

High Level Efficiency in Database Languages

Kim S. Larsen

Computer Science Department, Aarhus University
Ny Munkegade, 8000 Aarhus C, Denmark

March 1993

Preface

The subject of this Ph.D. thesis is the design and implementation of database
languages. The thesis consists of five articles [16, 57, 59, 60, 61] and this sur-
vey paper. In [61], a new query language design is proposed. The expressive
power of the language is determined in [57] and all reasonable extensions are
considered. In [59, 60], we focus on the optimization issue of avoiding unnec-
essary sorting of relations. The results in these papers are directly applicable
to any algebra-based query language. In addition to the query language part,
a database system also has to offer update facilities. The theory of standard
tuple based updates is quite well developed in the sequential case. In [16], we
discuss a new concurrent implementation of balanced search trees for that
purpose.

This survey paper describes the results in the papers which form the thesis,
and relates these results to each other and to the area in a broader sense
than is customary in the introductions of individual papers. The paper is
intended to be read in combination with the papers on which it is based.

The last section of this survey paper is a summary in Danish.

1

Acknowledgements

The work on this Ph.D. thesis was initiated in the late summer of 1989.
On September 16, 1992, the thesis was officially submitted, and the thesis
defense took place February 26, 1993.

First, I would like to thank my advisor, Erik Meineche Schmidt, for his advice
and support, and the thesis committee consisting of Erik Meineche Schmidt
(Aarhus), Mogens Nielsen (Aarhus), and Jens Clausen (Copenhagen) for
careful reading of the thesis and for asking interesting questions at the de-
fense. Mogens Nielsen deserves additional thanks for wakening my interest
in research while advising me on my master’s thesis.

At the Computer Science Department in Aarhus, there are many other people
who have helped me in various ways during this period; some offered friend-
ship, some helped with practical matters, and some contributed to interesting
discussions. I would like to thank all of them.

I spent the fall of 1990 and the spring of 1991 at the University of Toronto
visiting the group around Alberto Mendelzon. It was very helpful to spend
those two semesters in an active database research environment, and I would
like to thank everybody there who did their best to make me feel welcome.

I would also like to thank my wife, Joan Boyar, for inspiration, for interesting
and helpful discussions, and most of all for putting up with me during this
often stressful period.

Finally, my parents Lisbeth and Karsten Larsen have contributed greatly
to the very existence of this thesis by instilling in me their belief in the
importance of education. They have been very supportive of my educational
and career choices and very helpful with matters less directly connected to
this thesis. For all of this, I am very grateful.

2

1 Introduction

A database system consists of a large number of components which interact
to create the best possible environment for storage and retrieval of data. It
varies from system to system to what extent these components are integrated
and exactly what borderlines or interfaces the designer has chosen to offer
and/or enforce on the system. But usually components dealing with the fol-
lowing subjects are present: query languages, update facilities, transaction
management, access control, failure recovery procedures, versioning mecha-
nisms, concurrency, etc. Of these components, the query language and the
update facilities are the high level or user-end components and these are the
ones we focus on here.

Query languages have been developed guided by quite different strategies.
Early on, network or hierarchical models were used. Later, the relational
model was the basis for implementations. Newer approaches include seman-
tics-oriented models [17], logic-based models [86], object-oriented models [11],
and graph-based models [23]. However, since a number of papers in the late
sixties led up to Codd’s break-through paper in 1970 [21], the relational
model has had a very central place in the area; both as a model in its own
right and as a basis for the newer models. Only time will show if, or to
what extent, newer models will be serious competitors to the relational one.
An interesting description of the development of the area can be found in
[85]. It is worth noting that, for a large part, the success of the relational
model seems to be due to its simplicity and tractability in a mathematical
framework. Via papers such as [8, 15], a rich theory of relations developed,
which led to efficient implementations through design and optimization. In
[57, 61], we deal with the design aspect in connection with aggregation in
particular.

The ability to store and retrieve large amounts of data is what characterizes
database systems and distinguishes them from other languages or systems.
This means that it is often worth while to optimize queries and updates
before or during the actual evaluation. Optimization can be carried out on
many levels; from the highest levels of transforming queries into equivalent
more efficient ones, to the lowest levels of organizing data optimally on the
physical storage medium such that it can be fetched rapidly under various
conditions. The paper [45] contains an excellent survey on optimization of

3

queries. In [59, 60], we focus on sorting, or rather, on how to avoid sorting.
The results we obtain are based directly and solely on the analysis of queries.
The results in [60], in particular, were inspired by the design papers [57, 61],
but in both of [59, 60], we present the results in a general and standard
framework since they can be applied to a great variety of systems.

The area of updating has been neglected for quite a while, but gradually the
simplified view of updates being nothing more than a query language plus an
assignment [1] is changing. However, whatever direction update languages
are taking, it seems likely that the core of the matter will still be the ability to
deal with insertion and deletion of tuples in an efficient way. In [16], we look
at sorted organizations of tuples in the form of trees. In the sequential case,
there is a well established theory, but results do not carry over immediately
to the concurrent (but centralized) environment. Recently, in [72], Pugh
conjectured:

It might be possible to design concurrent balanced tree algorithms
that allowed O(n) busy writers with high efficiency, but the com-
plexity of such algorithms probably would make their implemen-
tation prohibitive.

We believe that in [16], we prove that conjecture false. There is also a
connection between [16] and [59] in that the clustering of data naturally
present in a sorted structure implies that retrieval in sorted order is faster
than other choices. This can be exploited in the algorithms of [59].

In [57, 61], we deal with design of query languages with aggregation, in par-
ticular, with emphasis on expressive flexibility (in [45], this is referred to as
“user optimization”). In [59, 60], we look at optimization based on direct
analysis of queries. In [16], the focus is on efficient design of the highest level
of update organization. Thus, the aim of all five paper is to optimize per-
formance via design and analysis of the high level parts of database systems.
We believe, therefore, that an appropriate title for this collection of work is
the chosen one: High Level Efficiency in Database Languages.

We have tried to include the relevant references each time we have introduced
a new concept. If, despite our effort, some concepts have been discussed and
have not been properly referenced, then we refer the reader to the excellent
textbooks of Date [27], Kanellakis [48], Maier [64], and Ullman [86, 87].

4

Maier’s book is the oldest and does not cover the newer areas, but it contains
interesting results not included in the others. The older textbooks of Date
[25, 26] and Ullman [84] cover the included material well, but all important
results also appear in the textbooks mentioned above.

2 User Optimization

In [45], user optimization is defined as the subject dealing with “functional
capabilities and usability of the query language”. So, the concern here is
primarily the ease with which users can formulate complex queries. In this
section, the main focus is on aggregation, but we start with a brief sum-
mary of our view on the differences between relational algebra and relational
calculus seen from a user’s perspective.

With the exception of the natural join (and variants like semi-join [14], for
example), the relational algebra operators take one or two arguments and
produce a new relation which is related to the argument(s) in a very simple
manner. Here, calculus queries are more complicated because of the more
indirect formulation using existential and universal quantification. However,
when the relevant tuples have been determined via the quantifiers, it is easy
to formulate the result by forming a tuple using the attribute values from the
tuples determined through the quantification. The algebra does not have this
advantage. For example, unary queries which basically perform a number of
simple manipulations on each tuple have to be formulated as a long sequence
of operations on relations in the form of projections, selections, extensions
[38], renamings, etc.

To some extent, we support the view of Merrett [65] who argues that there
is nothing unnatural in trying to combine the algebra and the calculus. In
fact, Merrett refers to the distinction and calls it “a historical accident that
one branch of logic should be thought of as an algebra and the other called
calculus”.

The language which we present later in this section could be viewed as a
blend of algebra and calculus. The language consists of an advanced algebra
operator, which is combined with a tuple language, the purpose of which is
to give us the advantages of the calculus.

5

Before we present the language, we wish to discuss aggregation and grouping.
In the database world, aggregation usually refers to the computation of one
value from a set (or a multiset) of values. Typical aggregate functions are
sum, count, max, etc. Often aggregation is connected with some form of
grouping, which allows a relation to be partitioned into a number of sets.
The aggregate function is then applied to each of these partitions, and a new
relation is formed using these individual results.

From early on, aggregation was included as a facility in query languages. It is
present in the most famous languages like QUEL [82, 92] (INGRES [81, 82]),
SQL [10] (System R [9, 18]), and QBE [91], as well as in less wide-spread
languages like ASTRID [36, 37, 38], STRAND [46, 47], etc.

However, as it is also pointed out in [47], it can be quite cumbersome to
express an aggregate query in these languages. This is partly due to heavy
syntax (especially in QUEL) and partly due to the difficulties for the (inex-
perienced) user in understanding the concept of aggregation (and grouping
in particular). In [46, 47], Johnson proposes a simpler language, STRAND,
where syntax is reduced to a minimum and the grouping does not have to be
formulated explicitly by the user. Unfortunately, the simplicity is obtained by
sacrificing generality. As this approach has not been very successful, we will
not describe the method in any detail. Briefly described, the user can only
apply aggregate functions to (implicit) groupings over the join of a sequence
of relations connected in the underlying entity-relationship model [20].

