VIze Zet(z,y,z2)](X) (difference)
X —ax(T + (F % Z)) with (T,F) =X X* Y (case4)
v,z:t(vx,vy,2) z,y:p(z,y)

The standard result is:

(X ™ ) > Z):Y

eyiop(ey) ovzit(vx,vy,2)
It is difficult to compare the above results. We have one two-stream join, a semijoin and
difference against one regular join, an antijoin, and division.
4.6.3 Constant terms

Assume that we have included a conditional expression into our algebra, then selection
predicatesthat are constants may be handled by means of the following rules:

Rule4.10 Constant selection predicates Let z not occur freein e, then:
1 olz:pAc|(X)=ifcthenoz: p](X)elsel
2. oz :pVc](X) =if cthen X else o[z : p](X)

However, in doing so, we leave the set-oriented framework. For example, if the rules
above are applied to the expression:

olz:y €Y ey.a=1](X)
it istrangdated into:

if3y € Y ey.a = 1then X else ()
If we want to stay within the algebraic framework, we need the additional rule:
Rule41l 3z € X ep=ofz : p](X) # 0

The equival ent expression which uses the conditional probably can be evaluated more ef-
ficiently, by breaking off the iteration over Y as soon as some tuple satisfies the predicate.

Heuristicrule 4.3 Constant selection predicates are handled by means of the condi-
tional.
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4.6.4 Quantifier exchange

The exchange of quantifiersis a profitable strategy for tree(l1) queries. After exchange of
quantifiers, descoping can take place, followed by range nest, and then theresult is linear.
For example, without quantifier exchange, query 3 istrandated as follows:

Rewriting example 4.15 (3) Treg(ll)

olz:JyeYedze Zeq(z,2)Vr(y,z)](X)
= wx(ofv:3z € Zeog(vx,z)Vr(vy,2)](X xY)) (unnest)
= #ax((X xY) X Z) (unnest)

v,y:q(vx,2)Vr(vy,z)

To exchange quantifiers is advantageous whenever it introduces a constant term in the
scope of the inner quantification. A constant term in a selection predicate or a quanti-
fier scope isaterm in which the corresponding variable does not occur free. For example
p(z), with FV (p) = {z} isconstant in the quantifier scopein Jy € Y e p(z), but not in
dz € X o p(z).

Heuristic rule 4.4 Quantifiers are exchanged if possible, whenever the result contains
aconstant term.

4.6.5 Distribution of quantification

In our example rewritings, we distributed existential quantification for queries 11 and 15.
For thesetree(l1) queries, theinner quantification is negated, so that the exchange of outer
and inner quantifier isnot possible. Distribution of quantificationisanon-linear technique,
but for the queries concerned it is a profitable strategy. For example, should we rewrite
expression 11 without distribution, then we have:

Rewriting example 4.16 (11) Tree(l1)

ol Iy €Y o Az Zog(z,2)V r(y, 2)](X)
= 7x(o[z:Az € Z e q(vx,2) V r(vy,2)|(X xY))
= ax((X xY) > 7Z)

v,2:9(vx,2)Vr(vy,2)

The result is an antijoin with a digunctive join predicate, the left operand of whichisa
Cartesian product. The resulting expression can be rewritten further in a purely algebraic
way, by means of Rule A.12, for splitting join predicates, and Rule 4.15 and 4.16, for
changing the join order:



82 4. Trandation of relational calculusto relational algebra

Rewriting example 4.17

mx (X x Y) > Z)
v,2:q(vx,2)Vr(vy,z)
= mx((X xY) > 7Z) > 7Z) (split)
v,2:q(vx,z) v,z:r (vy,2)
= (X b 2Z)xY) > Z) (exchange)
z,y:q(z,z) v,z:r (Vy ,2)
x((X > Z)x (Y > Z))(asociate)
z,y:q(z,z) y,z:7(y,z)
X > Z) x (Y 1> Z)(push)
z,y:q(z,z) z,y:true y,z:r(y,2)
if(Y > Z)#0then(X > Z)else (constant x predicate)

vz (y,z) 2,2:q(z,2)

For expressions 11 and 15, distribution is profitable, because it reduces the number
of free variablesin the quantification with range Z by one, so that the use of partial join
operators becomes possible, after further range nesting and descoping. Not distributing
the quantifier results into a ssimpler trandation, but a more extensive algebraic optimiza-
tion process, if we want to achieve the same result. The question is whether distribution
of quantification may be a profitable strategy in other cases as well. With respect to our
example rewritings, for conjunctive queries (expressions 17-32), quantifiers can be dis-
tributed for cyclic queries only in case the second connective is a disunctive one, but we
have not taken into consideration the precise format of this second connective until now.
With respect to digjunctive queries, distributionis possiblein al cases. Weinvestigatethe
effect of distribution for queries 1-8; therewritingsare listed in Appendix B, Section B.2.

With respect to chain queriesthat have the format:

olz: QyueY ep(z,y)VQz € Zer(y,2)|(X)

distribution of quantification introduces a constant digunct, i.e. a digunct in which the
outer loop variable z does not occur free. If wetreat constants by means of a conditional
expression, then the results for queries 1 and 5 (and analogously for 7 and 13) are:

(1) ifY x Z#(0thenXelseX x Y

y,z:r(y,2) z,y:p(z,y)
(5) ifY x Z#(0thenDelseX > Y
y,2:7(y,2) z,y:p(z,y)

We concludethat distribution of quantification is advantageouswhenever distribution has
the effect of introducing constant terms.

With respect to tree(l) queries, distribution does not make sense, because variable y
does not occur free in the second disunct—descoping is an obligatory first step in this
case to obtain MNF, which we have chosen as the starting point for trandlation.

With respect to tree(11) queriesthat are of the format:

olv: Que Y o Qz € Zoq(z,2) V r(y, 2)](X)

in case 11 and 15 distribution already isthefirst step in rewriting. For expressions3and 7,
after distribution descoping becomes possible, which introducesa constant term again, and
then the same discussion as above applies. The results are:
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8)ifZ x Y #(0thenXelseX x Z

y,z:r(y,2) z,z:p(z,2)
(7)ifZ x Y #(0then(elseX > Z
y,2:7(y,2) z,z:p(z,z)

With respect to cyclic queries (expressions4 and 8) both digjuncts contain the same set
of freevariables. From the examplerewritings, it does not clearly show that distributionis
advantageous. Recall that we decided to apply bypass processing to expression 4, which
resulted in:

ax (T + (F X Z))with (T,F)=X x> Y

v,2:t(vx,vy ,2) z,y:p(z,y)

For expression 4, the result, after distribution of the quantification, and also performing
bypass processing, the result is:

T+ 7p((F xY) X Z)with (T,F) =X x> Y

v,z:t(vx,vy,z) z,y:p(z,y)

Instead of a two-stream join, we have obtained a two-stream semijoin and an additional
Cartesian product.

For expression 8, distribution changes the disunction into a conjunction, and then set
difference can be used to handlethe negated quantification. However, itisdifficult to com-
pare the standard result:

(X ™ ) > Z):Y

zyiop(zy) | v,zit(vx,vy,2)
with the result achieved after distribution:

X-mx(((X ©> Y)xY) X 7Z)

z,y:p(z,y) v,y:t(vx,vy,2)

Instead of division we have set difference, instead of an antijoin asemijoin, and instead of
thejoin X X, . p(z,y) Y, Wehave (X >, y.p02,y) Y) X Y. For onething, the cardinality
of the join expression probably is larger than that of the antijoin/product expression; in
Section B.3 we explain why (see Rewriting example B.49).

We propose the following rule w.r.t. distribution:

Heuristic rule 4.5 Quantificationisdistributed whenever it leadsto (1) oneor moredis-
junctsin which the number of free variablesislessthan in the original quantifier scope
or (2) the modification of a diunctive predicate into a conjunctive one (i.e., when dis-
tributing A).

To concludethe present discussion, we note that, whenever set unionis used to handle
disunction, distribution of existential quantification has no effect on the outcome of the
tranglation process:
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Rewriting example 4.18 Union without distribution

olz:Jy €Y epy Vpo](X)

mx (o[p1 V p2](X x Y))

mx (olpi)(X x ¥) Uofpa] (X x )

mx (o[p1](X x Y)) Umx (op2](X x Y))

Rewriting example 4.19 Union with distribution

olz: Iy €Y epy Vpo](X)

= olz:dyeYepi Volz:3Iy €Y ops](X)
olz:JyeY epi|(X)Uo[z: Ty €Y o ps](X)
= mx(o[pi](X xY))Urx(o[p2](X x Y))

The result is the same for both rewritings.

4.6.6 Rangenesting

Range nesting involves pushing through expressions to quantifier ranges, which enables
theintroduction of partia joins (Rule4.7). Until now, we have applied range nesting only
to predicatesthat are basi ¢ quantifications. By means of our set of rulesR, the expression:

ofz:Jy €Y eai(z,y) Aaz(y)|(X)
in which a; and a5 are atomic, is trandated into:

X X Y
z,y:a1(z,y)Na2(y)

However, it isa so possible to push through predicate a, to the quantifier range Y':
Rewriting example 4.20

olz:3y €Y eai(z,y) Aazy)](X)
ole : y € oy : a2(y)](Y) e a1 (z, y)|(X)
= X x  ofy:aay)Y)

z,y:a1(z,y)

We have the following algebraic equivalencerule:
Rule4.12 Distribution toright join operand Let 6 be either X, x, >, or —, then:

X 0 Y=X 0 oly : p2(y)](Y)
z,y:p1(z,y)Ap2(y) z,y:p1(z,y)
This rule can be derived in a pure algebraic way as well. Range nesting, both of basic
guantification (asin Rule 4.7) and of atomic predicates as shown above, can be regarded
asthe analogue of descoping. Descoping correspondsto the pushing through of predicates
to left, and range nesting to right join operands. Therule for range nesting is:
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Rule4.13 RangenestingLet F'V (p) = {z}, then:
Jz € X @ Peon(p(z)) =3z € o[z : p(z)](X) ® Peon(true)

In case predicate p contains quantification, the nested selection must be rewritten further.

Heuristic rule 4.6 Range nesting is applied whenever possible.

4.6.7 Common subexpressions

In the transformation of a nested expression to an algebraic one, often common subex-
pressions are introduced. For example, the rule that trandlates disunction into set union,
and also the rule that handles negation by means of set difference introduces a common
subexpression. Another exampleis given by the rule for distribution of quantifiers.

Common subexpressions can be named using thewith-clause, or can beleft asthey are.
Naming of acommon subexpression makes further rewriting of the different occurrences
impossible. Not naming common subexpressions means that expressions can be further
rewritten. This further rewriting may modify the different occurrencesin different ways,
leading to a separate evaluation. For example, consider the expression:

olp(z) Vr(yl(X ™ Y)
z,y:t(a,y)
in which predicates p and r refer only to attributes of X and Y, respectively, and the fol-
lowing rewritings:

Rewriting example 4.21 Naming common subexpressions

oIp@) V(X xY)
olp(z) Vr(y))(Z) withZ = X m}y:lﬁmm Y
op(@)](Z)Uo[r(y)](Z)withZ=X X Y

z,y:t(z,y)

Rewriting example 4.22 Rewriting common subexpressions

olp(z) Vr(yl(X ™ Y)

z,y:t(z,y)
= op@))(X X Y)Uo[r(yl(X X V)
z,y:t(z,y) z,y:t(z,y)

= op@E@))(X) XN YUX X ogz:r(y))Y)
z,y:t(z,y) z,y:t(z,y)
Which of thetwo result expressionsisthe cheapest depends on predicate selectivities. The
more regtrictive the monadic predicates are, the more likely it isthat the latter result isthe
cheapest.
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So far, we have presented a standard transformation algorithm, and discussed alterna-
tive transformation techniques and extensions. More than often, it is not possible to reach
a definitive conclusion about the effect of the various options. In Section 4.8, we will dis-
cuss some more examplerewritings, which arelisted in Appendix B, Section B.3. In some
cases, equivalence of results can be easily shown by means of algebraic rewriting, and
therefore, in the next section, we present some algebraic equivalence rules that concern
the join operators that we use.

4.7 Some algebraic equivalencerules

So far, we have mainly presented rewrite rulesfor expressions consisting of both calculus-
likeand purealgebraic constructs. Inthissection, welist somealgebraic equivalencerules.

47.1 Joinorder

To achievethe goal of alinear trandlation, various non-standard join operators have been
used. A disadvantage of these new join operatorsisthat in general they are neither com-
mutative nor associative, which may cause a problem in determining (cost-based) join or-
dering. Inthis section we present some of the rulesfor the rewriting of join sequencesthat
involvethe regular join, the semi-, the anti-, and/or the markjoin. Therules presented here
resemblethose listed in [RoGa90, GaRo90], reporting work on the ordering of join/outer-
join operator sequences.

For the reordering of join sequences, the properties of commutativity and associativity
are important. We introduce one other: that of exchange, a combination of the properties
of associativity and commutativity. Exchange can be used to rearrange the join order of
tree queries. Let  denote an arbitrary join operator, then we ask whether and when the
following properties hold:

Commutativity X0Y =Y 6§ X
Associativity (X0Y)0Z2=X0(Y 02
Exchange (X0Y)0Z=(X02)0Y

The discussion focuses on the operators X, x, >, and —. Of the various join operators,
only theregular join is commutative. The basic rules, often used in proofs, are the follow-

ing:

Rule4.14 Basicjoin rules

1. X XY =Y X X (commutativity)
p p

2 (X X Y) X Z=X X (Y X Z) (associativity)
p(z,y) r(y,z) p(z,y) r(y,z)

3 (X X Y) X Z=(X X 2) N)Y(exchange)
z,y

p(z,y) a(z,z) q(z,z) »(
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In the rules presented below, predicate ¢ is arbitrary; in the most genera caseitisa
three-variable predicate t(z, y, 2).

Rule4.15 Associativity
1L (X X Y) X Z=X X (Y X 2)

p(z,y) r(y,z)At p(z,y)At r(y,z)
2(X X V) x Z=axy(X X (Y X 2))
p(z,y) r(y,z)At p(z,y)At r(y,z)
3 (X X Y) x Zz=X X (Y x 2)
p(z,y) r(y,z) p(z,y) r(y,z)
4. (X X Y) > Z=X W (Y > 2)
p(z,y) r(y,z) p(z,y) r(y,z)

Rule4.16 Exchange
1L (X X Y) X Z=(X X Z) X

p(z,y) q(z,z)At q(z,2) p(z,y)At
2(X X Y) x Z=axy((X X Z) X Y)
p(z,y) q(z,2)At q(z,z) p(z,y)At

3. Let 8! and 62 be either 4, x, or >, then:
(X 0'Y) 0%Z2=(X 0 %2 6'Y

p(z,y) q(z,2) q(z,2) p(z,y)
Which means that exchange can be applied to tree(l) queries regardiess of the type of join
operators present.

4.7.2 Join distribution

Relationships between joins and set operators are important. We have a number of join
operators (including the Cartesian product), and the set operatorsuU and — (we do not con-
sider N). The property we discuss hereis distribution. Let # be an arbitrary join operator,
and let © be either union or set difference, then we ask whether the following properties
hold:

Left digtribution X0 (Y ©Z)=(X0Y)0O (X0 2)
Right distribution (X OY)0Z=(X62)0 (Y 0 Z)

In Table 4.4, welist our findings.

Rule4.17 Joinsand set operators

Join operators distribute left or right over union and set difference asindicated in Table 4.4,
a“1" meaning that distribution holds, a“0” meaning that it does not.

The proofsare simple, and we do not givethem, except for the proof that concernsproduct
and set difference (see Appendix A). Asan aside, in proving the equival ences sometimes
the algebraic formalism is more convenient, but there are also casesin which the calculus-
like formalism leadsto the result faster. Assumethat join predicate p involves equality of
set elements, then a counterexample for those cases in which distribution does not hold is
theinstantiation X = {1,2,3},Y = {2,3}, Z = {1,2}.
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operators | Ieft | right |
x U 1
X/U
x/U
>/U
-/U
x/[—
X/ —
X/—
>/—
/-

CORRPROORRER

PRRPRRPRRRRR

Table 4.4: Join distribution

4.7.3 Division
The query that lists the suppliers supplying all parts:

mi(olz :Vy € Pe3Jz € SPez[l] = z[1] Ay[1] = 2[2]](SP))
which correspondsto expression 31 of our list, istrandated into the algebraic expression:

m(mas((SP X SP) X P))=[2/1]P)

z,y:z[1]=y[1] v,2:v[3]=2[2]

Theaboveexpressionwas shownto beeguivaenttotheexpression S P+[2/1] P [Naka9d(];
we did not achieve a result better than the result which is obtained by means of the re-
duction algorithm of Codd. Further optimizationis required. We must either improvethe
trangdlation, or perform further algebraic rewriting. Our conjectureisthat algebraic rewrit-
ing of expressionsthat contain divisionis much harder than finding better trandation rules.

4.8 Evaluation

In Section B.3, we have listed some more example rewritings. The input queries are the
cyclic queriesof our list (expressions4, 8, 12, 16, 20, 24, 28, and 32). The second connec-
tive present is now taken into consideration too. We compare the results achieved using
the reduction algorithm of Codd, the results achieved by means of standard rewriting with
‘R, and consider some of the results achieved after distribution of quantification. In some
cases, we perform some algebraic rewriting as well.

Generally, the results achieved with R are better than those achieved by means of the
algorithm of Codd. The number of division operatorsis less, and the number of partial
join operators higher. In addition, distribution of quantification may be helpful. We note
that:
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e The Miniscope Normal Form is advantageous, because it enables the use of partial
join operators.

e Theexchangeand distribution of quantification may enable descoping. Distribution
of quantification seemsto be advantageousif it leadsto areduction of freevariables,
or if adigunction is changed into a conjunction. But distribution in some cases has
anegative effect.

¢ Incaserelatively smplealgebraic operatorslikejoinsareinvolved, algebraic rewrit-
ing can do much to achieve an optimized result. However, if division is involved,
theresult achieved by meansof the a gorithm of Codd cannot alwaysbe rewritten by
means of purely algebraic rewriting, simply because we do not have at our disposal
the proper algebraic equivalencesrules.

Our research approach can be characterized as ‘research by example'. By tediously
working out examples, for onething, it is shown that it is not easy to find good heuristics
to guide the transformation. We have shown that, under certain conditions, specific tech-
niqueslike distribution of quantification and descoping are advantageous, but there always
remain notable exceptions. Thetransformation of nested queriesisacomplex process, and
the rewrite steps are not mutually independent. Decisions taken in one phase of the pro-
cess influence the possible course of action in subsequent rewritings. Usually, the (final)
effect of certain decisions cannot be foreseen. To solve the problem of how to achieve an
efficient transformation, techniquesfromthefield of artificial intelligence such asmachine
learning might be appropriate.

For the transformation of expressions we have at our disposal abasic set of rules R,
and an algorithm that prescribesthe order of rule application. Thetransformation is deter-
minigtic, i.e. only one solution is generated, and the result is always the same. The trans-
formation can be modified in two different ways. by rearrangement of the order of rule ap-
plication, and by modification of the rule set by modifying or adding transformation rules.

Given an expression, the result obtained with standard rewriting sometimes can be
improved; experiments may be carried out to decide when and how better results can be
achieved. Alternative solutions can be generated by modification of the transformation
algorithm. Assume that some transformation rule is added, for example the rule that pre-
scribes to distribute quantifiers, whenever possible. We have two possibilities: either we
can provethat the modification is always beneficial, or we cannot provide such aproof. In
the latter case, we must compare the result achieved by standard rewriting with the result
achieved by means of the modified al gorithm on the basis of specific example rewritings.
To compareresults, we must have acost model. Becausewe areinvolvedin logical rewrit-
ing, the cost model is based on qualitative cost parameters. Possible cost parameters are
the number of operators, the relative cost of the various operators, the size and cardinal-
ity of operands, etc. To design such alogical cost model is not an easy task—as we have
seen, sometimesit is hard to reach decisive conclusionswith respect to the relative cost of
expressions.

Given a cost model, for some example expressions, the result achieved by the mod-
ified algorithm may be better, for others it may be worse, so the exact conditions under
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which to apply the additional rule must be determined. Thetransformation algorithm, i.e.,
the rewrite rule added needs refinement. A characterization of expressions is needed to
decide when or not to use the modification. For example, while investigating the effect of
distribution of quantification, in the first instance we decided to distribute quantification
whenever possible (see Section 4.6.5). We evaluated the results achieved for some exam-
ple expressions, and then decided to distribute quantification only in case that it leadsto a
reduction of free variables or if a conjunction is changed into a conjunction.

At first glance, our method can be qualified as symbolic learning by induction. In
[Hopg93], thisis described as follows. Rule induction involves the generation of general
rulesfrom specific examples. The accuracy of aspecific rule (application of thisruleleads
to the most efficient algebrai c expression) isnever certain—it can beinvalidated by acoun-
terexample. Theaimisto build rulesthat are as general as possible (in fact, theruleset R
that we started with israther general) and to modify them when they arefound to be wrong
(in our case, the search for counterexamplesis an active generate-and-test process). The
rules should match the positive examples but not the negative ones.

49 Summary

Inthis chapter, we made an attempt to achieve an efficient trandation of relational calculus
into relational algebra. To enable an efficient trandlation, i.e., a trandation that resultsin
efficient algebrai c expressions, we combined optimization with trandlation, and extended
relational algebrawith some non-standard join operators. An efficient trandation was de-
fined as alinear trandation in which Cartesian products are avoided, selections and pro-
jections are pushed through as far as possible, and partia joins (which preserve only one
of the join operands) are given preference over full joins (which preserve both operands).
The trandation algorithm was described in the form of a set of equivalence (or rewrite)
rules in the language that is a mixture of calculus and algebra. The main task in trans-
lation is the removal of quantification from selection predicates—the emphasis is on the
transformation of nested queries, i.e., queriesthat involve nested quantifier expressions.

Our approach is systematic, and deals with disunction aswell as universal quantifica-
tion. We start with expressions of which selection predicates are in MNF; quantification
isremoved from selection predicates by means of theintroduction of partial join operators
whenever possible. We noticed that our standard trandation algorithm can be improved,
and we discussed some additional rewrite techniquesand alternative solutionsthat may be
used to achieve better results. Some of these techniques are generally beneficial, other are
beneficial under certain conditions only. However, the result of trandation is still unnec-
essarily inefficient in some cases.

If anything, the conclusion that has to be drawn from the discussion in this chapter is
that, even for the simplerelational calculusthat we defined, trandation into the algebrais
acomplicated issue. Trandation of an SQL query languageinto an algebrausually is con-
sidered asthetask of the parser [GrM c93]. In our opinion, such atransformation cannot be
left to a parser, which we see as arelatively simple syntax-manipulating device. To pro-
vide a good transformation, i.e., a transformation that provides a good starting point for
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further optimization, one has to think about the logical operators that should be offered,
and about the proper mapping of the one language into the other. Transformation of SQL
into the algebra provides a starting point for logical and cost-based optimization. Logi-
cal optimization mainly involves pushing through selections and projections. Cost-based
optimization is done by generating equivalent physical algebraexpressions, and choosing
the best among them; the number of expressionsthat actually can be generated is limited.
A naive mapping of SQL into the algebramay result into alogical agebraexpression such
that even the optimized physical algebra expression will never have, or even come close
to the performance of an expression that is the result of an ‘intelligent’ transformation.
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Abstract

Transformation of nested SQL queriesintojoin queriesisadvantageous because anested
SQL query can belooked upon as anested-loop join, whichisjust one of the severa join
implementations that may be available in arelational DBMS. Injoin queries, dangling
(unmatched) operand tuples are lost, which causes a problem in transforming nested
queries having the aggregate function COUNT between query blocks—a problem that
has become well-known as the COUNT bug. Intherelational context, the outerjoin has
been employed to solvethe COUNT bug. In complex object models supporting an SQL -
like query language, transformation of nested queries into join queries is an important
optimization issue as well. The COUNT bug turns out to be a specia case of agenerd
problem being revealed in acomplex object model. To solve the more general problem,
weintroduce the nestjoin operator, which isageneralization of the outerjoin for complex
objects.

5.1 Introduction

Currently, at the University of Twente, work is being done on the high-level object-ori-
ented data model TM. TM is a database specification language incorporating standard
object-oriented features such as classes and types, object identity, complex objects, and
multiple inheritance of data, methods, and constraints. In TM, methods and constraints
are specified in a high-level, declarative language of expressions. An important language
congtruct isthe SEL ECT-FROM-WHERE (SFW) construct. The SFW-construct of TM is
comparableto the SFW-query block from HDBL, the query language of the experimental
DBMSAIM [PIAn86]. HDBL isan orthogonal extension of SQL for extended NF? data
structures. Optimization of TM SFW-expressionstherefore has much in common with op-
timization of the SFW-expressions of SQL and HDBL.

Optimization of SQL querieshasreceived quite some attention thelast decade. Anim-
portant problem in this areais the optimization of nested SQL queries[Kim82, GaWo87,
Daya87B, Mura89, Mura92]. SQL offers possibilities to formulate nested queries. SFW-
query blocks containing other SFW-blocks in the WHERE clause. In [Kim82], it was
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pointed out that it is advantageousto replace nested SQL queries by flat, or join queries.
Flat SQL queries are SFW-blocks not containing subqueriesin the WHERE clause. Re-
placing nested SQL queries by join queries is advantageous because a nested SQL query
can be looked upon as a nested-loop join, which is just one of the several join implemen-
tations possible. After rewriting a nested query into ajoin query, the optimizer has better
possihilities to choose the most appropriate join implementation.

In nested queries, inner operand tuples are grouped by the values of the outer operand
tuples. Whenever aggregate functions occur between query blocks, the transformed, i.e.
join query also requires grouping (expressed by means of the GROUP BY clause). In
nested queries, dangling outer operandtuples, i.e. outer operand tuplesthat are not matched
by any of theinner operand tuples, deliver asubquery result equal to the empty set. Trans-
formation of a nested query into ajoin query causes the loss of dangling tuples. In the
relational context, this may cause a problem when the aggregate function COUNT oc-
curs between query blocks. As a solution to this problem (that has become well known
as the COUNT bug), it has been proposed to use the outerjoin instead of the regular join
[Gawo87].

In complex object models supporting an SQL-like query language, transformation of
nested queriesinto join queriesisjust asimportant asin the relational context. However,
in complex object models grouping of the inner operand is required not only if aggregate
functions occur between query blocks, but in many other casesaswell. Thereason for this
isthat attributes may be set valued. Moreover, each time groupingis necessary, we haveto
deal with somekind of COUNT bug caused by theloss of dangling tuples, i.e. the COUNT
bug is just a special case of a more general problem being revealed in a complex object
model. An important result of this paper is that from the form of the predicate between
query blocksit can easily be derived when grouping is not necessary. Nested queries that
do not require grouping can be transformed into join queries; for the efficient and correct
processing of nested queriesthat do require grouping anew join operator isintroduced-the
nestjoin operator.

Instead of producing the concatenation of every pair of matching tuples asin the reg-
ular join operation, in the nestjoin operation each left operand tuple is extended with the
set of matching right operand tuples. Thisway two birds are killed with one stone: group-
ing is performed, and also dangling tuples are preserved. Implementation of the nestjoin
operator is a simple modification of any common join implementation method, however,
like the outerjoin operator, the nestjoin has limited rewrite possibilities compared to the
regular join operator.

Ingenerdl, inthelogical optimization of adeclarative query language, two approaches
can bedistinguished: (1) rewriting expressionsin the query languageitself and (2) tranda-
tion into and rewriting in some intermediate language, for example an algebraic language.
Also acombination of the two approachesis possible. For thelogical optimization of TM,
we have defined the language ADL, an algebra for complex objects which is an exten-
sion of the NF? algebra of [ScSc86]. This work will be used in the ESPRIT |11 project
IMPRESS (Integrated, Multi-Paradigm, Reliable, and Extensible Storage System). The
IMPRESS project started in 1992, and one of the subtasksis to trandate (a subset of) the
language TM into an algebrafor complex objectsresembling ADL. Inthispaper, our ideas
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with regard to query transformation will be presented using the language TM; we will not
introduce the algebrafor reasons of simplicity.

The structure of this paper is as follows. In Section 5.2, we briefly review the work
that has been done with regard to nested SQL queries. In Section 5.3, we describe the lan-
guage TM and the types of nested SFW-expressions that are of interest for the purpose of
this paper. Nesting in the WHERE clause and in the SEL ECT clause are discussed in Sec-
tions 5.4 and 5.5, respectively, and we will seethat in the transformation of nested queries
into join gqueries in many cases grouping is needed, each case leading to some kind of
COUNT bug if relational transformation techniques are used. Then, in Section 5.6, we
introduce the nestjoin operator. The nestjoin is an operator that allows efficient process-
ing of nested queriesthat cannot be transformed into join queries without grouping. Bugs
are avoided by preserving dangling tuples. In Section 5.7 we show, for two-block queries,
which types of nested queries can be transformed into join queries without problem. An
exampleof query processing for an arbitrary linear nested query (having only onesubquery
per WHERE clause) isthen given in Section 5.8. The paper is concluded by a section dis-
cussing future work.

5.2 Nested SQL queries

In this section we briefly review the work that has been done on optimization of nested
SQL queries. We do not give a complete overview; we merely indicate the ideas behind
optimization of nested SQL queries with aview on the additional problemsthat come up
with optimization of nested queriesin adata model supporting complex objects.

Nested SQL queries are SFW-query blocks containing other (possibly nested) SFW-
query blocks in the WHERE clause. For example, assume we have relation schemas
R(A, B,C) and S(C, D), and consider the following SQL query:

SELECT *

FROM R

WHERE R.B IN SELECT S.D
FROM S
WHERER.C =S.C

Disregarding duplicates, the nested query given aboveis easily transformed into the flat,
or join query:

SELECT R.A,R.B,R.C
FROM R, S
WHERE R.B=S5.D AND R.C =S.C

which, inrelational algebra, issimply ajoin betweentables R and S followed by aprojec-
tionon R, i.e. asemijoin. The advantage of transforming nested queriesto join queriesis
clear: anested-loopjoinisjust one of the several possibleimplementations of the join op-
erator, and after transformation to ajoin query the optimizer can choose the most suitable



5.2. Nested SQL queries 97

joinexecution method. The method chosen may be anested-loop join, but not necessarily—
aternative join implementations are the sort-mergejoin, the hash join etc.

