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Provenance for Aggregate Queries

Abstract
We study in this paper provenance information for queries with aggregation. Provenance information was
studied in the context of various query languages that do not allow for aggregation, and recent work has
suggested to capture provenance by annotating the different database tuples with elements of a commutative
semiring and propagating the annotations through query evaluation. We show that aggregate queries pose
novel challenges rendering this approach inapplicable. Consequently, we propose a new approach, where we
annotate with provenance information not just tuples but also the individual values within tuples, using
provenance to describe the values computation. We realize this approach in a concrete construction, first for
“simple” queries where the aggregation operator is the last one applied, and then for arbitrary (positive)
relational algebra queries with aggregation; the latter queries are shown to be more challenging in this context.
Finally, we use aggregation to encode queries with difference, and study the semantics obtained for such
queries on provenance annotated databases.
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ABSTRACT
We study in this paper provenance information for queries
with aggregation. Provenance information was studied in the
context of various query languages that do not allow for ag-
gregation, and recent work has suggested to capture prove-
nance by annotating the different database tuples with ele-
ments of a commutative semiring and propagating the anno-
tations through query evaluation. We show that aggregate
queries pose novel challenges rendering this approach inap-
plicable. Consequently, we propose a new approach, where
we annotate with provenance information not just tuples but
also the individual values within tuples, using provenance to
describe the values computation. We realize this approach
in a concrete construction, first for “simple” queries where
the aggregation operator is the last one applied, and then for
arbitrary (positive) relational algebra queries with aggrega-
tion; the latter queries are shown to be more challenging in
this context. Finally, we use aggregation to encode queries
with difference, and study the semantics obtained for such
queries on provenance annotated databases.

1. INTRODUCTION
The annotation of the results of database transformations

with provenance information has quite a few applications
[19, 6, 35, 10, 11, 38, 34, 25, 27, 39, 37, 2, 4]. Recent
work [24, 17, 21] has proposed a framework of semiring an-
notations that allows us to state formally what is expected of
such provenance information. These papers have developed
the framework for the positive fragment of the relational
algebra (as well as for Datalog, the positive Nested Rela-
tional Calculus, and some query languages on trees/XML).
The main goal of this paper is to extend the framework to
aggregate operations.

In the perspective promoted by these papers, provenance
is a general form of annotation information that can be spe-
cialized for different purposes, such as multiplicity, trust,
cost, security, or identification of “possible worlds” which
in turn applies to incomplete databases, deletion propaga-
tion, and probabilistic databases. In fact, the introduction
of the framework in [24] was motivated by the need to track
trust and deletion propagation in the Orchestra system [23].
What makes such a diversity of applications possible is that
each is captured by a different semiring, while provenance is
represented by elements of a semiring of polynomials. One
then relies on the property that any semiring-annotation
semantics factors through the provenance polynomials se-
mantics. This means that storing provenance polynomials
allows for many other practical applications. For example,
to capture access control, where the access to different tuples
require different security credentials, we can simply evalu-

R

EmpId Dept Sal

1 d1 20 p1
2 d1 10 p2
3 d1 15 p3
4 d2 10 r1
5 d2 15 r2

(a)

Dept

d1 p1 + p2 + p3
d2 r1 + r2

(b)

Figure 1: Projection on annotated relations

ate the polynomials in the security semiring, and propagate
the security annotations through query evaluation (see Sec-
tion 2.1), assigning security levels to query results.

Let us briefly illustrate deletion propagation as an appli-
cation of provenance. Consider a simple example of an em-
ployee/department/salary relation R shown in Figure 1(a).

The variables p1, p2, p3, r1, r2 can be thought of as tuple
identifiers and in the framework of provenance polynomi-
als [24] they are the“provenance tokens”or “indeterminates”
out of which provenance is built. We denote by N[X] the
set of provenance polynomials (here X = {p1, p2, p3, r1, r2}).
R can be seen as an N[X]-annotated relation; as defined in
[24] the evaluation of query, for example ΠDeptR, produces
another N[X]-annotated relation, in this example the one
shown in Figure 1(b). Intuitively, in this simple example,
the summation in the annotation of every result tuple is
over the identifiers of its alternative origins 1.

Now, the result of propagating the deletions of tuples with
EmpId 3 and 5 in R is obtained by simply setting p3 =
r2 = 0 in the answer. We get the same two tuples in the
query answer but their provenances change to p1 + p2 and
r1, respectively. If the tuple with EmpId 4 is also deleted
from R then we also set r1 = 0, and the second tuple in the
answer is deleted because its provenance has now become
0. This algebraic treatment of deletions is related to the
counting algorithm for view maintenance [26], but is more
general as it incrementally maintains not just the data but
also the provenance.

An intuitive way of understanding what happens is that
provenance-aware evaluation of queries conveniently “com-
mutes” with deletions. In fact, in [24, 17] this intuition is
captured formally by theorems that state that query eval-
uation commutes with semiring homomorphisms. The fac-
torization through provenance relies on this and on the fact
that the polynomial provenance semiring is “freely gener-
ated”. All applications of provenance polynomials we have
listed, for trust, security, etc., are based on these theorems.

1we explain how the annotations of query results are com-
puted in Section 2.1

http://arxiv.org/abs/1101.1110v1


Dept SalMass

d1 45 p1p2p3
d1 30 p1p2p̂3
d1 35 p1p̂2p3
d1 25 p̂1p2p3
d1 20 p1p̂2p̂3
d1 10 p̂1p2p̂3
d1 15 p̂1p̂2p3
· · · · · · · · ·

(a)

Dept SalMass

d1 30 p1p2
d1 20 p1p̂2
d1 10 p̂1p2
· · · · · · · · ·

(b)

Figure 2: A naive approach to aggregation

Thus, commutation with homomorphisms is an essential
criterion for our proposed framework extension to aggregate
operations. However, in Section 3.1 we prove that the frame-
work of semiring-annotated relations introduced in [24] can-
not be extended to handle aggregation while both satisfying
commutation with homomorphisms and working as usual on
set or bag relations.

If the semiring operations are not enough then perhaps
we can add others? This is a natural idea so we illustrate it
on the same R in Figure 1(a) and we use again the neces-
sity to support deletion propagation to guide the approach.
Consider the query that groups by Dept and sums Sal. The
result of the summation depends on which tuples partici-
pate in it. To provide enough information to obtain all the
possible summation results for all possible sets of deletions,
we could use the representation in Figure 2(a) where we add
to the semiring operations an unary operation ̂ with the
property that p̂ = 1 whenever p = 0. This will indeed sat-
isfy the deletion criterion. For example when the tuple with
Id 3 is deleted we get the relation in Figure 2(b). In fact,
there exist semirings with the additional structure needed to
define ̂ . For example in the semiring of polynomials with
integer coefficients, Z[X], we can take p̂ = 1 − p while in
the semiring of boolean expressions with variables from X,
BoolExp(X), we can take p̂ = ¬p 2. The latter is essentially
the approach taken in [31]. However, whether we use Z[X]
or BoolExp(X), we still have, in the worst case, exponen-
tially many different results to account for, at least in the
case of summation (a lower bound recognized also in [31]). It
follows that summation in particular (and therefore any uni-
form approach to aggregation) cannot be represented with
a feasible amount of annotation as long as the annotation
stays at the tuple level.

Instead, we will present a provenance representation for
aggregation results that leads only to a poly-size increase,
one that we believe is tractably implementable using meth-
ods similar to the ones used in Orchestra [23]. We achieve
this via a more radical approach: we annotate with prove-
nance information not just the tuples of the answer but also
the manner in which the values in those tuples are computed.