In [52], Klug develops a theoretical framework for incorporating aggregate
functions into relational algebra and calculus and proves his extended algebra
and calculus equivalent. For the algebra, expressions like

e〈X, f〉

are added, where e is a relation expression, X is a list of attribute names
(the group-by list), and f is an aggregate function. Here, X determines
the partitions. Each maximal set of tuples agreeing on the attributes X
constitutes one element of the partition. A more concrete way of looking at
it is the following. First, we can form the relation πX(e). Each tuple t in this
relations determines a partition {t} 1 e, where {t} is the singleton relation
containing only the tuple t. The aggregate functions that can be used are
actually families of aggregate functions, as they are indexed by attribute

6

names (actually, Klug uses numbers as in Codd’s original proposal, but we
like attribute names better). So, for some attribute name A ∈ schema(e) \
X, f could be sumA, countA, etc. Now, each tuple {t} in πX(e) is extended
with one value calculated by applying the aggregate function to the specified
column in {t} 1 e.

Specifying aggregation like this, makes it unnecessary to first project over
the relevant attribute name (the A from above), require that duplicates be
retained, and then perform the aggregation. This was the approach of QUEL
and SQL among others, and as Klug argues, this goes completely outside the
set-theoretic definition of the relational model. Also, Klug’s calculus only
allows safe [22, 31] expressions.

In [70], set-valued attributes are introduced directly on top of the algebra
and the calculus of Klug. That paper also contains equivalence results.

In [24], several variants of Datalog [86] and GraphLog [23] are considered and
compared. In particular, Consens and Mendelzon consider safe [74, 90] non-
recursive Datalog with aggregation, which is equivalent in expressive power
to relational algebra with aggregation. In addition to the usual rules, they
allow rules of the form

p(t1, . . . , tn)[X]← s1, . . . , sk

where a term ti is now allowed to be an aggregate function applied to a
variable and X is a sequence of variables (the group-by list). The ti’s which
are variables should also appear in X. To ensure safety, all the variables in
t1, . . . , tn and the variables in X should also appear in s1, . . . , sk. The inter-
pretation of the rule is the obvious one generalizing the semi-naive evaluation
of Datalog programs [86].

In greater detail, this means the following. Consider a standard rule like

p(t1, . . . , tn)← s1, . . . , sk

Assume that e is the relational expression obtained in the usual way by
joining s1, . . . , sk and selecting on equality and inequality. Then the relational
expression πt1,...,tn(e) is usually associated with that rule and the expression
is used in the fixed point calculation. In the new aggregate rule, if ti is an

7

aggregate function applied to an attribute name, f(A), and remaining tj’s
are simply attribute names, then the associated relational expression would
be

πt1,...,tn(group e by X creating ti := fA())

The fact that Klug’s presentation is so simple together with the fact that
radical extensions can be made without ruining the algebra/calculus equiv-
alence and the fact that the simplest possible formulation of aggregation in
the standard logic-based language, Datalog, gives the same expressive power,
strongly supports the point of view that Klug’s extension to standard rela-
tional algebra is very natural.

We believe, however, that there are some artificial limits both with respect
to the grouping and with respect to the use of aggregate functions on the
grouping. First, it is not given a priori that grouping should be a unary
operation. Second, it is not given a priori that aggregate functions should be
applied directly to the grouping components. We give some examples later,
which will clarify these objections. As we have argued that Klug’s basic
approach is the natural one, further extensions should of course have Klug’s
grouping and aggregation as a special case.

For some applications where the use of aggregation is not central, it might
be a good idea to simplify the grouping aspect through restrictions on the
language, as it has been done with STRAND as discussed above. However, in
applications where the need for aggregation comes up frequently, we believe
that the power of grouping and aggregation should not be restricted.

In [61], we have based a language called Factor on grouping. Although this
places an initial burden on the user, we believe that for applications where
the concept of grouping is indispensable, we might as well try to increase
our benefits by exploiting the grouping mechanism intensively. Before dis-
cussing the advantages we obtain, let us stress that this language should not
necessarily be used directly as a query language. Only experience with a
prototype implementation can give some hints as to what the best variants
of this language might be. Such an implementation has been completed very
recently [58], but we have not yet had much response from users.

Based on our discussion in this section, we now account for the advantages
of the Factor language as we see them. We refer the reader to [57, 61] for

8

a precise definition of the Factor language, its semantics, and the simplest
examples expressing the standard operators of relational algebra. In the
following, we just give a short and informal description of Factor. This
description is followed by some examples to illustrate the more important
aspects of the language. The name Factor is motivated in [57].

A Factor expression can take any number of arguments. The notation used
here is

r1, r2, . . . , rn : exp

The group-by list is implicitly defined as the intersection of the schemas of
the arguments.

In the following, compare with the semantics of the Klug expression giving
earlier. A Factor expression is evaluated by running through all the tuples
of
⋃
i πX(ri), where X =

⋂
iRi, evaluating exp each time, and taking the

union. So, the implicit union present in Klug’s grouping/aggregation is of
course also present in Factor. In exp, we are allowed to use the current
tuple from

⋃
i πX(ri), called #, and the corresponding relation parts from the

n relations, called @(1),. . . ,@(n).

In the most basic Factor language described in [61], we only have a small
tuple language. A constant tuple can be defined by writing [A : v], where
A is an attribute name and v is a value. Tuples can be concatenated and
we use the notation t1t2 for this, where t1 and t2 are tuples. There is also
tuple restriction, t\A, which denotes the same tuple as t except that the
attribute name A and its associated value does not appear in t\A. To extract
associated values from a tuple, we use the notation t.A. The value in the
formation of a constant tuple is a constant or an attribute name from #
(that is, from

⋂
iRi). It can also be an expression if we allow computation

on domain values.

As values from # are used very frequently, it is natural to allow a more
convenient notation for this. In the following, an attribute name, A, used as
a value will be short for #.A.

A singleton relation can be formed by surrounding a tuple with curly brack-
ets. In addition, we have a gate construct (or a guard). This is denoted b? e,
where b is a boolean expression and e a relational expression. The expression

9

evaluates to the value of the relational expression provided the boolean ex-
pression evaluates to true. Otherwise the value is the empty relation with the
schema of the relational expression. The boolean expressions are the same
as the ones used in ordinary selections. Finally, we use Cartesian product.
Let us immediately remark at this point that using Cartesian product will
not make it more expensive to evaluate queries because this operator will
typically be used on the small parts of the relations where the natural join
is also basically the Cartesian product (the parts which have identical values
in the intersection of the schemas).

This is the basic language. In [57], this language is proved equivalent in
expressive power to relational algebra. In the same paper, it is shown how
the language can be extended significantly and at the same time remain
equivalent to relational algebra. For aggregation and computation on domain
values, the equivalence only holds, of course, if relational algebra is extended
similarly (for instance, using Klug’s definition). See [57] for details.

It makes perfect sense and it is sometimes convenient to group on less than
the intersection of the schemas of the relational arguments to Factor. For
notational convenience, we shall use the symbols |+ and |− to indicate a
positive or negative list of attribute names relative to this intersection of
schemas. Additionally, we shall allow @ to be used for @(1).

We stated earlier that it is not given a priori that grouping should be a
unary operation. This is illustrated by the following example. Consider the
relations Employees with schema {Name, Dept, Salary} and Offices with
schema {Location, Dept, Size}. The attribute Name is a key for Employees,
and Location is a key for Offices. The relation Employees contains infor-
mation about the staff of some institution. For each person, the person’s
department and salary is listed. The relation Offices contains a listing of
all the offices in the institution: their exact location, which department uses
the offices, and how many people they can hold. In connection with decid-
ing which departments are most needy of office space, we are interested in
calculating the ratio of office space per employee. We need to aggregate over
two arguments at the same time.

Employees, Offices: {#[Ratio: sum(@(2), Size) count(@(1), Name)]}

It would be quite awkward to formulate this in standard relational algebra

10

with some form of a unary grouping mechanism and an extension operation
with arithmetic. There are two main reasons why this is so easy to formulate
in Factor. First, grouping in Factor is a general operation, i.e., it is not
restricted to a single relational argument. Thus, the grouping components in
the two relations Employees and Office associated with a certain Dept value
can be accessed at the same time. Second, the strong tuple language ensures
that there is an effective way of combining the aggregate values sum(@(2),
Size) and count(@(1), Name).

Also, notice how easily computations on domain values fit into the tuple
part. This is also high-lighted by the following query. Let the schema of r
be R = {A1, A2, A3, A4, B1, B2}. In relational algebra, a unary query with a
domain value computation would typically look something like

πA1,A2,A3,A4,B1,B (extend σB1>B2(r) with B := B1 +B2)

In the Factor language, we can write

r : B1 > B2? {#\B2[B : B1 +B2]}

We cannot argue that this is simpler than the relational algebra formulation
as this is clearly a matter of taste. If one is very familiar with the algebra,
then the standard algebra query is probably the simplest to understand.
However, our opinion is that using the tuple language with an explicit naming
of a (generic) tuple from the argument relation makes the formulation of the
query easier.

We stated earlier that it is not given a priori that aggregate functions should
be applied directly to the grouping components. This is illustrated by the
following example.