In [Kim82], five types of nesting have been distinguished and an algorithm has been
givento transform nested queriesinto join queriesfor each of these different types of nest-
ing. In case aggregate functions occur between query blocks (one of the types of nesting)
SQL's GROUP BY clause is employed to compute the aggregates needed. However, in
[Kies84] it has been shown that Kim's algorithm is not correct if the aggregate function
COUNT occurs between query blocks. This flaw has become known asthe COUNT bug.
Consider the query:

SELECT *

FROM R

WHERE R.B = SELECT COUNT (*)
FROM S
WHERE R.C =S.C

Following Kim’s algorithm, we get the following queries:

(1) T(C,CNT)=SELECT S.C, COUNT (*)
FROM S
GROUPBY S.C

SELECT R.A,R.B, R.C
FROM R, T
WHERE R.B = T.CNT AND R.C =T.C

Alternatively, if therelation R doesnot contain duplicates, the nested query may betrans-
formed into:

(2) SELECT R.A,R.B,R.C
FROM R, S
WHERE R.C = S.C
GROUPBY R.A,R.B,R.C
HAVING R.B = COUNT (S.C)

In the former, grouping of the inner operand and computation of the aggregate precedes
the join operation; in the latter the join is executed first.

The queries resulting from the transformations do not give the correct result. In the
original, nested query, dangling R-tuplesfor which R.B = 0, are included in the result;
these tuples arelost in the join queries.

To solve the COUNT bug, it has been proposed in [GaWo87] to modify (2) by using
outerjoinsinstead of joinsin casethe COUNT function occurs between query blocks. The
right outerjoin operator preserves dangling tuples of the left join operand: unmatched left
operand tuples are extended with NULL valuesin the right operand attribute positions.

Asanother solution, it has been proposed in [Mura92] to modify (1), because in some
cases (1) ismoreefficient than (2). It isproposed to have two typesof join predicatesin the
second query of (1): aregular join predicateand an additional, so-called antijoin predicate,
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to be applied to the dangling tuples. In the example given above the antijoin predicate
would be: R.B = 0. In Kim’s second query the join is replaced by an outerjoin operation
with join predicate R.C = T.C; to the tuples that match the predicate R.B = T.CNT is
applied, and to the unmatched tuplesin R the antijoin predicate R.B = 0 is applied.

5.3 Nested TM queries

5.3.1 General description of TM

In this section we describe the features of TM that are important for the purpose of this
paper—support for complex objects and the SEL ECT-FROM-WHERE construct. We refer
the reader to [Bal et al. 93, BaBZ93, Bavr9l] for a more comprehensive description of
TM.

TM is a high-level, object-oriented database specification language. It is formally
founded in the language FM, a typed lambda calculus allowing for subtyping and mul-
tiple inheritance. Characteristic features of TM are the distinction between types, classes,
and sorts, support for object identity and complex objects, and multiple inheritance of at-
tributes, methods, and constraints. In TM, attribute types may be arbitrarily complex: the
type constructors supported are the tuple, variant, set, and list type constructor; type con-
structors may be arbitrarily nested. Besides basic types, class names may be used in type
specifications. Sets do not contain duplicates.

In constraint and method specificationswe may usethe SELECT-FROM-WHERE con-
struct, having the following general format:

SELECT <result expression>
FROM <operand expression> <variable>
WHERE < predicate>

The meaning of the SFW-expression is as follows. The operand expression is evaluated;
avariableisiterated over the resulting set; for each value of the variable it is determined
whether the predicate holds, and if so, the result expression is evaluated and thisvalueis
included in the resulting set.

5.3.2 Typesof nestingin TM

Oneimportant difference between SQL on the one hand, and TM and HDBL on the other
isthat TM and HDBL are orthogonal languages. The operand and result expression of
the SFW-query block of TM may be arbitrary expressions, also containing other (nested)
SFW-expressions, provided they are correctly typed. The predicate may also be built up
from arbitrary expressions (including quantifiersFORALL and EXISTS), aslong asit de-
livers a Boolean result.

We give some examples of SFW-expressions. Assume we have specified classes Em-
ployee’ and ‘ Department’:
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CLASS Employee WITH EXTENSION EMP
ATTRIBUTES

name . STRING,

address: Address,

sal : INT,

children: P(name: STRING, age: INT)
END Employee

CLASS Department WITH EXTENSION DEPT
ATTRIBUTES

name: STRING,

address : Address,

emps: PEmployee
END Department

SORT Address
TYPE (street : STRING, nr : STRING, city : STRING)
END Address

The symbol P denotes the set type constructor, brackets () denote the tuple type construc-
tor. InTM, classextensionsareexplicitly named. Theclass* Employee’ hasfour attributes,
of which the attribute ‘address’ has a complex type specified as a sort. Sorts are used to
describe commonly used types such as‘ Address , ‘Date’, ‘ Time' etc.

Q1: Select the departments that have at least one employee living in the same street the
department is located.

SELECTd
FROM DEPT d
WHERE (s = d.address.street, ¢ = d.address.city)
IN SELECT (s= e.address.street, ¢ = e.address.city)
FROM d.empse

Q2: Select for all departments the names of the departments and the employeesliving in
the same city the department is located.

SELECT (dname = d.name, emps = SELECT e

FROM EMP e

WHERE e.address.city = d.address.city)
FROM DEPT d

We makeadistinctionin thetypes of nested queries. 1na SFW-expression, other SFW-
expressionsmay occur inthe SELECT clause (query 2), inthe FROM clause, and in the
WHERE clause (query @1). In this paper, the expressions of interest are nested SFW-
expressions having subgueriesin which free variables (correl ated subqueries) occur; sub-
querieswithout free variables simply are constants. We do not consider SFW-expressions
with subqueriesin the FROM clause, because these can be rewritten easily. Furthermore,
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operands of subqueries may be either set-valued attributes, asin query Q1, or distinct ta-
bles, asin query Q2. Only if subquery operands are distinct tables, transformation to join
queriesis desirable. Thereisno useto flatten nested queries in which subquery operands
are set-valued attributes, because set-valued attributes are stored with the objects them-
selves (as materialized joins), at least conceptually.

In short, the nested queries of interest are SFW-expressions having subqueriesin the
SEL ECT- and/or WHERE clause containing free variables and having distinct tables as
operands. Initially, we will restrict ourselvesto two-block queries. In Section 5.8 we will
briefly discuss queries with multiple nesting levels.

5.4 Nesting in the WHERE clause

Assume we have a two-block query with one-level deep nesting. The general format of
such aquery is:

SELECT F(z)
FROM X 2
WHERE P(z, 2)
WITH z = SELECT G(z, y)
FROM Y y
WHERE Q(z,y)

The WITH clauseis a TM construct enabling local definitions, used here to facilitate the
description of the syntactical form of the predicate P. In this paper, we do not consider
multiple subqueries, P(z, z) contains only one occurrence of z.

We want to transform the nested query into ajoin query of the following format (re-
member that, in SQL, grouping is necessary only if aggregate functions occur between
query blocks):

SELECT F(z)

FROM X z,Y y

WHERE P'(z,v) A Q(z,y)
WITHv = G(=z,y)

For notational convenience, aso the expression G(z, y) has been named by means of a
WITH clause.

The goa of the transformation process is to transform the predicate P(z, z), whose
second argument z is set valued, into apredicate P’ (z, v), wherevaluesv arethe members
of z. Thetypesof P and P’ clearly differ: from the second argument of P aset constructor
isremoved, resulting in predicate P'.

54.1 Example predicates

Assume that the predicate P only involves attribute a of the outer operand X and z, the
subquery result. Because the attribute a may be set valued, this (already restricted) pred-
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icate between query blocks may take many different forms. We may have for instance:!
e £.a OPzwithOP € {€,C,C,=,D, D, 3},

e expressionsinvolving quantifiers, for example 3s € z (s = z.a),

z.a OP H(z) with H an aggregate function and OP an arithmetical comparison op-
erator,

expressionsinvolving set operators, for example z.a N z = 0, or

negations of expressions listed above.

Predicates can bedivided into two groups: predicatesthat requiregrouping of theinner
operand tuples and the predicates that do not. In Section 5.7, we give aformal character-
ization of predicatesthat do and do not require grouping; below, the need for grouping is
discussed more informally.

Grouping is not necessary if the question whether outer operand tuples belong to the
result or not (whether, for some outer operand tuple, the predicate evaluates to true or
false) can be answered on the basis of the individual members of the subquery result,
i.e. by scanning the subquery result. For example, consider the expression z.a € z. The
moment we encounter a tuple y in the inner operand Y such that the condition Q(z, y)
holdsand z.a equalsthe value of v, we know that tuple 2 belongsto the result. If no such
v isfound in the end, the predicate evaluatesto false.

Grouping is necessary if the subquery result hasto be available as a whole to decide
whether the predicate holds. In this case, al tuples belonging to the subquery result must
be kept, because the predicate can only be evaluated having al valuesin the subquery re-
sult at hand. An obviousexampleof apredicaterequiringgroupingistheexpressionz.a =
COUNT (z): not until the entire subquery result is at our disposal it is possible to compute
(or output, if accumulated) the cardinality of the subquery result. Another predicate re-
quiring grouping is for example the expression z.a C z.

Whenever a predicate needs grouping, we have to deal with some sort of COUNT bug
if the nested query is transformed according to the algorithm of [Kim82]. For example,
the nested query:

SELECT 2

FROM X z

WHERE z.a C z WITH z = SELECT y.a
FROM Y y
WHERE z.b = y.b

is, following the ideas of [Kim82], transformed into the following TM queries:

T = SELECT (b = y.b, as = SELECT y'.a
FROM Y y/
WHERE y'.b = y.b)
FROM Y y

LInthe rest of the paper wewill usethe common set-theoretical notation for comparison operators and boolean
connectives occurring in TM-predicates because of its conciseness.
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SELECT z
FROM X z, Tt
WHERE z.b = t.b A z.a C t.as

Thefirst query groupsthe set of y.a values by the values of the attribute b (cf. the operator
nest (v) from the NF? algebra[ScSc86]). The transformed query also suffers from a bug
(which we might call the SUBSETEQ bug in this case): X -tuplesfor which z.a = 0 that
are not matched by any ¢-tuple on the condition z.b = ¢.b are lost.

In summary, in TM grouping of the inner operand is required not only if aggregate
functions occur between query blocks, but in many other cases too. If Kim's solution is
chosen, the transformed query will suffer from a bug each time grouping is needed. We
will not use the outerjoin operator to solve these bugs. Instead, in Section 5.6, we will
introduce the nestjoin operator, which is a much cleaner solution in a model supporting
complex objects.

5.5 Nestinginthe SELECT clause

In this section, we will show that, with one notable exception, nesting in the SELECT
clauseawaysrequiresgrouping of theinner operand. SFW-expressionshaving subqueries
inthe SELECT clauseare not new. InHDBL, it isaso allowed to have SFW-query blocks
in the SELECT clause. SFW-expressions nested in the SELECT clause commonly de-
scribe nested results, asin query Q2 from Section 5.3.2, where employees are grouped by
departments. Consider the general format of a two-block query with nesting in the SE-
LECT clause:

SELECT F(z, 2)
WITH z = SELECT G(z, y)
FROM Y y
WHERE Q(z, y)
FROM X z
WHERE P(z)

If this query is to be transformed into a join query, the inner operand values have to be
grouped by the outer operand values. Grouping may take place preceding or following
thejoin. In both cases again dangling tuples are lost.

With regard to nesting in the SELECT clause, thereisonespecial casein which group-
ing can be avoided. In TM, a SFW-expression may be nested directly in the SELECT
clause, meaning the result is a set of sets. This set of sets may be *collapsed’ by apply-
ing the operator UNNEST, which is defined as UNNEST (S) = |J{s | s € S}. Consider
the following query:

UNNEST (SELECT (SELECT (a = z.a,b = y.b)
FROM Y y
WHERE z.b = y.a)
FROM X 2
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This nested query is equivalent to the join query:

SELECT (a = z.a,b = y.b)
FROM X z,Y y
WHERE z.b = y.a

5.6 Thenestjoin operator

In the previous sections we have shown that in a complex object model, in many cases

grouping seemsto bean essential step inthetransformation of nested queriestojoin queries.
Queries requiring grouping may always be handled by means of nested-loop processing,

which gives correct results but may be very inefficient. If we, though, choose to trans-

form nested queriesinto join queries, we have to take special measureswhen queries need

grouping because dangling tuples are lost. Inthe relational model the outerjoin is used to

take care of dangling tuples: for subqueriesthat deliver empty sets the NULL is used to

represent the empty set. In acomplex object model, however, we do not have to represent

the empty set: the empty set is part of the model.

Definition

The nestjoin operator, denoted by the symbol A, is simply a modification of the join op-
erator. Instead of producing the concatenation of every pair of matching tuples, for each
left operand tuple a set is created to hold the (possibly modified) right operand tuples that

match. The nestjoin of two tables X and Y on predicate @ with function G (the function
applied to the right-hand tuples satisfying the join predicate) is defined as:

X ALY Efavr(a=z)zeXnz={G,0) |y €Y AQx,0)}}

In this expression, z ++ (a = z) denotes the concatenation of the tuple z and the unary
tuple (a = 2), in which a is an arbitrary label not occurring on the top level of X. An
example of the nestjoin operationisfound in Figure 5.1, whereflat relations X and Y are
equijoined on the second attribute (thejoin function is the identity function). Note that for
dangling tuplesz € X, thetuplez ++ (a = () is present in the result.

The nestjoin operation is a neatly defined operation. Grouping, which is performed
during the join, is made explicit by means of a set-valued attribute. Because dangling tu-
ples are preserved, bugs like the COUNT bug are prevented.

Algebraic properties

Assuming that the nestjoin function is identity, the nestjoin can be expressed using the
outerjoin, denoted by the symbol ®, and the nest operator v*:

X A Y=vi (X O Y)
z,y:Q,id;a ' z,y:Q
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X Y result
lalb] [cld] [a]b] s(cd) |

1]1 11 171]{@1, 21}

1|2 211 1]2 0

213 3|3 23 {(3,3)}

Figure 5.1: Nestjoin example

In this algebraic expression, the operator v* isadlightly modified version of the standard
nest operator performing nesting in the usual way, and then mapping nested sets consisting
of aNULL-tupleto the empty set [Scho86]. By using the nestjoin instead of the outerjoin
followed by the nest operator, we do not have to resort to NULLsto avoid the loss of dan-
gling tuples.

A disadvantage of the nestjoin operator isthat it, like the outerjoin, has less pleasant
algebraic properties. For example, the nestjoin operation is neither commutative nor asso-
ciative. As another example, the nestjoin does not always associate with the regular join:
X A (Y X Z)isnot equivdentto (X A Y) X Z, the two expressions already being
typed differently. Below we list some examples of algebrai c equivalences concerning the
nestjoin operator.

Let X A, Y denote anestjoin operation on predicate p in which the nestjoin function
equalstheidentity function (for simplicity omitting variable names and the nestjoin label).
Let r(a, b) denote apredicate referencing attributesin tables A and B (and no other), then
we have:

e nx(X A Y)=X

r(z,y)

e (X XM Y) A Z=(X A Z) X Y)

r(z,y) r(z,z) r(z,z) r(z,y)

e (X M Y) A Z=X X (Y A 2)

r(z,y) r(y,2) r(z,y) r(y,2)

Implementation

Toimplement the nestjoin, common join implementation methodslike the sort-mergejoin,
or thehash join can be used. However, somerestrictionshold. First, in nestjoinimplemen-
tations, an output tuple can be produced not until the entire set of matching right operand
tuples has been found. Second, because in the nestjoin operation the output has to be
grouped according to the values of the left operand tuples, the choice for outer and inner
loop operand isrestricted. For example, in a(simple) hash joinimplementation, if thejoin
attribute does not form akey attribute of the right join operand, only the right join operand
may be the build table. (For the regular join, usually the smaller operand is chosen asthe
build table.)
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Use

The nestjoin operation can be employed to process queries with nesting in the SELECT-
as well in the WHERE clause. Queries having subqueries in the SELECT clause often
describe nested results, so processing by means of the nestjoin operation will be an ap-
propriate method of processing. For querieswith nesting in the WHERE clause, however,
sometimes there are other, more efficient possibilities. In the following section we show
in which cases grouping certainly isnot necessary, so that, instead of the nestjoin operator,
we may employ some flat join operator to obtain the results needed.

5.7 Theneed for grouping

Inthissection, we present aclass of predicateexpressionsfor whichit isknownthat group-
ing isnot necessary. Again consider the general format of atwo-block query with nesting
in the WHERE clause given in Section 5.4, then we have:

Theorem 5.1 Groupingisnot necessary if the predicate expression P(z, z) can berewrit-
ten into acalculusexpression of theform (1) Jv € z (P'(z,v)) or (2) Av € z (P'(z,v)).
In this expression, P'(z, v) may be arbitrary.

Proof of Theorem 5.1 is omitted due to lack of space. It is an open question whether
grouping is always necessary in case predicate P cannot be rewritten into one of the two
forms given above.

Generally, a nested query may be processed by applying nestjoin operators, possibly
followed by (nested) function applications (e.g. projections) and selections. However,
sometimesnestj oin operatorsmay bereplaced by flat join operators. For atwo-block query,
in case the predicate between the two blocks can be rewritten into a cal culus expression of
the first format, involving a non-negated existential quantifier, a semijoin operation will
provide the correct result. If it is possible to rewrite the predicate into a calculus expres-
sion involving a negated existential quantifier, then the flat join operation needed is the
antijoin operation. The join predicate is P'(z, G(z,v)) A Q(z,y). (Remember that the
semi-and antijoin operations are defined asfollows. Let X and Y be tables (sets of tuples
having possibly complex attributes), and let P be a predicate, then the semijoin operation
X Xgup Yisdefinedas{z |2z € X Ady € Y (P(z,y))} and the antijoin operation
X >,ypYas{z|eeXA ByeY (Pzy)})

Examples of predicates that may or may not be rewritten into the desired format are
listed in Table 5.1. Predicates above the separation line are predicates that may occur in
SQL (being a subset of TM); predicates below the separation line are specific TM predi-
cates involving set-valued attributes.

5.8 Query processing example

Inthissection, weillustrate our ideas by means of an example concerning an acyclic query
with nesting in the WHERE clause in which correlation predicates are all neighbour pred-
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P(z, z) | P'(z,v)
z=10 Av € z (true)
2#£0 Jv € z (true)

count(z) =0 Av € z (true)
z.a = count(z)

z.a € z Jv € z(v=2za)

z.a & 2 Av € z (v=1=z.a)

z.aCz

T.a Dz

z.a C z

z.a 2 2 Avez(vdza)

z.apz Jvez(vgza)

zT.a=z
zanz=>0 Av € z (v € z.a)
r.aNz#0 Jv €z (v Ez.a)

T.0> 2

Yw € z.a (w C 2)
YVweza(wdz) | Aovez(Bweza: (v¢w))

Table5.1: Rewriting TM predicates

icates (having free variables declared in the immediately surrounding block).

In a preprocessing phase, predicates between query blocks are rewritten into calculus
expressionsif possible. The purpose of thisrewrite phaseisto determinewhether nestjoin
operations may be replaced by flat join operations (semi- or antijoin), as indicated in the
previous section.

Nested queries are processed by performing a number of join operations and execut-
ing anumber of function applications (for example projections) and selectionson thejoin
results. If predicates between query blocks require grouping, a nestjoin operator is ap-
plied; if predicates do not need grouping aflat join operation is executed. Replacement of
a nestjoin operator by a semijoin or antijoin operator is advantageous because the semi-
and antijoin can be implemented more efficiently than the nest- (or regular) join operator.
Note that, like the semijoin, the antijoin operation may be implemented as a modification
of theregular join. Consider the following query:

SELECT z
FROM X 2
WHERE z.a C SELECT y.a  (P1)
FROM Y y
WHERE z.b = y.b A
y.c C SELECT z.c  (P2)
FROM Z z
WHERE y.d = z.d
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Predicates P; and P, between query blocks do require grouping (see Table 5.1), so we
may have the following execution strategy:

1. A nestjoin with operandsY and Z on join predicatey.d = z.d. Each element of Z
satisfying the join predicate is projected on the ¢ attribute. The result of this step is
the set:

Tn={y++(zs={zc|2€ZNyd=2d}) |yeY}

Note that zs isan arbitrary label.

2. Theresult of step 1isrestricted such that y.c C y.zs:
To={y|lyeTiNy.cCy.zs}

3. Theresult of step 2 is nest-joined with X on join predicate z.b = y.b and projected
on attribute a. (A projection on attributes a and b may proceed the nestjoin opera-
tion.) We now have:

Ts={z++(ys={ya|yeToAzb=yb} |z e X}

Again, label ys isarbitrary.

4. Finally, the result of step 3 isrestricted such that z.a C z.ys and projected on the
attributes of X (attributesa and b):

Ts={{a==z.a,b=2z.b) |z € Ts ANz.a C z.ys}

Now assume that the operators C in predicates P; and P, arechangedin € and ¢, re-
spectively, then the nestjoin operation in (1) may be replaced by an antijoin operation, and
the nestjoinin (3) may bereplaced by a semijoin operation. The additional join predicates
arey.c = z.cand z.a = y.a, respectively.

5.9 Conclusions and futurework

Asin relational systems supporting SQL, in complex object models supporting an SQL -

like query language optimization of nested queries is an important issue. A naive way
to handle nested queriesis by nested-loop processing. However, it is better to transform
nested queriesinto flat, or join queries, because join queries can be implemented in many
differentways. Inacomplex object model, it isnot always possibleto flatten nested queries.
In this paper, we have described a class of nested SFW-expressions that can be flattened
without problem. For those nested queriesthat cannot be transformed into join querieswe
haveintroduced the nestjoin operator, allowing correct and efficient processing of general

nested queries.
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Futurework concernsanumber of issues. We need aformal algorithmto trandategen-
eral SFW-query blocksof TM into the algebra, al so taking into account nesting in the SE-
LECT clause, multiple subqueries, and multiple nesting levels (including cyclic queries).
Logical optimization (rewriting algebraic expressions) may follow thetrand ation process.
Therefore, the algebraic propertiesof the nestjoin operator haveto be further investigated,
by analogy with for example the work of [RoGa90] concerning the outerjoin operator.
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Abstract

Most declarative SQL-like query languages for object-oriented database systems
(OSQL) are orthogonal languages allowing for arbitrary nesting of expressions in the
select-, from-, and where-clause. Expressions in the from-clause may be base ta-
bles as well as set-valued attributes. In this paper, we propose a general strategy for
the optimization of nested OSQL queries. As in the relational model, the tranda
tion/optimization goal is to move from tuple- to set-oriented query processing. There-
fore, OSQL is trandated into the algebraic language ADL, and by means of algebraic
rewriting nested queries are transformed into join queries asfar as possible. Three opti-
mization options are described, and a strategy to assign prioritiesto optionsis proposed.

6.1 Introduction

To support technical applications like CAD/CAM, GIS etc, relational technology has its
shortcomings. In these areas, the popularity of object-oriented technology is growing.
First, from the field of programming languages, persistent programming languages like
GemStone[Bretl et a. 89] came, later followed by object-oriented database systems such
as O, [BaDK92] and HP OpenODB [Lyng91]. The historical background is still visible
in the sense that too little attention has been paid to ad hoc query facilities and database
design tools. A number of proposals for declarative query languages for extended NF?

Permission to copy without fee all or part of thismaterial isgranted provided that the copies are not
made or distributed for direct commercial advantage, the VLDB copyright notice and thetitle of the
publication and its date appear, and notice is given that copying is by permission of the Veery Large
Data Base Endowment. To copy otherwise, or to republish, requires a fee and/or special permission
from the Endowment.

Proceedings of the 20th VL DB Conference Santiago, Chile, 1994
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and object-oriented data models has appeared, e.g. [PIAn86, BaCD92, Catt93]. We will
use the term OSQL for the various proposals of SQL-like languages for OODB. In this
paper, we concentrate on efficient support for ad hoc queries formulated in a declarative
query language.

AnOSQL query facility isinherently more complex than onefor SQL , because nesting
isallowed in al clauses, i.e. in the select-, from-, and where-clause. Expressionsin the
from-clause, the query block operands, may be base tablesaswell as set-valued attributes.
Also, the predicatesthat are used in the wher e-clause are more complex, because compar-
isons between set-val ued attributes, or set-val ued attributes and base table expressionsare
allowed. An exampleisthetest whether two partshave an overlapin their sets of subparts.

Duetothe complexity of OSQL, the dominant strategy to handle nestingisto executeit
by means of nested-loop processing, leaving no room for optimization. We distinguish be-
tween two typesof nesting: nesting requiredtoiterate over basetablesand nesting required
to iterate over set-valued attributes. Ideally, nesting over base tables should be trand ated
to some kind of join so that a choice can be made between various efficient join imple-
mentations. Of course, this problem already occurredin SQL [Kim82]. In general, nested
SQL queries can be trandated to ajoin in the relational algebrato get a better execution
than the nested-loop execution. However, not all SQL queries can be trandated to ajoin
due to loss of dangling tuples in the join, a phenomenon known as the COUNT-bug. In
[StAB94] we have shown that the COUNT-bug is only a special case of a more general
problem occurring in nested OSQL queries.

Themain focus of our research isto trandate OSQL queriesto an extended relational
algebrafor complex objects, called ADL, to alow for an efficient execution. In this pa-
per, we deal with the problem of trying to trandate nested OSQL queriesto join queries
in ADL, taking advantage of efficient implementations of join operators. We present a
general approach for handling nesting in the where-clause, the from-, as well as in the
select-clause; the discussion concentrates on nesting in the wher e-clause, though.

In the (extended) NF?, aswell asin the object-oriented literature, little work has been
reported concerning efficient translation of SQL-like query languages into algebraic lan-
guages. For the NF? model, atrandation of a calculusinto an NF? algebra has been pre-
sented in [RoK S88], however, little attention has been paid to efficiency. Work has been
doneon theimplementation of the extended NF? query languageHDBL of the AIM project
[SLPW89, SuLi90]; to our knowledge HDBL has not been trandated into an algebra. In
[CIM093], a proposal for the optimization of nested O,SQL queries has been made.
0O, SQL istrandated into an extension of the GOM algebra[KeM 093], and examples of
optimization of nested algebra queries are given.

The organization of this paper is as follows. In Section 6.2, nesting in the various
clauses of the select statement is introduced by means of examples, together with an ex-
ample schemaof an OODB. In Section 6.3, an algebrafor complex objectscalled ADL is
shown with ageneral trandation of OSQL queriesto ADL queries. Section 6.4 addresses
the problem of optimizing ADL queries. Three alternatives are discussed. Two of them,
rewriting into relational join queries and the introduction of new operators are considered
in Section 6.5 and Section 6.6. The paper ends in discussing future work.
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6.2 Example

In this section, we give a simple example schema of the supplier-part database in OSQL,
together with some example queries.

Class Supplier with extension SUPPLIER
attributes

sname: string,

parts_supplied : { Part }
end Supplier

Class Part with extension PART
attributes

pname: string,

price: int,

colour : string
end Part

Class Delivery with extension DELIVERY
attributes
supplier : Supplier,
supply : { (part : Part, quantity : int) },
date : date
end Delivery

The schema only shows the structural properties of the entities stored in the database;
method and constraint definitions have been | eft out. Brackets ( ) and { } denotethetuple
and set type constructor, respectively. Analogousto relational convention, wecall theclass
extensions base tables.

Below we give example queries for nesting in the various clauses. With regard to the
wher e-clause, one exampleis given for nesting over a base table, and another for nesting
over a set-valued attribute.

Example 6.1 Nesting in the select-clause is used to produce set-valued attributes in a complex ob-
ject.

Select the names of the suppliers together with the names of the red parts supplied:

select (sname = s.sname,
pnames = select p.pname
from pin s.parts_.supplied
where p.colour =" red" )
from sin SUPPLIER

Example 6.2 Nesting in the from-clause denotes query composition, that for example may occur
as the result of expanding views or named intermediate tables.

Select all deliveriesthat concern supplier s; with date January 1, 1994:
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select d
fromdin (selecte
from ein DELIVERY
where e.supplier.sname="s,")
where d.date = 940101
Nesting in the from-clause is atype of nesting that does not pose problems with respect to tranda-
tion/optimization; it can be removed easily.

Example 6.3 Nesting in the where-clause is used for restrictions.

1. Select the names of the suppliers supplying all parts supplied by supplier s;:
select s.sname
from sin SUPPLIER
where s.parts_supplied D select t.parts_supplied
from tin SUPPLIER
wheret.sname="gs"
2. Select dl deliveries that include red parts.
select d
from din DELIVERY
whereexistsx in (select s
from sin d.supply
where s.part.colour =" red")
In thefirst query, the operand of theinner sfw-block isthe base table SUPPLIER: in the second the
operand isthe set-valued attribute supply. In the first, we have a set comparison between blocks, in
the second a quantifier expression.

Oneimportant difference between SQL and OSQL isthat OSQL is an orthogonal lan-
guage. The expressions in the from- and select-clause of OSQL may be arbitrary, also
containing other select-from-wher e(sfw) expressions(subqueries), providedthey are cor-
rectly typed. Predicates may also be built up from arbitrary expressionsincluding quanti-
fiersforall and exists and set comparison operators. The focus of this paper is a general
strategy for dealing with nested OSQL querieswith nesting in the select- or wher e-clause.
(Nesting in the from-clauseis handled easily.) The discussion in subsequent sectionswill
be centered around nested queries with nesting in the wher e-clause, however, techniques
presented apply to nested queries with nesting in the select-clause as well.

Followingtherelationa line of work, the goal in translation and optimization of OSQL
is to move from tuple- to set-oriented query processing. Our approach, asin [CIM093],
is to trandate nested OSQL queries into nested algebraic expressions, and then to try to
rewrite nested algebraic expressions into join expressions. In the following section, we
briefly present the algebraic language ADL.

6.3 Thecomplex object algebra ADL

Thelanguage ADL is atyped algebrafor complex objectsin the style of the NF? algebra
of [ScSc86], alowing for nesting of expressions. Among the constructors supported are
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thetuple (( )) and set ({ }) type constructor; the basic type oid is used to represent object
identity.

Roughly, the algebraic operators of the language ADL are the standard set (compari-
son) operators and multiple union (flatten), extended Cartesian product (in which operand
tuples are concatenated) and division, the map operator «, selection o, projection =, the
renaming operator p, and the restructuring operators nest (v) and unnest (). The map op-
erator, well-known from functional languages and appearing under many different names
intheliterature, is used to apply afunctionto every element of aset. Thefunction applied
may be arbitrarily complex, so that the effect of a map operation may vary from asimple
projectionto the production of complex results. Furthermore, anumber of join operatorsis
supported: the regular join X, the semijoin ix, and the antijoin t>. The semijoin (aregular
join followed by the projection on the left-hand join operand attributes) is ajoin operator
that is useful in processing so-called tree queries [Kamb85]. The antijoin is defined as a
semijoin followed by aset difference of the left-hand join operand and the semijoin result.
The antijoin operator isless well-known than the semijoin operator; it can be employed to
efficiently process tree queriesinvolving universal quantification. In selections and joins
arbitrarily complex predicates can be used, including predicates containing quantifiers. Of
course aggregate functions are part of the language too. Below, we give the semantics of
some of the ADL operatorsused in this paper. For presentation purposes, asimplified no-
tation is used; it is assumed no attribute naming conflicts occur. The operator o is used to
denotetuple concatenation. The schemafunction Sch, when applied to atable expression,
deliversthe top leve attribute names.