We can gain intuition towards our representation from the
particular case of bags, which are in fact N-relations, i.e.,
relations whose tuples are annotated with elements of the
semiring (N,+, ·, 0, 1). Assume that R in Figure 1(a) is such
a relation, i.e., p1, . . . , r2 ∈ N are tuple multiplicities. Then,
after sum-aggregation the value of the attribute SalMass in
the tuple with Dept d1 is computed by p1 × 20 + p2 × 10 +
p3 × 15. Now, if the multiplicities are, for example p1 =
2, p2 = 3, p3 = 1 then the aggregate value is 85. But what
if R is a relation annotated with provenance polynomials

2Both of these also give natural semantics to relational dif-
ference. Z[X] is used in [20] following the use of Z in [22],
while BoolExp(X) is used in the seminal paper [28].

rather than multiplicities? Then, the aggregate value does
not correspond to any number.

We will make p1×20 into an abstract construction, p1⊗20
and the aggregate value will be the formal expression p1 ⊗
20 + p2 ⊗ 10 + p3 ⊗ 15.

Intuitively, we are embedding the domain of sum-aggregates,
i.e., the reals R, into a larger domain of formal expres-
sions that capture how the sum-aggregates are computed
from values annotated with provenance. We do the same
for other kinds of aggregation, for instance min-aggregation
gives p1⊗20min p2⊗10min p3⊗15. We call these annotated
aggregate expressions.

In this paper we consider only aggregations defined by
commutative-associative operations 3. Specifically, our frame-
work can accommodate aggregation based on any commuta-
tive monoid. For example the commutative monoid for sum-
mation is (R,+, 0) while the one for min is (R∞,min,∞)4.

To combine an aggregation monoid M with an annotation
commutative semiringK, in a way capturing aggregates over
K-relations, we propose the use of the algebraic structure of
K-semimodules (see Section 2.2). Semimodules are a way of
generalizing (a lot!) the operations considered in linear alge-
bra. Its “vectors” form only a commutative monoid (rather
than an abelian group) and its “scalars” are the elements
of K which is only a commutative semiring (rather than a
field).

In general, a commutative monoid M does not have an
obvious structure of K-semimodule. To make it such we
may need to add new elements corresponding to the scalar
multiplication of elements of M with elements from K, thus
ending up with the formal expressions that represent aggre-
gate computations, motivated above, as elements of a tensor
product construction K⊗M . We show that the use of tensor
product expressions as a formal representation of aggrega-
tion result is effective in managing the provenance of “simple
aggregate” queries, namely queries where the aggregation
operators are the last ones applied.

We show that certain semirings are “compatible” with
certain monoids, in the sense that the results of compu-
tation done in K ⊗ M may be mapped to M , faithfully
representing the aggregation results. Interestingly, compat-
ibility is aligned with common wisdom: it is known that
some (idempotent) aggregation functions such as MIN and
MAX work well for set relations, while SUM and PROD re-
quire the treatment of relations as bags. We show that non-
idempotent monoids are compatible only with “bag” semir-
ings, i.e. semirings from which there exists an homomor-
phism to N.

In general, aggregation results may be used by the query
as the input to further operators, such as value-based joins
or selections. Here the formal representation of values leads
to a difficulty: the truth values of comparison operators on
such formal expressions is undetermined! Consequently, we
extend our framework and construct semirings in which for-
mal comparison expressions between elements of the corre-
sponding semimodule are elements of the semiring. This
means that an expression like [p1 ⊗ 20 = p2 ⊗ 10 + p3 ⊗ 15]
may be used as part of the provenance of a tuples in the join
result. This expression is simply treated as a new prove-
nance token (with constraints), until p1, p2, p3 are assigned
e.g. values from B or N, in which case we can interpret

3As shown in [32], for list collections it also makes sense to
consider non-commutative aggregations.
4K-annotated relations with union (see Section 2.1) also
form such a structure.



both sides of the equality as elements of the monoid and de-
termine the truth value of the equality (see Section 4). We
show in Section 4 that this construction allows us to manage
provenance information for arbitrary queries with aggrega-
tion, while keeping the representation size polynomial in the
size of the input database. Our construction is robust: if fur-
ther queries are applied, the token [p1⊗20 = p2⊗10+p3⊗15]
can be used as part of a more complex expression, just as
any other provenance token.

The main result of this paper is providing, for the first
time, a semantics for aggregation (including group by) on
semiring-annotated relations that:

• Coincides with the usual semantics on set/bag rela-
tions for min/max/sum/prod.

• Commutes with homomorphisms of semirings (hence
all the ensuing applications)

• Is representable with only poly-size overhead.

A second result of this paper is a new semantics for difference
on relations annotated with elements from any commutative
semiring. This is done via an encoding of relational differ-
ence using nested aggregation. The fact that such an en-
coding can be done is known (see e.g. [29, 9]), but combined
with our provenance framework, the encoding gives a seman-
tics for “provenance-aware” difference. Our new semantics
for R−S is a hybrid of bag-style and set-style semantics, in
the sense that tuples of R that appear in S do not appear in
R−S (i.e. a boolean negative condition is used), while those
that do not appear in S appear in R− S with the same an-
notation (multiplicity, if K = N is used) that they had in R.
This makes the semantics different from the bag-monus se-
mantics and its generalization to “monus-semirings” in [19]
as well as from the “negative multiplicities” semantics in [22]
(more discussion in Section 6). We examine the equational
laws entailed by this new semantics, in contrast to those of
previously proposed semantics for difference. In our opinion,
this semantics is probably not the last word on difference of
annotated relations, but we hope that it will help inform
and calibrate future work on the topic.

Paper Organization. The rest of the paper is organized as
follows. Section 2 describes and exemplifies the main math-
ematical ingredients used throughout the paper. Section
3 describes our proposed framework for “simple” aggrega-
tion queries, and this framework is extended in Section 4 to
nested aggregation queries. We consider difference queries
in Section 5. Related Work is discussed in Section 6, and we
conclude in Section 7.

2. PRELIMINARIES
We provide in this section the algebraic foundations that

will be used throughout the paper. We start by recalling the
notion of semiring and its use in [24] to capture provenance
for the SPJU algebra queries. We then consider aggregates,
and show the new algebraic construction that is required to
accurately support it.