Assume that r, R = {A,B}, is a representation of a directed graph. We want
to count the number of 2-cycles for each node, i.e., for each node v, we want
to count the number of distinct nodes w such that (v, w) and (w, v) are arcs
in the graph. In relational algebra with group by, this can be done by

πA,N(group σA=C(r 1 δA←B,B←C(r)) by A, C creating N := count())

Avoiding the inefficient natural join, the Factor version looks like

11

r, δA←B,B←A(r) |+A : {#[N : count(@(1) ∩@(2))]}

Once again, it is the blend of algebra and calculus, which makes this query
easy to formulate. In addition, it also becomes more efficient. Because the
grouping is still an algebra operation, standard algebra operations can be
used freely in combination with the basic Factor language. The power of
the calculus-inspired tuple language is, of course, dependent on the explicit
naming of the grouping components, # and the @’s. Only via direct refer-
ences to the grouping components is it possible to build a flexible and efficient
tuple language.

To underline the naturalness of the Factor language, we demonstrate how
easily we can extend the language to deal with one of the Non First Normal
Form (N1NF) models. Various complex object models [2, 13, 42], such as
the Verso model [3], can be simulated, but the world of nested relations fits
the Factor language best. We take a closer look at the nest and unnest
operators of [43, 44] (in the their NF2 model, they refer to these operators
as νA and µA).

Again, grouping is the fundamental concept. In fact, no new notation or
constructs are needed. All we need to do is to allow relations as values. We
assume the following semantics of nest and unnest. The operation nest is
used as nestA(r). The schema R of r must contain at least two attribute
names, one of which is A. Operationally, nestA(r) is then the following
relation. Each maximal set of tuples from r agreeing on R \ {A} is replaced
by a single tuple. This tuple has the value they all have on R \ {A}, whereas
on A, the value is the relation with schema {A} containing all the A-values
from the set of tuples under consideration.

More formally, the equality πR\A(r) = πR\A(nestA(r)) holds. Additionally,
for each tuple t in πR\A(r), {t} 1 nestA(r) is a singleton, and the A value of
the single tuple it contains is πA({t} 1 r).

The operator unnest is simply the reverse operation. Formally, this means
that unnestA(r) has schema R, the equality πR\A(r) = πR\A(unnestA(r))
holds, and each tuple in πR\A(r) has A value πA({t} 1 unnestA(r)). Thus,
the argument r is required to have relational values in the A column.

Now we can write nestA(r) as

12

r |−A : {#[A : @]}

and unnestA(r) as

r : {#\A} × A

When our relations are extended to include relational values, we will probably
be interested in extending our set of aggregate functions as well. For instance,
if R = {A,B,C} and B contains relational values, then we can allow

r |+A : {#[D : intersect(@, B)]}

As mentioned earlier, the Factor language has been implemented, and so
far, a simple version has been described [58].

Finally, let us remark that an implementation of the Factor language will
not be less efficient than existing implementations of languages of equivalent
expressive power. There are some limits to the efficiency which is enforced
by the grouping [7], but we claim that similar costs would be present in any
equivalent relational algebra or calculus query. In other words, the Factor
language has the same asymptotic complexity as equivalent languages. Most
optimization techniques aimed at obtaining constant speed-up factors can be
used equally well in a Factor implementation. This is discussed in greater
detail for some special cases in the next section and in [59, 60, 61].

3 Query Optimization

Query optimizations range from simple standard techniques, like pushing
down selections, to sophisticated expression analysis. A great number of op-
timization techniques are now entirely standard and are a part of almost any
database system. We are thinking of techniques like, as already mentioned,
pushing down selections [6, 71], combining sequences of unary operators [41],
using multiway sort-merging [5], etc. These techniques were developed very
early because they in many ways are obvious and guaranteed to improve the
complexity of queries. Nonlocal expression analysis, on the other hand, often

13

involves computationally hard problems, such as detecting equivalent (com-
mon) subexpressions [33, 40], and have to rely heavily on heuristics. This
can also be the case when the efficiency of an optimization technique depends
on the concrete data values of the involved relations, like choosing the best
order in which to join a number of relations.

In this section, we focus on the time-consuming task of sorting. As discussed
in [59] in great detail, there are two main reasons for sorting relations. One
is to remove duplicates, and the other is to prepare for the merge, when sort-
merge algorithms are used to implement binary operators. In both cases,
it can be quite difficult to decide if sorting (or to what extent sorting) is
required. A major part of the results in this section was motivated by the
Factor language, but the results apply fully to standard languages. In
[59, 60], we have chosen to present the results in a standard framework,
partly to point out the general applicability of the results and partly to
extend our audience to as large a part of the community as possible. In this
paper, however, we will take the opportunity to give a short explanation of
how these results can be applied to the Factor language.

When trying to minimize sorting, the most interesting place to start is with
the unary queries (here, we are talking about unary queries without aggre-
gation). This is because in order to evaluate a unary query, there is not as
such any reason to sort. The only reason to sort is to remove duplicates
afterwards. So, if it can somehow be established that the unary query does
not produce duplicates, then sorting can be avoided entirely, and we reduce
the complexity of the query from O(n log n) to O(n), where n is the size of
the relation.

In [60], we have examined unary queries including operations on domain
values in a quite general framework. In that paper, we use the notation,

[A1 : exp1, . . . , An : expn]

to specify a new relation with schema {A1, . . . , An}. The values in this rela-
tion are specified by the expressions in which we can use the attribute names
from the argument relation as well as constants. Operators on the domain
can be applied freely to both attribute names and constants or combinations
hereof. We also refer to this type of queries as “for all” queries.

We use this notation for its simplicity. The unary queries are only a part of

14

the total relational system, so their syntax has to depend on the overall de-
sign. In languages where the unary operators are not integrated, the system
can translate sequences of unary operators into expressions like the above
before our results are applied. If a notation similar to the above is used, as is
the case in the Factor language, then one would allow additional notation.
As it is now, renaming A3 to B in a relation with schema {A1, A2, A3, A4, A5}
would look like, for example

[A1 : A1, A2 : A2, A4 : A4, A5 : A5, B : A3]

If one allows # as short for the argument tuple [A1 : A1, . . . , An : An] and
allows restriction, then instead we can write

#\A3[B : A3]

The system can easily translate back to the original notation.

A specification

[A1 : exp1, . . . , An : expn]

can be considered a function from sets of tuples to sets of tuples. The query
is guaranteed not to produce duplicates if and only if it, considered as a
function, is injective.

As an example, consider a relation r with schema {A1, A2}. The query [B :
A1] is not injective since. For example, the two tuples [A1 : 5, A2 : 47] and
[A1 : 5, A2 : 19] both map to [B : 5]. This is what we would expect, of course,
as the query contains (in algebra terms) a projection (and also a renaming).
However, the query [A1 : A1, B : A1 + A2] also contains a projection. In
relational algebra, we would write something like

πA1,B(extend r with B := A1 + A2)

And this query is in fact injective.

Notice that although selection is a unary operator, it is uninteresting in con-
nection with this problem, as it can never be the cause of creating duplicates.

15

So, the unary queries we focus on are the ones which in relational algebra
would be written using combinations of projection, renaming, and some form
of an extend. In translating from relational algebra to our notation, inter-
mixed selections can simply be ignored in the analysis.

It is, of course, easy to see that the above query is injective, but when queries
become a little more difficult, it soon becomes less apparent. The query

[Circ: 2 (H + W), Ratio: (H + W)/H, Wide: W > 50]

is used in [60] to demonstrate the techniques.

In order to decide injectivity of such queries, we need to have information
about the involved operators +, /, etc. If we capture the full meaning of
the operators and the relationships between them in an equational theory,
then it is undecidable whether a function is injective or not. So, we have to
aim lower. A natural and modular choice is to list information about each
operator separately in the form of functional dependencies, e.g., for integer
division, we imagine that a relation with schema {A,B,C} lists all tuples
such that A/B = C. This gives rise to the functional dependencies A,B → C
and A,C → B, but not B,C → A (because equations such as x/3 = 5 have
several solutions; here x ∈ {15, 16, 17}).
In [60], we present algorithms which are capable of fully exploiting this kind of
operator information. This means, first of all, that if our algorithm answers
“proved injective”, then the query really is injective. As the problem of
determining if a function is injective is undecidable in general, this means, of
course, that sometimes when our algorithm answers “no proof”, the function
is in fact injective; we just failed to find a proof. However, whenever our
algorithm answers “no proof”, there exists other operators than the ones
used in the query, which have the same functional dependencies, and which
makes the function not injective. As an example, plus and minus have the
same functional dependencies, but

[C : A+B, D : A−B]

is injective, whereas

[C : A+B, D : A+B]

16

is not.

In [60], we present two algorithms which both solve the problem. The first
algorithm produces a propositional Horn clause program from the query,
guided by the functional dependencies. We use an algebraic framework [89]
to prove the correctness of this method. We obtain the answer by check-
ing whether a few functional dependencies can be deduced. This is done
by using the pebbling technique of [32]. The second algorithm transforms
the query into a tableau [64, 86] having the functional dependencies which
constitute the operator information imposed on its relations. We obtain the
answer using this algorithm by checking for validity of a certain functional
dependency. This can be done by applying the result of [53], which is based
on a chase technique [63] ([53] contains a further development of the results
in [51]). Examples of both approaches can be found in [60]. With respect
to complexity, the propositional Horn clause algorithm is linear in the size
of the query. The chase algorithm also seems to be linear when restricted
to handle only what is necessary here. Which one to choose would mostly
depend on what software is available.