1 (Flatten) | J(e) = {z |z € X A X € e}

2. (Tuplesubscription) efay, ... ,as] = (a1 = e.a1,... ;an = €.an)
3. (Tuple“update’) Let Sch(e) = {a1,--- ,an,b1,... ,bm}, then:
e except (a1 =e1,... ,an = €n,C1 = €],... ,Cn=¢}) =
(a1 =e1,... ,an = €n,b1 = €b1,... ,bm = €bm,c1 =€l1,...,cn = €})

The except operator may update existing tuplefields (a; = e;), leaving theremaining asthey
are (b; = e.b;), and may also extend the tuple with some new fields (c; = e}).

4. (Map, or function application) afz : f(z)](e) = {f(z) | z € e}

5. (Selection) o[z : p(z)](e) = {z € e | p(z)}

6. (Projection) ma,,... .o, (€) = {z]a1,... ,an] | = € €}

7. (Unnest) Let Sch(e) = {a,b1,-.. ,bm}, then:
po(e) ={z' oz[br,... ,bm] |z €A’ €z.a}

8. (Nest)
Let Sch(e) = {a1,-.. ,an,b1,... ,bm}, It A=ai1,... ;an, andlet B = b1,... ,bm,
then:

vaa(e) ={z[B]lo{a=X)|zce ANX ={2'[A]| ' € eA2'[B] = z[B]}}
9. (Cartesian product) e1 X e2 = {.’E1 o X2 | T1 €e1 N2 € 62}
10. (Regular join) ey X ez ={z10z2 |21 €Ee1 ANz2 € ea Ap(z1,22)}

z1,22:p(21,22)

11. (Semijoin) ey X ez ={z1|z1 €e1 ANdzs € e2 @ p(z1,22)}

z1,22:p(21,22)
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12. (Antijoin) e l>( ) ex ={z1|z1 €Ee1 A Bz € e o p(z1,22)}
z1,r2:plTy,22

ADL operatorsthat allow for nesting, the so-called iterators, are the map, select, and join
operators, and also quantifiers. Iterators are operators having functions (lambda expres-
sions Az.e, denoted as z : e) as parameters; within the function body other operators may
occur. Note that the parameter of join operators (the join predicate) is a function having
two arguments; the function (denoted as x1, z2 : p) iS written as a subscript to the join
operator symbol. Inthe evaluation of joins, variablesz; and z, areiterated over operands
e; and e, respectively, and tuples are included in the result depending on the value of
p(z1,z2).

Mapping OSQL to the algebrainvolves a mapping of types and a mapping of expres-
sions. The mapping of typesis carried out in the phase of logical database design. Here,
we assume that each class extension is mapped to a table of (possibly complex) objects; a
field of typeoid isadded to represent object identity, and classreferences areimplemented
by pointers, also of type oid. We also assume that class hierarchies are mapped to ADL
typesin some way or the other (the algebra does not support inheritance).

With respect to translation and optimization of expressions, we take the following ap-
proach. Trandlation of OSQL queries into the algebra is done in a simple, amost one-
to-one way. The algebra supports nesting of expressions, representing tuple-oriented, or
nested-loop query processing, as well as a number of purely algebraic set-oriented oper-
ators. In the trandation phase, nested OSQL queries are trandated into nested algebraic
expressions. Following translation, in the phase of logical optimization, nested expres-
sions are rewritten into set operations.

The OSQL construct that does not have an immediate algebraic equivalent is the sfw-
query block. In the trandation phase, an sfw-query block is mapped to an algebraic ex-
pression consisting of a selection followed by a map:

select e; from z in e; where ez = o[z : e1](o[z : es](e2))

where o computesthe selection es and o the“projection” e; . Inthe select operation, vari-
able z isiterated over operand e, and the operand is restricted according to the values of
the wher e-clause predicate es; in the map operation «, variable z isiterated over the re-
sulting operand subset, and for each of the tuplesin this set the select-clause expression
e; isevaluated.

To concludethis section, weformulate the goal in optimization of nested ADL queries.
Operands of operators nested within parameter expressions of iterators may be either set-
valued attributes or base table expressions. In this paper, the goal is to transform nested
expressions, in which iterators having base tabl es as operands occur nested within param-
eter expressions of other iterators, into join expressionsin which base tables occur only at
top level. Of coursethe goal of unnesting appliesto correlated subqueries® only; uncorre-
lated subqueries simply are constants, and treated as such. Assuming set-valued attributes
are stored clustered, the unnesting of expressions with nested iterators having set-valued
attributes as operandsis not desirable. For example, o[z : Jy € Y e p](X) withY abase

1Correlated subqueries are iterator expressions that use variables from iterators in which they are nested.
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table, istransformed into the semijoin operation X X ., Y, but oz : Jy € z.c @ p|(X)
with ¢ a set-valued attribute stored with the X -tuplesis left asit is. In short, the goa in
tranglation/optimization is to remove base tables from the parameter expressions of itera-
tors, moving from tuple- to set-oriented query processing.

6.4 Optimization of nested algebra queries

In this section we present ageneral approach to optimize nested ADL queries. Threeopti-
mization options are given, together with example queries. The section ends with a strat-
egy to give apriority to the options.

The example queries given below concern the supplier-part database of which the
OSQL schemawas given in Section 6.2. In ADL, the types of SUPPLIER and PART are
asfollows:

SUPPLIER: {(sid : oid,
sname : string,
parts : {{pid : 0id)})}
PART : {(pid : oid,
pname : string,
price : int,
colour : string)}

We distinguish three ways of optimizing nested ADL queries. (1) the unnesting of at-
tributes by using the unnest operator, (2) the unnesting of nested expressions by trans-
forming them into relational join queries, and (3) using new operators that (analogous to
for exampletherelational join) are defined especially to enhance performance. Below, we
discuss the optionsin more detail.

Unnesting of attributes

If nesting is caused by iteration over a set-valued attributeit is possible to unnest this at-
tribute. Depending on whether the result is nested or not, the nest operator has to be ap-
plied. The unnesting of attributes has some disadvantages. First, nest and unnest are each
othersinverse only for PNF relations (nested relations of which the atomic attributes re-
cursively form a key) that have no empty set-valued attributes [RoK S88]. Second, first
unnesting and later nesting again will be expensive due to duplication of attribute values
and overhead caused by restructuring. Therefore, we only use this option if the final nest-
ing isnot required, and empty set-val ued attributes cause no problem. Consider the query:

Example 6.4 Select the identifiers of suppliers supplying non-existing parts (violating referential
integrity).

msig(o[s : Iz € s.parts e Ap € PART o z = p[pid]](SUPPLIER))
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Theset-valued attribute part s isnot needed in theresult, so the above query may berewrit-
ten into the antijoin query:
Taid(Mparts (SUPPLIER) > PART)
s,p:s.pid=p.pid
Note that, because z is existentially quantified, the loss of tuples with empty set-valued
attribute parts causes no problem (existential quantification over the empty set delivers
false).

Transformation into join queries

In some casestwo or more consecutivelevels of nesting can bereplaced by ajoin, antijoin,
or semijoin operator, reducing the number of levelsof nesting. Intheideal caseall nesting
has disappeared. Query 6.5 below shows such an example.

Example 6.5 Select the suppliers supplying red parts.
ols: 3z € s.parts @ Ip € PART e z = p[pid] A p.colour =" red" |(SUPPLIER)

This query can be rewritten into the semijoin query:

SUPPLIER X olp : p.colour =" red"](PART)

s,p:p[pid]E€s.parts

In Section 6.5 this option is discussed in detail.

Using special operators

Therelational joinisnot really necessary for the expressive power of therelational algebra;
it was introduced to allow for various efficient implementations. The same can of course
be donein an algebrafor complex objects. Quite often we encounter that an efficient exe-
cution of a query is prohibited if we stick to generally-accepted operators. Therefore, we
expect that introducing new operatorsis really necessary to obtain an efficient implemen-
tation. In Section 6.6, some new operators are discussed. The following query cannot be
rewritten into arelationa join query:

Example 6.6 Select suppliers names together with the parts supplied.
afs: {(sname = s.sname, parts_suppl =

op: p[pid] € s.parts](PART))](SUPPLIER)

However, using the so-called nestjoin operator A (see Section 6.6), the nested query can
be rewritten into an efficient set operation:

Tsname,parts_suppl (SUPPLIER A PART)
s,p:p[pid]€Es.parts;parts_suppl
Note that each of the options above can be applied to the top level expression as well
asto subexpressionsthereof. Given these optionsfor optimization of nested ADL queries,
the rewrite strategy is asfollows:
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1. Try torewrite to the variousrelational join operators (join, antijoin, or semijoin).

2. If the aboveis not possible, try to flatten set-valued attributes; if the nesting phase
can be skipped, this may be a strategy worthwhile considering.

3. If the above is not possible, try to rewrite to one of the newly defined operators,
because they were introduced to get a better performance compared to nested-loop
processing.

4. If none of the aboveworks, leave the query asit is, which meansthat it is executed
by means of nested loops.

The options “rewriting into relational join queries’ and “using special operators’ are
discussed in more detail in the following two sections.

6.5 Rewritinginto flat relational algebra

In the previous section, we have discussed some options for processing nested ADL
gueries. In this section, we investigate one of them: the rewriting of nested expressions
into join expressionswithout unnesting set-valued attributes. The discussion concentrates
onrewriting nested select (o) expressions, thealgebrai c equivalent of nested OSQL queries
with nesting in the wher e-clause. However, rewriting nested expressionsinto join expres-
sionsis astrategy that can be applied to nesting in the map operator aswell; the section is
concluded by briefly discussing an example of this type of nesting.

6.5.1 General query format

In this section, we discuss transformation of nested OSQL queries with nesting in the
wher e-clause in the presence of set-valued attributes. Nesting in the where-clauseis an
important (and only) type of nesting allowed in the flat relational model; in complex ob-
ject modelsit is considered equally important. The goal here, asin [Kim82], isto rewrite
nested queriesinto join queries without unnesting set-valued attributes, so that instead of
performing a naive nested-loop execution, the optimizer may choose from a number of
different join processing strategies.

The general format of a two-block OSQL query with nesting in the where-clause is
the following:

select F(z)
from z in X
where P(z,Y")
with Y’ = select G(z,y)
fromyinY

where Q(z,y)
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(The with-construct, enabling local definitions, is used here for reasons of convenience.)
In Section 6.3, we have given the equivalence rule for trandating the sfw-block into the
algebra:

select e; from z in e; where ez = o[z : e1](o[z : es](e2))

so the algebraic equivalent of an sfw-expression is a selection o followed by a genera
function application a to computethe“projection”. The map operator o is needed to com-
pute arbitrarily structured results, as opposed to standard projectionsin the flat relational
model.

The general format of the two-block sfw-expression with nesting in the where-clause
as shown aboveis:

alz : F(z)](o[z : P(z,Y")](X)) withY' = aly : G(z,y)](o[y : Q(z,)](V))
For simplicity, the functions F' and G are assumed to be identity, so we have the format:
ol : P(2,Y")](X) with Y’ = oy : Q(z,y)](Y)

The query aboveis a nested query involving nested iteration over a base table: the outer
selection predicate contains a subquery, which is a selection on base table Y. We want to
transform this nested query into ajoin query, i.e. aquery having no subqueries with base
table operands.

6.5.2 Set comparison operations

To illustrate our ideas, at first we concentrate on two-block nested expressions with set
comparison operations between query blocks. We investigate two unnesting techniques:
unnesting by rewriting into quantifier expressions, and unnesting by grouping, atechnique
well-known from the relational model [Kim82].

Below, we show that, in some cases, queries having set comparison operators between
query blocks can be transformed into join queriesby rewriting the set comparison operator
into a quantifier expression. However, in other cases, rewriting into quantifiers has aneg-
ative effect on performance; other solutions have to be sought. Theresults are generalized
to arewrite heurigtic for transforming two-block select queries with arbitrary quantifier
expressions between blocks.

To the queries that cannot be unnested by rewriting into quantifier expressions, we
apply the methods of [Kim82, GaWo87] for unnesting relational queries with aggregate
functions between blocks. We show that the methods of [Kim82, GaWo87] are general
techniques for transforming nested queries into join queries, however, to be of good use
in complex models, they have to be adapted. We will do so by defining a new algebraic
operator, the nestjoin operator, in Section 6.6.

We now continue by describing the query format of interest in this section. Assume
that predicate P involves some set comparison operation relating attribute ¢ of the outer
operand X and the set Y, the subquery result. More formally, the query format is:

olz:2.cY'|(X)withY' = oy : Q(z,y)](Y)
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| set comparison operation | quantifier expression |

z.c€Y' Y ey==z.c

z.cCY' zcCY' Azc2Y’
(Vze€zcoedyeY' ez=y)A(ffyeY oy € z.c)

z.cCY' VzEzcedycY ez=y

zc=Y' z.cCY' AzcDY'
(Vz€zcedyeY' ez=y)A(VyeY ey € z.c)

z.cDY' VyeY' eycuzec

z.cDY' zcDY' ANzc @Y’
(VyeY'eyczc)AN(fz€EzcoeTycYez=1y)

z.c3Y' zezcez=Y'

Table 6.1: Rewriting set comparison operations

withd € {€,C,C,=, D, D,>}. Notethat the type of attribute ¢ varies with the compar-
ison operator used; the type may be atomic (€), or an arbitrary set type. If the operator
used is 3, ¢ has a set-of -set type.

Unnesting by rewriting into quantifier expressions

In this section we show that trandlating set comparison operators into quantifier expres-
sions offers possibilities to unnest nested queries. 1n [CeGo85], presenting a trandation
from SQL to the relational algebra, set comparison operators are dealt with by rewriting
them into quantifier expressionsin a preprocessing phase. Nested relational querieswith
quantifiers are easily trandlated into relational algebra operations. Existential quantifica-
tion is mapped to a projection on ajoin (or product); universal quantification is handled
by means of the division operator [Codd72].

For example, from the relational model we know that a set membership predicate can
be trandated into an existential subquery that is easily trandated into a (semi)join opera
tion. Let ¢ = Q(z,y), then:

Rewriting example 6.1 Set member ship

ol :z.c € ofy: q)(Y)](X)

= ofz:Iyeofy:q(Y)ey=2ad(X)
olz: Iy EY ey =z.cAg|(X)
= X X Y

z,y:y=z.cAq

First theoperator € isrewritteninto an existential quantification. Next, the select operation
is removed from the operand (the range expression) of the existential quantifier, provid-
ing the possibility to trandate the existential subquery into asemijoin operation in the last
rewritestep. Inthislast step the actual unnesting is performed; the preceding rewrite steps
are necessary to transform the input expression into the format suitable for unnesting. The
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equivaence rules for unnesting quantifier expressions nested within select operators are
the following.

Rule6.1 Unnestingquantifier expressionsLet X and Y betable expressions, and let z not befree
inY, then:

lLofz:yeYep(X)=X x Y
z,Yy:p

2 olz:AyeYep|(X)=X > Y

z,Y:p

A nested query with existential quantification is trandated into a semijoin operation;
negated existential (i.e. universal) quantification is dealt with by means of the antijoin op-
erator.

The same method, rewriting set comparison operators by means of quantifiers, can be
applied in complex object models as well. Again, let ¢ = Q(z,y), and consider the fol-
lowing example dealing with the set inclusion operator:

Rewriting example 6.2 Set inclusion

ol oly : g)(Y) C ze](X)
= olz:Vy€ofy:q)(Y)eye€ z.c](Y)](X)
= olz:Ay€ofy:q)(Y)ey ¢ z.c(X)
olz:ByeYeqhydz.c](X)

X > Y
z,y:qA\y€a.c

In the example above, the same procedure as in Rewriting Example 6.1 is followed
(rewriting into quantification, transformation of the range expression, and unnesting). In
addition, the universal quantifier is transformed into a negated existential quantifier by
pushing through negation to enable transformation into the antijoin operation.

All set comparison operators can be rewritten into quantifier expressions, as shown
in Table6.1. Inthetable, in al cases except for the last we have expanded operators until
guantification(s) over Y take(s) place. We seethat expanding operators€ and D leadstoa
(negated) existential quantifier expressionthat is suited for unnesting by applying Rule6.1;
expansion of the other operators leads to a multiple subquery expression, that cannot be
unnested that way. Note that negation of the set comparison operation does not influence
the possibilities for unnesting. Negating the operator negates the quantifier expression;
antijoins are used instead of semijoins and vice versa.

So far, we restricted our discussion to two-block nested queries with predicates of the
formz.c 8 Y', with  aset comparison operator. In Table 6.2, we show some more exam-
ples of predicates that can be rewritten into (negated) existential quantification, the form
suitable for transformation in relational join expressions. To determine exactly which
types of predicates can be rewritten is a topic of future research.
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| P(z,Y’) [ quentifier expresson |
Y'=0 By €Y' etrue
count(Y') =0 Ay €Y' etrue
z.cNY' =0 BycY eycz.c
VzEzcezdY' | AycY' edz€zcoydz

Table 6.2: Rewriting predicates

Rewrite heuristic

From thediscussion above, animportant rewrite heuristic for nested expressionswith pred-
icates consisting of arbitrary quantifier expressions can be derived. Difficulties with un-
nesting arise whenever subquerieswith base tables as operands are nested within iterators
with set-valued attributes as operands, and the order of nesting cannot be changed. Con-
sider the last expression of Table 6.2. We have:

Rewriting example 6.3 Exchanging quantifiers

Vze€zcezDY'

= Vz€zcoeVycY eycz
VyeY eVzeczcoycz
= AyeY edzczceydz

By expanding the comparison operator and exchanging universal quantifiers, the predicate
isputin aform suitablefor unnesting according to Rule 6.1. The general rewrite heuristic
isformulated asfollows. Let P be aquantifier expression in Prenex Normal Form:

P=Qzi1€e10Qx2€e2---Qrpn Eepnop

in which the range expressionse; are either base tables or set-valued attributes. To enable
unnesting of (sub)expressions, the goal is to move quantification over base tables to the
left of the quantifier expression. This goal may be achieved by exchanging universal or
existential quantifiers.

Unnesting by grouping

Another way to deal with set comparison operatorsis to use grouping. In the relational
context, grouping is used to transform nested queries with aggregate functions between
query blocks [Kim82, Gawo87]. Aswe will see, the method of [Gawo87] in fact repre-
sents a general way of treating nested queriesthat can be applied in complex object mod-
elsaswell.?2 However, in some cases the results achieved are not correct due to the loss of
dangling tuplesin the relational join operation.

2The method of [Kim82] can be applied only when the correlation predicate (or join predicate) is equality.
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X Y result
a C

- TR
=T 1)1 d]e
1> 12 1711
5 1|3 1|2
3123 3|3 2

olz:z.cColy:z.a=y.d(Y)](X)

Figure 6.1: Nesting involving set-valued attribute

In[Kim82, GaWo87], methodsfor unnesting querieswith aggregate functionsbetween
query blocks of theform o[z : P(z,agg(aly : Q(z,y)](Y)))](X) are presented. Below,
we apply the method of [ GaWo87] to nested querieswith set comparators between blocks.

Consider the following nested query, an example of which isgivenin Figure 6.1.

olz:z.cColy:z.a=yd(Y)](X)

Applying the transformation technique of [GaWo87] to the expression above, we have, in
our own formalism:
mx (o[z : z.c C z.ys](vy,ys(X X Y)))
z,y:z.a=y.d

The nested query is transformed into a flat join query consisting of (1) ajoin to evaluate
the inner query block predicate, (2) anest operation for grouping, (3) a selection for eval-
uating P, the predicate between blocks, and (4) afinal projection. Example tables X and
Y and the intermediate results of the join, nest, and project/select operation are shown in
Figure 6.2.

We note that, as with relational queries involving the COUNT function, in the join
query some kind of bug occurs, due to the loss of dangling tuples in the join; in analogy
with the phrase “COUNT bug,” we call this bug the “Complex Object bug.” In the ex-
ample, the tuple (a = 2,¢ = @) in X is not matched by any of thetuplesy € Y, so the
subquery result is empty. In the join, thistupleislost; in the nested query, the expression
(0 C 0 evaluatesto true, so the tuple has to be included.

Now consider avariant of the query above, in which C ischangedinto D:

olz:z.cDofy:z.a=yd(Y)](X)

Here as well, applying the same unnesting technique yields a Complex Object bug. All
tuplesz € X for which it holds that the subquery Y’ is equal to the empty set should be
included into the result, but arelost in the join.

In Table 6.3, we have listed the set comparison operations under consideration, to-
gether with the value of the predicatefor subqueriesdelivering empty sets (aquestion mark
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X Y X v /o
a c d| e
d|e
a c 3 a c ys
d|e 1 i 1 i ; 111 d|e d|e a c
L1 |1 || oot [FEL]L]t d]e
1|2 11212 11 (1|1
2 s 112 113 1] 2
3|3
3123 Lplpij1ys 312|13]3]|3
1]2
312|3|3]|3
mx(o[z : z.c C z.ys](vyys(X X dY)))
T,y:z.a=y.

Figure 6.2: The complex object bug

meaning run-time dependence). Negated predicates are treated in the same way. We have
the following result.

e Therelational transformation technique of [GaWo87] for unnesting nested queries
having aggregate functions between query blocks, using grouping, may be applied
to nested complex object queriesinvolving set comparison operators between query
blocksaswell. However, in some casesthe loss of dangling outer operand tuplesin
the join causesincorrect results.

e The value of the expression P(z,Y"), with the empty set substituted for Y, de-
termines whether or not dangling tuples should be included into the result. When-
ever P(z, () can be reduced stetically to true/ false, al/none of the dangling tu-
plesz € X must beincluded into the result; whenever this value is undetermined
at compile time, it is run-time dependent whether or not dangling tuplesz € X
should beincluded (cf. the predicate z.c = count(Y")). In other words, the unnest-
ing technique used here is guaranteed to deliver correct results only if P(z, () can
be statically reduced to false.

If not for the occurrence of bugs, the techniques of [Kim82, GaWo87] can be applied
to nested querieswith arbitrary predicates between blocks. Oneway to solvethe COUNT
bug in the relational model is to employ the outerjoin operator [GaWo87]. In using the
outerjoin, NULL values are used to represent the empty set. This method may be applied
in a dightly adapted way in complex object models as well. Another way to solve the
COUNT bug isto use a binary aggregation operator [OOMa87, Naka90]. In Section 6.6,
wediscussanew operator for unnesting nested queriesthat isbased on theideaunderlying
binary aggregation, but separates predicate evaluation from join and grouping.
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| P(z,Y") | P(z,0) |

z.ceY' false
z.cCY' | false
z.cCY' ?
zc=Y' ?
zclY' true
z.cDY' ?
z.cdY' ?

Table 6.3: Set comparison operators and bugs

6.5.3 Nestingin the map operator

To conclude, we give another example of the strategy of rewriting nested expressionsinto
relational join expressions, but now concerning nesting in the map operator (i.e. in the
select-clause). Thefollowing equivalencerule can be used to transform a nested map op-
eration into ajoin query:

Rule6.2 Nesting in the map operator
Ulelz s afy : zoyl(oly : (VX)) =X X Y

T,y:p
The nested map operation on the left hand side creates a set of setsthat is flattened imme-
diately afterwards; the same result is achieved by the right hand join expression.

Briefly summarizing this section, we have seen that (1) rewriting predicatesinto quan-
tifier expressionsmay enablethetransformation of nested expressionsinvolving set-valued
attributes into relational join expressions, (2) unnesting by grouping is a transformation
techniquethat isgenerally applicable, if not for the occurrence of bugs. Inthe next section,
we show how to avoid the occurrence of bugs by using the nestjoin operator; the general
transformation strategy then is to transform nested queries into nestjoin expressions, but
to use relational join operators whenever possible.

6.6 New algebraic operators

In this section, we give three examples of new algebraic operatorsthat are well-suited for
efficient implementation of nested OSQL queries. Generally speaking, it isworthwhileto
define new logical algebra operators whenever there can be found new access algorithms
(or physical algebra operators [Grae93]) that are an improvement over nested-loop query
processing. For example, the join can be implemented as an index nested-loop join, a
sort-mergejoin, ahash join, etc. In this section, we give some examples of operators that
might be of use for improving performance in OO query processing. The first operator
to be discussed is the nestjoin operator, defined in [StAB94] for the processing of nested
queries requiring grouping. The second operation to be discussed is the PNHL algorithm
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X Y result
a|b ys
lafb] [cld] cld
1)1 1|1 11]1]1|1
1|2 211 211
213 3|3 1]2
213|13]|83
X Y
z,y:z.b=y.d;ys

Figure 6.3: Nestjoin example

of [Del.a92], useful for materializing set-valued attributes, and the third is the materialize
operator of [BIMG93].

6.6.1 The nestjoin operator—grouping duringjoin

Inthe previoussection we have shown that unnesting by using groupingisatransformation
strategy generally applicable, if not for the occurrence of bugs due to the loss of dangling
tuplesin the join. In [StAB94], we have defined an operator that combines grouping and
join without losing dangling left operand tuples: the nestjoin operator. The nestjoin op-
erator is to be used for the unnesting of nested queries that cannot be rewritten into flat
relational join operations.

The nestjoin operator, denoted by the symbol A, is a simple modification of the join
operator. Instead of producing the concatenation of every pair of matching tuples, each | eft
operand tupleis concatenated with the set of matching right operand tuples. Toimplement
the nestjoin, common join implementation methods like the sort-merge join, or the hash
join can be adapted. The definition of the nestjoin is as follows.

Definition 6.1 Thenestjoin operator (simple) Let label a not occur in the schemaof e,
then:

el A €y =
mlymZ:p(m17m2);a
{z10(a=X)|z1 €1 ANX ={x2| 22 € €3 Ap(21,22)}} O

Variablesz; and z, areiterated over operandse; and e,, respectively. Each left operand
tuplez; € ey is concatenated with the unary tuple (a = X), in which the set X con-
tains those right hand operand tuples o € e» for which the predicate p(z1, z2) holds.
An example of the nestjoin operation is given in Figure 6.3, whererelations X and Y are
equijoined on the second attribute.
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The nestjoin operator as defined above can be used for the transformation of two-block
select expressionswith arbitrary predicates between blocks. The simplified version of the
two-block select query:

olz: P(z,Y')](X)) with Y = o[y : Q(z,y)](Y)
is transformed into the nestjoin expression:

: P'(X A Y

mx(olz I z,y:Q(2,y)ys )
Inthe nestjoin operation, for eachtuplexz € X theset of tuplesy € Y isrestricted accord-
ing to predicate . In the selection, the nestjoin result is restricted according to predicate
P'. Predicate P hasto be adapted by substituting z[ X] (nestjoin tuple z projected on its
X attributes) and z.ys (the subquery result as attribute of nestjoin tuples z) for x and Y,
respectively, i.e. P' = P(z,Y")[2[X]/z, z.ys/Y']. A projection on the attribute values
of X completes the computation.

The nestjoin operation can be used to process queries with nesting in the select- or
wher e-clause. Queries having subqueriesin the select-clause often denote nested results,
S0 processing by means of the nest join operation will be appropriate. The general format
of aquery with nesting in the select-clauseis:

select F(z,Y")
with Y’ = select G(z,y)
fromyinY
where Q(z,y)

from z in X
where P(z)

Assume function G and predicate P are identity, then in the algebrawe have:
afz : F(z,Y")](X)) with Y’ = o[y : Q(z,3)](Y)

which is equivalent to:
alz: F')(X A Y)

z,y:Q(2,y);ys
in which function F' is adapted by performing the necessary substitutions:
F' = F(z,Y")[2[X]/z, 2.ys/Y"]

Above, we have given asimplified definition of the nestjoin operator. For the transfor-
mation of general nested querieswith deeper nesting levels, the nestjoin needs as an extra
parameter afunction to be applied to the right hand operand tuples [StAB94].

6.6.2 Materializing set-valued attributes

Below, we describetwo proposalsfor the materialisation of (set-valued) attributes, in com-
plex object models an operation presumed to occur frequently. In the first proposal of
[DeLa92], an agorithm was given without defining a corresponding logical algebra op-
erator; in [BIMGO3], both alogical and a corresponding physical algebra operation are
described.
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The PNHL algorithm

Below, we describe the algorithm of [Del.a92] for efficiently processing a nested expres-
sion in which a set-valued attribute is joined with a base table. Thisalgorithm can be con-
sidered as a new physical algebra operation. Though the correspondence between logical
and physical algebraoperatorsusually isnot one-to-one[Grae93], the question is whether
it is useful to define new logical operators for algorithms such as that of [DelLa92]. The
following query expresses a nested natural join (x) operation:

alz : ¢ except (parts = z.parts * PART)](SUPPLIER)

z,y:z.pid=y.pid

In[DelLa92], ahash-based algorithm called Partitioned Nested-Hashed-L oops(PNHL) al-
gorithm for computing this type of join operation is described and performance measures
arereported. Thea gorithm buildsahashtablefor those segmentsof operand PART that fit
into main memory and then probes operand SUPPLIER against each segment of the hash
table, thus building partial results. Partial results are merged in the second phase of the
algorithm. Compared to the unnest-join-nest processing method, the algorithm achieves
better performance. Comparing the PNHL algorithmwith traditional hash join, we seethat
inthe PNHL algorithm, only the flat table can be the build table (the inner operand PART
in the example), whereas in relational hash join usually the smaller operand is chosen as
build table.

The materialize operator

In object-oriented database systems the concepts of object identity and path expressions
play an important role. Object identifiers can be implemented either as physical or aslog-
ical pointers. Implementing object-identifiers as physical pointers opens the way to new
join implementation methods (pointer-based joins, [ShCa90]).

Also, object identifiers can be usefully employed to implement path expressions, i.e.
the user-defined relationships or links between object classes. In [BIMG93], path expres-
sions are represented by the operator materialize. Materialize is defined as a new logical
algebra operator, with the purposeto explicitly indicate the use of inter-object references,
i.e. to indicate where path expressions are used and where therefore algebraic transforma-
tionscan beapplied. Theoperator isimplemented by an access algorithm called assembly,
ageneralization of the concept of a pointer-based join.