2.1 Semirings and SPJU
We briefly review the basic framework introduced in [24].

A commutative monoid is an algebraic structures (M,+
M
, 0

M
)

where +
M

is an associative and commutative binary op-
eration and 0

M
is an identity for +

M
. A monoid homo-

morphism is a mapping h : M → M ′ where M,M ′ are
monoids, and h(0

M
) = 0

M′ ,h(a + b) = h(a) + h(b). We
will consider database operations on relations whose tuples

are annotated with elements from commutative semirings.
These are structures (K,+

K
, ·

K
, 0

K
, 1

K
) where (K,+

K
, 0

K
)

and (K, ·
K
, 1

K
) are commutative monoids, ·

K
is distribu-

tive over +
K
, and a ·

K
0
K

= 0 ·
K

a = 0
K
. A semiring

homomorphism is a mapping h : K → K′ where K,K′

are semirings, and h(0
K
) = 0

K′ , h(1K ) = 1
K′ ,h(a + b) =

h(a) + h(b), h(a · b) = h(a) · h(b). Examples of commuta-
tive semirings are any commutative ring (of course) but also
any distributive lattice, hence any boolean algebra. Exam-
ples of particular interest to us include the boolean semiring
(B,∨,∧,⊥,⊤) (for usual set semantics), the natural num-
bers semiring (N,+, ·, 0, 1) (its elements are multiplicities,
i.e., annotations that give bag semantics), and the secu-
rity semiring (S,min,max, 0

S
, 1

S
) where S is the ordered set,

1
S
< C < S < T < 0

S
whose elements have the following

meaning when used as annotations: 1
S
: public (“always

available”), C : confidential, S : secret, T : top secret, and
0
S
means “never available”.
Certain semirings play an essential role in capturing prove-

nance information. Given a set X of provenance tokens
which correspond to “atomic” provenance information, e.g.,
tuple identifiers, the semiring of polynomials (N[X],+, ·, 0, 1)
was shown in [24] to adequately, and most generally, capture
provenance for positive relational queries. The provenance
interpretation of the semiring structure is the following. The
+ operation on annotations corresponds to alternative use
of data, the · operation to joint use of data, 1 annotates data
that is always and unrestrictedly available, and 0 annotates
absent data. The definition of the K-relational algebra (see
bellow for union, projection and join) fits indeed this inter-
pretation. Algebraically, N[X] is the commutative semir-
ing freely generated by X, i.e., for any other commutative
semiring K, any valuation of the provenance tokens X → K

extends uniquely to a semiring homomorphism N[X] → K

(an evaluation in K of the polynomials). We say that any
semiring annotation semantics factors through the prove-
nance polynomials semantics, which means that for practical
purposes storing provenance information suffices for many
other applications too. Other semirings can also be used
to capture certain forms of provenance, albeit less generally
than N[X] [24, 21]. For example, boolean expressions cap-
ture enough provenance to serve in the intensional semantics
of queries on incomplete [28] and probabilistic data [18, 40].

To define annotated relations we use here the named per-
spective of the relational model [1]. Fix a countably infinite
domain D of values (constants). For any finite set U of at-
tributes a tuple is a function t : U → D and we denote the
set of all such possible tuples by D

U . Given a commuta-
tive semiring K, a K-relation (with schema U) is a function
R : DU → K whose support, supp(R) = {t | R(t) 6= 0

K
} is

finite. For a fixed set of attributes U we denote by K-Rel
(when U is clear from the context) the set of K-relations
with schema U . We also define a K-set to be a function
S : D → K again of finite support. We then define:

Union If Ri : D
U → K, i = 1, 2 then R1 ∪

K
R2 : DU → K

is defined by (R1 ∪
K

R2)(t) = R1(t) +K
R2(t). The

definition of union of K-sets follows similarly.

We also define the empty K-relation (K-set) by ∅
K
(t) =

0
K
. It is easy to see that (K-Rel,∪

K
, ∅

K
) is a commutative

monoid 5.Similarly, we get the commutative monoid of K-
sets (K-Set,∪

K
, ∅

K
).

Given a named relational schema, K-databases are defined
from K-relations just as relational databases are defined

5In fact, it also has a semiring structure.



from usual relations, and in fact the usual (set semantics)
databases correspond to the particular case K = B. The
(positive) K-relational algebra defined in [24] corresponds to
a semantics on K-databases for the usual operations of the
relational algebra. We have already defined the semantics
of union above and we give here just two other cases leaving
the rest for Appendix A (for a tuple t and an attributes set
U ′, t|U′ is the restriction of t to U ′):

Projection If R : D
U → K and U ′ ⊆ U then ΠU′R :

D
U′

→ K is defined by (ΠU′R)(t) =
∑

KR(t′) where
the +

K
sum is over all t′ ∈ supp(R) such that t′|U′ = t.

Natural Join If Ri : DUi → K, i = 1, 2 then R1 ⊲⊳ R2 :
D

U1∪U2 → K is defined by (R1 ⊲⊳ R2)(t) = R1(t1) ·K
R2(t2) where ti = t|Ui

, i = 1, 2.

2.2 Semimodules and aggregates
We will consider aggregates defined by commutative monoids.

Some examples are SUM = (R,+, 0) for summation 6, MIN =
(R±∞,min,+∞) for min, MAX = (R±∞,max,−∞) for max,
and PROD = (R,×, 1) for product.

In dealing with aggregates we have to extend the oper-
ation of a commutative monoid to operations on relations
annotated with elements of semirings. This interaction will
be captured by semimodules.

Definition 2.1. Given a commutative semiring K, a struc-
ture (W,+

W
, 0

W
, ∗

W
) is a K-semimodule if (W,+

W
, 0

W
) is a

commutative monoid and ∗
W

is a binary operation K×W →
W such that (for all k, k1, k2 ∈ K and w,w1, w2 ∈ W ):

k ∗
W

(w1 +W
w2) = k ∗

W
w1 +W

k ∗
W

w2 (1)

k ∗
W

0
W

= 0
W

(2)

(k1 +K
k2) ∗W w = k1 ∗W w +

W
k2 ∗W w (3)

0
K

∗
W

w = 0
W

(4)

(k1 ·K k2) ∗W w = k1 ∗W (k2 ∗W w) (5)

1
K

∗
W

w = w (6)

In any (commutative) monoid (M,+
M
, 0

M
) define for any

n ∈ N and x ∈ M

nx = x+
M

· · ·+
M

x (n times)

in particular 0x = 0
M
. Thus M has a canonical struc-

ture of N-semimodule. Moreover, it is easy to check that
a commutative monoid M is a B-semimodule if and only if
its operation is idempotent: x +

M
x = x. The K-relations

themselves form a K-semimodule (K-Rel,∪
K
, ∅

K
, ∗

K
) where

(k ∗KR)(t) = k ·
K

R(t) 7.
We now show, for any K-semimodule W , how to define

W -aggregation of a K-set of elements from W . We assume
that W ⊆ D and that we have just one attribute, whose
values are all from W . Consider the K-set S such that
supp(S) = {w1, . . . , wn} and S(wi) = ki ∈ K, i = 1, . . . , n
(i.e., each wi is annotated with ki). Then, the result of
W -aggregating S is defined as

SetAggW (S) = k1 ∗W w1 +W
· · ·+

W
kn ∗

W
wn ∈ W

For the empty K-set we define SetAggW (∅
K
) = 0

W
. Clearly,

SetAggW is a semimodule homomorphism 8. Since all com-
mutative monoids are N-semimodules this gives the usual
6COUNT is particular case of summation and AVG is ob-
tained from summation and COUNT.
7In fact, it is the K semimodule freely generated by D

U .
8In fact, it is the free homomorphism determined by the
identity function on W .

sum, prod, min, and max aggregations on bags. Since MIN
and MAX are B-semimodules this gives the usual min and
max aggregation on sets 9.

Note that SetAgg is an operation on sets, not an operation
on relations. In the sequel we show how to extend it to one.

2.3 A tensor product construction
More generally, we want to investigate M -aggregation on

K-relations where M is a commutative monoid and K is
some commutative semiring. Since M may not have enough
elements to representK-annotated aggregations we construct
a K-semimodule in which M can be embedded, by transfer-
ring to semimodules the basic idea behind a standard alge-
braic construction, as follows.