One interesting open problem is whether these results can be generalized
to some extent to avoid sorting when unary operators are mixed with bi-
nary ones. Tableaux are a particular kind of conjunctive queries [19, 75],
so maybe by formulating the solution in that framework a generalization
could be found. As the full relational data model can be expressed using sets
of tableaux [76], this is another direction in which a generalization may be
found.

As injectivity is undecidable, it is not clear how far one should go in speci-
fying operator information. We believe that using the functional dependen-
cies might be exactly the right level, because this means that we can both
incorporate and propagate functional dependencies. That is, functional de-
pendencies which are known to hold for the argument relation can be used in
the algorithm, and this information will improve our chances of deeming the
function “injective”. On the other hand, we can also use the functional de-
pendencies that we collect in the process to check validity of new functional
dependencies, which could then we attached (propagated) to the resulting
relation.

Unary queries were the obvious starting point, but sorting is a primary cost

17

in evaluating queries in general. In the following, we focus on sort-merge
implementations of the binary operators. This implementation has been used
extensively and is described in almost any textbook. It is often advocated
that sort-merge is the best implementation of joins [50, 66, 67], and in systems
where the decision is made to avoid duplicates in relations, sort-merge is also
the superior technique for evaluating the remaining binary operators [28].

As for the unary queries, we base our analysis directly on the query, or
rather on the operator graph, which is a special kind of query graph. In [59],
we follow the programming languages tradition and refer to the graph as a
syntax tree.

A very simple example which illustrates the problem is the following. Con-
sider the query (r1 ∪ r2) 1 r3, where R1 = R2 = {A,B} and R3 = {B,C}. If
r1 ∪ r2 is evaluated first without any information about the context in which
it appears, then we might choose to sort both relations according to the sort
order AB and then merge to obtain the partial result. Proceeding to the
join, we observe that the schema of the union intersected with R3 equals
{B}, so for the purpose of merging, r3 should be sorted according to BC,
and the result of the union according to BA. This means that the result of
the union has to be resorted. Of course, this could have been avoided by
initially choosing the sort order BA for the relations r1 and r2.

This problem of choosing the appropriate sort orders is considered in [80].
Clearly, the problem is primarily how to pass information about required
sort orders around in the syntax tree such that whenever there are a number
of possible choices, the one which fits in best with the rest of the query is
chosen. Smith and Chang try to achieve this by making two passes through
the tree; first a pass up and then a pass down. By doing so, they can
spread information from any leaf to any leaf. There are however, a number
of problems with this proposal.

First, it takes both passes to move information about preferred/required sort
orders from one leaf to another. But when a leaf v receives information from
other leaves, this restricts the possibilities for v, so that its set of possible
sort orders changes. That information ought to be spread to other leaves
depending on v. The information in these leaves will then change and so on.

Second, when Smith and Chang have attached information to the nodes in
the syntax tree, they still have to select one sort order for each node among

18

the remaining possibilities. This they do locally, so they cannot make choices
in different parts of the tree which are consistent with one another. This often
leads to an unnecessary sorting at the node where these inconsistent choices
meet.

Third, they do not in any way recognize the problem of having two or more
appearances of the same relation name in a query. Therefore, their algorithm
might well assign different sort orders to the same relation. Again, that might
be the cause of unnecessary sorting.

Fourth, there are no proofs showing how well their algorithm performs. Given
the number of problems which can be identified, it would have been nice to
see a proof of the efficiency of their proposal.

In [59], we use similar operator requirements, but instead of just using two
passes through the tree, we form an inequational system, which captures the
full information. The ultimate goal is to find sort orders such that argument
relations are sorted once (unless we have been able to choose orders according
to which some of the relations are already sorted), and then no more sorting
has to be done—only merging. We solve the inequational system using fixed
point techniques [83]. This gives us all possible solutions and we select one
afterwards. Thus, we are guaranteed to find a solution if one exists, which
we prove in the paper. Formally, we have managed to prove that the running
time of the algorithm is bounded by the size of the query squared. As queries
are usually short, this is quite acceptable. Furthermore, it seems like most
queries can be analyzed even faster. We have not yet come across families of
examples, which would make our algorithm use more than linear time in the
size of the query. It is therefore possible that the bound can be improved.
We conjecture, however, that families of queries with time complexity match-
ing our bound do exist. In [59], we have given the algorithm for standard
relational algebra, but it can easily be extended in various directions: other
operators can be used, k-way merges [54] can be used to evaluate collections
of binary operators, etc.

In addition to fewer sortings, we obtain different degrees of pipelining. In
[79], this is referred to as parallel processing. This means that the whole
query, or parts of it, can be computed by one large merge using all the input
relations (and maybe small buffers). In the best cases, we can then make do
with only writing one relation on the disk, i.e., no temporary relations would

19

have to be created.

If no solution to the entire system exists, then we have to sort after at least
one of the merges during the evaluation. We would like to find a minimum
number of places to do this. This problem seems quite difficult. In [59], we
conjecture that this problem is NP-complete [34] and discuss an approxima-
tion algorithm.

4 Update Optimization

When dealing with toy database systems, updates are best handled by us-
ing query languages and allowing assignment of relational values to relation
names. This is not a feasible approach, however, when dealing with larger
and more realistic systems. Whichever update model will eventually be the
basis for update languages, like the relational model is the basis for query
languages, we believe that the ability to insert, delete, or modify individual
tuples will be very central.

When tuples are equipped with one key, the standard approach is to organize
the data in some form of a search tree. The advantages of relying on search
trees are obvious. As search trees are of interest in many different applica-
tions, it has been an on-going research topic for decades. So, a great variety
of proposals with different properties exist and most of the complexity issues
concerning the proposed structures have already been dealt with. However,
the well-established theory of search trees for the sequential case does not
carry over directly to the parallel case.

It is natural, though, to choose some of the best sequential structures and
attempt to generalize these to a parallel environment. Before we describe our
results which are based on red-black trees [39], we shortly describe previous
proposals based on other well-known data structures for sequential process-
ing.

Concurrent use of AVL-trees [4] is considered in [49]. Balance information is
kept in the nodes of the data structure in the form of a “carry bit”, which
is set if there is a non-optimal height difference between the subtrees of that
node. In that way, the work of keeping the structure optimally balanced can
be divided between all of the search and update operations. The advantage

20

of this is a more evenly distributed overhead, as opposed to the usual sequen-
tial case where a few insertions or deletions are the cause of a significant part
of the rebalancing. Kessels refer to this as on-the-fly optimization in analogy
to the well-known concept of on-the-fly garbage collection [30]. Though this
is not proved in the paper, it is also possible to separate the updating and
the rebalancing completely, letting background processes do all the rebalanc-
ing. Of course, the tree can then become totally unbalanced, if too little
rebalancing is done.

A similar algorithm is proposed in [69]. Here, the “carry bit” can hold any
integer value greater than or equal to −1. They claim that this improves on
the result of Kessels, but no proof of this is included.

The most extensively investigated data structure in the database area is prob-
ably B-trees [12]. In the last few years, work has also been done concerning
the concurrent use of this, or variants of this, data structure. The first and
probably most simple attempt was presented in [78]. Using semaphores [29],
all the nodes on a path down to an update are locked. The obvious problem
with this approach is that nodes close to the root are locked very frequently
and for long periods of time, thereby preventing a high degree of concurrency.
There are ways to improve on this without fundamentally changing the idea.
In [56], locks are held up to the first insertion or deletion safe node. The
number of locks can still be proportional to the height of the tree, though.

The paper [62] introduces an implementation, where at any time only a
constant number of locks have to be hold for any single update. The structure
which is used is called a Blink-tree. This is only a slight modification of B∗-
trees [88], where links to the sibling to the right are maintained. Still, overflow
is taken care of by the inserting process. As only a constant number of
locks are used, a complicated scheme with process queues has to be designed
to ensure that the process can traverse the path from the leaf to the root
requesting locks and at the same time avoid deadlocks. Sagiv [77] improves
slightly on these results by using fewer locks and by allowing background
processes to rebalance using compressions.

Finally, in [69], rebalancing is separated entirely from the updating. A “tag
bit” is used to register unbalance, and background processes deal with these
problems in parallel with searches and updates. The disadvantage, of course,
is that the tree can become totally degenerated if not enough background

21

processes do rebalancing. The advantages are that a high degree of concur-
rency is allowed as no paths are locked. In fact, not even stepwise locking
down paths has to be used, where “stepwise locking” is the term often used
as a name for (variations of) the following technique: Assume that a path
from the root down to a leaf has node v1, v2, . . . , vk. Assume that at some
point, two consecutive nodes vi−1 and vi are locked. Now, the “step” consists
of first locking ui+1 and then releasing vi−1. In this way, it is possible to ob-
tain exclusive access to a leaf while only having at most three locks in effect
at any given time. Though this is clearly better than locking more nodes,
processes wanting to access a sibling nodes to vk, say, are still blocked for a
long time.