6.7 Conclusion and future work

Asinrelational systemssupporting SQL, in OO datamodel ssupporting an SQL -likequery
language (OSQL), optimization of nested queriesis an important issue. A naive way to
handlenested queriesisby nested-loop processing (tuple-oriented query processing), how-
ever, it is better to transform nested queriesinto join queries, because join queries can be
implemented in many different ways (set-oriented query processing).
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In this paper, we have presented a general approach to optimization of nested OSQL
queries. In OSQL, nesting may occur in the where-, from-, and select-clause. An addi-
tional complication in complex object modelsis the support for iteration over set-valued
attributes. Thegoal istotransform nested OSQL querieshaving correlated subquerieswith
base table expressions as operandsinto join queriesin which base tables occur only at top
level. First, we try to rewrite nested expressionsinto relational join operations. Second,
we consider whether the unnesting of set-valued attributes is a possible (for theoretical
reasons) and aworthwhile (for reasons of performance) optimization option. Third, if the
previous steps do not give the result wanted, we use new operators especially defined to
improve performance. Finally, if none of the previousstepswork, we resort to nested-loop
processing.

We have shown that transformation of nested OSQL queries dealing with set-valued
attributesinto relational join queriesis not always possible. In many cases, the unnesting
of nested OSQL queries requires some form of grouping in the unnested, or join query.
Relational transformationtechniquesfor nested queriesrequiring grouping (nested queries
with aggregate functions between blocks) do not always give correct results; to improve
matters we have defined a new operator called the nestjoin operator.

Future work concerns a number of issues. First, we need a precise characterization of
nested queries requiring grouping or not. Second, for those queriesthat do require group-
ing, new implementation techniques have to be investigated. Third, new features charac-
teristic of OO datamodels, like object identity and path expressions, provide new oppor-
tunities to improve performance. At the logical as well as the physical algebralevel new
operators may be defined and implemented. Finally, the ultimate goal of courseisagen-
eral (syntax-driven) tranglation/optimization algorithmfor arbitrary nested OSQL queries,
including queries with multiple subqueries and multiple nesting levels.
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Abstract

Efficient query processing is one of the key promises of database technology. With
the evolution of supported data models—from relational via nested relational to object-
oriented—the need for such efficiency has not diminished, and the general problem has
increased in complexity.

In this paper, we present a complete, heuristics-based and extensible algorithm for the
trandation of object-oriented query expressions in avariant of OSQL to an algebra ex-
tended with specialized join operators, designed for the task. We claim that the resulting
algebraic expressions are cost-efficient.

Our approach builds on well-known optimization strategies for the relational model, but
extendsthem toincluderelationsand more arbitrary setsasvalues. We pay special atten-
tion to the most costly forms of OSQL queries, namely those with full subqueriesinthe
SELECT- or WHERE-clause. The paper builds on earlier results [StAB94, SABB94].

7.1 Introduction

Currently, the ODM G group isworking on the standardsfor object-oriented database man-
agement systems [ Catt93]; the ODMG proposal includes a description of an object query
language named OQL, which is an SQL-like language. How to implement such a lan-
guage, i.e. the subject of query processing in object-oriented database systems, is an im-
portant research topic. This paper studies the efficiency of query processing in such sys-
tems.

Weconsider thefirst phase of query processing, i.e. thetrand ation of an object-oriented
SQL -like language (OSQL) into an algebra supporting complex objects. We believe that,
as for the relational model, set-orientation is an appropriate query processing paradigm
for object-oriented modelsalso. Set operatorsallow to apply techniques such as sorting or
hashing to improve performance. The goal isto achieve atrandation that resultsin alge-
braic expressions that have good performance.

Important features of OSQL are object identity, inheritance, the presence of complex
objects, and the possibility to define methods. In our opinion, OSQL can be considered
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as an extension of SQL-like languages for extended nested relational models [PiIAN86].
Common features are the presence of complex objects and the orthogonality of language
design. In theimplementation of OSQL, precisely these features are of major importance.
The work presented here is meant to serve as the basis for the implementation of OSQL.
Specific object-oriented features can be handled as an addition or an extension. For exam-
ple, the presence of object identity allows to speed up join agorithms[ShCa90]. We re-
mark that, in our framework [BaBZ91], methods are written using OSQL instead of some
general purpose programming language. Hence, method callsin a query can be textually
substituted by their OSQL definition, allowing for additional optimization.

The nested relational model has been studied in depth. To our knowledge however,
atrandation from OSQL into nested relational algebra, comparable to the algorithm of
[CeGo85] for the translation of relational SQL queries, has never been published. A trans-
lation of nested calculusinto nested algebrawas made in [RoK S88], but that work is of a
more theoretical nature, paying no attention to implementation aspects. The algebra used
is aminimal extension of relational algebra, not suitable to be used for implementation
purposes.

We build on previouswork. In[StAB94], we showed that in complex object modelsit
isimpossibleto transform arbitrary nested queriesinto flat join queries. Asasolution, we
introduced the nestjoin operator. In [SABB94], we described ageneral approachto handle
nested queries; here, we are more concrete and present a trandlation algorithm. Related
to our work is that of [CIM093], in which the optimization of nested O,SQL queriesis
discussed.

In Section 7.2, we briefly describe the language used. In Section 7.3, we discuss the
problem of trandating OSQL in more detail. The presentation of this paper is one of step-
wiserefinement. First, we show in Section 7.4 that anested OSQL expression can betrans-
lated into an expression akin to the project-sel ect-product form of the relational model.
Theresult thus obtained is very inefficient, and must be optimized. We try to obtain better
results by using better trandlation rules. Next, in Section 7.5, the main steps of the algo-
rithm aredescribed, and the basi c set of rewriterulesand aninitial rewrite strategy isgiven.
It becomes clear that, in order to obtain an efficient result, (multi-variable) parameter ex-
pressionshaveto be split. Asit turnsout, theway expressionsare split strongly determines
the outcome of the transformation, given afixed rewrite strategy. Heuristics are needed to
guidethe process of splitting expressions; these are presented in Section 7.6. A new, again
fixed, rewrite strategy is presented. However, we are forced to conclude that, due to the
possible complexity of nested expressionsin OSQL, afixed rewrite strategy does not suf-
fice. The unnesting procedure (and therefore the precise way of parameter splitting) has
to be guided by a (heuristic) cost model that weighsthe costs of the variousjoin operators,
taking into account the level of nesting, as well as the operand types. The search spaceis
determined by the various join links that are present between iterator operands. In Sec-
tion 7.7, some extensions are discussed, and in Section 7.8, we compare our work with
that of others. Section 7.9 gives conclusions and discusses future work.
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7.2 Prediminaries

We work within one language. The type system of our languageisthat of the nested rela-
tional model, extended in the sense that, besides relation-valued attributes, arbitrary set-
valued attributes are allowed as well. The language used is a combination of SQL-like
constructs which allow for nesting and pure al gebraic operators such as set operators and
join. Below, we give the definitions of the main operators used in this paper.

Collect Tz : f(x) | p(a)](e) {f(2) |z € e A p(a)}

Semijoin e X e {z1 |21 €e1 ANJzy € e3 0 p(z1,22)}
m17m25p(ﬂ71,ﬂ72)

Antijoin e > €2 = {z1|z1 €e1 A Bzy € e3 0 p(z1,22)}
31732513(971,972)

Negtjoin e A ea = {rt+t+ta=X)|z;ee1NX =

z1,2z2:f(z1,22)|p(z1,22)50

{f(z1,22) | 22 € €2 Ap(z1,22)}}
Thecollect operator I' isjust asyntactic variant of the SEL ECT-FROM-WHERE construct
of SQL:

SELECT f(z) FROM z IN e WHERE p(z) = T'[z : f(z) | p(z)](e)
We have two special forms of I'-expression:
1 Tz : f|truel(X) = afz : f](X) whichisalso known as the map operator, and
2. Tz : z | p|(X) = o[z : p|(X) whichisalso known as the selection operator.

The nestjoin operator was introduced in [StAB94]. The operator is a combination of
join and grouping and was introduced to avoid problemswith dangling tuples. Parameters
of the nestjoin operator are apredicate p, afunction f, and alabel a. Eachtuplein theleft-
hand join operand is concatenated with the unary tuple (a = X); the set X consists of the
right-hand operand tuples that satisfy p, modified according to function f.

In addition to the operatorslisted above, we havethe standard set operatorsunion, dif-
ference, and intersection, the tuple constructor (a; = ey, ... ,a, = e,), tuple projection
z[L], which isdenoted as z 1, projection 7, join X, nest v and unnest u, etc. Predicates of
the language may be arbitrary Boolean expressions, involving set comparison operators
and quantifier expressionsdz € X epandVz € X o p.

In this paper, capitals X, Y, Z are used to denote table expressions, i.e. base tables or
set expressionswith base table operandsonly. The expression F'V (e) standsfor the set of
free variablesthat occur in some expression e.

Operators collect, select, map, and quantifiers 3 and V are called iterators. In transa-
tion, the goal is to remove nested iterator occurrences as much as possible, by rewriting
into joins. We give some example expressions:

Example 7.1 Nested expressions
1l olz:3y €Y ez.a=y.a](X)
2 Tz:z.alz.cCaly:y.al(Y)(X)
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3 afz:{a=gz.a,c=T[y: y.c|z.a=y.a](Y))](X)
4 afz:Ty:z.a+y.a|yb=1(Y)|(X)

The top level collect operator (or, comparably a map or select operator) contains nested
iterators 3 and T', either in the predicate or in the function. Nested expressions as shown
above express a pure nested-loop execution strategy. By rewriting into join expressions,
other implementation options come within reach:

Example 7.2 Join expressions
1. X X Y

z,y:x.a=y.a

2 Tv:v.a|z.cCoys|(X ﬁ aly :y.a](Y))

3. afv:{a=v.a,c=vys)|(X z’y:y.c‘aﬁ:y.a;ys Y)
4. av:v.ys|(X A oly : y.b=1)(Y))

z,y:x.aty.a|true;ys

For the unnesting of an existential quantifier we may use the semijoin operator. The other
examples concern expressions that cannot be transformed into flat relational join queries;
we use the nestjoin operator.

7.3 Approach

Following relational tradition, we assume athree-level architecture of user language, |og-
ical algebra, and physical algebra. Query processing then consists of the following steps:
trangdlation into the logical algebra, logical query optimization, the generation of an ac-
cess plan (trandlation into the physical algebra), and query execution [Grag93]. As said,
we consider the first phase of query processing: the trandation of OSQL into the logical
algebra.

The goal in trandating OSQL into the algebrais two-fold, namely (1) to obtain set-
orientation, and (2) to achieve an efficient trandation. Our first goa is motivated by the
work doneintherelationa context. SQL languages offer the possibility to formulate nes-
ted queries, i.e. queries that contain subqueries (nested query blocks). In the relational
model, the subquery operand is a base table or another subquery. In the trandation to
relational algebra, subqueries are removed by transforming the nested query into ajoin
query. Transformation into join queries is advantageous because the join can be imple-
mented such that its performance is better than pure nested-loop execution expressed by
a nested query. Also for nested relational and object-oriented systems, the set-oriented
paradigm seems appropriate. Though navigation has been considered as the prevailing
method to access object-oriented databases in the past, recently more attention has been
paid to set-oriented access methods, like pointer-based joins [ ShCa90] .

Our second goal originates from our belief that the actual trandation into the logical
algebrastrongly influences performance. In our opinion, query optimization should not be
restricted to the phases of algebraic rewriting and plan compilation; optimization should
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play arolein all phases of query processing. Simple, standard agorithms for trandating
the user language (either SQL or calculus-like) into the algebra may result in very ineffi-
cient expressions. Theinefficiency introducedin thetrandation phaseisassumedto bere-
ducedin the phaseof logical optimization. Thisisquiteahardtask, becausein apurealge-
braic context, in which information about the original query structureis scattered through-
out the expression, it becomes difficult to find the proper optimization rules and to control
the sequence of rule application [Naka90]. To support this claim, we invite the reader to
transform the expression:

(o2 : p@I(X)x Y)U(X X Y)+Y

into:

X —olz: —p(2)](X) X Y

z,y:—q(z,y)

using algebraic rewrite rules only. Both expressions are trangl ations of the expression:

olz:Vy €Y ep(z) Vq(z,y)|(X)
Thefirst uses division to handle the universal quantifier, the second set difference. In our
opinion, it is better to try to achieve a‘good’ trandation right away than to try to rewrite
inefficient algebraic expressions afterwards.

The main cause of the problems that have to be solved is the presence of set-valued
attributes. In a language like OSQL, arbitrary nesting of query blocks may take place,
in the SELECT- as well as in the WHERE-clause. The operands of nested query blocks
may be base tables or set-val ued attributes (or other subqueries); thetwo formsof iteration
may aternate in arbitrary ways. The goal in trandation is to achieve set-orientation, i.e.
to remove nested iteration as much as possible. Nested iteration can be removed in two
different ways:

Unnesting of expressions Unnesting rules may be applied either to the top level expres-
sion, moving nested base table occurrences to the top level, or to nested expres-
sions, introducing nested set operations with base table operands and/or set-valued
operands.

Unnesting of attributes Set-valued attributes can be unnested using the operator p, and
nested later on, if necessary, using v.

We give an example. Consider the expression:

olz:dyeYeye z.c(X)
or, equivalently:

ole:Jy €Y edv € z.coy.d=nr0.d(X)
Attribute ¢ of X is set-valued; we assume that both base table Y and attribute ¢ are unary
tables with only one attribute d. Below, we discuss some possibilities for the trandlation
of the above expression.

The first option is to leave the expression as it is, adhering to a simple nested-loop

execution strategy. Second, for thetrandation of existential quantification we may usethe
semijoin operator, resulting in:
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X X Y

z,y:ycx.c
Basetable occurrenceY ismovedto thetop level. However, the result containsacomplex
joinpredicate, i.e., apredicatethat concernsnon-atomic attribute comparisons, and present
join implementation techniques are not capable of handling such predicates. Third, we
may introduce a nested semijoin operation:

olz:Iy e (Y X z.c) o true](X)
y,v:y.d=v.d

Instead of performing ajoin between basetables X and Y, alocal join isexecuted for each
tuplexz € X. Thefourth and last option is to flatten attribute ¢ by means of the unnest
operator u. Theresult thenis:
Vige(pe(X) ~ x Y
z,y:x.d=y.d

Depending on the expression concerned, one or moreoptionsmay be appropriate. Clearly,
acost model is needed to compare the performance of the various options, if applicable.
In this paper, we do not consider the option of attribute unnesting; it can be treated inde-
pendently and easily incorporated into our transformation algorithm.

7.4 Trandation into nestjoin expression

In this section, we show that any base table occurrence can be moved to the top level by
trangdlating nested expressions into nested product expressions. A nested product expres-
sion can be looked upon as the equivalent of the relational project-select-product expres-
sion. A nested product expression, just like its relational equivalent, is highly inefficient;
it can be considered as the Most Costly Normal Form [KeMo093]. Instead of trying to op-
timize the algebraic expression, we try to find better trandlation rules.

Infurther reading, it may be of help torealizethat we ssmply draw the anal ogy between
the trand ation of relational languages and that of OSQL. Below, we shortly describe the
procedure followed in [Codd72] in trandating relational calculusinto relational algebra.
Thereduction algorithm of Codd takes asinput an al phaexpressionin which the predicate
isin Prenex Normal Form (PNF). First, the Cartesian product of base tablesinvolved in
the query isformed; next the Cartesian product is restricted according to the predicate that
isthe matrix of the PNF expression. Finally, projections and division operators are added
to take care of quantifiers3 and V, respectively. In the phase of logical optimization, the
Cartesian products are removed as much as possible by pushing through selections, mod-
ifying thejoin order, etc.

In our language, we have at our disposal the complex object equivalent of therelational
Cartesian product, namely the nested Cartesian product, that consi stsof anestjoin operator
with join predicate true and nestjoin function identity:

X A Y=Xx{{a=Y)}
z,y:y|true;a

A product expression X A, .y 1true;q Y IS abbreviatedas X A, Y. Also, if the join
predicate is true or the join function is identity, they may be omitted: X A, .y pa Y IS
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abbreviated as X Ay ypia YV, aNd X A, 4 fitruesa Y 8 X Agyipia Y2 In the footsteps
of relational tradition, a nested OSQL query can be transformed into an expression that
consists of a sequence of operationsthat work on the nested Cartesian product. The opti-
mization objective then isto push through operations (not just projections and selections).

741 Example

Consider the following two-block query:

SELECT z

FROM z IN X

WHERE z.c C SELECT y.a
FROM y INY
WHERE y.b = z.d

In [StAB94], we have shown that this query cannot be trandated into aflat join query;
grouping is needed. In our syntax, the corresponding expression is:

Iz:z|z.cCly:y.al|yb==zd(Y)](X)

Transformation of the above nested expressioninto acollect operation on the nested Carte-
sian product is easy and resultsin:

Iv:vx |vx.cCTy: y.a|yb=vx.d(vys)](X AY)
ys

In SQL syntax thisis:

SELECT vx
FROMvINX AY

ys

WHERE vx.c C SELECT y.a
FROM y IN v.ys
WHERE y.b = vx .d

To obtain anested product expression, the nested product of X and the (uncorrel ated) sub-
query operand Y isformed. In the original collect expression, now having as operand the
nested product instead of table X, the expression Y is replaced by the newly formed set-
valued attributeys. Inaddition, the occurrencesof outer loop variablez must be adapted to
account for the fact that the outer loop no longer iterates over X, but over the nested prod-
uct that has an additional attribute. The expression vx deliversthe original tuple value of
z. Notethat vx .a, with a an arbitrary label, is equivalent to v.a.

Of course, left as it is, the above transformation is no real improvement; the nested
product expression must befurther optimized. For example, operationsapplied to the new-
ly formed set-valued attribute may be applied during the nestjoin operation itself:

Iv:vx | v.e Coys|(X A Y)

z,y:y.aly.b=z.d;ys

In SQL syntax we have:

1Because a predicate is a function too, this convention may be confusing; we assume that the type of the
nestjoin parameter is clear from the context.
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SELECT vx
FROM v IN X A Y

z,y:y.aly.b=z.d;ys

WHERE v.c C v.ys

The subquery result is computed in advance, and stored as the set-val ued attribute named
ys. Below, we visualize the transformation:

Rewriting example 7.1 Unnesting
subquery
Mz:z|z.cC i"[y ty.alyb= zd](Y)‘](X) =
Tv:vx |v.eC vys](X

~~

z,y:y.aly.b=2.d;ys
result

The above optimized nestjoin expression can be implemented more efficiently than
the original nested expression that contains the subquery and expresses a nested-loop ex-
ecution. Like the regular join, the nestjoin operation can be implemented using indices,
sorting, hashing, or whatever implementation technique that is available and profitable.?

7.4.2 General rule

We have the following general equivalencerule:

Rule7.1 Transformation into nested Cartesian product
Iz: E(z,Y)|(X)=T[v: E(vx,v.ys)|(X AY)
ys

Theleft-hand side of the equivalenceaboveisacollect expression, inwhichforeachz € X
some expression E isevaluated. E corresponds to some parameter expression f | p; be-
causeit isirrelevant whether Y occursin f or in p, we may abstract from the form of the
parameter expression. In E, we find occurrencesof loop variable z and some uncorrelated
subquery Y'; thisisdenoted as E(z, Y'). After having formed the nested product of X and
Y, we have to perform some substitutions in the original collect expression. Loop vari-
able z isreplaced by afresh variable v, the occurrencesof z in E arereplaced by thetuple
projection vx, and the occurrencesof Y in E arereplaced by the expression v.ys, with ys
alabel that doesnot occurin X. All thisisdenoted as E(vx, v.ys). Below, we give some
example applications of therule.

Rewriting example 7.2 Transformation into nested product
e az:zec—Y]|(X)=av:ve—vys)(X AY)
ys

e afz:z.c—oly:y.a=1)(Y)](X) =av:v.ec—vys](X ﬁ oly:y.a =1](Y))

eofz:FyecYeza=ya|(X)=T[v:vx |y Evysoeva=ya|(XAY)
ys

230me restrictions hold, though, because the nestjoin operator is not commutative, because its output is
structured.
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7.4.3 Optimization of the general rule

Asremarked, anested product expression does have not especially good performance. We
haveto find better trand ation rules; below, we present one such rule: therulefor unnesting
a collect nested in another collect.

Rule 7.2 Unnesting collect within collect
Plz: E(z,Tly: £ | pl(Y)I(X) =T : E(ux,vys)[(X A Y)

z,y:f|piys

Again, for each z € X, someexpression E isevaluated. E contains occurrencesof z and
anested collect expression Ty : f | p|(Y). It isindifferent whether the subquery occurs
inthe predicate part of E or inthefunction, meaning that the rule can be used for removing
subqueriesfromthe WHERE- aswell asfrom the SELECT-clause. The same procedureas
described aboveisfollowed, forming the nestjoin of X and Y, and performing the neces-
sary substitutions. Theexpression that isthe parameter of the nested collect, i.e. f | p, now
becomesthe nestjoin parameter expression; instead of anested Cartesian product, we have
atrue nestjoin operation. An example application of this rule was given in Example 7.1.
In Section 7.5.2, we discuss the types of join predicates and functions allowed.

Transformations may not introduce free variables. If the aboveruleis applied on the
toplevel, thenit must hold that the nestjoin predicate and function contain no freevariables
other then the nestjoin variablesthemselves; if theruleisapplied at nested levels, variables
from higher levels may occur free in function and predicate.

Of course, the problem of achieving atrand ation, and an efficient onetoo, isnot solved
by giving the above rules. Many issues remain to be discussed. For example, we have
to decide what unnesting strategy should be followed, we have to consider expressions
containing quantifiers etc.

7.4.4 Why isanestjoin better than a nested loop?

Or, stated differently: how to implement the nestjoin such that the performance of a nest-
join expression is better than that of the corresponding nested-loop expression, that pos-
sibly isimplemented with loop optimization methods such as caching, the use of indices,
etc. The answer to the above question consists of two parts:

e Eachindividual nestjoin operator such that its performanceis better than the perfor-
mance achieved by means of nested-loop execution.

¢ To havenestjoin sequencesinstead of nested expressions offersadditional optimiza-
tion opportunities.

First, a nestjoin operator can be implemented efficiently. If an (atomic) nestjoin pred-
icate is present, and the nestjoin function is identity, the nestjoin can be implemented as
a modification of implementation methods for the regular join. Any join algorithm that
has an output ordered according to the left hand operand tuple valuesis suitable to be used
for the implementation of the nestjoin. The only difference with relational join liesin in
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the structure of the output—in the nestjoin, each left-hand tuple is concatenated with the
set of matching right-hand operand tuples. If afunction is present as well, then still any
suitable join algorithm can be used to retrieve the tuples needed, and the function values
can be computed in a separate intermediate step between the execution of the join and the
creation of theresult tuples, just like additional selections and projection can be computed
after the join, by means of a single physical algebra operator.

Also, if thenestjoin predicateismissing (equivalent to true), but thefunctionis present
(not equivalent to identity), the nestjoin can beimplemented efficiently. The use of indices
and caching of (partial) results enables to avoid duplicate removal and duplicate compu-
tations. Consider for example the expression:

X A Y
2,y:x.a+y.b|true;ys
If an index exists on attribute b of table Y, an index-scan suffices to retrieve the attribute
values of b.

Second, the use of (nest)joinsinstead of nested expressions offersadditional optimiza-
tion opportunities, because of the presence of intermediate results, which can be optimized
independently. Consider the nested expression:

alz:aly:alz:z.a+y.b+ 2.c)(2)](Y)(X)

In a pure nested-loop execution, first variables z, y, z are bound and then the innermost
map function is evaluated. The use of indices and caching of (partial) results enables to
avoid duplicate removal and duplicate computations. But to do this, i.e., to implement
nested queries with the use of indices, caching, or even other access methods, causes a
heavy administrative overload, which is just the problem that is solved in the trandation
into an algebraic join expression. Nested expressions allow for the use of multi-variable
expressions (predicates or functions), and nestjoins, which are binary operators, do not.
(Nest)joinsallow for the construction of partial resultsthat are closed, i.e. that do not con-
tain free variables (at least, when occurring at the top level). Additional access methods
can be used to speed up the evaluation of these intermediate results. Trandation into an
algebraicjoin expression can belooked upon as a divide-and-conguer approach to the task
of efficient evaluation of a nested expression.

7.5 Outlineof thealgorithm

In this section, we outline the basic steps of our trandation algorithm. The discussion is
restricted in that we consider nested iterators only; the operands of these may be either
set-valued attributes or tables. We do not pay attention to nested occurrences of set (com-
parison) operators.

Theinput to the trandation is a collect expression [z : f | p](e). Recall that the col-
lect isthe syntactical equivalent of the SQL SEL ECT-FROM-WHERE construct. The ex-
pressions f, p, and e may be arbitrary, containing other collects and/or quantifier expres-
sions. Thegoal intrandation isto remove nested collectsand quantifiersby rewriting into
join operators. We want to achieve an efficient translation, i.e. we try to avoid Cartesian



142 7. Trandating OSQL Queriesinto Efficient Set Expressions

product as much as possible, we try to push through predicates and functions, and give
preference to cheap operators, given achoice.
The basic rewrite algorithm consists of the following steps:

1. Standardization. Standardization involves composition and predicate transforma-
tion.

2. Trandation. In this step, subqueries are removed from parameter expressions by
rewriting nested expressionsinto set expressions.

These steps are described in more detail below.

75.1 Standardization

The input to the trandlation is an arbitrary collect expression 'z : f | p](e). In compo-
sition, collect operands and quantifier range expressions that are iterator expressions are
transformed into table or attribute expressions. Composition means the combination two
iterators into one; in decomposition one iteration is transformed into two separate iter-
ations that each perform part of the work. Asin the relational context, composition is
needed because the user/system-prescribed order of operations (evaluation of predicates
and functions) is not necessarily the most efficient. In addition, composition may offer
additional optimization opportunities.
We deal with the threeiteratorsT', 3, and V, so we have the following rules:

Rule7.3 Composition

1 Tz : f(2) | p(2)](Tlz : g(z) | ¢(2)](X)) =Tz : f(9(=)) | p(g9(2)) A q(2)](X)

Note that the right-hand side contains the common subexpression g(z).
2. dz €Tz : f(z) | p()|(X) o q(z) =3z € X e p(z) A q(f())
3. Vz €T[z: f(z) | p(2)|(X) o q(z) =Vz € X o —p(z) V q(f(z))

The output of the phase of composition is a possibly nested collect expression in which
the operand of each iterator is either abasetable, a set-valued attribute, or a set expression
(union, product), but not an iterator expression.

In the relational context, predicates usually are rewritten into Prenex Normal Form
(PNF). After transformation into PNF, the matrix of the PNF expression can be optimized
[JaK084]. However, in [Bry89], it is proposed to use another normal form for predicates,
namely the Miniscope Normal Form (MNF), in which quantifier scopes do not contain
subexpressionsthat do not depend on the quantifier variableitself. Allegedly, MNF allows
for abetter trandation, i.e. atrandation with better results. Aswewill see, rewriting into
MNF is one example of the generally beneficial rewrite strategy to removelocal constants
from iterator parameter expressions; therefore, we rewrite into MNF.
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7.5.2 Trandation

In this section, we describe the actual translation. We present abasic set of rewrite rules
for the trandlation of (nested) expressions. The goal in trandation is (1) to remove nested
iteration, and (2) to push through operations (predicates and functions). It is important
to note that we simply follow relational tradition, in which nested expressions are trans-
formed into product expressions, and selections and projections are pushed through. In a
complex object model, besides the standard Cartesian product, we need the nested Carte-
sian product, and instead of pushing through projections, we are concerned with pushing
through arbitrary functions. Consequently, thetransformation rulesare more complex than
in the relational context.

Basic set of equivalencerules

Our approach to trandation may be characterized as heuristic [Naka90]. The trandation
algorithmis presented in the form of a set of rewrite rules; trand ation proceeds by means
of pattern matching. For each syntactic construct we have an ordered set of rewrite rules
that consists of a basic rewrite rule, and some (zero or more) rulesthat are applied in pri-
ority to the basic rule. Depending on the syntactic form of the query under consideration,
theremay exist transformationsthat givebetter results (according to some cost model) than
the standard transformation. For example, in therelational model, universal quantification
usually ishandled by meansof division. However, in some cases the antijoin operator may
be used, resulting in an expression that has better performance. Whenever a better trans-
lation rule, or more efficient logical operators(e.g. [DeLa92, BIMG93]) arefound, the set
of rewrite rules can be easily extended. In general, the rules presented may be applied to
the top-level expression, as well as to nested expressions. In some cases, multiple rules
can be applied to multiple (sub)expressions, so we have to provide a rewrite strategy.

In this section, we give rules for unnesting quantifiers nested within collects, and for
unnesting collects nested within collects. In theory, the only condition placed on trans-
formationsis that they do not introduce free variables. However, we require that (1) join
predicates consist of atomic terms only, (2) that both join variables occur freein the join
predicate, and (3) that nestjoin functions do not contain base table occurrences. Atomic
terms are comparisons between attribute values and/or constants of atomic type. In prin-
ciple, any predicate can be used asjoin predicate. For example, itisperfectly legal towrite
X Ny yiz.aey.c Y, OF &VeN X Xy o0 aeTziz|p(e,y,2)](2) ¥ - HOWever, present join imple-
mentation techniquesare not capabl e of handling complex join predicates; joinswith com-
plex predicates probably will be handled by nested-loop execution after all.

Whenever quantifiers occur in predicates between blocks, we apply the rewrite rules
presented below, trandating nested expressions with quantification into relational join
(product, join, semi-, or antijoin) operations. In case it is not possible to apply the first
aternative, we use the second, and so on.
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Rule 7.4 Unnesting existential quantification
LTz:f|IyeYep(z,y)|(X)=T[z: f|true](X x YY)

z,y:p(z,y)
2. Tlz: f(z) |y € oly: p(z,y)|(Y) e q(z,y))|(X) =
[lv: f(vx) | qvx,ov)) (X X Y)

z,y:p(z,y)

3. Tfz: f(2) | Fy € Y e p(z,y)|(X) =T[v: f(vx) [ p(vx,vr)|(X xY)

Rule 7.5 Unnesting universal quantification

LTz:f|VyeY ep(z,y)|(X)=T[z: f|true](X > Y)

z,y:=p(z,y)

2 Tz:f|VyeYep(z,y)(X)=Tlz: f|true](T[v:v | plvx,vy)|(X xY))+7Y)

Therules given below were discussed in the previous section. In caseit isimpossible
to apply thefirst, we try the second.

Rule 7.6 Unnesting collect

1 Iz: E(z,Ty: f|p](Y)](X)=T[w: E(vx,v.ys)|(X A YY)

z,y:flpiys

2. Iz : E(z,Y)|(X) =Tv: E(vx,v.ys)|(X ﬁ Y)

During trandation, operations are pushed through whenever possible (and allowed,
considering our regquirementswith respect to join predicates and functions). The rulesfor
pushing through selection predicatesto standard relational join (product) or join operands
are smple and well-known or derived easily; we do not give them here (see for example
[EINa89] for rules concerning products). Below, we give rules for pushing through oper-
ations to nestjoin operands and to the nestjoin itself.