Let K be any commutative semiring and M be any com-
mutative monoid. We start with K×M , denote its elements
k⊗m instead of 〈k,m〉 and call them “simple tensors”. Next
we consider (finite) bags of such simple tensors, which, with
bag union and the empty bag, form a commutative monoid.
It will be convenient to denote bag union by +

K⊗M
, the

empty bag by 0
K⊗M

and to abuse notation denoting single-
ton bags by the unique element they contain. Then, every
non-empty bag of simple tensors can be written (repeating
summands by multiplicity) k1⊗m1 +

K⊗M
· · · +

K⊗M
kn⊗mn.

Now we define

k ∗
K⊗M

∑
ki⊗mi =

∑
(k ·

K
ki)⊗mi

Let ∼ be the smallest congruence w.r.t. +
K⊗M

and ∗
K⊗M

that satisfies (for all k, k′,m,m′):

(k +
K

k
′)⊗m ∼ k⊗m+

K⊗M
k
′⊗m

0
K
⊗m ∼ 0

K⊗M

k⊗(m+
M

m
′) ∼ k⊗m+

K⊗M
k⊗m

′

k⊗0
M

∼ 0
K⊗M

We denote by K ⊗ M the set of tensors i.e., equivalence
classes of bags of simple tensors modulo ∼. We show in
Appendix B that K ⊗M forms a K-semimodule.

Lifting homomorphisms. Given a homomorphism of semir-
ings h : K → K′, and some commutative monoid M , we can
“lift”h to a homomorphism of monoids in a natural way. The
lifted homomorphism is denoted hM : K ⊗ M → K′ ⊗ M

and defined by:

h
M (

∑
ki⊗mi) =

∑
h(ki)⊗mi

3. SIMPLE AGGREGATION QUERIES
In this section we begin our study of the “provenance-

aware” evaluation of aggregate queries, focusing on “sim-
ple” such queries, that is, queries in which aggregations are
done last; for example, un-nested SELECT FROM WHERE
GROUP BY queries. This avoids the need to compare values
which are the result of annotated aggregations and simpli-
fies the treatment. The restriction is relaxed in the more
general framework presented in Section 4.

The section is organized as follows. We list the desired
features of a provenance-aware semantics for aggregation,
and first try to design a semantics with these features, with-
out using the tensor product construction, i.e. by simply

9The fact that the right algebraic structure to use for ag-
gregates is that of semimodules can be justified in the same
way in which using semirings was justified in [24]: by show-
ing how the laws of semimodules follow from desired equiv-
alences between aggregation queries.



working with K-relations as done in [24]. We show that this
is impossible. Consequently, we turn to semantics that are
based on combining aggregation with values via the tensor
product construction. We propose such semantics that do
satisfy the desired features, first for relational algebra with
an additional AGG operator on relations (that allows aggre-
gation of all values in a chosen attributes, but no grouping);
and then for GROUP BY queries.

3.1 Semantic desiderata and first attempts
We next explain the desired features of a provenance-

aware semantics for aggregation. To illustrate the difficulties
and the need for a more complex construction, we will first
attempt to define a semantics on K-relations, without using
the tensor product construction of Section 2.3.

We consider a commutative semiringK (e.g., B,N,N[X], S,
etc.) for tuple annotations and a commutative monoid M

(e.g., SUM = (R,+, 0),PROD = (R,×, 1), MAX =
(R−∞,max,−∞), MIN = (R∞,min,∞) etc.) for aggrega-
tion. We will assume that the elements of M already belong
to the database domain, M ⊆ D.

We have recalled the semantics of SPJU queries in Section
2.1. Now we wish to add an M -aggregation operation AGG
on relations. We then denote by SPJU-A the restricted class
of queries consisting of any SPJU-expression followed pos-
sibly by just one application of AGG. This corresponds to
SELECT AGG(*) FROM WHERE queries (no grouping).

For the moment, we do not give a concrete semantics to
AGGM (R), allowing any possible semantics where the re-
sult of AGGM (R) is a K-relation. We note that AGGM (R)
should be defined iff R is a K-relation with one attribute
whose values are in M .

What properties do we expect of a reasonable semantics
for SPJU-A (including, of course, a semantics for AGGM (R))?
A basic sanity check is

Set/Bag Compatibility The semantics coincides with the
usual one when K = B (sets) and M = MAX or MIN,
and when K = N (bags) and M = SUM or PROD.

Note that we associate min and max with sets and sum and
product with bags. Min and max work fine with bags too,
but we get the same result if we convert a bag to a set (elimi-
nate duplicates) and then apply them. Sum and product (in
the context of other operations such as projection) require
us to use bags semantics in order to work properly. This
is well-known, but our general approach sheds further light
on the issue by discussing such “compatibility” for arbitrary
semirings and monoids in Section 3.4.

As discussed in the introduction, a fundamental desidera-
tum with many applications is commutation with homomor-
phisms. Note that a semiring homomorphism h : K → K′

naturally extends to a mapping hRel : K-Rel → K′-Rel via
hRel(R) = h ◦ R (i.e. the homomorphism is applied on the
annotation of every tuple), which then further extends to
K-databases. With this, the second desired property is

Commutation with Homomorphisms Given any two com-
mutative semirings K,K′ and any homomorphism h :
K → K′, for any queryQ, its semantics onK-databases
and onK′-databases satisfy hRel(Q(D)) = Q(hRel(D))
for any K-database D.

It turns out that this property determines quite precisely the
way in which tuple annotations are defined. We say that the
semantics of an operation Ω on K-databases is algebraically
uniform with respect to the class of commutative semirings if

the annotations of the output Ω(D) are defined by the same
(for all K) {+

K
, ·

K
, 0

K
, 1

K
}-expressions, where the elements

in the expressions are the annotations of the input D. One
can see that the definition of the SPJU-algebra is indeed
algebraically uniform and was shown in [24, 17] to com-
mute with homomorphisms. The connection between the
two properties is general (proof deferred to the Appendix):

Proposition 3.1. A semantics commutes with homomor-
phisms iff it is algebraically uniform.

After stating two of the desired properties, namely set/bag
compatibility and commutation with homomorphisms we
can already show that it is not possible to give a satisfactory
semantics to the SPJU-A algebra within the framework used
in [24] for the SPJU-algebra.

Proposition 3.2. There is no K-relation semantics for
MAX-(or MIN-)aggregation that is both set-compatible and
commutes with homomorphisms. Similarly, there is no K-
relation semantics for SUM-aggregation that is both bag-
compatible and commutes with homomorphisms.

Proof. Assume by contradiction the existence of such
semantics. Consider the N[X]-relation R with one attribute
and two tuples with values 10 and 20, with the corresponding
tuple annotations being x, y ∈ X. Let R′ be AGG

MAX
(R)

according to the assumed semantics; R′ is also an N[X]-
relation. Because a tuple t with a value 10 is a possible
answer to the MAX-aggregation (when we set y = 0) it
must occur in supp(R′). Let p ∈ N[X] be the annotation
of the tuple t (having value 10) in R′. By algebraic unifor-
mity the only variables that can occur in p are x and y, and
we consequently denote it p(x, y). Consider two homomor-
phisms h′, h′′ : N[X] → B defined by h′(x) = h′(y) = ⊤ and
by h′′(x) = ⊤, h′′(y) = ⊥. Applying AGG

MAX
to h′

Rel(R)
and h′′

Rel(R) should, by set-compatibility, work as usual.
Hence, by commutation with homomorphisms h′(p) = ⊥
and h′′(p) = ⊤. Functions on B defined by polynomials in
N[X] are monotone in each variable. But ⊥ = h′(p(x, y)) =
p(h′(x), h′(y)) = p(⊤,⊤) and⊤ = h′′(p(x, y)) = p(h′′(x), h′′(y)) =
p(⊤,⊥), in contradiction to the monotonicity.