The major problem, which this paper has in common with most of the papers
mentioned above, is that none of them actually prove the complexity of their
proposals, and only a few test their proposal in comparisons with proposals
of others.

Skip lists [73] is a newer and very interesting data structure. It is probabilis-
tic, so it is fundamentally different from the other data structures, which are
guaranteed to be balanced or at least become balanced at some point after
updating has stopped. However, in addition to exhibiting a very fine average
performance, the risk of very bad performance of any particular search is
really quite insignificant. The main disadvantage in using skip lists is that
each element uses a variable amount of space. This is a problem in main
memory, and a disaster in designing an efficient storage plan for secondary
memory. Though the data structure is definitely intended for main memory
use, reasonable performance is required if the structure, or parts of it, has to
be placed (temporarily) on secondary storage. One can, of course, allocate
maximum space for all elements, but then thirty-two extra words have to be
allocated per element (using the constants suggested by Pugh).

In [68], the data structure chromatic search tree is presented. This data
structure is based on red-black trees [39]. It often turns out that constraints
on trees which have to be kept invariant has the effect of requiring that
a non-constant number of locks be used when implementing the structure
directly in a concurrent environment. Typically, all nodes on a path from
the root to a leaf have to be locked during updates. To avoid this, chromatic
search trees were defined to be similar to red-black trees, only with weaker
constraints. Local transformations on the search tree were then proposed

22

as a means of gradually changing the tree until the original red-black tree
constraints would hold. A concurrent rebalancing algorithm does this in
parallel with the updates in the tree. There have been earlier, but somewhat
different, proposals for local locking of nodes; see [55], for example. Thus,
chromatic search trees can also become unbalanced if not enough processes
do rebalancing.

Chromatic search trees were presented in [68] without any proofs of their
complexity. We have, however, performed a careful analysis which showed
that there were indeed efficiency problems. In [16], we presented a new set of
local transformations on chromatic search trees, fixing the problems present
in [68]. The new proposal was accompanied by a proof of the complexity of
the algorithm. The result we obtain is a worst-case complexity of less than
logN rebalancing operations per update, where N is roughly the number
of nodes in the tree. Additionally, only a small constant number of nodes
need to be locked when rebalancing occurs and each element, including data
values, pointers and balancing information, can be stored in five words.

All this can be achieved with a conceptually very simply algorithm which can
be programmed in simple independent parts: First, a local problem is found.
This can be done by constantly having processes traverse the structure at
random. However, it is more efficient to enter problems into a queue when
they are created and then simply deal with them in order. This technique
has been described in [35]. Second, the involved nodes are locked. The local
problem is going to be fixed by carrying out a local transformation involving
a small constant number of nodes around the problem. As usual these have
to be locked to ensure serializability. Third, the transformation is carried out.
The transformations are rotations, double rotations, or weight adjustments
as known from red-black trees. Fourth, if a problem queue is used, then
it should be checked at this point whether there is still a problem at this
location. If so, then this (new) problem is entered into the queue. Finally,
the nodes are unlocked.

In conclusion, if both space and time resources are of concern, then the
structure presented here seems to be superior to other types of search trees
for database implementations.

23

Summary in Danish

Denne afhandling omhandler design og implementation af databasesprog.
Afhandlingen best̊ar af fem artikler [16, 59, 57, 60, 61] samt denne oversigt-
sartikel. Dette afsnit indeholder et sammendrag.

Man begyndte meget tidligt at konstruere databasesystemer og designe data-
basesprog. De positive og negative erfaringer, man fik gjort sig, udmøntede
sig blandt andet i, at man i løbet af 60’erne begyndte at arbejde sig hen
imod en fælles datamodel. Dels for organisering af data og dels for opdel-
ing af databaseprogrammer i flere mere eller mindre veldefinerede lag, som
kan programmeres hver for sig med p̊a forh̊and fastlagte grænseflader som
udgangspunkt.

Man kan nok tillade sig at sige, at kulminationen p̊a databaseverdenens
anstrengelser med at udvikle en datamodel kom med Codd’s [21] artikel i
1970, hvor han præsenterede den relationelle algebra. Selv om andre mod-
eller var i brug tidligere, og selv om nye modeller er blevet foresl̊aet senere,
er der ingen tvivl om, at denne model til stadighed samler og repræsenterer
omr̊adet i højere grad end nogen anden model.

Med denne grænseflade for øje har man udviklet de underliggende lag, d.v.s.
filsystemer med versionskontrol, sikkerhedskontrol, transaktionskontrol, o.s.
v. Fordelen har selvfølgelig været, at man i langt større udstrækning end tid-
ligere har kunnet gøre dette uafhængigt af de øverste lag i et databasesystem.
De nederste lag skal blot kunne modtage information i en form svarende til
den relationelle model og p̊a rimelig effektiv vis ogs̊a levere informationen til
de øverste lag p̊a denne form.

De øverste lag udgøres s̊a af de egentlige databasesprog. Det vil først og
fremmest sige forespørgselssprog, men ogs̊a i høj grad opdateringssprog.
Disse sprog kan nu tillade sig at operere med relationer og operationer p̊a
disse, som de er defineret i den relationelle algebra. Denne abstraktion fra
den konkrete repræsentation af data har i høj grad været afgørende for ud-
viklingen af mere vidtfavnende og generelle databasesprog og har åbnet vejen
for teoretiske analyser af programfragmenter for eksempel med henblik p̊a
semantik-bevarende transformationer i effektivitets øjemed.

I denne afhandling beskæftiger vi os netop med de øverste lag af database-

24

systemer, hvor vi koncentrerer os om sprogdesign og effektivitet. Før den
egentlige gennemgang af resultaterne i de enkelte artikler, vil vi lige i over-
skriftsform trække hovedlinierne op.

I [57, 61] beskæftiger vi os med design af spørgesprog med særlig vægt p̊a
formuleringen af forespørgsler indeholdende aggregering. I [59, 60] ser vi
p̊a optimering af evalueringen af forespørgsler gennem direkte analyser af
forespørgselsteksten. I [16] fokuserer vi p̊a effektivt design af det mest ab-
strakte niveau i organiseringen af tuplerne i en relation med henblik p̊a senere
opdatering.

Vi beskæftiger os alts̊a i alle artiklerne med det højeste niveau af spørge- og
opdateringssprog med vægt p̊a effektivitet i s̊avel formulering som afvikling
af forespørgsler og opdateringer. Dette har vi forsøgt at afspejle i titlen p̊a
denne artikel: Effektivitet p̊a de højeste niveauer af databasesprog.

Artiklerne [57, 61] omhandler som sagt aggregering, som i database sam-
menhæng oftest refererer til det at beregne en enkelt værdi udfra en mængde
af værdier. Funktionerne sum, antal, maximum, o.s.v. er typiske. Ofte
indg̊ar aggregeringsfunktioner i et samspil med en form for gruppering, som
tillader en at opdele en relation i et antal mindre dele med fælles egenskaber.
Aggregeringsfunktionerne anvendes s̊a p̊a de enkelte grupperinger og en ny
relation formes som samlingen af disse enkelte resultater.

I artiklerne præsenterer vi et nyt sprog kaldet Factor, som p̊a flere leder
er utraditionelt. Først og fremmest fordi designet direkte baserer sig p̊a
gruppering af relationer. Dette betyder, at aggregering kan formuleres meget
naturligt i sproget, som dog ikke udtryksmæssigt ændrer styrke i forhold til
relationel algebra. Dette er bevist i [57]. En simpel version af sproget er
implementeret, og sproget er beskrevet i [58].

En anden speciel egenskab ved Factor sproget er, at det vanskeligt kan
karakteriseres som værende enten algebra- eller kalkylebaseret. Fordelen ved
algebraen er, at operatorerne er begrebsmæssigt meget simple. De tager alle
et eller to argumenter og producerer et resultat, der er relateret til argu-
menterne p̊a en simpel måde. Her er kalkyleforespørgsler typisk mere kom-
plicerede, fordi de tupler, man ønsker at udvælge, skal specificeres v.h.a.
sekvenser af eksistentielle og universelle kvantorer. Efter denne udvælgelse
kan det endelige resultat dog let specificeres ved at samle attributværdier
for de tupler, der er blevet udvalgt. Denne fordel har algebraen til gengæld

25

ikke. Et godt eksempel p̊a dette er de unære forespørgsler. Man ønsker at
angive en funktion, der skal anvendes p̊a hvert tupel, men tvinges i stedet til
at formulere dette som en lang kæde af unære relationsoperatorer.

Andre forskere har ogs̊a argumenteret for det synspunkt, at der ikke er noget
unaturligt i at blande algebraen og kalkylen. Merrett [65] refererer til denne
skelnen mellem algebra og kalkyle og kalder det (frit oversat): “en historisk
fejl, at en del af logikken betragtes som algebra og en anden del som kalkyle”.