Rule 7.7 Pushingthrough operationsto nestjoin (operands)

1. Toleft operand
Iv:Ewx)[(X A Y)=Tv:E(@))(X) A Y
z,y:9]q;ys z,y:9/q;ys
Inthisrule, E isan expression referencing only attributes of the left-hand join operand X .
In case the collect does not modify values z € X, but restricts or extends them, it may
be evaluated before the join. For example, E may correspond to a simple selection, asin
vx | vx.a = 1, 0orinvolveacollect, asinvx except (c =T'[z: z | vx.a = z.a](Z)).

2. Toright operand

I[v: E(e(v.ys))|(X . :gA‘q;ys Y)=Tv: E(vys)|(X A eY))

z,y:9|q;ys

Inthisrule, e is an expression with subexpression v.ys, that contains no free variables other
than v in v.ys. Expression e may be computed before the join, provided that expression e
does not modify valuesy € Y, but restricts or extends them. For example, e may involve a
selectionT[y : y | p(y)](v.ys), or ajoinv.ys X Z, but not asemijoin Z x v.ys.



7.5. Outlineof thealgorithm 145

3. Tothejoin itself
Ilv: BTy : f(vx,y) | p(ox, 1)) (vys)](X A Y) =

z,y:9(z,y)lq(z,y);ys
Tv: E(v.ys)]|(X
z,y:f(z,9(x,y))|p(z,9(2,y))Aq(z,y);ys

A function applied to the new nestjoin attribute may be applied during the nestjoin operation
itself. The rule as given above expresses pushing through in its most general form. In our
rewritings, it is assumed that the final nestjoin predicate consists of atomic terms only, and
that the nestjoin function does not contain table expressions.

Rewrite strategy

In the first instance, the top level iterator is a collect expression that possibly contains
nested iterators with base table or set-valued operands. The rules given above are gen-
erally applicable, so they may be applied at will: at nested levels, to expressionswith base
table as well as set-valued attributes etc. The only ‘natural’ restriction is that it is not al-
lowed to introduce free variables; recall that we have made some other restrictions too.

In the trandation, whenever possible, we try to apply the rules for pushing through
predicates and functions. In unnesting, we use a top-down strategy, recursively joining
outermost iterator operand with next inner, if possible. We first consider pairs of table
expressions, then pairs of table expressions and set-valued attributes, and finally pairs of
set-valued attributes. In other words, first we try to join the top level operand, whichisa
table, with each of the nested base table occurrencesin the query. Next, we take the next
inner iterator operand that is a base table, and follow the same procedure. We repeat this
threetimes, first trying to join set-valued attributes and tables, next joining tables and set-
valued attributes, and finally pairs of set-valued attributes. After each introduction of a
local join, we return to the top level. In case there is a choice, with multiple subqueries,
the order of unnestingisarbitrary. We avoid Cartesian products: these areintroduced only
if everything else has failed. The advantage of atop-down unnesting strategy is that the
level of nesting in the algebraic expression is kept to a minimum.

7.5.3 Splitting expressions

We now investigate the effect of our initial rewrite strategy by considering the translation
of the following expression:

alz : o except (c = aly : p(a,y) A3z € Z o q(z,2) Ar(y, 2)](V)](X)

We assumethat predicatesp, ¢, and r areatomic, andthat X, Y, and Z arebasetables. The
result of thequery isthe set of tuplesz € X, extended with anew set-valued attribute ¢ that
containsall tuplesy € Y that satisfy the predicate, which involves anested quantification.
For simplicity, we omit the except construct, so that the result is a set of sets:

afz:oly :p(e,y) A3z € Zeg(z,2) Ar(y, 2)|(Y)](X)

Givenour set of rewriterules presented above, for unnesting of quantifiersand collects
together with the rules for pushing through operations to join (operands), often the only
optionisto introduce (nested) Cartesian products, al so because predicatesarein MNF and
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therefore the rules for unnesting quantification are not always applicable. W.r.t. the above
expression, the selection predicateis not atomic, so we cannot use the rulefor unnesting a
collect (or equivalently, aselection or amap) and the quantifier cannot be removed because
it doesnot occur at thetop level. Beforewe can apply the unnesting rules, the predicatehas
to be rewritten. Splitting of expressions enables us to introduce joinsinstead of Cartesian
products. The rules used for splitting predicates are the following:

Rule7.8 Splitting predicates
L Tz f | pAd)(X) == Tl £ | dl(ole : p)(X))
2. T[z: flpVa(X)=Tlz: f|p(X)UT[z: f|q/(X)
3. dzeXepAg=Tz€ofz:p|(X)eq
4. 3z € XepVg=dz € XepVIz € Xeog

Expressions that denote function results can be split of aswell, using the rules:

Rule 7.9 Splitting functions

1. (8 Letz notoccur freein f outside of g(z), then:
Iz : f(g(z)) | p(2)[(X) = alz : f(2)]|(T[z : g(z) | p(2)](X))
(b) Let z not occur freein f outside of instances of g;(z), then:
Lz : f(g1(2),. .., gn(z)) | p(2)](X) =
afz: f(z.a1,...,2.an)](C[z : (a1 = g1(2), ... an = gn(z)) | p(2)](X))
2. Let X beatable, let labels a; not occur in the schema of X, and let z not occur freein p
outside of instances of g;(z), then:
Lz : f(z) | p(g1(2),... ,gn(2))](X) =
Ilv: f(vx)]| p(v.ai,...,v.an)](T[z:z except (a1 = g1(z), ... an = gn(z))](X))
3. (& Letz notoccur freein p outside of g(z), then:
dz € X ep(g(z)) =3z € afz : g(z)](X) o p(z)
(b) Let z not occur freein p outside of instances of g;(z), then:

JreX Op(g1(w),-- . ,gn(:t)) =
Jz ez : (a1 = 91(z),...an = gn(2)) | truel(X) e p(z.a1,...,z.an)

Note that for splitting a collect predicate we can only extend operand tuples because the
original values are needed for the eval uation of the function. The rulesthat deal with mul-
tiple occurrences of expressions in which the iterator variable occurs free correspond to
the use of the define-clause as proposed in [CIM093].

Below, we show that theway of splitting predicates (and functions) strongly influences
the outcome of the rewrite process, because it determines which unnesting rules can be
applied at some point in rewriting. We proceed with our example expression. First, we
split the selection predicate, and evaluate (atomic) predicate p before the quantification.
The quantifier scope is left asit is, and the result is an expression that contains a nested
semijoin operationwith one set-val ued and one base table operand. Thesemijoin predicate
isnot closed, i.e. variable v occursfreeinit.
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Rewriting example 7.3

alz :oly :p(z,y) A3z € Zeqg(z,2) Ar(y, 2)|[(Y)](X)

= afz:oly:3z€ Zeg(z,2) Ar(y, 2)l(aly : p(z, y)|(Y))|(X) (split)
= av:oly:3z € Zeg(vx,z) Ar(y, 2)](v.ys)|(X A Y) (unnest)

z,y:p(z,y)5ys
= av:v.ys X Z\(X A Y’) (unnest)
viz1a(vx,2)Ar(y,z) @,yp(a,y)iys
Itisnot allowed to join X A Y with Z at top level, because then the result would be a
Cartesian product, so we perform alocal join between attribute ys and Z.

Instead of leaving the quantifier scope asit is, it can be split as well, in two different
ways. Firgt, after having split the selection predicate, we may push through conjunct q.
Following the top-down unnest strategy, we then can join X with Y at the top level, and
next join the result with Z, also at thetop level:

Rewriting example 7.4

alz:oly:p(z,y) NIz € Zeog(z,2z) Ar(y,2)|(Y)](X)

= oafz:ofy:3z€ Zeog(z,z) Ar(y, 2)](oly : p(z,y)](Y))](X) (split)
alz:oly: 3z € oz : q(z,2)|(Z) ¢ r(y, 2)](o]y : p(z,y)](Y))](X) (split)

av:ofy:3z € oz : q(vx, 2)](Z) o r(y, 2)](v.ys)|(X A Y) (unnest)

z,y:p(z,y)iys

alw:ofy: 3z € w.zs e r(y, 2)](w.ys)| (X A Y) A Z)

zyp(zy)iys vizg(vx,z)izs
(unnest)
= oaw:wys x w.zs]((X A Y) A Z) (unnest)
y,2:7(y,z) z,y:p(2,y);ys v,2:q(vx,2)i28

The last step involvestheintroduction of alocal semijoin between set-valued attributes.

Alternatively, we can push through conjunct ». Again, X isjoined with Y at the top
level. Next, we cannot join the result with Z at thetop level because variabley occursfree
in the predicate of the selection with operand Z—we are forced to introduce alocal join
between attribute ys and Z.

Rewriting example 7.5

afz:oly :p(e,y) A3z € Zeg(z,2) Ar(y, 2)|(Y)](X)
= afz:ofy:3z€ Zeq(z,z) Ar(y,2)|(oly : p(z,y)|(Y))](X) (split
= afz:ofy: Iz €ofz:7(y,2)|(Z) e q(=,2)](o[y : p(z,y)|(YV))](X) (split)
= afv:oly:3Iz€oz:r(y,2)|(Z) e q(vx, 2)](v.ys)|(X m}y:pé)y);ys Y) (unnest)
= afv:Dw:wys | glvx,wz)](vys X Z)(X A Y) (unnest)

y,z2:r(y,2) z,y:p(z,y);ys

—_~ —

We remark that by means of relatively simple additional transformation rulesthe first
and the third result can be easily rewritten into the second, which is afully unnested ex-
pression, i.e. an expression that does not contain nested base table occurrences.
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In the previous rewritings, predicate p is evaluated before the quantification. Instead,
we can split the selection predicate such that the quantification is evaluated first. We do
not introduce a nested Cartesian product X A Y at the top level, because we want to
avoid Cartesian products. Instead, a nested regular join between Y and Z can be formed,
after pushing through conjunct r, which avoids to introduce a local join expression with
free variable. The result achieved then contains one regular join and one nestjoin, and no
nested join operators.

Rewriting example 7.6
afz :ofy : p(z,y) Az € Z o g(z,2) Ar(y, 2)|(Y)](X)
afe : oly : p(z,y))(oly : 32 € Z e q(z,2) Ar(y, 2)|(V)](X) (split)

alz : ofy : p(e,y)|(oly : 3z € alz : 7(y, 2))(2) » a(z, 2)](¥)I(X) (split)
ale : ofy : p(e,y)|(Tlw : wy | gla,wz)](Y ¥ 2))|(X) (unnest)
)

y,2:7(y,2)
= afviolyipex,les))(X A (Y M 2))(unnes)
z,wiwy [q(z,wz)ics y,z:7(y,2)
= av:v.es](X A Y X Z))(push)
z,wwy |p(z,wy )Aq(z,wz);cs y,2:7(y,2)

The latter result is essentialy different from the former. Instead of two nestjoins and one
nested semijoin, we have obtai ned an expression with one nest- and oneregular join. With-
out doubt, the two can berewritten into each other, but we do not immediately see how this
can be done easily—by means of one or two algebraic equivalence rules, like the follow-
ing:

Rule7.10 Join/nestjoin order

1. (X X Y A Z=X X Y A Z) (associativity)
z,y:p(e,y) v,z:2|r(vy,2);z8 z,v:p(e,vy) y,2:2|r(y,2);zs
2. Let 6 beeither X or A, then:
xX 0 Y 0 Z=(X 0 2 0 Y (exchange)
z,y:p(z,y) v,2:q(vx,2) 2,2:9(2,2) v,y:p(vx,y)

The conclusion isthat the outcome of the trandation is strongly determined by (1) the
set of rewrite rules that we have at our disposal, (2) the order of rule application. Given
our fixed rewrite strategy, the way predicates are split determines which unnest rules can
be applied; the syntactic form of the unnest rules, and also the restrictions posed on their
application require that predicates and functions are split.

The above observation is important. One could think that nothing is lost, because in
further algebraic optimization one expression can be easily rewritten into another, but this
is not so. Even in the relational model, the transformation of algebraic expressions that
contain arbitrary operatorslike set operatorsand division isadifficult task. For languages
that support complex objects, algebraic rewriting is even harder. The equivalence rules
are hard to find, and to find the proper order of rule application is even harder, because
the algebraic operators are more complex, and because we have to dea with nesting. For
the trandation from nested expression into more set-oriented ones, we haveto find proper
heuristics to guide the process. To find heuristicsis not easy either. One heuristic that is
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expected to be good is to evaluate cheaper predicates first. An atomic predicate presum-
ably isless costly than a predicate that contains quantification, so w.r.t. our example dis-
cussed above, predicate p should be evaluated before the quantification. However, in this
case, to evaluate the quantification before predicate p leads to an expression that cannot
be considered as a bad result at first glance.

7.6 Heuristic rewriting

We need heuristics to guide the transformation process. In this section, we present some
of the heurigtic rules that can be used to achieve a better translation. Many others can be
invented. Next, we present anew rewrite strategy, that prescribes how to use the heuristic
rules, and then we discuss the result, which still can be improved in many cases.

7.6.1 Heuristics

Given achoice, expressionsare split such that the cheapest (most restrictive predicate, less
costly function) expression part is evaluated first. Predicates and functions, either nested
or at the top level, can be classified on a pure syntactic basis according to the following
criteria:

1. Thenumber of variablesthat occursfree (constant, monadic, dyadic, multi-variable).
2. The presence of other iterators, i.e. the nesting level.
3. Thetype of theiterator operand (table or (set-valued) attribute subquery).

4. The number of subqueries present in the parameter expression (single or multiple
subqueries).

We present a nested expression that will serve as the leading examplein this section:
olz:3y €Y o3z e Z epi(z) Ap2(y) Aps(z,y) Apa(2) Aps(z,2) A pe(y, 2)[(X)

We alert the reader that we have chosen the above examplejust for illustration purposes—
it looks deceptively relational, but the same nesting pattern can be achieved with collects
instead of quantifiers. For the time being, assumethat X, Y, and Z are base tables and
that all predicates p; are atomic.

We note that the selection predicate isin PNF, and that the matrix of the PNF expres-
sions contains conjunctsthat do not depend on one or both quantifier variables. The pred-
icate thereforeis rewritten into MNF, as proposed in [Bry89:

oz : pi(z) A
Jy €Y ep2(y) Aps(z,y) A
3z € Z e pa(2) Aps(z,2) Ape(y, 2)|(X)

A comparable transformation that concerns a map operator is the following:
alz i afy:z.b+ybl(Y)(X) =alz:aly: z+y.b](Y)](a]z : 2.5](X))
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The subexpression z.b does not depend on the inner map variable y, so it can be evaluated
outside of the scope of y. The above transformation corresponds to the idea of pushing
through a projection. Even if attribute names occur at different nesting levels, projections
can be pushed through:

alz: {(a =z.a,c=afy:z.b+yb](Y)H](X) =
av:(a=v.a,c=afy:v.b+ ybl(Y)](a[z : (a = z.a,b = z.b)](X))

We see that in a complex object model, as in the relational model, it is only necessary
to preserve those attributes that are needed in subsequent computations. Subexpressions
of parameter expressions that are constant w.r.t. the corresponding iterator variable, i.e.
subexpressionsin whichtheiterator variable doesnot occur freeare called local constants.
We have afirst heuristic transformation rule:

Heuristicrule 7.1 Local constantsare removed from theiterator parameter expression
as much as possible.

To remove independent subformulas from parameter expressions, for predicates we use
the descoping rules (possibly others are needed too, see[Bry89]):

Rule7.11 DescopingLetz ¢ FV (p), then:
1 3zeXepAg(z,y) =pAJz € Xeog(z,y)
2. 3zeXeopVyg(z,y)=pVIz e Xegz,y)®

To obtain independent subformulas, the technique of quantifier exchange may be of help.
For functions, we use the rules for splitting of functions as given in Rule 7.9. Note that
w.r.t. quantifier scopes, independent subformulas can be removed completely. W.r.t. func-
tions, thisis not possible—in the above map transformation, the inner map till contains
thelocal constant z.

Second, another type of constant expression is one in which no variables from higher
levelsoccur free; thistype of expressionis called an global constant. Global constantsare
evaluated independently, which becomes possible by naming them by means of a local
definition facility:

olz: 3y € oly : p(y)]|(Y) ¢ ¢(z,y)](X) =
olz:y €Y' o q(z,y)](X) withY' = ofy : p(y)](Y)

Heuristicrule 7.2 Global constants are named with alocal definition facility.

SBecause variables are range-restricted, we have to take into account the possibility of empty ranges. The
correct transformation is:

if X = 0 then falseelsepV 3z € X o q(z,y)

For reasons of simplicity, we assume quantifier ranges are never empty.
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In [CIM093], a transformation called dependency-based optimization is described,
which is comparable to the transformations described above. In dependency-based op-
timization, subformulas are named with alocal definition facility, and then pushed out of
query blocks whenever possible. However, it is not precisely clear what type of subfor-
mulas are considered. Naming is mainly applied to path expressions, and it is not clear,
for example, how independent predicates are dealt with. In our approach, we removein-
dependent subformulasof maximum size, and for predicateswe prefer transformationinto
MNF above naming.

We return to our leading example. We notice two monadic conjuncts at the top level,
i.e. p1(z) and the quantifier expressionitself, and also two at anested level, namely p» (y),
and p4(z). Monadic expressions can be pushed through to the corresponding iterator ope-
rand by means of the rulesfor splitting predicates, thereby eventually creating global con-
stants that can be evaluated independently:

olz: y € aly : p2(y)|(Y) @ pa(z,y) A
3z € o[z : pa(2)](Z) e ps(z,2) A ps(y, 2)](o[z : p1(2)](X))

Heuristic rule 7.3 Monadic expressions are evaluated first, if possible.

An example of Heurigtic rule 7.3 that involves the map operator is the following:
alz:afy:zb+ybl(Y)(X) =alz:afy: z.b+ y](afy : y.b](Y)(X)

Again, the above example deals with pushing through a projection. Notice however, that
also very complex functions can be pushed through.

We made the assumption that predicate p; isatomic, so it seemsagood strategy to re-
strict operand X before evaluation of the quantifier expression. However, the quantifier
expression ismonadic aswell. Given achoice, it seems advantageousto evaluate expres-
sionsthat do not contain quantification before onesthat do, i.e. to evaluate expressionsin
order of their respective nesting level. Whenever the nesting level is the same, we may
choosefor arbitrary evaluation order, or invent some other heuristic rule.

Heuristicrule 7.4 Expressions are evaluated in order of nesting level.

So far so good. We have discussed constant and monadic expressions, and now we
haveto decidewhat to do with dyadic and multi-variable parameter expressions. Joinsare
binary operators, so dyadic expressions are candidates for join predicates and functions.
In our example expression, we notice dyadic conjuncts ps, ps, and pg that mutually link
the base tablesthat occur inthe query. Itistried to split multi-variable predicatesand func-
tionsas needed, i.e., as prescribed by the unnesting strategy. Whenever we investigate the
possibility of joining two tables A and B, we search for maximal closed expressions that
refer to attributes of A and B.

Heuristicrule 7.5 Predicates and functions are split as prescribed by the unnesting
strategy.
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In acomplex object model, splitting of multi-variable expressionsinto dyadic expressions
isnot alwayspossible. Intherelational model, predicates consist of atomic attribute com-
parisons only, and multi-variable selection predicates and also quantifier scopes can be
split into dyadic and/or monadic formulas, by means of decomposition for conjunction,
and the union or distribution of quantification for digunction. In the algebra, literals can
be moved around with great freedom, at least for sel ect-project-joinexpressions. Inacom-
plex object model, we may have functions as well as predicates, and splitting functionsis
not aways possible. Consider the three-variable expressions:

1L olz:z.a+ z.a =y.a](Z)
2. olz:z.aUz.a =y.a](Z)

Expression 1 can berewrittento allow for splitting off alocal dyadic constant of maximum
sze o[z : z.a — y.a = z.a](Z). We cannot apply such aruleto expression 2.

Nested collects can be removed independent from the nesting level, but quantification
can be removed only by joining adjacent operands, i.e., in which the one operand occurs
nested immediately within the other (or within a conjunction of predicates®). Because we
prefer flat joinsabove nestjoins, before starting the top-down unnesting procedure, wefirst
try to introduce local flat joins between base table expressions as much as possible. Itis
required that thelocal join expressionsare closed, to be ableto movethem to thetop level.
Given our example query from the previous section:

afz:oly:p(z,y) A3z € Z o q(z,2) Ar(y, 2)|(Y)|(X)
we note an existential quantifier nested within a selection. Therefore, we split the multi-
variable quantifier scope as needed, and first introduce alocal join between Y and Z:

Rewriting example 7.7

ale s oly : ple,y) A3z € Z 0 (e, 2) Ar(y, 2)](V)](X)
ale s aly : p(z,y) A3z € oz : (y, 2)](2) o a(z, 2)](V)](X) (split)
1

az :ov:p(z,vy) Aq(z,vz)](Y y)z:E?y)z) Z)|(X) (unnest)

Heuristicrule 7.6 Before starting the top-down unnesting procedure, we introduce
closed flat join expressions at local levels, if possible.

7.6.2 Rewritestrategy

We now summarize the foregoing in the following rewrite strategy:

e Whenever possible:

4For the introduction of ajoin, for example, we have the following extended rule:

Dlz: f(z) | t(T)t/\ Jy € oly : p(z,y)|(Y) 0 q(z,9))|(X) =

T[o: f(vx) | tvx) A glox,op)[(X X V)
z,y:p(2,y)
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Name global constants.

Remove local constants.

Push through monadic subexpressions, in order of nesting level.
Push through operationsto joins and join operands.

e Whenever a parameter expression contains nested iterators:

1. Introduce closed flat join operations at nested levels, whenever possible.

2. Unnegt, top down. First join tables, then tableswith set-valued attributes, and
finally set-valued attributes. After each local join, try global unnest again. To
enabletheintroduction of real joinsinstead of Cartesian products, split param-
eter expressions as needed.

The aboverewrite strategy isastarting point, i.e., in many casesit may be better to modify
the strategy in one way or another.

7.6.3 Optimal join order

Traditionally, determination of the join order is done cost-based. We stress that in a com-
plex object model with set-valued attributesthat supportsan algebrathat containsarichva
riety of (join) operatorssuch acost-based optimization may be hard to do. First, the proper
algebraic equivalence rules have to be found. Second, the process of algebraic rewriting
is very difficult to control. By means of heuristic trandation rules we try to achieve an
algebraic expression that has performancethat is not too bad right from the start.

The search spacefor an optimal join order isrestricted. First, links between tablesmay
be missing—we do not want to introduce Cartesian products. Second, iterator operands
may be tables, as well as set-valued attributes, which cannot be moved to the top level.
Whenever an iteration with an attribute operand is cast between iterators with table ope-
rands, the result may contain nested join operators. Also, the links between tables may
be of adifferent nature, i.e., predicate and/or function, and the creation of predicate links
between operands may be preferable to the establishment of function links. We want to
know what constitutes an optimal join order, from the viewpoint of logical optimization,
i.e. not taking into consideration physical database characteristics.

At the moment, we do not have the definitive answer to the question of optimal join
order. (Sub)expressions can be classified according to the criteria of (1) the specific op-
eratorsthat occur in it (2) the fact whether operators occur nested, or at thetop level, and
(3) the kind of operator operands, i.e. attribute or base table (expression). It seemsreason-
able to assume that:

e Set operators are better than iterator expressions.

e Partial joins (semi- and antijoin) are better than regular joins, that in turn are better
than Cartesian products. A flat join is better than a nestjoin.> Also, predicate links

5Thisisquestionable: anestjoin does not suffer from data replication, but is not commutative like the regular
join.
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are better than function links, and atomic links are better than complex ones.
e Top-level operations are better than nested ones.
e Table operations are better than operations on set-valued attributes.

But isanested semijoin better or worsethan atop-level join? The criterialisted above are
not orthogonal criteria, and have to be refined.

We notethat it is not alwayseasy to judge expressionson rel ative performancewithout
the use of amore or less detailed cost model. For example, returning to our latter leading
example, assume that operand Y is not a base table, but the set-valued attribute ¢ of table
X. We simplify our example:

olz: 3y € z.cops(z,y) NIz € Z e p5(z, 2) A ps(y, 2)](X)

The expression contains predicates that mutualy link all three iterator operands. Exis-
tential quantifiers may be exchanged to move the attribute iterator inside, but this is not
ageneraly valid strategy. We may choose to join X with Z at the top level, and then to
execute a nested quantification:

olv: 3y € z.cops(vx,y) Ape(y,vz)](X ™ Z)

@,2:p5(e,2)
Also, it is possibleto join table Z with attribute ¢ at alocal level:

olz: e (z.c X Z) e p3(z,vy) A ps(z,vz)](X)
y,2:p6(y,2)

Theformerislikely to bebetter than the second, becausein the second tuplesof Z arerepli-
cated for each matching tuple in attribute ¢, for each (set) value c. However, the perfor-
mance of both expressions depends on join methods used, join selectivities, the respective
cardinalities of join operands, etc. For illustration purposes, in Appendix C, we present a
computation of costsfor both expressions, assuming that both joins are executed by means
of anested-loop strategy.

7.7 Extensionsand optimizations
Extensionsto the framework given in this paper may concern the following issues:

1. Nested set operators with table and/or attribute operands.

2. Nested set comparatorswith table and/or attribute operands

We have required that join predicates consist of atomic attribute comparisons only.
However, in the past few yearswork has been done on the efficient implementation of set
comparison operatorsin join operators. For example, indexes can be used, either on set
elements themselves, or on sets as awhole [HePf94]. Another technique proposed isthe
use of signature files [IsK093]. To alow for set comparison operatorsin join predicates
is asimple extension of our general framework. Also, as pointed out in [SABB94], the
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rewriting of set comparison operators into quantifier expressions and/or exchanging the
order of quantifiers may enable the use of the quantifier unnest rules.

Also, work has been done for example on the efficient implementation of alocal join
between aset-valued attribute and abase table expression [ Del a92]. Asfar asweknow, no
work has been done yet on the efficient implementation of set operators. For example, the
expression: afz : z.c — Y](X) canbeevaluated by meansof nested-loop execution, using
astandard implementation method for the set difference operator, the set difference can be
rewritten into negated existential quantification, or some new implementation method can
be devised.

The unnesting procedure described above and the results achieved can be extended
and optimized further in many ways. For example, we have not considered how to deal
with quantification in collect functions, i.e. in the SELECT-clause. Orthogonality of the
language allows to write for example:

az:{(a=te.a,b=3y €Y ez.b=y.b)|(X)

7.8 Reated work

Relational SQL The work presented here follows that done on the trandation and opti-
mization of relational SQL. Basically, therearetwo waysof optimizing SQL: (1) the
rewriting of SQL expressions themselves[Kim82], and (2) trandation of SQL into
relational algebra, followed by algebraic rewriting. Relational algebraisapure set-
oriented language, which does not allow for nested expressions. The transforma-
tion of nested SQL queriesinto SQL join queriesis completely in analogy with the
transformation of SQL into relational algebra, either directly [CeGo85], or by us-
ing relational calculus as an intermediate language [Codd72]. The underlying idea
of all work mentioned above, and ours, is that nested-loop expressions should be
transformed into set expressionsthat do not contain nested operators. However, the
important differences are with the work presented here is that (1) we have to deal
with nesting in the SELECT-clause, which is not allowed in relational SQL, and
(2) the presence of set-valued attributes, which is non-relational aswell. SQL-like
languages proposed for complex object models usualy are orthogonal languages;
the problem of choosing an algebrafor, and of trandation into the algebraof such a
language is much more complicated.

Cluet & Moerkotte The work presented in [CIM093] and [CIM094] has much in com-
monwith ours. In[CIM094] abinary grouping operator isdefined that differsdlight-
ly from the nestjoin in the sense that the join function is applied to the set of match-
ing right-hand operand tuples, not to the elements themselves. This has as a conse-
guence that nested expressions with so-called projection dependency, that involve
a free variable occurring in a SELECT-clause, cannot be unnested. Iteration over
set-valued attributes that are not extentsis not considered, but aggregate functions
are.
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Generally speaking, the algebraic operators used and the building blocks of opti-
mization, the (algebrai c) equivalencerulesare similar in both approaches. However,
in this paper, we consider queries with deeper nesting levels, incorporating nested
iterators with set-valued attribute operands.

Own work In[StAB94], we showed that in complex object models, the regular, i.e. flat
relational join operator does not suffice for the unnesting of nested queries. To solve
this problem, we introduced the nestjoin. In [SABB94], we presented a general
strategy for unnesting. We proposed to use relational (join) operatorswhenever pos-
sible, and to usethe nestjoin otherwise. Inthis paper, the general strategy outlinedin
[SABB94] ismade mode concrete. Starting form abasic set of transformation rules,
we have discussed what can be done to achieve efficient algebraic expressions. We
use heuristic rules to determine an initia join order, and to push through predicates
and functions.

7.9 Conclusion

Inthispaper, we have presented a heuristics-based, extensible algorithm for thetranslation
of nested OSQL queriesinto efficient join expressions. Queriesthat involve nested quan-
tifier expressions are trandated using relational algebra operators. For the trandation of
nested queriesthat cannot be trandated into flat join queries, the nestjoin operator is used,
which isacombination of join and grouping. During trandation, predicates and functions
are pushed through asfar aspossible. We have presented ageneral framework that can can
easily be extended. Additional rules can be found, involving either better transformations
or additional algebraic operators.

The main problem in the translation of nested OSQL queriesisto find a good unnest-
ing strategy. We have proposed a top-down unnesting strategy that minimizes the nest-
ing level in nestjoin expressions. Our goal isto rewrite nested expressions into algebraic
expressions such that expensive operators (e.g. Cartesian products), nested base table oc-
currences, and nested joins are avoided as much as possible. How to achieve this goal
in the best possible way is topic of further research. A (heuristic) cost model is needed
to guide the transformation of nested queries; such a cost model is much more complex
than the heuristic model used in logical optimization in the relational context, that merely
prescribesto push through selections and projections.
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Chapter 8

Transformation techniques

In this chapter, we first present an overview of transformation techniquesthat are used in
the transformation of nested expressions in Section 8.1. We identify four general trans-
formation principlesthat can be understood as the lessons |earned from from the previous
chapters: they addresssomeoverall principlesof efficiency gainthat can beformally quan-
tified. In Section 8.2, we briefly summarize the transformation strategy presented in the
previous chapter, and in Section 8.3, we discuss some work done on the efficient imple-
mentation of complex parameter expressions.

8.1 Transformation techniques

Inthissection, we present four general transformation rules, and we al so show that thegen-
eral rules can berefined for specific types of selection and quantifier expressions. We give
some exampl e applications, and discover that common algebraic operators correspond to,
i.e., implement, specific expressions that are obtained by application of the general rules.
The general techniques are used for the transformation of calculus-like expressions; we
describe aso some other transformation techniques that are mainly used in an algebraic
context.