Alternatively, one may consider going beyond semirings,
to algebraic structures with additional operations. We have
briefly explored the use of “negative” information in the in-
troduction. As we show there, one could use the ring struc-
ture on Z[X] (the additional subtraction operation) or the
boolean algebra structure on BoolExp(X) (the additional
complement operation) but the use of negative operation
does not avoid the need to enumerate in separate tuples of
the answer all the possible aggregation results given by sub-
sets of the input. In the case of summation, at least, there
are exponentially many such tuples. We reject such an ap-
proach and we state as an additional desideratum:

Poly-Size Overhead For any query Q and database D,
the size of Q(D), including annotations, should be only
polynomial in the size of D.

We shall next show a semantics to the SPJU-A -algebra
that satisfies all three properties we have listed.

3.2 Annotations⊗ values and SPJU-A
Let us fix a commutative monoid M (for aggregation) and

a commutative semiring K (for annotation). The inputs



of our queries are as before: K-databases whose domain D

includes the values M over which we aggregate. However,
the outputs are more complicated. The basic idea for the
semantics of aggregation was already shown in Section 2.2
where it is assumed that the domain of aggregation has a
K-semimodule structure. As we have shown in Section 2.3,
we can give a tensor product construction that embeds M

in the K-semimodule K ⊗ M (note that this embedding is
not always faithful, as discussed in Section 3.4).

For the output relations of our algebra queries, we thus
need results of aggregation (i.e., the elements of K ⊗ M)
to also be part of the domain out of which the tuples are
constructed. Thus for the output domain we will assume
that K ⊗ M ⊆ D, i.e. the result “combines annotations
with values”. The elements of M (e.g., real numbers for
sum or max aggregation) are still present, but only via the
embedding ι : M → K ⊗M defined by ι(m) = 1

K
⊗m.

Having annotations fromK appear in the values will change
the way in which we apply homomorphisms to query results,
so to emphasize the change we will call (M,K)-relations the
K-annotated relations over such that the data domain D

that includes K ⊗ M . To summarize, the semantics of the
SPJU-A -algebra will map databases of K-relations (with
M ⊆ D) to (M,K)-relations (with K ⊗M ⊆ D).

As we define the semantics of the SPJU-A -algebra, we
first note that for selection, projection, join and union the
definition is the same as for the SPJU-algebra onK-databases.
The last step of the query is aggregation, denoted AGGM (R),
and is well-defined iff R is a K-relation with one attribute
whose values are in the M subset of D. To apply the def-
inition that uses the semimodule structure (shown in Sec-
tion 2.2), we convert R to an (M,K)-relation ι(R) by re-
placing each m ∈ M with ι(m) = 1

K
⊗m ∈ K ⊗M . Then, if

supp(R) = {m1, . . . ,mn} and R(mi) = ki ∈ K, i = 1, . . . , n
(i.e., each mi is annotated with ki) we define AGGM (R) as
a one-attribute relation with one tuple annotation is 1

K
and

whose content is SetAggK⊗M (ι(R)), which is equal to

k1 ∗K⊗M
ι(m1) +K⊗M

· · ·+
K⊗M

kn ∗
K⊗M

ι(mn)

= k1⊗m1 +K⊗M
· · ·+

K⊗M
kn⊗mn

We define the annotation of the only tuple in the output of
AGGM to be 1

K
, since this tuple is always available. How-

ever, the content of this tuple does depend on R. For exam-
ple, even when R is empty the output is not empty: by the
semimodule laws, its content is 0

K⊗M
= ι(0

M
).

Commutation with Homomorphisms. We have explained
in Section 2.3 how to lift a homomorphism h : K → K′ to a
homomorphism hM : K⊗M → K′⊗M . Via this we can lift
h to a homomorphism hRel on (M,K)-relations: let R be
such a relation and recall that some values in R are elements
of K ⊗M , and the annotations of these tuples are elements
of K. Then hRel(R) denotes the relation obtained from R by
replacing every k ∈ K with h(k), and additionally replacing
every k ⊗ M ∈ K ⊗ M with hM (k ⊗ m). All other values
in R stay intact. Applying hRel on a (M,K)-database D

amounts to applying hRel on each (M,K)-relation in D.
We can now state the main result for our SPJU-A -algebra:

Theorem 3.3. Let K,K′ be semirings, h : K → K′, Q
an SPJU-A query and let M be a commutative monoid. For
every (M,K)-database D, Q(hRel(D)) = hRel(Q(D)) if and
only if h is a semiring homomorphism.

The proof is by induction on the query structure, and
is straightforward given that for the constructs of SPJU

queries homomorphism commutation was shown in [24], while
commutation for the new AGGM construct follows directly
from the definition.

Example 3.4. Consider the following N[X]-relation R:

Sal

20 r1
10 r2
30 r3

Let M be some commutative monoid, then AGGM (R) con-
sist of a single tuple with value r1⊗20 +

K⊗M
r2⊗10 +

K⊗M

r3⊗30. The intuition is that this value captures multiple
possible aggregation values, each of which may be obtained
by mapping the ri annotations to N, standing for the mul-
tiplicity of the corresponding tuple. The commutation with
homomorphism allows us to first evaluate the query and only
then map the ri’s, changing directly the expression in the
query result. For example, if M = SUM and we map r1 to
1,r2 to 0,r3 to 2, we obtain 1⊗20 +

K⊗M
2⊗30 = 1⊗20 +

K⊗M

1⊗30 +
K⊗M

1⊗30 = 1 ⊗ 80 (which corresponds to the M

element 80). As another example, the commutation with
homomorphisms allows us to propagate the deletion of the
first tuple in R, by simply setting in the aggregation result
r1 = 0 (keeping the other annotations intact) and obtaining
2⊗30 = (1+1)⊗30 = 1⊗30+1⊗30 = 1⊗(30+30) = 1⊗60.

We further demonstrate an application for security.

Example 3.5. Consider the following relation R, anno-
tated by elements from the security semiring S.

Sal

20 S

10 1
S

30 S

Recall (from Section 2.1) the order relation 1
S
< C < S <

T < 0
S
; a user with credentials cred can only view tuples

annotated with security level equal or less than cred. Now
let M = MAX and we obtain: AGG

MAX
(R) = S⊗20 +

K⊗M

1
S
⊗10 +

K⊗M
S⊗30 = S⊗(20 +MAX 30) + 1

S
⊗10 and we get

S⊗30 + 1
S
⊗10.

Assume now that we wish to compute the query results as
viewed by a user with security credentials cred. A naive com-
putation would delete from R all tuples that require higher
credentials, and re-evaluate the query (which in general may
be complex). But observe that the deletion of tuples is equiv-
alent to applying to R a homomorphism that maps every
annotation t > cred to 0, and t ≤ cred to 1. Using homo-
morphism commutation we can do better by applying this
homomorphism only on the result representation (namely
S⊗30 + 1

S
⊗10). For example, for a user with credentials C,

we map S to 0 and 1
S
to 1, and obtain 0⊗30+1⊗10 = 1⊗10;

similarly for a user with credentials S we get 1⊗30+1⊗10 =
1⊗(30 +

MAX
10) = 1⊗ 30.