Lad os kort beskrive hovedideen i Factor sproget. Et udtryk ser ud som
følger:

r1, . . . , rn : exp

Fællesmængden af relationernes skemaer, X =
⋂
iRi, angiver grupperingslis-

ten. En denotationel semantik er givet i [57], men her vil vi nøjes med en
operationel forklaring p̊a, hvordan resultatet beregnes. Først formes relatio-
nen

⋃
i πX(ri). I exp kan specialsymbolerne #, @(1),. . . ,@(n) optræde. For

hvert tupel t ∈ ⋃
i πX(ri) beregnes exp med # bundet til t, og med @(j)

bundet til πR\X({t} 1 rj). Til sidst tager man foreningen af alle disse eval-
ueringer af exp. Det er værd at bemærke, at som et specialtilfælde opn̊ar vi
for n = 1 samme gruppering som Klug [52].

Det, at der er én fastholdt måde at gruppere p̊a, er typisk for et alge-
brabaseret sprog. Men i exp tillader vi, at delresultater specificeres via # og
aggregatfunktioner anvendt p̊a @’erne v.h.a. et tupelsprog. Dette tupelsprog
er meget lig det, der anvendes i kalkylerne. I oversigtsartiklen samt i [57, 61]
findes en række eksempler p̊a, hvordan denne blanding af algebra og kalkyle
har vist sig frugtbar.

Lad os ogs̊a p̊apege, at der ser ud til at være muligheder for at forfølge
Factor idéen i andre retninger. For eksempel h̊andteres indlejrede relationer
meget elegant. Det er ikke nødvendigt at introducere ekstra operatorer (for
eksempel nest og unnest), som det eller normalt gøres. Det samme gælder i
øvrigt for naturlige udvidelser af samlingen af aggregatfunktioner til ogs̊a at
omfatte mængdeoperationer s̊a som fællesmængde og foreningsmængde.

Med hensyn til kompleksiteten af Factor er den asymptotisk den samme
som tilsvarende spørgesprog. Desuden kan de fleste optimeringsteknikker, der
retter sig mod en forbedring af køretiderne med en konstant faktor, anvendes

26

p̊a Factor sproget med et lige s̊a resultat. I det følgende vil vi beskrive et
optimeringsresultat, der blev udviklet direkte inspireret af Factor.

Som det fremg̊ar af det ovenst̊aende, kan forespørgsler i Factor formuleres
v.h.a. et tupelsprog, og de unære forespørgsler kan formuleres udelukkende
v.h.a. dette delsprog. De unære forespørgsler er specielt interessante i syste-
mer, hvor man ikke tillader forekomsten af dubletter i relationer; d.v.s. flere
identiske tupler i samme relation. En unær forespørgsel som s̊adan giver
nemlig ikke anledning til, at der skal sorteres p̊a noget tidspunkt. Begrebs-
mæssigt skal man jo blot løbe alle tupler i argumentrelationen igennem, an-
vende en funktion p̊a hvert af disse tupler, og endelig samle alle disse re-
sultattupler sammen til en relation. Men hvis den funktion, man anvender,
ikke er injektiv, s̊a risikerer man jo netop at introducere dubletter, som s̊a
må fjernes bagefter. Dette vil koste en sortering eller tilsvarende. Beregn-
ingstiden bringes da op med mere end en konstant faktor fra O(n) til O(n
log n), hvor n er størrelsen af relationen.

Det er med andre ord af interesse at kunne afgøre injektivitet af funktioner,
da en sortering kan spares, hvis svaret er positivt. Det er velkendt, at dette
problem generelt set er uafgørligt, s̊a man kan alts̊a kun h̊abe p̊a at løse
en del af problemet. I [60] udvikler vi en teknik, der kan anvendes p̊a alle
standard unære forespørgsler samt visse kombinationer af beregninger p̊a
domæneværdierne. Vi specificerer operatorers injektivitetsegenskaber v.h.a.
funktionelle afhængigheder. Vi antager for eksempel at funktionaliteten af
heltals division er opskrevet i en relation. D.v.s. at relationen indeholder
tupler som [16, 3, 5], hvilket angiver, at 16/3 = 5. Denne operator f̊ar da de
funktionelle afhængigheder 1, 2 → 3 og 1, 3 → 2 tilknyttet sig. Her angiver
den sidste alts̊a, at første og tredie element i tuplet entydigt fastlægger det
andet element. Den sidste mulige afhængighed 2, 3 → 1 gælder alts̊a ikke,
da ligningen x/3 = 5 har mere end en løsning (nemlig x ∈ {15, 16, 17}).
Relationen behøver ikke faktisk at eksistere. Vi angiver blot informationen
som om den gjorde.

I [60] præsenterer vi to algoritmer, der begge, givet information p̊a ovenst̊a-
ende form samt en forespørgsel, giver et bud p̊a, om funktionen er injektiv
eller ej. Da problemet er uløseligt, svarer algoritmerne alts̊a ikke altid rigtigt,
men det er dog s̊adan, at n̊ar de svarer, at funktionen er injektiv, s̊a er den
det virkelig. Derimod kan algoritmerne fejlagtigt svare, at en funktion ikke
er injektiv.

27

Den ene algoritme er baseret p̊a en transformation af forespørgslen til et
logikprogram uden variable. Der er i [32] teknikker til at afvikle disse pro-
grammer i lineær tid. Den anden algoritme transformerer problemet til et
spørgsmål om beviselighed af funktionelle afhængigheder. Der er s̊a teknik-
ker, kaldet chase, der kan afgøre s̊adanne spørgsmål. Disse teknikker er af
samme kompleksitet som teknikkerne til evaluering af logikprogrammerne .

N̊ar det gælder forespørgsler i almindelighed i stedet for de unære alene,
kan det selvfølgelig ogs̊a være rart at spare nogle sorteringer. Dette vil ikke
bringe kompleksiteten ned fra O(n log n) til O(n) som i det unære tilfælde,
da sorteringer p̊a et eller andet tidspunkt under evalueringen er nødvendige,
hvis man vil undg̊a dubletter. Det er dog stadig af stor interesse at spare
sorteringer blot for at bringe evalueringstiden ned med en konstant faktor.

I [59] ser vi p̊a generelle forespørgsler, og vi forsøger gennem en analyse af
selve forespørgselsteksten at arrangere den senere evaluering s̊adan, at nogle
af sorteringerne kan undg̊as. Vore resultater kan anvendes af systemer, der
baserer sig p̊a den meget udbredte sort-merge evalueringsteknik. Som navnet
antyder, evaluerer man et simpelt udtryk indenholdende en operator ved først
at sortere argumenterne og derefter flette sig til resultatet. Det minder en
del om den velkendte sorteringsalgoritme ved (næsten) samme navn.

Problemet kan illustreres ved et meget simpelt eksempel. Betragt forespørgs-
len (r1 ∪ r2) 1 r3, hvor skemaer er R1 = R2 = {A,B} og R3 = {B,C}. I en
naiv implementation, hvor man evaluerer r1∪r2 først uden at tage hensyn til
den kontekst, den optræder i, kunne man finde p̊a at vælge at sortere r1 og
r2 i den leksikografiske orden AB, hvorefter man fletter sig frem til resultatet
r1 ∪ r2. Dette delresultat vil nu ogs̊a være sorteret ifølge AB. Nu kræver
operatoren 1 imidlertid, at argumenterne er sorteret s̊aledes, at det fælles
skema, det vil alts̊a sige {B}, er det mest betydende. S̊a nu skal r3 samt
resultatet af at beregne r1 ∪ r2 sorteres. Man observerer selvfølgelig her, at
denne sortering af r1∪r2 kunne have været undg̊aet, hvis man til at begynde
med havde valgt at sortere r1 og r2 ifølge BA.

I ovenst̊aende eksempel er det let at se, hvordan man arrangerer sig op-
timalt, men i det generelle tilfælde med store forespørgsler og muligvis med
flere forekomster af samme relationelle argument kan det være yderst vanske-
ligt. Det bedste, man kan h̊abe p̊a, er, at man kun behøver at sortere alle
argumenterne til en stor forespørgsel, hvorefter alle delresultater kan bereg-

28

nes ved blot at flette p̊a passende vis. S̊a opn̊ar man ogs̊a, hvad vi kunne
kalde perfekt gennemstrømning, idet delresultater faktisk ikke behøver at
blive beregnet. I stedet kan man udføre en mere kompliceret fletning, der
beregner det endelige resultat med det samme. Dette vil spare ekstra meget
tid, da dyre skrivninger p̊a eksternt lager kan undg̊as.

I [59] præsenterer vi en algoritme, der finder en s̊adan perfekt gennem-
strømning, hvis der findes en s̊adan. Tidskompleksiteten for denne algoritme
er kvadratisk i forespørgslens størrelse. Løsningsteknikken baserer sig p̊a det
at finde et maksimalt fixpunkt i et gitter.

Hvis der ikke findes en perfekt gennemstrømning, er man selvfølgelig inter-
esseret i at f̊a det næstbedste, nemlig en evaluering, hvor der sorteres s̊a f̊a
gange som muligt i løbet af evalueringen. Vi mener, at dette problem er NP-
h̊ardt, og i [59] foresl̊ar vi en approksimationsalgoritme for dette problem.