8.1.1 Transformation principles

The guiding principle in the transformation of nested queriesis localization. Localiza-
tion is defined as the attempt to perform the necessary operations, and no others, to only
the data needed, and no other. Localization means the avoidance of redundant data and
superfluous computations. The basic transformation techniques are:

Extension Materialisation of partial results.

Generalized projection The selection and precomputation of only those data that are
needed in subsequent computations.

159
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Decomposition An optimization of projection.
Naming The use of aloca definition facility.

The abovelist is a hierarchical list—from top to bottom, each techniqueis a special case
of the previous one.

8.1.2 Basictransformation rules

Aswewill seein Section 8.1.4, extension isthe principlethat underliesthetransformation
of nested queriesintojoinqueries. Extensionisappliedto removemonadic subexpressions
from nested loops, in case the original operand values are still needed in subsequent com-
putations (for example with selections). The operand tuple values are concatenated with
attribute valuesthat materialize the precomputed, partial results. Therulefor extensionis:

Transformation 8.1 Extension Let X beatable, andletabel a not occur inthe schema
of X, then:

Clz :e(z,g(2)](X) = v : e(vx, z.a)](a]z : z except (a = g(z))](X))

The parameter expression e (which stands for some expression f | p) of theleft-hand side
collect operator contains a subexpression g(z), which may be arbitrary. Variable z may
occur freeine outsideof g. Expression g may occur onarbitrary deep nesting levels, mean-
ing that g is evaluated within arbitrary many loops. In the transformation of the left- into
theright-handside g isbrought to thetop level. Intheright-hand side expression, g iseval-
uated within only oneloop: only for each z € X. Theresults are stored asanew attribute
of X. Recall that it isnot allowed to introduce free variables, so when applied at top level,
g may have no free variables other than z. Note that the above definition of extension can
be modified such that it allows for the precomputation of multiple subexpressions, result-
ing in multiple extensions—we have not done so for reasons of simplicity.

An example application of extensionisthefollowing (weremark oncemorethat o and
a are special casesof T):

olz:z.cColy:y.cColz:z.a==2a](2)](Y)(X)=
Iv:vx |z.c Coly:y.cCv.zs](Y)](
alz : ¢ except (zs = o[z : z.a = 2.a](2))](X))

Intheleft-hand side expression, thesubquery g(z) = o[z : z.a = z.a](Z) isevaluated for
eachvauez € X and eachvaluey € Y. Intheright-hand side expression, the subquery
isevaluated only for eachvaluez € X.

Generalized projection involves the precomputation of all subexpressionsin which
a certain iterator variable occurs free. Only these results are preserved, no other datais
passed through. The rule for projectionis:
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Transformation 8.2 Generalized projection Let x not occur free in e outside of in-
stances of the form g; (z), then:

Dz e(g1(),-. - ga(2)](X) =
[z :e(z.a1,...,z.an)](a]z : (a1 = g1(T),...an = gn(2))](X))

Projection isa special case of extension, in the sense that it does not preserve the original
operand tuples. An example of generalized projection is the following:

alz:z.c—aly:z.b+ yb)(Y)|(X) =
alz : z.a1 — afy : z.a2 + y.b](Y)](afz : (a1 = z.c,az = z.b)](X))

Decomposition can be applied whenever it is possible to identify a single subexpres-
sion in which some iterator variable occurs free. Decomposition is a special case of pro-
jection: the explicit tuple construction present in projection can be avoided.

Transformation 8.3 Decomposition Let z not occur free in e outside of g, then:

Lz : e(g(2)))(X) =Tz : e(z)](afz : g(2)](X))

An example of decompositionis:
alz:afy:z.a+y.al(Y)(X) =ealz:aly: z+y.a](Y)](efz : z.a](X))

Thelocal definition rule concerns subexpressionsthat contain no free variables at all
(global constants):

Transformation 8.4 Local definition Let FV (c) = 0, then:

[z : e(c)](X) =Tz : e(C)](X) with C = eval(c)

Rules for existential quantification are analogous. The preferred order of rule appli-
cation is from bottom to top. The above transformations are applied to remove local and
global constants g(z) from parameter expressions, when it is profitable to evaluate them
separately, i.e. whenever atransformation leads to a reduction of:

¢ the number of times g(z) is evaluated, or of
e datavolume.
A reduction of data volume can be achieved by means of explicit restrictions or projec-

tions, or implicitly, at the physical level, for example when scanning an index instead of a
relation. A projection reduces tuple size, but may aswell reduce cardinality.
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8.1.3 Refinementsfor predicates

For sometypes of expressions, the aboverules can befurther refined. Whenever the scope
of some quantifier or a selection predicate is a conjunction, we can apply decomposition
instead of extension:

Rule8.1 Conjunction: decomposition instead of extension

1 oz :p(e) Agq(@)](X) = ofz : g(z)](o]z : p(2)](X))
2. dz € X op(z) A g(z) =3z € oz : p(z)](X) o g(z)

Consider the above rule for selection. Even though x occursfreein g, it is allowed to per-
form atransformation that is analogous to decomposition, instead of applying extension,
which would be done as follows:

olz : p(z) A q(2)](X) =Tlv : vx | bAq(vx)](alz : ¢ except (b= p(z))](X))
Now consider the expression:
ofz: 3y € Y e p(z) A gz, y)|(X)

Because z occurs free in ¢, we are required to use extension in case we want to remove
thelocal constant p(z) from the quantifier scope:

Fv:vx |dy €Y ev.b Ag(vx,y)|(afz : z except (b = p(z))](X))

However, the abovetransformationis unnecessary complex, because p(z) can beremoved
from the quantifier scope directly, by means of the well-known rules for descoping (see
Section 4.4.4):

Rule 8.2 Descoping instead of extension Let z not be freein p, then:
1L d3z€eXepAg(z)=pAdz € X eq(z)
2 dzeXepVg(z)=pVIz € X oq(z)

In this case, we do not need even a second iterator. Note that descoping, or, in general,
transformation into MNF, implements the principle of localization for quantifier expres-
sions.

8.1.4 Applications

In this section we show that application of the transformation rules as described in the pre-
vious section may result into expressionsthat closely correspond to well-known algebraic
operators. The operators mark-, nest-, and regular join implement specific extension ex-
pressions. The extension consists of a Boolean value, a set, and plain attribute values, re-
spectively.
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Rewriting example 8.1 Markjoin

oz : B(z,3y €Y o q(z,y))](X)
= TI'[v: E(vx,v.m)](ce[z : z except (m = Jy € Y o g(z,y))](X))
= TI'[v:E(vx,v.m)](X aiglam)im Y))

The latter transformation step represents one possible definition of the markjoin operator:

X — Y =af[z: z except (m =3y € Y ¢ g(z,y))](X)

z,y:q(z,y)im

(It can be shown that the above definitionis equivalent to the onegivenin Section4.5.) We
discover that a markjoin can be used to remove nested existential quantification regardless
of the context it occursin.

Rewriting example 8.2 Nestjoin
L[z : E(z, Ty : e(z,y)](Y))|(X)

= I'[v: E(vx,v.ys)](afz: z except (ys =Ty : e(z,y)](Y))](X))
= I'[v: E(vx,v.ys)](X A Y)

z,y:e(z,y)iys
Note that the nestjoin can be defined as follows:

X A Y = afz : z except (ys = [y : e(z, y)[(Y))](X))

z,y:e(z,y);ys
Rewriting example 8.3 Join
olz: 3y € Y ep(z,y) Aq(z,y)](X)

oz : 3y € ofy : p(z,y)|(Y) @ q(z,y)](X)
Iv:ovx | 3y € v.ys o q(vx, y)|(X A Y

z,y:id|p(z,y)ys

Llv:vx | glvx,vy)](pys(X
z,y:id|p(z,y)ys

Plo:ux | gox,ov)|(X X V)

z,y:p(z,y)

An existential quantifier that ranges over a set-valued attribute can be removed by the in-
troduction of an unnest operator, provided the attribute is not needed afterwards:

olz : 3y € z.co pl(X) = ol : pl(pe(X))
We used the following definition of the join operator:

X MY =p(X A Y

z,y:q(z,y) z,y:id|q(z,y);ys

The aboverewriting may seem rather artificial, but, nonetheless, it is obviousthat the reg-
ular join is a specia case of the extension principle. Note that the semi- and antijoin also
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can be looked upon as specia cases of extension: the extension is empty. We have for
example:

X x Y=ofz:3y€ z.ysetruel(X A Y)
z,y:p(z,y) z,y:id|p(z,y)iys

Relational projectionisaspecia case of generalized projection as described above:

Rewriting example 8.4 Relational projection

Iz:z.a|3Jy €Y oz.b=y.b|(X)
= Tz:z.a|3JyeY ezb=ybl(a)z: (a==za,b=zb)](X))
= Iz:z.a|JyeY ezb=y.b](m,s(X))

An example of decomposition is the following:
alz:aly:z.a+ybd(Y)(X)=az:afy: z+y.b(Y)|(az: z.a](X))

Instead of evaluating the expression z.a within theinner loop, it can be precomputed. Be-
cause variable = does not occur elsewhere, tuple construction can be avoided. We can
define a simplified projection operator 7* asfollows:

ma(X) = afz : z.a](X)

One efficient implementation method for 7* isindex-scan, which avoids access to dupli-
cate values and to redundant data. The same can be done with subexpression y.b, and a
full transformation resultsin:

ofv:vysl(ri(X) A m(Y))
z,y:ztyltruesys
The concatenation implicit in the nestjoin is superfluous here; perhaps we need a new
physical operator (and maybe a new logical operator too) that avoids the concatenation.
Naming can be applied to constants and common subexpressions. In the following ex-
ample, naming is applied to two amost-common subexpressions. the complementary se-
lections o[z : p(z)](X) and ofz : =p(z)](X). As we have seen in Chapter 4, in
[KMPS94], the two-stream selection operator (o2) was introduced for the efficient imple-
mentation of such apair of selections:

Rewriting example 8.5 Two-stream selection

olz : p(z) V q(2)](X)
= oo ple) V (~p(x) A a(@)](X)
= ofe: p@)(X) + olz : ~ple) A g(@)](X)
= oo p(@)(X) + olz : a(2)](olz : ~p@](X))
= T+olz:q@)](F)withT =0z : p(z)](X), F = o[z : —p(z)](X)
= T +ofz:q(z)](F) with (T, F) = o[z : p(z)](X)
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Recall that the operator + stands for set union without duplicate removal.

Our conclusionisthat we have found a method for deciding which algebraic operators
toincludein our algebra: for specific combinationsof language constructsthat occur often
astheresult of our general transformation rules (that are generally beneficial if applied as
specified), we can define an operator, and search for efficient implementations. The un-
derlying transformation principleis that of definition; this and some other transformation
techniques we describein the next section.

8.1.5 Other transformation techniques

First, we have the technique of definition:

Transformation 8.5 Definition isthe transformation of an operator sequence into one
logical algebra operator.

The operator sequence concerned is supposed to occur frequently, and the performance of
its corresponding algebraic operator isassumed to be at |east equal to, but preferably better
than the original sequence. In the previous section, we discussed definition as a transfor-
mation of nested expressionsinto algebraic ones. Definition can also be applied in apure
algebraic context, e.g., when defining the join as a selection on the Cartesian product.

The principle of definition hasits inverse: that of expansion. For example, set com-
parison operators can be rewritten into quantifier expressions. Also, a set operator like
difference can be rewritten into an iterator expression.

Transformation 8.6 Expansion isthe transformation of an operator into an equivalent
operator sequence that does not contain the operator itself.

Expansionisuseful whenever a specific operator is not implemented (cf. relational algebra
with its limited set of operators). Expansion may also be useful whenever it allows for
further rewriting that positively influences performance. For example, expansion of set
comparison operators may enable unnesting (e.g., see Section 6.5.2).

One other techniqueis that of reordering the operator tree. Reordering is mainly ap-
plied in algebraic transformations, e.g. when pushing through projections or selections,
but it can also be used in a calculus context, for example when exchanging quantifiers.

Transformation 8.7 Reordering concerns the transformation of operator trees while
preserving the specific collection of operators present.

In Section 4.6.5, we have discussed distribution of quantification:
JzeXepVg=(dz e Xep)V(Iz € X og)

Thisrule is of a different nature than the rules discussed until now; it is applied for its
assumed beneficial effect upon further rewriting, but it does not necessarily improve effi-
ciency itself.
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Transformation 8.8 Heuristictransformationrulesarerulesthat improvethe outcome
of some standard rewriting process.

For example, in Section 4.6.2, we decided to treat a negated existential quantification with
a conjunctive scope by means of set difference instead of division.

8.2 Transformation strategy

In the previous section, we described the principal transformation techniques, as well as
some refinements to the general rules for quantifier expressions and selections. Further-
more, we have shown that (more or less) common algebraic operators implement specific
types of expressionsthat are obtained by application of the general rules.

The transformation strategy, which for a large part determines the efficiency of the
results, prescribes how, where, and when transformation techniques are applied. In the
previous chapter, we described a top-down rewrite strategy. Flat joins are preferred over
nestjoins, and Cartesian products are introduced only after everything else has failed.
Throughout, global constants are named. In addition, expressions that contain the same
st of free variables are evaluated in order of nesting level.

Whenever joins are about to be introduced:

¢ we push through monadic subexpressionsto the join operands, and
¢ we gather dyadic subexpressionsthat are considered suitable as join parameter ex-
pressions, as many as possible.

We decided that in join parameter expressions both join variables must occur free, that
predicates must consist of atomic terms only, and that nestjoin functions may not con-
tain base table occurrences. These regtrictions can be relaxed whenever profitable: in the
next section we discuss somewaork that concernsthe efficient implementation of joinswith
complex join predicates containing set comparison operators. In the previous chapter, we
assumed that:

e Set operators are better than iterator expressions.

¢ Partial joins(semi- and antijoin) are better than regular joins, whichinturn are better
than Cartesian products. A flat join is better than a nestjoin. Also, predicate links
are better than function links, and atomic links are better than complex ones.

e Top-level operations are better than nested ones.
e Table operations are better than operations on set-valued attributes.

and we observed that the above heuristicsneed refinement. Our conjectureisthat to ensure
a proper trandation from calculus into algebra, also physical properties should be taken
into consideration. We give an example. Consider the expression:

alz :oly: 3z € z.cey.a = z](Y)](X)
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One possible transformation is given by:

alz:Y x  z.(X)

Y,2:y.a=2

A nested semijoin is executed for each z € X . Another possible transformation resultsin
atop-level nestjoin operator:

afz : z.ys](X A Y)

z,y:yly.a€z.ciys

(Recall that the concatenation and the projection can be avoided.) The choice is between
anested semijoin with an atomic predicate and a top-level nestjoin with a complex predi-
cate, i.e., apredicateinvolving a set comparison operator. Logical propertiessuch astable
cardinality and tuplewidth cannot hel p usto decidewhich of thetwo algebraic expressions
isto be preferred. However, assumethat an index exists on attribute a of table Y, then the
obviousway of processing the query isto scan table X, scan its set-valued attribute ¢, and
retrieve the corresponding Y -values by means of the index. Neither one of the algebraic
expressions formsan immediate representation of this query processing strategy, if we as-
sume that in partial join implementationsthe left-hand operand is taken as the outer loop
operand. The following expression comes closer:

alz:my(Y X z.0)l(X)

Y,2:y.a=2

Because the regular join is commutative, attribute values z.c can be taken as outer loop
operand in an index nested-loop join implementation.

8.3 Complex parameter expressions

In this section, we pay attention to some issues concerning the implementation of the log-
ical algebra ADL. As stated, the logical algebrais supposed to bridge the gap between
the user language and the system-specific physical algebra, which is assumed to provide
clever access methods to speed up the evaluation of logical algebraoperators (or parts or
sequencesthereof). Therelationship betweenthelogical and the physical algebraisstrong.
The physical algebraimplementsthe logical algebrain such away that the performance at
least improves the performance of naive query execution. However, there does not exist
a standard physical (nor logical) algebra for object-oriented or even NF? database man-
agement systems; research into logical and physical a gebrasfor next-generation database
management systemsisin development. Of course, we assume that the physical algebra
offersat least the functionality of that of relational database management systems. Below,
we discuss some of the access methodsthat allow for the efficient implementation of ADL
operatorsthat are more complex than their relational counterparts.
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8.3.1 Predicates

Operatorsthat allow for nesting of (arbitrary) expressions are the collect, select, and map
and the universal and existential quantifier, but also the various join operators. Join oper-
ators are introduced during the transformation of OSQL expressions. In principle, in join
predicatesal so nesting of expressionsmay occur, and join predicatesmay contain arbitrary
operators, among which quantifier expressionsand set comparison operators. Consider the
following expression, in which attributes ¢ and d are possibly complex:

X X Y

z,y:xz.c=y.d
We have two questions:

1. Isit possible having to avoid to compare each left-hand operand tuple with every
right-hand operand tuple, as is done in naive nested-loop query processing? In the
relational model, thejoin isimplemented using indices, sorting or hashing, thus es-
tablishing an improvement over nested-loop processing in the sense that only parts
of operands need to be compared. The question is whether the same effect can be
achieved with complex predicates.

2. Isit possibleto evaluatethejoin predicateitself efficiently? In the relational model,
join and selection predicates are simple, comparing atomic attribute values only. In
complex object models, a predicate that tests for example the equality of attribute
values, may involve extensive computationsif the attribute valuesare complex. At-
tention must be paid to the efficient evaluation of predicates.

File organization techniques like indexing, sorting, and hashing, also called access
methods, can be considered as preprocessing techniquesaimed at reducing the search space
(full table scan) in query evaluation. The search spaceis reduced by partitioning the input
set(s), so that it is necessary to consider or compare only a subset of the data that is actu-
ally present. Relational query execution algorithmsfor selection andjoin arebased on, and
can efficiently handle, attribute comparisonsinvolving atomic domainsonly. (In fact, the
transformation of anested query into ajoin query can belooked upon asthetransformation
of acomplex selection predicate into an atomic join predicate.) Consider the operation:

X X Y

z,y:x.cCy.d
which is equivalent to the expression:

X Y
z,y:VvEzr.coJweEy.dev=w
In naive query evaluation, for each of the left-hand operand tuples, each of the right-hand
operand tuplesisretrieved, and the set comparison operation is evaluated. Naive evalua-
tion of the subset predicate meansthat for each valuein z.c it is checked whether it occurs
iny.d. Thequestionishow toimprove on naive query eval uation; below we describe some
options.
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X Y index
| xid | c | | yid | d | | key | yids |
1 | {abcd} 1 {a} a | {1,234}
2 {ab,c} 2 {ab} b {2,3,4}
3 {ab} 3 {ab,c} c {34}
4 {a} 4 | {abcd} d {4}

Figure 8.1: Indexing set elements

Filters (Naive) predicate evaluation can be avoided altogether if there exists some nat-
ural or system-imposed property from which it can be deduced that the predicate
certainly does not hold.

For example, the cardinality of sets may provide information concerning the out-
come of set comparison operators. For instance, whenever the cardinality of some
set 51 isstrictly smaller than that of s,, it can never be the case that s, isasubset of
S1:

#s1 < #s2=> 82 L 51

Assuming the cardinality of setsismaintained by the system, comparison of set car-
dinalities may preclude the evaluation of the subset predicate. In our example, it is
not necessary to actually test the subset relationship for thosetuplesz € X,y € Y
for which #z.c > #y.d. Inthe above approach, still every left-hand tuple is com-
pared with every right-hand tuple, either comparing cardinalitiesonly, or fully eval-
uating the subset predicate as well. Sorting table Y on the cardinality of the set-
valued attributes (in descending order) can reduce the search spacein that theinner
loop can be broken of as soon as #z.c > #y.d.

The cardinality is a natural property of sets; other set abstractions that can be used
are signaturefiles [1sK 093] or hash values [KhFr88].

Element indexing If attributes c or d are sets of atomic type, an index on the elements
of the attributes can be used, associating the identifiers (oids, key values, addresses,
etc.) of operands tuples with elements of the set-valued attribute. In Figure 8.1,
tables X and Y areillustrated, and a table showing the index on the elements of
attributed of Y.

Givensomez € X, thesetof y € Y suchthat z.c C y.d isretrieved as follows.
For each value v in z.¢, the corresponding index entry is retrieved; the intersection
of the sets of yids deliversthe identifiers of tuplesy € Y that arein the result. To
retrievethe set of y € Y suchthat z.c D y.d, for somez € X, for eachvaluewv in
z.c, the corresponding index entry is retrieved; next the union of the sets of yids is
taken. For each of theidentifiersin the resulting set, it is checked whether the tuple
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actually satisfies the predicate. Of course, set equality can be computed by taking
the intersection of the yid sets retrieved in sub- and superset testing.

Note that in our specific example (Figure 8.1), no advantage is gained by the index
for the evaluation of the superset predicate; an index on attribute ¢ of X would be
more appropriate.

Set indexing Indexing and sorting are techniques based on a natural ordering of attribute
domains, so they are easy to use with integer- and string-valued attributes. How-
ever, in complex object models, attributes may be set-valued, and designing index
structures to support predicates involving set comparison operatorsis not straight-
forward. In [HePf94], an index structure called the RD-tree for the set-of-integer
domainisproposed. The RD-treeis based on set inclusion: each index entry I pro-
vides access to (leaf or other index) nodesthat provides access to sets that are sub-
sets of I. The search key values used in the index are sets, instead of atomic set
elements asin simple index structure described above. The RD-treeis suitable for
the evaluation of superset predicates; for the evaluation of subset predicatesthe in-
verted RD-treeisused. In the inverted RD-tree, each index entry I provides access
to nodes containing supersets of 1.

Set-valued attributes have something in common with spatial data structures. A set
of integersfor example can belooked upon as atwo-dimensional spatial object con-
sisting of (unconnected) pointssituated parallel to the x-axis. Such aset canbe“de-
scribed” by meansof abounding set (in anal ogy with the well-known bounding box)
that consists of the minimum and maximum values present in the data set. There-
fore, it may be the case that techniques developed in the field of spatial query pro-
cessing can be used for processing set comparison operators.

Concluding the above discussion, we believe that, although the work on access meth-
odsfor the eval uation of set comparison operatorsis still initsinfancy, in the futureit will
be possible to evaluate set comparison operators efficiently. We expect that new evalua-
tion strategieswill be discovered that allow for better performancethan that of nested-loop
execution (expressed by the corresponding equivaent quantifier expression). Therefore,
set comparison operators are included in our language, and used as much as possible. For
example, whenever a quantifier expression can be suitably rewritten in a set comparator,
we do so.

8.3.2 Functions

Relational access methods can be used to improve the performance of algebraic operators
such as selection and join, operators of which the parameter expression is a predicate. In
OSQL, arbitrary expressions may occur not only in theiff-, but also in the collect-clause.
For example:

alz : ¢ except z.c = afy : z.a + y.b](Y)](X)
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In the above expression, the parameter expression of the outer map function is an arbi-
trary function, not a predicate expression. The question is whether standard, or other, new
access methods can be used to improve performance.

In predicate evaluation, access methods are used to reduce the search space, i.e. to
avoid unnecessary comparisons. In the evaluation of parameter expressions that are ar-
bitrary functions, indices and other techniqueslike caching of results can be used to avoid
duplicate computations. Again, consider the above expression. The expression is equiva-
lent to the nestjoin expression:

X A

z,y:z.a+y.b|true;c

Following a naive execution strategy, the expression z.a + y.b is evaluated for each pair
of tuplesin X and Y. Assuming thereis an index on attribute b of table Y, then, for each
z € X, it suffices to compute the value of the parameter expression for each key value
occurring in the index, which is especially advantageousif the actual domain of attribute
a issmall. Another techniquethat can be used ismemorizing, i.e. caching of the subquery
result for the distinct values of attribute a of X. Before computation of the subquery for
somez € X, it ischecked whether theresult is aready available.

Of course both techniques mentioned above can be used for predicate evaluation as
well. Caching of results accountsfor multiple occurrences of a attribute values, concern-
ing the left join operand; the use of an index accounts for duplicate occurrences of b at-
tribute values concerning the right join operand.
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Chapter 9

Summary and conclusions

In thisthesis, we have studied the trand ation of a prototype query language for advanced
data modelsin the style of SQL into an algebrathat supports complex objects, emphasis
lies on the trandation of nested queries.

9.1 Summary

In Chapter 2, an overview of query optimizationissuesin relational, nested relational, and
object-oriented database systems is presented. In Chapter 3, we define OSQL, a proto-
type SQL language for data models that support complex objects, and its extension ADL .
OSQL dlowsfor nesting of expressions; ADL isanested relational algebraextended with
some non-standard join operators.

We start from the assumptions that (1) also in advanced database systems, the set-
oriented query processing paradigm is appropriate, and (2) optimization aspects should
play arolein the translation processtoo.

To support the second claim, we review the trandation of relational calculusinto rela-
tional algebrain Chapter 4. Instead of taking the Prenex Normal Form as a starting point
for trand ation, we use the Miniscope Normal Form, in which quantifier scopesdo not con-
tain independent terms, i.e., atomsin which the quantified variable does not occur free. We
describe a basic transformation algorithm, which gives better results than the algorithms
found in the literature, and discuss some optional transformations. We investigate the ef-
fect of the optional transformations by translating example queries, and observe that, de-
pending on the specific expression at hand, the effect of specific transformation rules may
be positive or negative. We present heuristic rulesto further improve the trandation.

Next, in Chapter 5, we discuss some of the difficulties encountered in the translation
of nested queriesin complex object models. In OSQL, which is an orthogonal language,
expressions may be nested arbitrarily. Not only in the WHERE-, but also in the SELECT-
clause of the SELECT-FROM-WHERE query block other query blocks may occur, and
the operands of these may be tables as well as set-valued attributes. OSQL queries can-
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not always be trandated into flat relational queries; often grouping is needed. To perform
grouping before or after ajoin may giveincorrect results dueto theloss of dangling tuples.
To solvethis problem, we define an operator called the nestjoin, which combinesjoin with
grouping.

In Chapter 6, we present aframework for the trandation of nested OSQL queries, and
in Chapter 7, concrete transformation rules and an initial rewrite strategy are provided.
We show that nested expressions can be transated into nested product expressions. These
are, however, very inefficient because a nested product expression correspondsto therela-
tional select-project-join (or, rather, select-project-product) expression, which is the most
costly normal form. Like select-project-join expressions, nested product expressions need
optimization, and we try to obtain better results by providing a better trandlation.

Nested iteration is removed as much as possible by rewriting nested queriesinto join
queries, avoiding Cartesian products. Flat relational join operatorsare used whenever pos-
sible. Duetothe presence of set-valued attributes, acomplete unnestingin which no nested
operators with set-valued operands (iterators or set operators) occur is not always possi-
ble. It isaso not always desirable. Often the transformation result contains nested joins
or nested set (comparison) operators, and also nested iterators with set-valued attribute
operands.

In Chapter 8, we present an overview of transformation techniques used in thisthesis.
Transformation techniques can be dividedinto (1) generally beneficial techniquesused for
the transformation of nested expressions, and (2) techniques that play arole in algebraic
rewriting mainly. The former class consists of rulesthat can be applied to ensurelocaliza-
tion, which is the principle of doing only that what is strictly needed, and accessing only
the data strictly required.

9.2 Conclusions

In the past, the phases of trandation and logical optimization have been looked upon as
separate phases in query processing, and little attention has been paid to optimization of
other than select-project-join queries with conjunctive predicates. In Chapter 4, we re-
viewed the trangdlation of relational calculusinto relational algebra. We showed that the
performance of relational query processing can be much improved by (1) extending re-
lational algebra with non-standard operators like the semi- and antijoin and two-stream
selection, and by (2) a careful design of the trandation algorithm. Standard trandation
algorithms do not pay attention to performance issues. the result often is unnecessarily
inefficient. In the phase of logical optimization, this inefficiency is supposed to be re-
duced. However, the damage cannot always be repaired because purely algebraic rewrit-
ing of expressionsthat involve arbitrary, complex, operatorsis adifficult process. Conse-
quently, research into relational query optimization has often been restricted to optimiza-
tion of project-select-joinqueries. Only recently, attention has been paid to optimization of
queriesthat contain other operatorslike disunction. Our conclusion is that the strict sep-
aration between the phases of trandation and optimization should be readdressed; much
can be gained by combining trandlation with optimization.
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We provide aframework for the trandation of nested OSQL queries. We define an ex-
tended relational agebra, which includes the nestjoin operator that is well-suited for the
tranglation of nested queriesin complex object models. We provide equivalencerules, and
propose arewrite strategy. Thework presented here followsrelational tradition by adher-
ing to the set-oriented query processing paradigm. We believe that our work can serve
as the basis for the implementation of query calculi for advanced (object-oriented) data
models. However, many open problems remain.

In our opinion, the difficulty in the trand ation and optimization of (O)SQL querieslies
in the number of equivalent logical expressions, and the lack of a suitable cost model. In
the relational context, considering select-project-join queries only, the goa in optimiza-
tionisto push through selections and projections, to transform productsinto joins, and to
determine an optimal join order. Transformations are based on the localization principle,
which is equally valid in a complex model. Optimization of select-project-join queries
merely concerns a rearrangement of the operator tree. However complex this reordering
processis from a cost-based point of view, from a syntactic point of view it issimple, be-
causeit isbased on ssimple logical equivalences.

In a complex object algebra that supports a rich variety of operators, the number of
equivaent logical algebra expressions is much larger than in the relational model. The
rewriting of logical expressions is complicated by the fact that nesting of operators may
occur, so the equivalence rules are more complex. Moreover, simple heuristicsasused in
therelational model do not always suffice for choosing between expression forms. For ex-
ample, often the choice is between atop-level nestjoin operator, or anested relational join
operator. To decide between either one of them, logical propertiesliketablecardinality and
tuple width do not suffice. The goal is not only to perform the most restrictive operations
first, but also to choose that specific logical agebra expression that can be implemented
best, in other words, that makes best use of the opportunities offered by the physical al-
gebra. Our conjecture is that physical properties should play arole in the trandation of
OSQL into the algebra.

9.3 Futurework

We established a framework for the trandation of (nested) OSQL queries into an alge-
bra. Equivalence rules were defined, and a rewrite strategy was proposed. As indicated
in the previous section, future work may concern (1) the implementation of expressions
that contain nested set and join operators, (2) a (qualitative) cost model, and (3) a refine-
ment of the proposed rewrite strategy. Given aproper set of equivalencerules, the rewrite
strategy determines the outcome of the rewrite process. Rewriting must be guided by a
cost model; asimplelogical cost model asisused in the relational context (push through
projections and selections) does not suffice. In this thesis, we have taken a top-down ap-
proach to theimplementation of OSQL. Starting with nested expressions, we havetried to
obtain set-orientation as much as possible. We believe that a bottom-up approach, starting
with access methods and investigating the opportunitiesthey offer for efficient implemen-
tation will give new insightsinto the problem of how to translate OSQL into the algebra.
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We have not considered in our discussion specific object-oriented features such as class
hierarchies, methods in imperative style, and object identity. Such features alow for ad-
ditional optimization opportunities, and should be taken into consideration as well.
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Rules and Proofs

A.1 Additional rules

In this section, we present some general rewrite rules that are used in various rewrite stages. We
note that the set of ruleslisted is not complete. Additional rules for the transformation of relational
algebra expressions can be found in [EINa39] and [Kuijk91].