From the above definition of the semantics for aggrega-
tion, it is obvious that the poly-size overhead property is
fulfilled. Indeed, consider the case of provenance for sum-
mation as in Example 3.4, and compare it to the naive repre-
sentation provided in the Introduction. Instead of having to
list all (exponentially many) options for the sum of salaries,
we used an expression in K⊗SUM that is of linear size with
respect to the input to the aggregation. As exemplified, the
possible aggregate answers now correspond to different valu-
ations for the provenance tokens, applied to this expression.



3.3 Group By
So far we have considered aggregation in a limited con-

text, where the input relation contains a single attribute. In
common cases, however, aggregation is used on arbitrary re-
lations and in conjunction with grouping, so we next extend
the algebra to handle such an operation. The idea behind
the construction is quite simple: we separately group the tu-
ples according to the values of their “group-by” attributes,
and the aggregated values for each such group are computed
similarly to the computation for the AGG operator. When
considering the annotation of the aggregated tuple, we en-
counter a technical difficulty: we want this annotation to
be equal 1

K
if the input relation includes at least one tuple

in the corresponding group, and 0
K

otherwise (for intuition,
consider the case of bag relations, in which the aggregated
result can have at most multiplicity 1); we consequently en-
rich our structure to include an additional construct δ that
will capture that, as follows:

Definition 3.6. A (commutative) δ-semiring is an alge-
braic structure (K,+

K
, ·

K
, 0

K
, 1

K
, δ

K
) where (K,+

K
, ·

K
, 0

K
, 1

K
)

is a commutative semiring and δ
K

: K → K is a unary oper-
ation satisfying the “δ-laws” δK(0

K
) = 0

K
and δ

K
(n1

K
) = 1

K

for all n ≥ 1. If K and K′ are δ-semirings then a homomor-
phism between them is a semiring homomorphism h : K →
K′, for which we have in addition h(δ

K
(k)) = δ

K′ (h(k)).

The δ-laws completely determine δB and δN. But they
leave a lot of freedom for the definition of δ

K
in other semir-

ings; in particular for the security semiring, a reasonable
choice for δS is the identity function.

As with any equational axiomatization, we can construct
the commutative δ-semiring freely generated by a set X, de-
noted N[X, δ], by taking the quotient of the set of
{+, ·, 0, 1, δ}-algebraic expressions by the congruence gener-
ated by the equational laws of commutative semirings and
the δ-laws. For example, if e and e′ are elements of N[X, δ]
(i.e., congruence classes of expressions given by some rep-
resentatives) then e +N[X,δ] e

′ is the congruence class of the
expression e+ e′. The elements of N[X, δ] are not standard
polynomials but certain subexpressions can be put in poly-
nomial form, for example δ(2 + 3xy2) or 3 + 2δ(x2 + 2y)z2.

We are now ready to define the group by (denoted GB)
operation; subsequently we exemplify its use, including in
particular the role of δ:

Definition 3.7. Let R be a K-relation on set of attributes
U , let U ′ ⊆ U be a subset of attributes that will be grouped
and U ′′ ∈ U be the subset of attributes with values in M (to
be aggregated). We assume that U ′ ∩U ′′ = ∅. For a tuple t,
we define T = {t′ ∈ supp(R) | ∀u ∈ U ′ t′(u) = t(u)}.

We then define the aggregation result R′ = GBU′,U′′(R)
as follows:

R
′(t) =






δ
K
(Σt′∈TR(t′)) T 6= φ, and

∀u ∈ U ′′ t(u) = Σt′∈TR(t′)⊗ t′(u)

0 Otherwise.

Example 3.8. Consider the relation R:

Dept Sal

d1 20 r1
d1 10 r2
d2 10 r3

and a query GB{Dept},SalR, where the monoid used is SUM.
The result (denoted R’) is:

Dept Sal

d1 r1⊗20 +
K⊗SUM r2⊗10 δK(r1 +K

r2)
d2 r3⊗10 δK(r3)

Each aggregated value (for each department) is computed
very similarly to the computation in Example 3.4. Consider
the provenance annotation of the first tuple: intuitively, we
expect it to be 1

K
if at least one of the first two tuples of R

exists, i.e. if at least one out of r1 or r2 is non-zero. Indeed
the expression is δ(r1 +K

r2) and if we map r1, r2 to e.g. 2
and 1 respectively, we obtain δN(3) = 1.

We use SPJU-AGB as the name for relational algebra
with the two new operators AGG and GB. We note that
the poly-size overhead property is still fulfilled for queries
in SPJU-AGB ; commutation with homomorphism also ex-
tends to SPJU-AGB (see proof in the Appendix).

Recall that an additional desideratum from the semantics
was bag / set compatibility. Recall that sets and bags are
modeled by K = N and K = B respectively. We next study
compatibility in a more general way, for arbitrary K and M .

3.4 Annotation-aggregation compatibility
The first desideratum we listed was an obvious sanity

check: whatever semantics we define, when specialized to the
familiar aggregates of max, min and summation, it should
produce familiar results. Since we had to take an excursion
through the tensor product K ⊗ M , this familiarity is not
immediate. However, the following proposition holds (its
correctness will follow from theorems 3.12 and 3.13).

Proposition 3.9. In the following constructions: B ⊗
MAX, B ⊗ MIN, and N ⊗ SUM, ι : M → K ⊗ M where
ι(m) = 1

K
⊗m is a monoid isomorphism.

and this means our semantics satisfies the set/bag compati-
bility property because in these cases computing in K ⊗M

exactly mirrors computing in M .
But of course, we are also interested in working with other

semirings, in particular the provenance semiring, for which
N[X]⊗M andM are in general not isomorphic (in particular,
ι is not surjective and thus not an isomorphism). In fact,
the whole point of working in N[X] ⊗ MAX, for example,
is to add annotated aggregate computations to the domain
of values. Most of these do not correspond to actual real
numbers as e.g. ι(MAX) is a strict subset of N[X] ⊗MAX
(and similarly ι(SUM) is a strict subset of N[X]⊗SUM etc.).
However, when provenance tokens are valuated to obtain set
(or bag) instances, we can go back into ι(MAX) (or ι(SUM)
etc.), and then we should obtain familiar results by “strip-
ping off” the ι. It turns out that this works correctly with
N[X] but not necessarily with arbitrary commutative semir-
ings K. The reason is that not only that ι is not an isomor-
phism, but in general it may be be unfaithful (not injective).
Indeed ι : SUM → B⊗ SUM is not injective:

ι(4) = ι(2 + 2) = ι(2) +
K⊗M

ι(2) = ⊤⊗2 +
K⊗M

⊤⊗2 =

= (⊤∨ ⊤)⊗2 = ⊤⊗2 = ι(2)

This is not surprising, as it is related to the well-known
difficulty of making summation work properly with set se-
mantics. In general, we thus define compatibility as follows:

Definition 3.10. We say that a commutative semiring
K and a commutative monoid M are compatible if ι is in-
jective.



The point of the definition is that when there is compat-
ibility, we can work in K ⊗ M and whenever the results
belong to ι(M), we can safely read them as familiar answers
from M . We give three theorems that capture some general
conditions for compatibility.

First, we note that if we work with a semiring in which
+

K
is idempotent, such as B or S, a compatible monoid must

also be idempotent (e.g. MIN or MAX but not SUM):

Proposition 3.11. Let K be some commutative semiring
such that +

K
is idempotent, and let M be some commutative

monoid. If M is compatible with K, then +M is idempotent.