Lad os yderligere nævne, at information, der opbevares om relationers til-
stand m.h.t. sortering, ogs̊a kan udnyttes. Der er jo den oplagte mulighed,
at en relation allerede er sorteret, eller at den har et indeks, der gør, at det er
hurtigere at gennemløbe tuplerne i en orden end i en anden. Endelig kan det
være, at tuplerne er anbragt i en træstruktur. I de fleste implementationer
af træstrukturer vil det betyde, at tupler, der har nøgleværdier tæt p̊a hin-
anden, ogs̊a vil have en tendens til at være placeret p̊a samme sektor p̊a et
pladelager. En træstruktur, der blandt andet har den egenskab, er beskrevet
nedenfor.

Det, at uddrage information fra en database, er et meget vigtigt element
i design af databasesystemer, men opdatering er som regel næsten lige s̊a
væsenligt. Næsten underordnet hvilken opdateringsmekanisme, man ønsker
at understøtte, bliver det centrale punkt det at genfinde og indsætte enkelte
tupler hurtigt. Hvis relationer er gemt p̊a den naive måde som en uordnet
sekvens af tupler, er den eneste måde at genfinde et tupel p̊a en lineær
søgning gennem sekvensen. For store relationer er dette uhyre tidskrævende.
I årenes løb har man derfor udviklet en stor rigdom af træstrukturer med
mange forskellige egenskaber. Fælles for dem er dog, at søgetiden gerne
skulle holde sig omkring log n, hvor n er størrelsen af den relation, man
søger i.

I databasesystemer, der kun understøtter, at en proces af gangen har adgang
til træstrukturen, kan man alts̊a benytte sig af den uhyre veludviklede teori

29

og vælge sig et AVL-træ, et rød-sort træ eller et B-træ med passende egenska-
ber i forhold til anvendelsen. I multiprocessystemer er det ikke slet s̊a nemt.
Den veludviklede teori fra det sekventielle tilfælde kan ikke umiddelbart føres
over.

I [16] ser vi p̊a en variant af rød-sorte træer, kaldet kromatiske træer. Defi-
nitionen i denne artikel er en videreudvikling af forslaget fra [68]. Desuden
indeholder [16] i modsætning til hovedparten af lignende forslag et bevis for
kompleksiteten af de involverede operationer. Udover selve opdateringsop-
erationerne drejer det sig som altid om operationer, der skal holde træet
rimeligt balanceret, s̊adan at søgetiden s̊a vidt muligt hele tiden holdes nede
p̊a log n. I [16] lykkes det at definere en konstruktion, hvor en opdatering
giver anledning til mindre end log n rebalanceringsoperationer, hvoraf højst
en ændrer træets struktur. Dette er af afgørende betydning for effektiviteten
af andre søgninger, der måtte finde sted samtidigt med omtalte rebalancer-
ing. Desuden bruger denne struktur meget lidt plads – i særdeleshed i forhold
til andre strukturer med rimelig hurtige opdaterings- og rebalanceringstider.

References

[1] Serge Abiteboul. Updates, a New Frontier. In ICDT, pages 1-18, l988.

[2] Serge Abiteboul and Catriel Beeri. On the Power of Languages for the
Manipulation of Complex Objects. Rapports de Recherche 846, INRIA,
1988.

[3] Serge Abiteboul and Nicole Bidoit. Non First Normal Form Relations
To Represent Hierarchically Organized Data. In ACM PODS, pages 191-
200, 1984.

[4] G. M. Adel’son-Vel’slcĭi and E. M. Landis. An Algorithm for the Organ-
isation of Information. Dokl. Akad. Nauk SSSR, 146:263-266, 1962. In
Russian. English translation in Soviet Math. Dokl., 3:1259-1263, 1962.

[5] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures
and Algorithms. Addison-Wesley, 1983.

[6] Alfred V. Aho and Jeffrey D. Ullman. Universality of Data Retrieval
Languages. In ACM POPL, pages 110-120, 1979.

30

[7] Lars Arge, Mikael Knudsen, and Kirsten Larsen. A general lower bound
on the I/O-complexity of comparison-based algorithms. Personal com-
munication. To appear as MS thesis, Computer Science Department,
Aarhus University.

[8] W. W. Armstrong. Dependency Structures of Data Base Relationships.
In Proc. IFIP Congress, pages 580-583. North-Holland, 1974.

[9] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J.
N. Gray, P. P. Grifflths, W. F. King, R. A. Lorie, P. R. McJones, J.
W. Mehl, G. R. Putzolu, I. L. Traiger, B. W. Wade, and V. Watson.
System R: Relational Approach to Database Management. ACM TODS,
1(2):97-137, 1976.

[10] M. M. Astrahan and D. D. Chamberlin. Implementation of a Structured
English Query Language. Comm. ACM, 18(10):580-588, 1975.

[11] Malcolm Atkinson, François Banchilhon, David Dewitt, Klaus Dittrich,
David Maier, and Stanley Zdonik. The Object-Oriented Database Sys-
tem Manifesto. Altair Tech. Report 30-89, Rocquencourt, France, Au-
gust 1989.

[12] R. Bayer and E. McCreight. Organization and Maintenance of Large
Ordered Indexes. Acta Inf., 1(3):97-137, 1972.

[13] Catriel Beeri. Data Models and Languages for Databases. In ICDT,
pages 19-40, 1988.

[14] P. A. Bernstein and D.-M. Chiu. Using Semi-Joins to Solve Relational
Queries. J. ACM, 28(1):25-40, 1981.

[15] Philip A. Bernstein. Synthesizing Third Normal Form Relations from
Functional Dependencies. ACM TODS, 1(4):277-298, 1976.

[16] Joan F. Boyar and Kim S. Larsen. Efficient Rebalancing of Chromatic
Search Trees. In O. Nurmi and E. Ukkonen, editors, LNCS 621: Algo-
rithm Theory - SWAT’92, pages 151-164. Springer-Verlag, 1992.

[17] Michael L. Brodie, John Mylopoulos, and Joachim W. Schmidt, edi-
tors. On Conceptual Modelling. Topics in Information Systems. Springer-
Verlag, 1984.

31

[18] Donald D. Chamberlin, Morton M. Astrahan, Michael W. Blasgen,
James N. Gray, W. Frank King, Bruce G. Lindsay, Raymond Lorie,
James W. Mehl, Thomas G. Price, Franco Putzolu, Patricia Griffiths
Selinger, Mario Schkolnick, Donald R. Slutz, Irving L. Traiger, Bradford
W. Wade, and Robert A. Yost. A History and Evaluation of System R.
Comm. ACM, 24(10):632-646, 1982.

[19] A. K. Chandra and P. M. Merlin. Optimal Implementation of Conjunc-
tive Queries in Relational Data Bases. In ACM STOC, pages 77-90,
1977.

[20] P. Chen. The Entity-Relationship Model-Toward a Unified View of Data.
ACM TODS, 1(1):9-36, 1976.

[21] E. F. Codd. A Relational Model of Data for Large Shared Data Bases.
Comm. ACM, 13(6):377-387, 1970.

[22] E. F. Codd. Relational Completeness of Data Base Sublanguages. In
Randall Rustin, editor, Data Base Systems, pages 65-98. Prentice-Hall,
1972.

[23] Mariano P. Consens and Alberto O. Mendelzon. GraphLog: a Visual
Formalism for Real Life Recursion. In ACM PODS, pages 404-416, 1990.

[24] Mariano P. Consens and Alberto O. Mendelzon. Low Complexity Ag-
gregation on GraphLog and Datalog. In ICDT, pages 379-394. Springer-
Verlag, 1990.

[25] C. J. Date. An Introduction to Database Systems, Vol. 1. The Systems
Programming Series. Addison-Wesley, 1975.

[26] C. J. Date. An Introduction to Database Systems, Vol. 2. The Systems
Programming Series. Addison-Wesley, 1983.

[27] C. J. Date. An Introduction to Database Systems, Vol. 1. Addison-
Wesley, 1990.

[28] Bipin C. Desai. An Introduction to Database Systems. West Publishing
Company, 1990.

[29] E. W. Dijkstra. Co-Operating Sequential Processes. In F. Genuys, edi-
tor, Programming Languages. Academic Press, 1968.

32

[30] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F.
M. Steffens. On-the-Fly Garbage Collection: an exercise in cooperation.
Comm. ACM, 21:966-975, 1978.

[31] R. A. DiPaola. The Recursive Unsolvability of the Decision Problem for
a Class of Definite Formulas. J. ACM, 16(2):324-327, 1969.

[32] William F. Dowling and Jean H. Gallier. Linear-Time Algorithms for
Testing the Satisfiability of Propositional Horn Formulae. J. Logic Pro-
gramming, 1(3):267-284, 1984.

[33] Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on
the Common Subexpression Problem. J. ACM, 27(4):758-771, 1980.

[34] Michael R. Garey and David S. Johnson. Computers and Intractability.
W. H. Freeman, 1979.

[35] N. Goodman and D. Sasha. Semantically Based Concurrency Control
for Search Structures. In ACM PODS, pages 8-19, 1985.

[36] P. M. D. Gray and R. Bell. Use of Simulators to Help the Inexpert
in Automatic Program Generation. In P. A. Samet, editor, Euro IFIP,
pages 613-620. North-Holland, 1979.