Thelogical rules given below are well-known:

RuleA.1 Somelogical equivalencerules

1L AzeXep=VYzecXeo-p
YzreXep=TJz € Xe—p

2. ~(pAg)=-pV g
-(pVg =-pA—g
-(-p)=p

3. pA(-pVg =p
PAG) =p

pV(

pA(-pVq) =pAg

pV(-pAg) =pVgq
pA(@Vr)=(mAqVI(pAg)
pV(gAr)=(VgA(pVr)

Rules for set operators that we use are the following:

RuleA.2 Set operators
LX-Yyuz)=(X-Y)-Z
2. (XUY)-Z=(X-2)U(Y - 2)

Thefollowing rules deal with join operators with constant join predicates and empty right operands.

177
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RuleA.3 Constants
1. Xx0h=0

p

2 Xph=X
P

323X x Y=ifY =0then{Delse X =if Y # () then X else )

true

4. X x Y=0
false

5 X > Y=ifY =0 then X else() =if Y # () then ) else X

true

6. X > Y=X
false
7. X — Y=XxTn
true;m
— Y=XxF,
falseym

RuleA.4 Projection

1. Commuting projection with selection

ma(olz : pl(X)) = olpl(ra (X)), if Attr(p) € A
2. Introduction of projection

ma(X) = 7wa(ra (X)), if AC A' C Seh(X)

Rule A.5 Selection
olz 1 =p|(X) = X — ofz : p)(X)

Selection distributes over any set operator. Projection distributes over set union only, not over dif-
ference and intersection.

Rule A.6 Pushingthrough projections
1. Let Attr(px) denote the set of attribute names of X referenced in predicate p, then:

@ ma(X xY)=7ma(X) x Y,if A C Attr(px)
(b) ma(X>Y)=ma(X)>Y,if AC Atir(px)

2. maB(X XY) =7ma(X) x 7a(Y),if A C Sch(X),B C Sch(Y)
3. maB(X XY) =7a(X)Xrp(Y),if AC Sch(X),B C Sch(Y), Attr(p) C (AU B)

Rule A.7 Pushingthrough selections

1. Regular join
@ ofv:px)(X X Y)=ole:p@)(X) X ¥
®) ofv:per)[(X W Y)=X X oly:p)]Y)
© ofv:plvx,v))(X X YV)=X X Y

z,y:q z,y:p(vx,vy )Ag
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2. Product X xY =X X Y

z,y:true

3. Semijoing[z: p(z)|[(X x Y)=olz:p(z)|(X) x Y

z,y:q T,y:q

4. Antijoinofz : p(z)|(X > Y)=alp(@)](X) > ¥

z,Yy:p

Proof: o[z : p(z)](X > Y)

= oz:p(z
= ofz:p
= oz:p(z

= oz:p(z

Note that for partial joinsright distribution does not apply, and that selection does not | eft distribute
over the markjoin operator.

RuleA.8 Semi/antijoin
L X-(XxY)=XpDY

2 X-(XpY)=XxY

33X - (XxY)=X'1>Y,whenever X' C X
Proof: Let X' denote some selection o[p](X), then:
X —(XxY)

olp](X) — (X x Y)
olpl(X) —olpV -pl(X x Y)
a[p](X) = (e[pl(X x Y) Uo[-p](X x ¥))
(o[p](X) = o[-p](X x Y)) —op](X x V)
(
(
(

o[p](X) — o[p](X x Y)
o[pl(X) — olp](X) x ¥
opl(X)>Y

X'>Y

4 X' —(X>Y)=X'xY,whenever X' C X

RuleA.9 Simplification of markjoin expressions (1)
Lax(X —YV)=X
pim

2. (@ mx(o[z:z.m](X ol Y)=X l: Y
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(b) 7x(o[z : ~z.m](X ol Y)=X li Y

3. nx(ofz:p(z) Vz.m](X e Y))=(X m[);:q Y)Uo[z: p(z)](X mlz:q Y)
if m ¢ Attr(p) ' ’

Proof: nx (c[z : p(z) Ve.m](X — Y))
z,y:qm
= wx(ofz:p(z)Vem](X x YV)xTn)U({(X > Y)x Fn)))
z,y:q z,y:q
= wx(oflz:p(z)Vem]((X x Y)xTn)U
z,y:q
olz:p(z)Vem]((X > Y) X Fn))
z,y:q
= 7x(ofz:p(z) Virue]((X x Y)xTn)U
z,y:q
olz:p(z)V false]((X > Y) x Fp))
z,y:q
= mx((X x Y)xTn)Uoz:p(@)]((X > Y)Xx Fy))
x,Y:q T,Yy:q
= mx((X x Y)xTn)Urx(ofz:p()](X > Y) X Fn))
x,Y:q z,Y:q
= (X x Y)Uolz:p@)](rx((X > Y) X Fp))
x,Y:q z,Y:q
= (X x Y)Uolz:p(@)|(X > Y)
z,y:q z,y:q
RuleA.10 Simplification of markjoin expressions (2)
1. @ X x (Y — Z)=X x Y,ifm¢ Atir(p)
z,y:p(z,y) y,z:r(y,2)im z,y:p(z,y)
b X > (Y — Z)=X 1> Y,ifm¢ Atir(p)
z,y:p(z,y) y,z:r(y,z);m z,y:p(z,y)
2 @X x (Y - 2Z2)=Xx x (Y x Z2)
T,y:y.m Y,z:pim x,y:true Y,2:p
X > Y - Z2)y=X » (Y x Z2)
T,y:y.m Y,zipim z,y:true Y,2:p
©X x (Y - Z2)y=X x (Y > 2
T,y:y.m Y,z:pim z,y:true Y,2:p
@dx > Y - Z)=X > (Y > 2)
T,y:y.m Y,2:p;im z,y:true Y,z:p
Proof: X > (Y - 2)
T,y:y.m Y,2:pim
= olz:Aye (Y v 7) & —y.m|(X)
= olz:Ay€oly:~ym|(Y — Z)etruel(X)

Yy,z:pim

olz:Ay e (Y yip Z) e true](X)

X o (Y > 2)

©,y:true Y,2:p

RuleA.11 Simplification of markjoin expressions (3)
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1. X X (Y — Z)=if (Y x Z)#0(then Xelse(X
z,y:p(e,y)Vy.m y,2:r(y,2);m y,z:r(y,2) z,y:p(z,y)
Y)
Proof: X X (Y — Z)
z,y:p(z,y)Vy.m y,zir(y,z)im
= X x (Y — Z)yuX x (Y — Z)
z,y:p(z,y) y,2:r(y,2);m z,y:y.m y,z:r(y,2);m
= (X x Y)ux x (Y x Z)
z,y:p(2,y) z,y:true y,z:r(y,2)
= (X x Y)UiIf(Y x Z)#0then X elsel
z,y:p(,y) y,z:r(y,2)
= if(Y x Z)#0thenXelse(X x Y)
y,z:r(y,z) z,y:p(x,y)
2. X > Y — Z)=if (Y x Z)#(Othen{(else (X >
z,y:p(z,y)Vy.m y,z:r(y,2)sm y,2:7(y,2) z,y:p(z,y)
Y)
Proof: X > Y — Z)
z,y:p(e,y)Vy.m y,z:r(y,2);m
= (X > (Y - v - 2
z,y:p(z,y) y,z:r(y,2);m z,y:y.m y,z:r(y,2)im
= X o YY) » Y x 2
z,y:p(2,y) z,y:true y,z:7(y,z)

= if(Y «x

y,2:7(y,2)

RuleA.12 Splittingjoin predicates
LXXxY=XxY)U(X xY)
p q

pVgq
2 X x Y=ax((XXY)N(X XY))
pPAq p q
X x Y =nx(o[p](X XY))
PAq q
3 Xp>pY=(XD>Y)>Y
pVgq p q
Proof: X > Y
z,y:pVq
= X-(X x Y)
z,y:pVq
= X-(X x YUX x Y)
T,Y:p T,Yy:q
= (X-X x V)-X x Y
z,y:p z,Yy:q
= Xp>pVY)-X x Y
z,y:p z,Y:q
= X p>Y)>Y
z,Yy:p T,y:q
A.2 Proofs

Proof Rule4.3 Scoping Let z ¢ F'V (p), then:

Z)# (Pthenfelse (X > Y)

z,y:p(2,y)
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1L 3z€eXeoepAg=pAdz e Xeg

Proof: 3z € X epAgq

= dzez € XApAg
pAdzex e X Ag
= pAdz e Xeg

2 pVizeXeg=(pAX=0)V(@EBzeXepVq)

Proof:pvV 3z € X o g
= (pAtrue)VIz e X egq
PA(X=0VX#£0)VIzeXegq
PAX =0V (PpAX#AD)VIzE Xegq
= (AX=0)V(pAJz e Xetrue)VIz e X oq
(
(

WAX=0)vV(EreXep)VIze Xeg
(PAX=0)vV(EzrecXepVyg)

Proof Rule4.15 Join associativity
1L (X XY) X Z=X X (Y X Z)

p(z,y) r(y,z)At p(z,y)At r(y,z)

Proof: (X X Y) X Z
p(z,y) tAr(y,z)
= of]J(X X Y) X Z)
p(z,y) r(y,2)
oltl(X X (Y X Z))
p(z,y) r(y,z)

X X (Y X Z2)

p(z,y)At r(y,z)

2 (X X Y) x Z=axy(X X (Y XN Z))
p(z,y) r(y,2)At p(z,y)At r(y,z)

3 (X X Y) x Zz=X X (Y x 2)

p(z,y) r(y,z) p(z,y) r(y,z)
4. (X X Y) > Z=X X (Y > Z2)
p(z,y) r(y,z) p(z,y) r(y,z)
Proof: (X X Y) > Z
p(z,y) r(y,z)
= (X X V)-(X X Y) x Z
p(z,y) p(z,y) r(y,z)
= (X X YV)-X X (Y x 2)
p(z,y) r(z,y) r(y,z)
= X M (Y—-(Y x 2))
p(z,y) r(y,z)
= X X (Y > 2)
p(z,y) r(y,2)

Proof Rule4.16 Join exchange
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L (X X Y) X

Z=(X X Z) X

p(z,y) q(z,z)At q(z,z) p(z,y)At
Proof: (X X Y) X
p(z,y) q(z,2)At
= ofJ(X ™M Y) X 2)
p(z,y) q(z,2)
= ofJ(Y M X) X 2)
p(z,y) q(z,z)
= ofJ(Y M (X X 2))
p(z,y) q(z,2)
= ofJ(X M Z) X Y)
q(z,2) p(z,y)
= (X X Z) X Y
q(z,2) plz,y)At
2 (X XY) X Z=wnxy((X X X Y)
p(z,y) q(z,2)At q(z,z) p(z,y)At
3 @ X M Y) X Z=(X X Z) X Y Seeabove
p(z,y) q(z,2) q(z,2) p(z,y)
0 (X M V) x Z=(X x Z) M Y Seeabove
p(z,y) q(z,2) q(z,z) p(z,y)
©@&X XM Y)D> Z=(X > Z) X Y
p(z,y) q(z,2) q(z,2) p(z,y)
Proof: (X X Y) > Z
p(z,y) q(z,z)
= Y X X) > Z
p(z,y) q(z,z)
=Y X (X > 2)
p(z,y) q(z,2)
= (X > Z) XY
q(z,2) p(z,y)
d (X x Y) X Z=(X X Z) x Y Bysymmetry.
p(z,y) q(z,z) q(z,z) p(z,y)
® X x Y) x Z=(X x Z) x Y
p(z,y) q(z,2) q(z,2) p(z,y)
Proof: (X x Y) x Z
p(z,y) q(z,2)
= mx((X x Y) X Z2)
p(z,y) q(z,2)
= mx((X x Z) X Y)
q(z,2) p(z,y)
= ﬂx(X X Z) X ﬂy(Y))
q(z,2) p(z,y)
= (X x Z) x Y
q(z,2) p(z,y)
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X x Y) > Z=(X > Z) x Y

p(2,y) q(z,2) q(z,2) p(2,y)

Proof: (X > Y) x Z
p(z,y) q(z,2)
= ox((X > Y) X 2)
p(z,y) q(z,z)
= mx((X X Z) > Y)
q(z,2) p(z,y)
= aox(X X Z) > Y
q(z,z) p(z,y)
= (X x Z) > Y

q(z,2) p(z,y)

@ X > Y) X Z=(X > Z) > Y Bysymmetry.

p(z,y) q(z,z) q(z,2) p(z,y)

h (X > Y) x Z=(X x Z) > Y Bysymmetry.

p(z,y) q(z,z) q(z,z) p(z,y)
MH (X > Y) > Z=(X > Z) b Y
p(z,y) q(z,z) q(z,2) p(z,y)
Proof: (X > Y) > Z
p(z,y) q(z,z)
= X > YV)-(X > Y) x Z
p(z,y) p(z,y) a(z,z)
= X > YV)-(X x Z) b Y
p(z,y) q(z,2) p(z,y)
= (X-X x Z) > Y
q(z,z) p(z,y)
= X > Z) > Y
q(z,2) p(z,y)

Proof Rule4.17 Distribution of join over set operators. (X —Y) x Z = (X x Z) — (Y x Z)

We define:
e Xt =olz:2ze€Y|(X)
)

)
e Y =olz:z ¢ X|(Y)
We have:
e X=XTUX ,Y=YTUuY"
e Xt=Y*t

e X NY =0
Also, whenever AN B =0, then(Ax C)— (BxC)=AxC.
Left-hand side
(X-Y)x 2
ole:z¢Y|(X)x Z
X" xZ
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Right-hand side

(X xZ)—(Y x Z)
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Appendix B

Rewritings

B.1 Standard rewritings

Rewriting example B.1 (1) Chain
ole:Jy €Y ep(z,y) VIze Zeor(y,z)](X)

= ofz:ye(Y . Z) e p(z,y) V y.m](X) (range nest)

= X X (Y — Z) (unnest)
z,y:p(z,y)Vy.m y,z:r(y,2);m

Rewriting example B.2 (2) Treg(l)

ole:Jy €Y ep(z,y)VIz e Zeq(z,2)](X)
ole:3z€ Zegq(z,z)VIy €Y e p(z,y)](X) (descope)
ole:z.mVIyeY ep(z,y)(X — Z) (unnest)

z,z:q(z,z);m

olz:z.mVem](X — Z) - Y') (unnest)

z,z:q(z,z);m z,y:p(z,y);m’

Rewriting example B.3 (3) Treg(ll)

olz:JyeYedze Zeq(z,2)Vr(y,z)](X)
olx:3z€ ZeJyeYeq(z,2z)Vr(y,z)](X) (exchange)
ole:3z€ Zeg(z,2z)VIy €Y er(y, 2)](X) (descope)
olz:32€(Z — Y) e g(z,z) V z.m](X) (range nest)

y,z:r(y,2)im

X X Z — Y) (unnest)

z,z:9(z,2)Vz.m y,2:r(y,2)im

Rewriting example B.4 (4) Cyclic
ole:Jy €Y ep(z,y) VIz € Zeoq(z,z2)cr(y,2)|(X)

v,2:q(vx,2) Cr(vy,z);m

187

mx (ofv: p(vx,vy) VIz € Z e q(vx, z) er(vy, 2)](X x Y)) (unnest)
mx (ofv : p(vx,vy) Vo.m]((X xY) — Z)) (unnest)
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B. Rewritings

Rewriting example B.5 (5) Chain

olz:Ay €Y ep(z,y) VIz € Z or(y,2)](X)
olz:Ay e (Y porriaym Z) e p(z,y) V y.m](X) (range nest)
X > (Y — Z) (unnest)

z,y:p(z,y)Vy.m y,z:r(y,2);m

Rewriting example B.6 (6) Treg(l)

olz:By €Y ep(z,y) V3Iz € Z o q(z,2)](X)
ole:Az€ Zeq(z,2) N By €Y e p(z,y)](X) (descope)
olz:AyeY ep(z,y)|(X >  Z) (unnest)

z,z:q(2,2)

= (X > Z) > Y (unnest)

z,2:q(z,2) z,y:p(z,y)
Rewriting example B.7 (7) Treg(ll)

olz:Ay €Y edz € Zeg(z,z)Vr(y,=2)](X)
= ofz:Az2€ ZeTyeY eq(z,z)Vr(y,z)](X) (exchange)
= ofz:A2€ Zeg(z,2)VIy €Y er(y,z)](X) (descope)
= olz:A2€(Z — Y) e g(z,z) V z.m](X) (range nest)

z,y:r(y,2);m
= X > (z — Y) (unnest)

z,z:9(z,2)Vz.m z,yr(y,2)sm

X
X

Rewriting example B.8 (8) Cyclic

olz:Ay €Y ep(z,y)V3Iz € Zeg(z,2) cr(y,2)|(X)

= (ofv:-p(vx,vy) A Az € Z e g(uvx,2) er(vy,2)|(X xY))+ Y (division)

= (ofv:=plvx,vy)]((X xY) > 7)) +Y (unnest)
v,2:q(vx,2) C r(vy,z2)
- (x x ) > Z)+ ¥ (push)
z,y:-p(e,y) v,2:q(vx,2) € r(vy,z)

Rewriting example B.9 (9) Chain
olz:JyeY ep(z,y)V Az € Z e r(y,2)](X)

= ofz:ye(Y — Z) e p(z,y) V ~y.m](X) (range nest)

y,z:r(y,2)im

= X X (Y — Z) (unnest)

z,y:p(z,y)V-y.m y,2:r(y,2);im
Rewriting example B.10 (10) Tree(l)

olz: 3y €Y ep(z,y)V Bz € Z e q(z,2)](X)
= ofz:Az2€ Zeg(z,2) VIyeY ep(z,y)](X) (descope)
= olz:mzmVIyeYep(z,y)l(X — Z) (unnest)

z,z:q(z,2);m
= ofz:-zmVzm(X — Z — Y) (unnest)

z,z:q(z,2);m z,y:p(a,y);m’
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Rewriting example B.11 (11) Tree(Il)
olz:qyeY e Az€ Zeoq(z,2)Vr(y,2)](X)
= olz:dyeYe(Aze Zeg(z,z) N Az € Z o r(y, 2))](X) (distribute)
= ofz:Iye (Y > Z)e Aze Zeg(z,2)](X) (rangenest)

y,z:7(y,2)
= olz:Az€Zeqg(z,2)AIye (Y > Z)etrue](X) (descope)
y,2:7(y,2)
= ofz:dye(yY o Z)etrue)(X >  Z)) (unnest)
y,z:7(y,2) z,z:q(z,z2)
= (X > Z2) x (Y © Z)(unnest)
z,z:q(2,2) z,y:true y,z:r(y,2)
= if (Y l>( ) 7Z) # 0 then (X l>( ) 7) else () (constant x predicate)
y,z:r7(y,z z,2:q(z,z

Rewriting example B.12 (12) Cyclic

olz:3y €Y ep(z,y)V Az € Zeq(z,z) cr(y,2)|(X)
mx (ofv: p(vx,vy) V Az € Z e q(vx, 2) er(vy, 2)](X x Y)) (unnest)
mx (ofv: p(vx,vy) V -u.m]((X xY) - Z)) (unnest)

v,z:q(vx,2) Cr(vy,z)im

Rewriting example B.13 (13) Chain

olz:By €Y ep(z,y)V Bz € Zer(y,2)|(X)
olz:Ay e (Y — Z) e p(z,y) V y.m](X) (range nest)

y,z:r(y,2)im

= X > 0% — Z) (unnest)

z,y:p(z,y)V-y.m y,z:r(y,2)im
Rewriting example B.14 (14) Tree(l)
olz:Ay €Y ep(z,y) V Az € Z e q(z,2)](X)
= ofz:32€ Zeg(z,2) A By €Y o p(z,y)](X) (descope)
(X x Z) > Y (unnest)

z,z:q(2,2) z,y:p(z,y)

Rewriting example B.15 (15) Tree(ll)
The result for this query is the complement of the result achieved for expression 11:

X—-if(Y 1> Z)#0then(X > Z)elsel

y,2:7(y,2) z,2:q(z,z2)
= if(Y > Z)#0then(X x Z)elseX
y,z:7(y,2) z,z:q(z,z2)

Wedo not show the full rewriting for this expression, because we would haveto takeinto account the
possibility of empty ranges to ensure that we indeed achieve the complementary result. Thiswould
result into a rewriting sequence that istoo complex for the purpose of this section.

Rewriting example B.16 (16) Cyclic

olz:Ay €Y ep(z,y)V Az € Zeq(z,z) er(y,2)|(X)
(ofv : =p(vx,vr) A3z € Z 0 g(ux, 2) e r(vy, 2)](X x ¥)) =+ Y (unnest)
((x X Y) X Z) +Y (unnest)

z,y:-p(z,y) v,2:q(vx,2) C r(vy,z)
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Rewriting example B.17 (17) Chain

ole:Iy €Y ep(z,y) NIz € Zeor(y,2)|(X)

olz:Jye (Y x Z)ep(z,y)](X) (rangenest)

y,z2:r(y,2)
X x (Y x  Z)(unnest)
z,y:p(z,y) Y,2:7(y,2)

Rewriting example B.18 (18) Tree(l)

olz:Jy €Y ep(z,y) NIz € Z 0 q(z,2)](X)

oz 32 € Zeq(s,s) ATy € Y o p(z,y)](X) (descope)
olz:yeYep(z,y)|(X x Z)(unnest)

z,2:9(z,2)

(X x Z) x Y (unnest)

z,2:q(z,2) z,y:p(z,y)

Rewriting example B.19 (19) Tree(Il)

olz:JyeY eIz € Zeq(z,2) Ar(y,2)|(X)

olz:3z€ ZeIy €Y eq(z,z) Ar(y,2)](X) (exchange)
olz:3z€ Zeog(z,2z) NIy € Y er(y,2)](X) (descope)
olz:32€(Z x Y)egq(z,2)](X) (rangenest)

y,z:r(y,z
X x (Z x Y)(unnest)
z,2:q9(z,2) y,2:r(y,2)

Rewriting example B.20 (20) Cyclic

ole:Jy €Y ep(z,y) NIz € Z o q(z,2) cr(y,2)|(X)
mx (ofv: p(vx,vy) AJz € Z e g(vx, 2) e r(vy, 2)](X x Y)) (unnest)

mx((X X YY) X Z) (unnest)

z,y:p(z,y) v,2:q(vx,2) C r(vy,2)

Rewriting example B.21 (21) Chain

olz:Ay €Y ep(z,y) A3z € Z o r(y, 2)](X)

ol Bye (Y x  Z)epyl(X) (rangenes)
X > (Y x Z)(unnest)

z,y:p(z,y) y,2:7(y,2)

Rewriting example B.22 (22) Tree(l)

olz:Ay €Y ep(z,y) A3z € Z 0 q(z,2)](X)

olz:Bz€ Zeqg(z,z) V By €Y o p(z,y)](X) (descope)

ole:—z.mV Ay € Y e p(z,y)|(X — Z)) (unnest)

z,z:q(z,2);m

oz : ~z.mV-z.m'|((X — Z — Y’) (unnest)

z,z:q(z,2);m z,y:p(z,y)m'
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Rewriting example B.23 (23) Tree(I1)
olz: By €Y o3z € Zoq(w,2) Ar(y, 2)|(X)
= olz:Bz€ ZeIy €Y eg(z,z) Ar(y,2)|(X) (exchange)
ole:Az€ Zeq(z,z) Ny € Y er(y, 2)](X) (descope)
= olz:Az€(Z «x )Y) e g(z,2)](X) (range nest)

z,y:r(y,2
= X > (Z x Y)(unnest)
z,2:q(z,z) z,y:r(y,2)

Rewriting example B.24 (24) Cyclic

olz:Ay €Y ep(z,y) Az € Z o q(z,2) er(y,2)](X)
(ofv:—p(vx,vy) V Az € Zeq(vx,z) cr(vy,2) (X xY) +Y)
(ofv: =p(vx,vy) V—v.m]((X xY) — Z) +Y (unnest)

v,2:q(vx,2) € r(vy,z);m

Rewriting example B.25 (25) Chain

olz:TyeY ep(z,y) A Bz € Zer(y,z)

1(X)
= ofz:Iely > Z)ep(z,y)

(X) (range nest)

y,z2:r(y,2)
= X x (Y o> Z)(unnest)
z,y:p(z,y) y,2:7(y,2)

Rewriting example B.26 (26) Tree(l)

ole:Jy €Y ep(z,y) N Az € Z o g(z,2)](X)
= olz:Az€ Zeog(z,2z) NIy €Y e p(z,y)](X) (descope)
= (X > Z) x Y (unnest)

z,2:q(x,2) z,y:p(z,y)
Rewriting example B.27 (27) Treg(ll)

olz:qyeY e Az€ Zeoq(z,2) Ar(y,2)](X)
= nx(olv:Az € Zeq(vx,z) Ar(vy, 2)|(X xY)) (unnest)
= wx((X xY) > Z) (unnest)

v,2:q(vx,2)Ar(vy,2)
Rewriting example B.28 (28) Cyclic

olz:3y €Y ep(z,y) A Az € Zeq(z,2) cr(y,2)|(X)
= 7x(ofv:plvx,vy) A Bz € Z e g(vx,2) er(vy, 2)](X x Y)) (unnest)
= wx((X I>4( )Y) » ?c ( )Z) (unnest)

Rewriting example B.29 (29) Chain

olz:AyeY ep(z,y) A Bz € Zer(y,z)

1(X)
= ofz:Aye(Y >( Z) o p(z,y)]

. (X) (range nest)

= X > (Y o> Z)(unnest)
z,y:p(z,y) y,2:7(y,2)
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Rewriting example B.30 (30) Tree(l)

ole:By €Y ep(z,y) A Az € Z ¢ q(z,2)|(X)
= ofz:3z€ Zeg(z,2)V By €Y o p(x,y)|(X) (descope)
= ofz:z.mV Ay €Y e p(z,y)|(X — Z) (unnest)

z,2:q(z,z);m

= ofz:z.mV-zm|(X — Z — Y) (unnest)

z,2:q(2,2)im z,y:p(z,y)im'
Rewriting example B.31 (31) Tree(Il)
olz:AyeY e Az € Zeq(z,z) Nr(y,2)]|(X)
= (ofv:3z€ Zegq(vx,z) Ar(vy,z)](X xY))+Y (unnest)
(X xY) % Z) +Y (unnest)

v,z:q(vx,z)Ar(vy ,2z)
Rewriting example B.32 (32) Cyclic
olz:Ay €Y ep(z,y) A Az € Z 0 q(=,2) cr(y, 2)|(X)
(olv: = p(vx,vy)V Iz € Z e q(vx,2) er(vy,2)](X xY)) +Y (unnest)
(ofv: =p(vx,vy) Vom]((X xY) — Z) +Y (unnest)

v,2:q(vx,2) Cr(vy,z)im

B.2 Distribution of quantification

If we use the conditional for constant terms, then we have:
Rewriting example B.33 (1) Chain
olz: Iy €Y ep(z,y) VIz € Zeor(y,z2)](X)
= olz:dyeYep(z,y)VIyecYedze Zer(y,z)|(X) (distribute)
= olz:dyeYep(z,y)VIye (Y x  Z)etrue](X) (rangenest)

y,2:r(y,2)
= if(Y x Z)#0thenXelseo[z:Jy €Y ep(z,y)(X) (constant)
y,2:r(y,2)
= if(Y x Z)#0thenXelseX x Y (unnest)
y,z:r(y,2) z,y:p(z,y)
We can rewrite the standard result into the latter:
X X (Y — Z)
z,y:p(z,y)Vy.m y,2:r(y,2);m
= (X X (Y — Z)HuXxX x (Y — 7)) (split)
z,y:p(z,y) y,2:r(y,2)im z,y:y.m y,z:r(y,2);m
= (X x YYUX x (Y x Z))(smplify))
z,y:p(z,y) 2,y:true y,z:r(y,z)
= (X x Y)Uif(Y x Z)#0then X else( (constant x predicate)
z,y:p(z,y) y,z2:r(y,2)
= if(Y x Z)#0thenXU(X x Y)elsefU(X x YY)
y,2:0(y,2) z,y:p(z,y) z,y:p(z,y)
(distribute)

if(Y x Z)#0thenXelseX x Y (smplify)

y,2:7(y,2) z,y:p(z,y)
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In the above rewriting, we have used rules for splitting join predicates and for the simplification of
expressions that contain markjoin operators; these are listed in Appendix A.