Proof. ι(m) = 1
K
⊗m = (1

K
+

K
1
K
)⊗m = 1

K
⊗m+

K⊗M

1
K

⊗m = 1
K

⊗ (m+
M

m) = ι(m+
M

m)

Nicely enough, idempotent aggregations are compatible
with every annotation semiring K that is positive with re-
spect to +

K
. K is said to be positive with respect to +

K

if k +
K

k′ = 0
K

⇒ k = k′ = 0
K
. For instance, B, N, S

and N[X] are such semirings (but not (Z,+, ·, 0, 1)). The
following theorem holds:

Theorem 3.12. If M is a commutative monoid such that
+

M
is idempotent, then M is compatible with any commu-

tative semiring K which is positive with respect to +
K
.

Proof sketch. We define h : K⊗M → M as
h(
∑

i∈I
ki⊗mi) =

∑
j∈J

mj where J = {j ∈ I |kj 6= 0}.

We can show that h is well-defined (details deferred to the
Appendix); since ∀m ∈ M h ◦ ι(m) = m, ι is injective and
thus K and M are compatible.

For general (and in particular non-idempotent) monoids
(e.g. SUM ) we identify a sufficient condition on K (which
in particular holds for N[X]), that allows for compatibility:

Theorem 3.13. Let K be a commutative semiring. If
there exists a semiring homomorphism from K to N then
K is compatible with all commutative monoids.

Proof sketch. Let h′ be a homomorphism from K to
N, and M be an arbitrary commutative monoid. We define
a mapping h : K ⊗M → M by h (Σki ⊗mi) = Σh′(ki)mi.
We show in the Appendix that h is well-defined and that
h ◦ ι is the identity function hence ι is injective.

Corollary 3.14. The semiring of provenance polynomi-
als N[X] is compatible with all commutative monoids.

Now consider the security semiring S. It is idempotent,
and therefore not compatible with non-idempotent monoids
such as SUM. Still, we want to be able to use S and other
non-idempotent semirings, while allowing the evaluation of
aggregation queries with non-idempotent aggregates. This
would work if we could construct annotations that would
allow us to use Theorem 3.13, in other words, if we could
combine annotations from S, with multiplicity annotations
(i.e. annotations from N). We explain next the construction
of such a semiring SN (for security-bag), and its compati-
bility with any commutative monoid M will follow from the
existence of a homomorphism h :SN→ N.

Constructing a compatible semiring. We start with the
semiring of polynomials N[S], i.e. polynomials where instead
of indeterminates(variables) we have members of S, and the
coefficients are natural numbers. Already N[S] is compatible
with any commutative monoid M , as there exists a homo-
morphism h : N[S] → N; but if we work with N[S] we lose the

ability to use the identities that hold in S and to thus reduce
the size of annotations in query results. We can do better
by taking the quotient of N[S] by the smallest congruence
containing the following identities:

• ∀s1, s2 ∈ S s1 ≥ s2 =⇒ s1 ·N[S] s2 = s1.

• ∀c ∈ N, s ∈ S 0 ·N[S] s = c ·N[S] 0S = 0.

• ∀c ∈ N c ·N[S] 1S = c.

We will denote the resulting quotient semiring by SN. It
is easy to check that the faithfulness of the embeddings of
N and S in N[S] is preserved by taking the quotient. Most
importantly, SN is still homomorphic to N. Thus,

Corollary 3.15. SN is compatible with any commuta-
tive monoid M .

Example 3.16. Consider the SUM monoid. Let R,S be
the following S-relations which by the embedding of S we take
as SN-relations:

A

30 S

R

A

30 T

10 1S

S

Consider the query: AGG(R ∪ ΠS.A(S ⊲⊳ R)). Ignoring
the annotations, the expected result (under bag semantics)
is 70. Working within the (compatible) semantics defined by
SN⊗ SUM, the query result contains an aggregated value of
(T ·SN S+SN S)⊗ 30 +S⊗ 10. We can further simplify this to
T⊗ 30+S⊗ 30+S⊗ 10 = T⊗ 30+S⊗ 40. This means that
e.g. for a user with credentials T the query result is 1SN⊗70,
and we can use the inverse of ι to map it to N and obtain
70. Similarly, for a user with credentials S, the query result
is mapped to 40. These are indeed the expected results.

Note that if we would have used in the above example S

instead of SN we would have (T+S S) = S so (T+S S)⊗ 30
would be the same as S⊗ 30. For a user with credentials T
we could either use this, leading to the result of 1S ⊗ 40, or
use the same computation done in the example, to obtain
1S⊗70. Indeed, in S⊗SUM , we have 1S⊗40 = 1S⊗70. This
is the same phenomenon demonstrated in the beginning of
this subsection for B, where ι is not injective, preventing us
from stripping it away.

Note also that if we would have used N[S] instead of SN
then we could not have done the illustrated simplifications.

4. NESTED AGGREGATION QUERIES
So far we have studied only queries where the aggregation

operator is the last one performed. In this section we extend
the discussion to queries that involve comparisons on aggre-
gate values. We first demonstrate the difficulties that arise
in designing an algebra for such queries, then explain how
to extend the construction to overcome these difficulties.

Note. For simplicity, all results and examples are presented
for queries in which the comparison operator is equality (=).
However the results can easily be extended to arbitrary com-
parison predicates, that can be decided for elements of M .

4.1 Difficulties
We start by exemplifying where the algebra proposed for

restricted aggregation queries, fails here:



Example 4.1. Reconsider the relation (denoted R′) which
is the result of aggregation query, depicted in Example 3.8.
Further consider a query Qselect that selects from R′ all tu-
ples for which the aggregated salary equals 20. The crux
is that deciding the truth value of the selection condition
involves interpreting the comparison operator on symbolic
representation of values in R′; so far, we have no way of in-
terpreting the obtained comparison expression, for instance
r1 ⊗ 20+ r2 ⊗ 10 “equals” 20, and thus we cannot decide the
existence of tuples in the selection result.

Note that in the above example, the truth value of the
comparison (and consequently the set of tuples in the query
result) depends in a non-monotonic way on the existence of
tuples in the (original) input relation R: note that if we map
r1 to 1 and r2 to 0 then the tuple with dept. d1 appears in
the query result, but if we map both to 1, it does not. The
challenge that this non-monotonicity poses is fundamental,
and is encountered by any algebra on (M,K)-relations. The
following proposition, which is the counterpart of proposi-
tion 3.2, holds (proof deferred to the Appendix):

Proposition 4.2. There is no (M,K)-relation seman-
tics for nested aggregation queries with MAX-(or MIN-)-
aggregation that is both set-compatible and commutes with
homomorphisms. Similarly for SUM-aggregation and bag-
compatibility.

Consequently, a more intricate construction is required for
nested aggregation queries.

4.2 An Extended Structure
We start with an example of our treatment of nested ag-

gregation queries, then give the formal construction.