[37] Peter M. D. Gray. The GROUP BY Operation in Relational Algebra. In
S. M. Deen and P. Hammersley, editors, Databases, pages 84-98. Pentech
Press Limited, 1981.

[38] Peter M. D. Gray. Logic, Algebra and Databases. Ellis Horwood Limited,
1984.

[39] L. J. Guibas and R. Sedgewick. A Dichromatic Framework for Balanced
Trees. In IEEE FOCS, pages 8-21, 1978.

[40] P. A. V. Hall. Common Subexpression Identification in General Alge-
braic Systems. Report UKSC0060, IBM UKSC, Peterlee, Co. Durham,
England, November 1974.

[41] P. A. V. Hall. Optimization of Single Expressions in a Relational Data
Base System. IBM J. Res. Devel., 20(3):244-257, 1976.

33

[42] Richard Hull and Chee K. Yap. The Format Model: A Theory of
Database Organization. In ACM PODS, pages 205-211, 1982. Extended
abstract. Full version in: Tech. Report, Dept. of Comp. Sci., University
of Southern California, Sept. 1981.

[43] G. Jaeschke. The Theory of One Attribute Nesting. Technical note, Hei-
delberg, Scientific Center, 1982.

[44] G. Jaeschke and H.-J. Schek. Remarks on the Algebra of Non First
Normal Form Relations. In ACM PODS, pages 124-138, 1982.

[45] Matthias Jarke and Jürgen Koch. Query Optimization in Database Sys-
tems. ACM Computing Surveys, 16(2):111-152, 1984.

[46] Rowland R. Johnson. Modelling Summary Data with the Entity Rela-
tionship Model. Technical Report 10647, Lawrence Berkeley Laboratory,
l980.

[47] Rowland R. Johnson. Modelling Summary Data. In Proc. ACM SIG-
MOD, pages 93-97, 1981.

[48] Paris C. Kanellakis. Elements of Relational Database Theory. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science: Formal
Models and Semantics, volume B, chapter 17, pages 1073-1156. Elsevier
Science Publishers, 1990.

[49] J. L. W. Kessels. On-the-Fly Optimization of Data Structures. Comm.
ACM, 26:895-901, 1983.

[50] W. Kim. A New Way to Compute the Product and Join of Relations.
In ACM SIGMOD, pages 179-187, 1980.

[51] A. Klug. Calculating Constraints on Relational Expressions. ACM
TODS, 5(3):260-290, 1980.

[52] Anthony Klug. Equivalence of Relational Algebra and Relational Calcu-
lus Query Languages Having Aggregate Functions. J. ACM, 29(3):699-
717, 1982.

[53] Anthony Klug and Rod Price. Determining View Dependencies Using
Tableaux. ACM TODS, 7(3):361-380, 1982.

34

[54] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Com-
puter Programming. Addison-Wesley, 1973.

[55] H. T. Kung and Philip L. Lehman. Concurrent Manipulation of Binary
Search Trees. ACM TODS, 5(3):354-382, 1980. First published as an
abstract: A Concurrent Database Manipulation Problem: Binary Search
Trees, Very Large Data Bases, page 498, 1978.

[56] Yat-Sang Kwong and Derick Wood. A New Method for Concurrency in
B-Trees. IEEE Trans. Software Eng., 8(3):211-222, 1982.

[57] Kim S. Larsen. On Aggregation and Computation on Domain Values.
PB 414, Computer Science Department, Aarhus University, 1992.

[58] Kim S. Larsen. RASMUS User’s Manual. MD 60, Computer Science
Department, Aarhus University, 1992.

[59] Kim S. Larsen. Strategies for Expression Evaluation Using Sort-Merge
Algorithms. PB 415, Computer Science Department, Aarhus University,
1992.

[60] Kim S. Larsen and Michael I. Schwartzbach. Injectivity of Unary Queries
With Computation on Domain Values. Computer Science Department,
Aarhus University, 1992. Revised version of PB 311.

[61] Kim S. Larsen, Michael I. Schwartzbach, and Erik M. Schmidt. A New
Formalism for Relational Algebra. IPL, 41(3):163-168, 1992.

[62] Philip L. Lehman and S. Bing Yao. Efficient Locking for Concurrent
Operations on B-Trees. ACM TODS, 6(4):650-670, 1981.

[63] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing Implications of Data
Dependencies. ACM TODS, 4(4):455-469, 1979.

[64] David Maier. The Theory of Relational Databases. Computer Science
Press, 1983.

[65] T. H. Merrett. The Extended Relational Algebra, a Basis for Query
Languages. In Ben Shneiderman, editor, Databases: Improving Usabil-
ity and Responsiveness, pages 99-128. Academic Press, 1978. Proc. Int.
Conf. Databases: Improving Usability and Responsiveness.

35

[66] T. H. Merrett. Why Sort-Merge Gives the Best Implementation of the
Natural Join. SIGMOD Record, 13(2):39-51, 1983.

[67] T. H. Merrett, Y. Kambayashi, and H. Yasuura. Scheduling of Page-
Fetches in Join Operations. In VLDB, pages 488-498, 1981.

[68] O. Nurmi and E. Soisalon-Soininen. Uncoupling Updating and Reba-
lancing in Chromatic Binary Search Trees. In ACM PODS, pages 192-
198, 1991.

[69] O. Nurmi, E. Soisalon-Soininen, and D. Wood. Concurrency Control
in Database Structures with Relaxed Balance. ln ACM PODS, pages
170-176, 1987.

[70] G. Özsoyoğlu, Z. M. Özsoyoğlu, and V. Matos. Extending Relational Al-
gebra and Relational Calculus with Set-valued Attributes and Aggregate
Functions. ACM TODS, 12(4):566-592, 1987.

[71] Frank P. Palermo. A Data Base Search Problem. In Julius T. Tou, editor,
Informations Systems COINS IV, pages 67-101. Plenum Press, 1974.

[72] William Pugh. Concurrent Maintenance of Skip Lists. Technical Report
CS-TR-2222.1, Dept. of Comp. Sci., University of Maryland, April 1989.
Revised June, 1990.

[73] William Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees.
In F. Dehne, J.-R. Sack, and N. Santoro, editors, LNCS 382: Algo-
rithms and Data Structures, pages 437-449. Springer-Verlag, 1989. Proc.
WADS’89.

[74] R. Ramakrishnan, F. Bancilhon, and A. Silberschatz. Safety of Recursive
Horn Clauses With Infinite Relations. In ACM PODS, pages 328-339,
1987.

[75] D. J. Rosenkrantz and H. B. Hunt. Processing Conjunctive Predicates
and Queries. In VLDB, pages 64-72, 1980.

[76] Y. Sagiv and M. Yannakakis. Equivalences Among Relational Expres-
sions With the Union and Difference Operators. J. ACM, 27(4):633-655,
1980.

36

[77] Yehoshua Sagiv. Concurrent Operations on B∗-Trees with Overtaking.
J. Comp. and System Sci., 33:275-296, 1986.

[78] Behrokh Samadi. B-Trees in a System with Multiple Users. IPL,
5(4):107-112, 1976.

[79] J. W. Schmidt. Parallel Processing of Relations: A Single-Assignment
Approach. In VLDB, pages 398-408, 1979.

[80] John Miles Smith and Philip Yen-Tang Chang. Optimizing the Per-
formance of a Relational Algebra Database Interface. Comm. ACM,
18(10):568-579, 1975.

[81] Michael Stonebraker. Retrospection on a Database System. ACM
TODS, 5(2):225-240, 1980.

[82] Michael Stonebraker, Eugene Wong, Peter Kreps, and Gerald Held.
The Design and Implementation in INGRES. ACM TODS, 1(3):189-
222, 1976.

[83] Alfred Tarski. A Lattice-Theoretical Fixpoint Theorem and its Applica-
tions. Pacific J. Math, 5:285-309, 1955.

[84] Jeffrey D. Ullman. Principles of Database Systems. Computer Science
Press, 1982.

[85] Jeffrey D. Ullman. Database Theory: Past and Future. In ACM PODS,
pages 1-10, 1987.

[86] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems,
volume 1. Computer Science Press, 1988.

[87] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems,
volume 2. Computer Science Press, 1989.

[88] H. Wedekind. On the Selection of Access Paths in a Data Base System.
In J. W. Klimbie and K. L. Koffeman, editors, Data Base Management,
pages 385-397. North-Holland, 1974.

[89] Martin Wirsing. Algebraic Specification. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science: Formal Models and Seman-
tics, volume B, chapter 13, pages 675-788. Elsevier Science Publishers,
1990.

37

[90] C. Zaniolo. Safety and Compilation of Nonrecursive Horn Clauses. In
Proc. Expert Database Systems, pages 167-178. Benjamin-Cummings,
1986.

[91] M. M. Zloof. Query-by-Example: a data base language. IBM Systems
Journal, 16(4):324-343, 1977.

[92] W. Zook, K. Youssefi, N. Whyte, P. Rubinstein, P. Kreps, G. Held, J.
Ford, R. Berman, and E. Allman. INGRES Reference Manual, 1977.

38