Rewriting example B.34 (3) Tree(Il)

olz:Jy €Y edz e Zeg(z,z)Vr(y,=2)](X)

olz:Jy€eYedze Zeog(z,z)VIz € Zer(y,z)]|(X) (distribute)
olz:3z€ Zeog(z,2z)VIy e Y edz € Z er(y,2)](X) (descope)
olx:3z€ Zeq(z,2)VIye (Y x  Z)etrue](X) (rangenest)

y,z:7(y,2)
if(Y x Z)#0then Xelseo[z:3d2 € Z eg(z,2)](X) (constant)

y,2:r(y,2)

if(Y x Z)#0thenXelseX x Z (unnest)

vz (y,z) 2,2:1q(z,2)

Rewriting example B.35 (4) Cyclic

ole:Jy €Y ep(z,y)VIz e Zeoq(z,z2)cr(y,2)]|(X)
= olz:dyeYep(z,y)VIyecY eIz Zeoq(z,z)cr(y,z)]|(X) (distribute)
= T+Holz:dyeYeIze Zeog(z,2)cr(y,2)|(F)
with (T,F) =X x> Y (bypass)

z,y:p(2,y)
T+ rr((FxY) X Z)
v,2:q(vx,2) Cr(vy,z)
with (T,F) =X x> Y (unnest)
z,y:p(2,y)

Rewriting example B.36 (5) Chain

olz:By €Y ep(z,y)V3z € Zer(y,z)|(X)
olz:AyeY ep(z,y) AN Ay e Y o3z € Z o r(y, z)](X) (distribute)
olz:AyeYep(z,y) A Ay e (Y l><( ) Z) e true](X) (range nest)
y,z:7(y,z
olz:Aye (Y x Z)etrue](X > YY) (unnest)
y,z:7(y,2) z,y:p(x,y)
X o Y) > (Y x Z)(unnest)
z,y:p(2,y) z,y:true y,2:7(y,z)

if(Y x Z)#0thenfDelseX > Y (constant> predicate)

y,z:r(y,2) z,y:p(z,y)

Note that the standard result can be rewritten into the latter easily:

X > (Y —

z,y:p(z,y)Vy.m y,z:r(y,2);m

= (X > (Y — Z) > (Y — Z) (split)
z,y:p(z,y) y,z:r(y,2);m z,y:y.m y,z:r(y,2)im

= (X > Y) > (Y — Z) (simplify)
z,y:p(z,y) z,yty.m y,z:r(y,2)sm

= (X o Y) » (Y x Z)(smplify)
z,y:p(z,y) z,y:true y,z2:r(y,2)

We use therules for simplification of markjoin expressions and for splitting of join predicates.
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Rewriting example B.37 (7) Tree(Il)

olz:Ay €Y e3z € Zeg(z,2)Vr(y,z)|(X)

olz:Ay€eYedze Zeg(z,z)VIz € Zer(y,z)]|(X) (distribute)

olz:Aye (Y x Z)etrue](X ©

olz:Az€ Zeog(z,z)A Ay € Y eIz € Z e r(y, 2)](X) (descope)

Z) (unnest/nest)

vz (y,z) )

z,2:q(2,2) z,y:true y,2:r(y,2)

Rewriting example B.38 (8) Cyclic

B.3

X o 2Z) > (Y x Z)(unnest)

olz:Ay €Y ep(z,y) VIz € Zeoq(z,2) cr(y,2)](X)

= X—-mx(((X > Y)xY) X

ofz:Ay€Yep(z,y) AN Aye Y o3z € Zeq(z,2) cr(y,2)](X)
olz:AyeYedze Zeg(z,z)er(y,2)|(X

> Y)

z,y:p(z,y)

X—oz:qyeYeIze Zeq(z,2)er(y,2)(X > YY)

z,y:p(2,y)

2)

z,y:p(z,y) v,y:q(vx,2) Cr(vy,z)

Cyclic queries

We rewrite some cyclic queries of our list. A query iscalled disjunctive or conjunctive whenever
theinner connectiveisV or A, respectively.

Query 4, digunction

Rewriting example B.39 (4), digunctive, without distribution

ole:JyeYep(z,y)VIze Zeog(z,2) Vr(y,=z)
= nx(T+ov:3z€ Zeg(vx,z)Vr(vy,2)
with (T,F) =X X° Y (bypass)
z,y:p(z,y)
mx (T + (F X 7))
v,z:q(vx,2)Vr(vy,z)
with (T,F) =X X’ Y (unnest)

z,y:p(2,y)

(X)
(F))
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Rewriting example B.40 (4), disunctive, with distribution

oz :

JyeYep(zx,y)VIze Zeog(z,2)Vr(y,2)|(X)
olz:JyeYep(z,y)VIzE€ Zog(z,2)VIzE Zeor(y,2)](X)
(distributeinner)
olz:3z2€ Zeoqg(z,2z) VIy €Y ep(z,y) VIz € Z o r(y,2)](X) (descope)
TH+olz:JyeY ep(z,y)VIzeE Zeor(y,z)|(F)
with (T,F) =X x*> Z (bypass)

z,z:q(2,2)

T+ifY x Z#(0thenFelseF X Y

y,2:0(y,2) z,y:p(z,y)
with (T,F) =X x*> Z (casel)
z,2:q9(z,2)
ifY X Z #+0thenT + FelseT + F X Y
y,z2:r(y,2) z,y:p(z,y)
with (T,F) =X x> Z (disribute +)
z,2:9(z,2)
ifY x Z#(0thenXelseT+F x Y
y,2:r(y,2) z,y:p(z,y)
with (T,F) =X x> Z (smplify)
z,z2:q9(z,2)

Whenever theset Y X, ,..(y,.) Z iSnot empty, distribution of the inner quantification resultsin
major cost savings—only one semijoin has to be performed.

Query 8,

digunction

Rewriting example B.41 (8), digunctive, Codd

oz

By €Y ep(z,y) VIz € Zeog(z,2) Vr(y,2)](X)

ofz:Ay €Y e3dz€ Zep(z,y)Vq(z,2)Vr(y2)](X)

olz:Vy eYe Az € Zep(z,y)Va(z,2) Vr(y,2)|(X)

olz:Vy €Y eVz e Ze-p(z,y) Aq(z,2) A -r(y,2)|(X) (PNF)
(o[v:Vz € Z e =p(vx,vy) A —g(vx,z) A—r(vy,2)| (X xY))+Y
((ov : =p(vx,vy) A ~g(vx,vz) A —r(vy,vz)[(X xY)x Z)+ Z)+Y
(((x X Y) X Z)+2Z)+Y

z,y:-p(z,y) v,2:2g(vx,2)Ar(vy,2)

Note that, due to the use of division, the use of partia join operators is impossible. The result
achieved by means of standard rewriting with R contains one less division:

(X

X Y > Z)+Y

z,y:-p(2,y) v,2:q(vx,2)Vr(vy ,z)
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Instead of ajoin followed by division, we now have aantijoin of which the predicateisadisunction
that can be split. The standard result can be rewritten further algebraically asfollows:

(X x Y) > Z)+Y
z,y:=p(z,y) v,2:q(vx,z)Vr(vy,z)

= ((X X YY) > 2 > Z):+Y(split)
z,y:-p(2,y) v,2:q(vx,2) v,z:7(vy,2)

= ((Xx ©> Z) X Y) > Z)+Y (exchange)
v,z:q(vx,2) z,y:-p(z,y) v,z:r(vy,z)

= (X > Z Y > Z))+Y (associate)
v,z:q(vx,2) z,y:—p(2,y) v,z:r(vy ,2)

The advantage of the latter expression is that the operands of the regular join present are reduced by
the antijoin operations. The price paid is an additional accessto table Z. Below, we show that, with
distribution of the inner quantification, division can be avoided altogether:

Rewriting example B.42 (8) digunctive, distribution

olz:By €Y ep(z,y)V 3z € Zeq(z,z) Vr(y,=2)](X)

= olz:AyeYep(z,y)V(Iz€ Zeoqg(z,2)VIzE Zeor(y,z))](X)
(distributeinner)
olz:Az€ Zeog(z,z) N By e Y ep(z,y) VIz € Zer(y,z)](X) (descope)
= ofz:AyeYep(z,y)VIzeZer(y,2)|(X ©> Z) (unnest)

z,2:q(z,2)

if (Y x Z)#0thenfelse(X > Z) > Y (caeb)

y,2:7(y,2) z,2:q(z,z) z,y:p(z,y)

Distribution of the innermost quantification leads to what seems the best result. No division opera-
torsare present, and all joins are partial. Dueto the distribution, descoping can take place, followed
by unnesting of the quantification over Z, and then the selection is rewritten asin Rewriting exam-
ple B.36, with distribution of the quantification with range Y.

Recall that query 4 is the complement of 8, so for 4 we have:

X—-if(Y x Z)#0Othenfelse(X > Z) > Y

y,z:r(y,z) z,2:q(z,z) z,y:p(z,y)

which is equivalent to:

if(Y x Z)#0thenXelseX—-(X > Z) > Y

y,2:7(y,2) z,z:q(x,2) z,y:p(z,y)
We have found a useful equivalence rule:

X-(X ©> Z) > Y=T+F x Ywith(T,F)=X x> Z

z,2:q(z,z2) z,y:p(z,y) z,y:p(z,y) z,2:q(z,z2)

We show the rewriting of the left-hand side into the right-hand side:
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Rewriting example B.43

X-X o> Z) > Y

z,z:q(2,2) z,y:p(2,y)
= (X x 2)UX o Z2))-X > 2Z) 1> Y
z,z:q(x,z) z,2:q(z,z2) z,2:q(z,2) z,y:p(z,y)
= (X x Z-(X o> Z) > Y)U
z,z:q(2,2) z,2:q(z,z2) z,y:p(z,y)
X > Z-(X > Z) > Y)
z,2:q(z,2) z,2:q(z,2) z,y:p(z,y)
= (X x 2Z2)UX > Z) x Y
z,2:q(z,2) z,2:q(2,2) z,y:p(z,y)
= T+F x Ywith(T,F)=X x> Z
z,y:p(z,y) z,2:q(z,2)

Query 8, conjunction
Rewriting example B.44 (8), conjunctive, Codd
olz:Ay €Y ep(z,y)VIz € Zoq(z,z) Ar(y,2)|(X)
= ofz:AyeYedze Zep(z,y)V(q(z,2) Ar(y,2))](X) (scope)
olz:Vy€Ye Bz € Zep(z,y)V(q(z,2) Ar(y,2))](X) (push -)
olz:VyeY eVze Ze-p(z,y) A (—gq(z,2)V -r(y,2))](X) (push =, PNF)
(o[v:Vz € Z e p(vx,vy) A (—g(vx,2z) V-r(y,2))](X xY)) +Y (unnest)
X X

= ((ofv: =p(vx,vy) A (mq(vx,vz) V =r(vy,vz)) Y)xZ)+2Z)+Y
(unnest)
= & e Y vmaox Svmroy i 2 2+ Y (push)

The result achieved by means of standard rewritingusing R is:

(XXY) D> 2)+Y
-p qAr
Again, we have one less division operator. However, the antijoin predicate, which isaconjunction,
cannot be split, asfar aswe know, so further algebraic rewriting seemsimpossible. With distribution
of the outer quantification we have:

Rewriting example B.45 (8), conjunctive, distribution

olz:Ay €Y ep(z,y) VIz € Z o q(x,2) Ar(y, 2)|(X)
= ofz:AyeYep(z,y) AN Ayc Y o3z € Zeq(z,2) Ar(y,2)](X) (distribute)
= olz:AyeYedze Zeog(z,2) Ar(y,2)](X > YY) (unnest)
z,y:p(x,y)
= (X > YY) > (Z x Y)(cae23)
z,y:p(z,y) z,z:q(z,2) z,y:7(y,2)

Again, the best result is achieved after distribution of quantification. Distribution is advantageous
even though the number of free variables in the dijuncts is not reduced compared to the number
present in the origina predicate. But, due to the distribution, which concerns a negated quantifier,
the digunction is transformed into a conjunction.
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Query 16, diunction
Rewriting example B.46 (16), digunctive, Codd

olz:Ay €Y ep(z,y)V Az € Zeq(z,2) Vr(y,2)|(X)

olz:Ay €Y e Az € Ze-p(z,y) A(g(z,2) Vr(y,2))](X) (scope)
(o[v:3z € Z @ =p(vx,vy) A (q(vx, 2) V r(vy, 2))](X x Y)) + Y (division)
= (ofv:-p(vx,vy) A(q(vx,vz) Vr(vy,vz))]((X xY) x Z)) +Y (unnest)

The result contains one division, and the selection predicate involves adigunction. We try distribu-
tion:

Rewriting example B.47 (16), digunctive, distribution

olz:By Y ep(z,y)V Bz € Zeqg(zx,z)Vr(y,2)](X)
= olz:ByeYep(z,y)V(Bze€ Zeoq(z,2) N Bz € Z or(y,2))]|(X)
(distributeinner)

After distribution of the inner quantification, which both reduces the number of free variables and
changes the dis- into a conjunction, the selection predicateis not in MNF. Transformation into MNF
requiresto distribute vV over A, and then to distribute the outer quantification, resulting in acomplex
expression. Distributing the outer quantification, we have:

olz:BycY ep(z,y)V Bz € Zeqg(zx,z)Vr(y,2)](X)
= oz:AyeYep(z,y) N BycYe Az € Z e q(z,2) Vr(y,2)|(X)
(distribute outer)

olz:AyeY e Bz € Zeog(z,2) Vr(y,2)|(X > )Y) (unnest)
if(Y > Z)#0thenfelse((X > Y) x Z)(caselb)

y,2:7(y,2) z,y:p(z,y) z,2:q(z,2)

whereas the result achieved by standard rewriting is:

((x X Y) % Z)+Y

z,y:-p(z,y) v,2:q(vx,2)Vr(vy,2z)

Query 16, conjunction
Rewriting example B.48 (16), conjunctive, Codd

olz:Ay €Y ep(z,y) V Bz € Z e q(z,2) Ar(y,2)|(X)
ofz:Ay €Y o Az € Zep(z,y) Aq(z,z) Ar(y, 2)|(X)
(ofv:3z € Z e mp(vx,vy) Aqvx,2z) Ar(vy,2)|(X xY))+Y
= (ofv:-p(vx,vy) Aqlvx,vz) Ar(vy,vz)][(X xY) x Z)) +Y

which is equivalent to the result achieved by standard rewriting:

(X ™ V) X Z)+Y

z,y:-p(z,y) v,2:q(vx,2)Ar(vy ,2)
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Rewriting example B.49 (16), conjunctive, distribution

olz:By €Y ep(z,y)V Bz € Z e q(z,2) Ar(y,2)|(X)
olz:ByeYep(z,y) N BycY e Az € Z oq(z,2) Ar(y,2)|(X) (distribute)
olz:Ay€Y e Bz € Zeog(z,z) Ar(y,2)|(X > V) (unnest)

z,y:p(z,y)
(((x > Y)xY) X Z) +Y (case3l)

z,y:p(2,y) v,2:q(vx,2)Ar(vy,z)

With distribution, the result contains an additional antijoin operation. Instead of the subexpression
(X My yimp(eyy) V), Wehave (X Do yipa,y) Y) X Y). Wecan say something about the cardinal -
ity of thelatter expressions. Let R1, R», respectively, denote theresult sets of the above expressions,
then it holdsthat R, C R:. We explain why. Let z be sometuple of X suchthat Ay € Y e p,
then {z} x Y belongsto R», and also to R, because Vy € Y e —p. On the other hand, let = be
sometuple of X suchthat 3y € Y e p, then this tuple does not contributeto R,. But the tuple does
contributeto R, unlessit holdsthat Vy € Y e p, whichisunlikely. Therefore, the cardinality of the
join expression will be equal to or, most probably, larger than that of the antijoin expression. So, in
this case distribution is profitable as well.

Query 24, digunction
Rewriting example B.50 (24) digunctive, Codd

olz:Ay €Y ep(z,y) NIz € Zeoq(z,2)Vr(y,2)|(X)

= olz:Ay€Yedze Zep(z,y)Al(g(z,2) Vr(y,2))(X)
oflz:VyeYe Az € Z ep(z,y) A(q(z,2) V r(y,2))](X)
olz:VyeYeVze Ze-p(z,y)V (~q(z,2) A -r(y, 2))](X)
(clv:Vz € Z e p(vx,vy)V (mq(vx,2) A r(vy,2))|(X xY))+Y
((ov : =p(vx,vy) V (mq(vx,vz) A or(vy,vz)) (X XY) x Z) + Z) + Y
(X X YVIx2)Uu((X X 2) X  Y)=Z) =Y

z,y:-p(z,y) z,2:2q(z,2) v,y:or(y,vz)

Rewriting example B.51 (24), digunctive, R

olz:By €Y ep(z,y) A3z € Z e q(z,2) Vr(y,2)](X)

= X-—olz:TyeYep(z,y) Az € Zeg(z,2)Vr(y,2)](X) (difference)
X —7mx(ov:plux,vy)AJz € Z e q(uvx,2) V r(vy, 2)](X x Y)) (unnest)
X —7x(o[z: 32 € Zeog(vx,2) Vr(vy,2)](X X Y))(push)

z,y:p(z,y)
= X-—-mx((X X Y) X Z) (unnest)
z,y:p(z,y) v,2:q(vx,2)Vr(vy,z)
= X—-mx((X X Y) X Z)U((X ™ YY) X 7))
z,y:p(z,y) v,2:q(vx,2) z,y:p(z,y) v,2:r(vy ,2)

(split)

Compared to the result achieved by means of the reduction algorithm of Codd, instead of two divi-
sions, we have one difference operator. In addition, the result achieved by means of standard rewrit-
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ing contains a common subexpression, which isthe left operand of two partia joins. Further alge-
braic rewriting may proceed as follows:

X—mx((X X Y) x Z2)U((X X Y) x 2)

z,y:p(z,y) v,2:q(vx,2) z,y:p(z,y) v,2:7(vy,2z)
= X—-mx((X X Y) % Z)U(x ™ (Y X 7)))
z,y:p(z,y) v,2:q(vx,2) z,y:p(z,y) v,2:7(vy,z)
(associate)
= X-(((X x YY) X Z)U (X X Y X Z))) (push)
z,y:p(z,y) v,2:q(vx,z) z,y:p(z,y) v,z:7(vy,2)

The common subexpression has disappeared; instead of one regular and two partia joins, we have
four partial joins.

Rewriting example B.52 (24), digunctive, distribution

olz:By €Y ep(z,y) A3z € Z e q(z,2) Vr(y,2)](X)
= olz:AyeYep(z,y)N(3z € Zeog(z,2)VIz € Zor(y,z))](X) (distribute)
The selection predicate is not in MNF. Below, we show the effect of rewriting the predicate into
MNF, using the union to handle digunction:
olz:By €Y ep(z,y) A3z € Z e q(z,2) Vr(y,2)](X)
= ofz:ByeYep(z,y)AN(Fz€ Zeoqg(z,2z)VIz € Zer(y,z))](X) (distribute)
oz :AyeY e (p(z,y) NIz € Zeog(z,2))V (p(z,y) NIz € Z 0 r(y, 2))](X)
(distribute A)
olz:AyeY e (p(z,y) NIz € Zeog(z,2)) A
Ay €Y o (p(z,y) ANz € Z e r(y,2))](X) (distribute A)
olz:Ay €Y o (p(z,y) NIz € Zeog(z,2)) A
Aye(y X )Z) * p(z,y)](X) (range nest)

z,z:r(y,z

olo:ByeYe(ple,y)AIz€Zogl )X > (¥ x 2)

z,y:p(z,y) z,z:7(y,2)
(unnest)
= ofe:BreZeg(z,2)V ByeYep@y)l(X > (Y x 2)
z,y:p(x,y) z,2:7(y,2)
(descope)

ole: Az € Z 0 q(2,2)|(V) Uolo : By € Y o p(z,y)|(V) (i)
withV = X > Y X Z)
z,y:p(z,y) z,z:7(y,2)
V. > Z2)u(V > Y)(unnest)
z,z:q(2,2) z,y:p(2,y)

withV=X > (Y x 2)

z,y:p(z,y) z,z:r(y,2)

The result involves four partial joins and a union, but no division or set difference. In this case, it
is difficult to compare the respective results. The result of Codd can be improved easily, but which
one of the expressions is the best is hard to tell.
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Query 28, digunction
Rewriting example B.53 (28), digunctive, Codd
olz:3y €Y ep(z,y) A Bz € Zeg(z,2) Vr(y,2)|(X)
olz:3y€eY e Az € Ze—p(z,y)Vq(z,2)Vr(y,2)](X)
wx(ov:Az € Z e —=p(vx,vy) Vq(vx,z) Vr(vy,2)](X xY))
mx ((o[v : p(vx,vy) A =g(vx,vz) A = r(vy,vz)](X X Y) x Z)) + Z)
The result of standard rewriting is the expression:
()

Further algebraic optimization yields a result which presumably cannot be improved:
x((X X Y > 7
x(( p(z,y) )q(wJ)Vr(y»Z) )
= mx((X X Y) > Z) > Z)(wplit)
r(z,y) r(y,z) q(z,z)
= 7x(((X > Z) X Y) > Z)(exchange)
r(y,z) p(z,y) q(z,z)
= ((X > Z) x Y) > Z)(push)
r(y,z) p(z,y) q(z,z)
Distribution yields the same result:

Rewriting example B.54 (28), digunctive, distribution

olo:3y €Y op(z,y) A Bz € Zoa(z,2) V r(y, 2)(X)
olz:yeY ep(z,y) AN Az € Zeq(z,z) N Az € Z e r(y,2)](X) (distribute)
olz:Bz€ Zeoqg(z,z) NIy € Y ep(z,y) A Az € Z e r(y,z)](X) (descope)
olz:BAz€ Zeoqg(z,2)NIye (Y > Z)ep(z,y)](X) (rangenest)

y,zir(y,2z
BreZeq@ AW EW B Z)ep(y](X) (rangenes)
y,z:r(y,2
> Z) x (Y > Z)(unnest)
z,2:q(z,z) z,y:p(2,y) y,2:7(y,z2)
> Z) x Y) D> Z)(associate)
z,z:q(z,2) z,y:p(z,y) y,zir(y,2)

I
= % =

Query 28, conjunction
Rewriting example B.55 (28), conjunctive, Codd
olz:dyeYep(z,y) A Az € Z e q(z,2) Ar(y,2)|(X)
olz:IyeYe Aze Zep(z,y)V(az,2) Ar(y,2))](X) (scope)
olz:Jy €Y eVze Zep(z,y)A(~q(z,2) V -r(y, 2))[(X) (PNF)
mx (ov: Vz € Z o p(ux,vy) A (—g(vx, 2) V -r(vy, ))](X Y)) (unnest)

= nx(ofv:p(ox,vy)A(~q(vx,vz)V-r(vy,vz))]((X x Y) x Z) + Z) (unnest)
= 7x(ofv: —qvx,vz)V -r(vy,vz)]((X m,y:;liq(m,y) Y) x Z) + Z) (unnest)

(X ™ Y) X Z)U(X X Y) X Z)=+Z)

z,y:p(2,y) v,2:q(vx,2) z,y:p(2,y) v,2:q(ry,z)
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The result of standard rewriting is the expression:

x((X X Y) > Z)

z,y:p(z,y) v,z:q(vx,2)Ar(vy,2)
Query 32, digunction
Rewriting example B.56 (32), digunctive, Codd

olz:AyeY ep(z,y) N Az € Z e g(z,2) V r(y, 2)](X)

(ofv: 32 € Z o —=p(vx, vr) V (alvx, 2) V r(vy, 2)](X x V)) +

ole:AyeY e Bz Zep(z,y)V(q(z,2) Vr(y,2))(X) (scope)
Y (division)

= (ofv:-p(vx,vy)V (qlvx,vz) Vr(vy,vz))](X xY) x Z)) +Y (unnest)

The result achieved by standard rewriting is:

X—mx((X ™ Y) > 7)

z,y:p(z,y) v,2:9(vx,2)Vr(vy,2)

Further algebraic rewriting yields:

X-—nx(X ™ Y) > Z)
z,y:p(z,y) v,2:q(vx,2)Vr(vy,z)
= X-m~x(X X YY) > 2 b 2Z)(slit)
z,y:p(z,y) v,z:r(vy,2z) v,z:q(vx,2)
= X -—mx(((X > Z) ™ YY) > Z) (exchange)
v,z:r (vy,2) z,y:p(z,y) v,z:q(vx,z)
= X-(((x > Z) X Y) > Z) (push)
v,zir(vy,2) z,y:p(z,y) v,2:9(vx,2)
= X-(((x > Z) X Y) > Z) (push)
v,zir(vy,2) z,y:p(z,y) v,2:9(vx,2)

Notethat theresult isliterally the complement of that achieved for expression 28. Distribution with

bypass processing leads to:
Rewriting example B.57 (32), digunctive, distribution

olz:By Y ep(z,y) A Bz € Zeoq(z,z)Vr(y,2)](X)
= olz:ByeYep(z,y)\ Bzc Zeq(z,2) N Bz € Z er(y,2)

(X) (distribute)

]
= ofz:3z2€Zeq(z,2)V By €Y op(z,y) A Bz € Z e r(y,2)](X) (descope)

= T+olz:ByeY ep(z,y) A Bz € Zeor(y,2)|(F)
with (T,F) =X x*> Z (bypass)

z,z:q(2,2)

T+F > (Y ©> 2
z,y:p(z,y) y,2:7(y,2)

with (T,F) =X x> Z (case29)

z,2:q9(z,2)

Again, the set difference operator can be avoided by means of bypass processing, which is made

possible by distribution of the quantification.
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Example cost formulas

We have example expressions:

® Qi =ofv:3y€zceps(vx,y) Aps(y,vz)|(X N Z)

z,z:p5(2,2)
e Q2 =o[z:3veE (zc M( )Z)opg(m,vy)/\pg,(m,vz)}(X)
Y,2:p6lyY,2
which is equivalent to:
olz : Fv € w.copa(e,ov) Aps(e,vz)](ae o except (c=(w.c X Z)(X))
Y,2:p6 Y,z

For a nested-loop execution method we present cost formulas to compute the cost of the
joins, expressed in block accesses, adapted from [EINa39]. Let np denote the number
of memory buffersavailable, bx denotes the number of disk blocks occupied by X', and
bfrx istheblocking factor of file X, i.e. the number of values(tuples) that fit in one block.
Below, the expression | ¢| representsthe average number of tuples present in attribute c per
€ X.
We assumethat each valuey that belongsto attribute ¢ of X fitsin oneblock, and oneaddi-
tional block is needed for the remaining attribute values of X, so the blocking factor of X
is1/1+ |c|. Theblockingfactor of Z isassumedtobe 1, sotheblocking factorsof thejoin
r%ultsarebfrxz = 1/2 + |C|, bfTCZ = 1/2 Also, bx = ‘X‘ + ‘X‘ . |C|, by = |Z‘

| Query | Readouter [ Readinner | Write result |
Q1 bx (bx/np —1)-bz (Js1-|X[-1Z])/bfrxz
Q2 bx (bx/np —1) bz | [X[-((1+ (js2-|c[-|Z])/bfrcz)

The blocking factors bfr of the join results are respectively bfrxz = 1/12, and
bfr.z = 1/2. Let the number of buffersn g be 6, and assume that in the joins each | eft-
hand operand tuplejoinswith exactly oneright-hand operand tuple, sothejoin selectivities
are jsy =1/|Z|, and jsy =1/|Z|, respectively. Let |X| =100, |¢| =10, and
|Z | = 100.
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| Query | Read outer |  Readinner | Write result |
Q: || 100 + (100-10) = | (1100/5) - 100 = 100/(1/12) =
1100 22000 1200
Qs 1100 22000 100 - (1 + 10/(1/2)) = 2100

The costs for reading are the same for both queries. The costs for writing Q», and the
difference between the two becomes larger as the number of tuplesin ¢ grows. Datarepli-
cation then becomes more and more diadvantageous.

Notethat for query @, we assumed that the outer loop iteratesover X . If wetake Z asthe
outer loop operand, the costs of expression ); become even smaller:

| Query || Read outer | Read inner | Write result |
Q1 bz (bz/np —1)-bx (gs1-1X|-1Z])/bfrxz
Q1 100 (100/5) - 1100 = 22000 1200

For @5, we are forced to take table X as the outer loop operand.
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Symbol Index

> (antijoin), 39
r.a (attribute select), 32
Attr (attributes), 36

x (Cartesian product), 32, 38
T (collect), 38

++ (tuple concatenation), 32
A (conjunction), 32

V (digunction), 32
+ (division), 39

el(---) (element pick), 32

€ (element relation), 32

= (equivalence), 36

except (record modification), 32
3 (existential quantifier), 32

U (flatten), 38
V (universal quantification), 32
FV (freevariables), 36

if-then-else- (conditional), 32
X (join), 39

9 (join, arbitrary), 87

X2 (two-stream join), 76

a (map), 38
— (markjoin), 66

- (negation), 32

v (nest), 39

A (nestjoin), 39

m (project), 38

Q (quantifier), 71

R (standard rule set), 71

Sch (schema), 36
o (select), 38

select-from-in-where-, 33

o? (two-stream selection), 76
X (semijoin), 39

x 2 (two-stream semijoin), 76
- | - (separator), 36

— (set difference), 32

= (set equality), 32

N (set intersect), 32

+ (set merge), 76

O (set operator), 87

{-++} (settype), 30

U (set union), 32

C, D (subset relation), 32

C, D (strict subset relation), 32

(--+) (tuple construct), 32
[- - -] (tuple projection), 32
(---) (tupletype), 30

1 (unnest), 40

with (local definition), 32
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Concept Index

Concept | ndex

access plan, 15
ADL, 35, 113-116
algebra
logical, 2
nested relational, 17-19
physical, 2, 8
relational, 9, 12, 51
versus calculus, 12-14
amelioration, 15
antijoin (>>), 39, 58

bypass processing, 76-78

calculus
relational, 9, 12
syntax, 50
collect (T"), 36, 38
common subexpression, 85
Complex Object bug, 123
composition, 62, 142
constant
in selection predicate, 80
global, 150, 161
local, 150
cost model, 46
COUNT bug, 97-98, 123

datatypes, 30
decomposition, 161
descoping, 65, 150
digunction, 59
division (<), 39, 88
rules, 56-57
versus set difference, 78-80

element (el), 38
equivalence, 36
expression

classification, 4043

flat, 41

nested, 41

nested occurrence, 41

parameter, 41

set, 41

single-table, 41

subquery, 41
extension, 160

filter, 169
flatten (), 38

generalized projection, 160
grouping, 105

index
on set elements, 169
on sets, 170
inheritance, 21
iterator, 40

join
associativity, 87, 148
distribution, 87
exchange, 87, 148
implicit, 21
order, 86-87, 148, 166
partial, 66

join (X), 39

local definition, 34, 161
localization, 159
application of, 162
refinement for predicates, 162
logical optimization, 14-15

map (a), 38

markjoin (—), 66, 75

methods, 22

Miniscope Normal Form (MNF), 56
transformation into, 65-66

nest (v), 39
nested Cartesian product, 139
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nesting
in select-clause, 102-103, 125
in where-clause, 100-102
nestjoin (A), 39, 103-105, 126-127
NP2, 17

object identity, 22
object orientation, 21-23
0osQL, 31-34
kernel, 32
extension, 32
syntax, 32

parameter expression, 41
complex, 167-171

path formula, 67

physical database design, 9

plan compilation, 10

Prenex Normal Form (PNF), 52
transformation into, 63

product (x), 38

projection (), 38

quantification
descoping, 65
distribution, 81-84
exchange, 64, 81
range nest, 70
scoping, 63
unnest, 68

quantifier
range, 41
scope, 41

query
execution, 1
optimization, 7-26

for NF? algebra, 19-20

processing, 1-3, 10
transformation, 1, 7-11

range nest, 70, 84-85
reduction algorithm of Codd, 50-53

schema, 36
scoping, 63

selection (), 38
semantics, 36
semijoin (x), 39
set comparison operators
and unnest, 119-124
by grouping, 100-102, 122124
by rewriting into quantification,
120-122
in join predicates, 168-170
set comprehension, 7, 34
set operator, 40
simplification, 14
splitting expressions, 145-149
functions, 146
predicates, 146
standard
rewriting, 71
rule set, 71
standardization, 14
subquery, 41
correlated, 41

table, 36

base, 36

type, 36
transformation

goal, 40-45

strategy, 145, 152, 166-167
two-stream operators, 76

universal quantification, 56-58
unnest

basic rules, 70

of attribute, 116, 136

of collect, 140, 144

of expression, 136

of quantification, 68, 121, 144
unnest (i), 40

with, 34

XNF?, 19