Example 4.3. Reconsider example 4.1, and recall that
the challenge in query evaluation lies in comparing elements
of K⊗M with elements of M (or K⊗M , e.g. in case of
joins). Our solution is to introduce to the semiring K new
elements, of the form [x = y] where x, y ∈ K⊗M (if we need
to compare with m ∈ M , we use ι(m) instead). The result
of evaluating the query in example 4.1 (using M = SUM)
will then be captured by:

Dept Sal

d1 r1 ⊗ 20 δ(r1 +K
r2)·K

+
K⊗M

r2 ⊗ 10
[
r1 ⊗ 20 +

K⊗M
r2 ⊗ 10 = 1

K
⊗ 20

]

d2 r3 ⊗ 10 δ(r3)·K [r3 ⊗ 10 = 1
K

⊗ 20]

Intuitively, since we do not know which tuples will satisfy
the selection criterion, we keep both tuples and multiply the
provenance annotation of each of them by a symbolic equality
expression. These equality expressions are kept as symbols
until we can embed the values in M = SUM and decide
the equality (e.g. if K = N), in which case we “replace”
it by 1

K
if it holds or 0

K
otherwise. For example, given a

homomorphism h : N[X] → N, h(r1) = h(r2) = 1, then
hM (r1⊗20 +K⊗Mr2⊗10) = h(r1) ⊗ 20 +K⊗Mh(r2) ⊗ 10 =
1⊗ 30 6= 1⊗ 20, thus the equality expression is replaced with
(i.e. mapped by the homomorphism to) 0

K
.

We next define the construction formally; the idea un-
derlying the construction is to define a semiring whose ele-
ments are polynomials, in which equation elements are ad-
ditional indeterminates. To achieve that, we introduce for
any semiring K and any commutative monoid M , the “do-

main” equation K̂ = N[K ∪ {[c1 = c2] | c1, c2 ∈ K̂⊗M}].

The right-hand-side is a monotone, in fact continuous w.r.t.
the usual set inclusion operator, hence this equation has a
set-theoretic least solution (no need for order-theoretic do-
main theory). The solution also has an obvious commutative
semiring structure induced by that of polynomials. The so-

lution semiring is K̂ = (X,+
K̂
, ·

K̂
, 0

K̂
, 1

K̂
), and we continue

by taking the quotient on K̂ defined by the following axioms.

For all k1, k2 ∈ K, c1, c2, c3, c4 ∈ K̂ ⊗M :

0
K̂

∼ 0
K

1
K̂

∼ 1
K

k1 +K̂
k2 ∼ k1 +K

k2

k1 ·K̂k2 ∼ k1 +K
k2

[c1 = c3] ∼ [c2 = c4] (if c1 =
K̂⊗M

c2, c3 =
K̂⊗M

c4)

and if K and M are such that ι defined by ι(m) = 1
K
⊗m

is an isomorphism (and let h be its inverse), we further take
the quotient defined by: for all a, b ∈ K ⊗M ,

(*) [a = b] ∼ 1
K
(if h(a) =Mh(b))

[a = b] ∼ 0
K
(if h(a) 6=Mh(b))

We use KM to denote the semiring obtained by applying
the above construction on a semiring K and a commutative
monoid M . A key property is that, when we are able to
interpret the equalities in M , KM collapses to K. Formally,

Proposition 4.4. If K and M are such that K⊗M and
M are isomorphic via ι then KM = K.

The proof (deferred to the Appendix) is by induction on
the structure of elements in KM , showing that at each step
we can“solve”an equality sub-expression, and replace it with
0
K

or 1
K
.

Lifting homomorphisms. To conclude the description of
the construction we explain how to lift a semiring homo-
morphism from h : K → K′ to hM : KM → K′M , for any
commutative monoid M and semirings K,K′. hM is de-
fined recursively on the structure of a ∈ KM : if a ∈ K we
define hM (a) = h(a), otherwise a = [b⊗m1 = c⊗m2] for
some b, c ∈ KM and m1,m2 ∈ M and we define hM (a) =[
hM (b)⊗m1 = hM (c)⊗m2

]
. Note that the application of

a homomorphism hM maps equality expressions to equality
expressions (in which elements in K′ appear instead of el-
ements of K appeared before). If K′ and M are such that
their corresponding ι : M → K ⊗ M defined by ι(m) =
1
K

⊗ M is injective, then we may “resolve the equalities”,
otherwise the (new) equality expression remains.

4.3 The Extended Semantics
The extended semiring construction allows us to design a

semantics for general aggregation queries. Intuitively, when
the existence of a tuple in the result relies on the result of
a comparison involving aggregate values (as in the result of
applying selection or joins), we multiply the tuple annota-
tion by the corresponding equation annotation.

In the sequel we assume, to simplify the definition, that
the query aggregates and compares only values of KM ⊗M

(a value m ∈ M is first replaced by ι(m) = 1
K
⊗m). In what

follows, let R(R1, R2) be (M,KM )-relations on an attributes
set U . Recall that for a tuple t, t(u) (where u ∈ U) is the
value of the attribute u in t; also for U ′ ⊆ U , recall that we



use t |U′ to denote the restriction of t to the attributes in U ′.
Last, we use (KM ⊗M)U to denote the set of all tuples on
attributes set U , with values from KM ⊗M . The semantics
follows:

1. empty relation: ∀t φ(t) = 0.

2. union: (R1 ∪R2) (t) =





∑
t′∈supp(R1)

R1(t
′) ·

∏
u∈U

[t′(u) = t(u)] if t ∈ supp(R1)

+
∑

t′∈supp(R2)
R2(t

′) ·
∏

u∈U
[t′(u) = t(u)] ∪supp(R2)

0 Otherwise.

3. projection: Let U ′ ⊆ U , and let T = {t|U′ | t ∈
supp(R)}. Then ΠU′(t) =






∑
t′∈Supp(R) R(t′)·

∏
u∈U′ [t(u) = t′(u)] if t ∈ T

0 Otherwise.

4. selection: If P is an equality predicate involving the
equation of some attribute u ∈ U and a value m ∈ M

then (σP (R)) (t) = R(t)·[t(u) = ι(m)].

5. value based join: We assume for simplicity that R1 and
R2 have disjoint sets of attributes, U1 and U2 resp., and
that the join is based on comparing a single attribute
of each relation. Let u′

1 ∈ U1 and u′
2 ∈ U2 be the

attributes to join on. For every t ∈ (KM ⊗M)U1∪U2 :
(R1 ⊲⊳R1.u1=R2.u2

R2) (t) =

R1(t|U1
)·R2(t|U2

)·
K
[t(u1) = t(u2)].

Simple Variants. Natural join (when U1 and U2 are
not necessarily disjoint) is captured by a similar ex-
pression, with the equality sub-expression on the at-
tributes common to U1 and U2; join on multiple val-
ues is captured by multiplication by the corresponding
multiple equality expressions; in the representation of
cartesian product (denoted by ×) no equality expres-
sions appear (only R1(t|U1

)·R2(t|U2
)).

6. Aggregation: AGG
M
(R)(t) =






1 t(u) =
∑

t′∈supp(R) R(t′)∗
K⊗M

t′(u)

0 otherwise

7. Group By: Let U ′ ⊆ U be a subset of attributes that
will be grouped and u ∈ U\U ′ be the aggregated at-

tribute. Then for every t ∈ (KM ⊗M)U
′∪{u}:

GBU′,uR(t) =






δ((ΠU′R) (t|U′)) t(u) =
∑

t′∈supp(R)(R(t′)·
K∏

u∈U′ [t
′(u) = t(u)])∗

K⊗M
t′(u)

0 otherwise

It is straightforward to show that the algebra satisfies
set/bag compatibility and poly-size overhead; commutation
with homomorphism is proved in the Appendix.

Example 4.5. Reconsider the relation in Example 4.3,
and let us perform another sum aggregation on Sal . The
value in the result now contains equation expressions:

δ(r1 +K
r2)·K

[
r1 ⊗ 20 +

K⊗M
r2 ⊗ 10 = 1

K
⊗ 20

]

∗
K⊗M

(
r1 ⊗ 20 +

K⊗M
r2 ⊗ 10

)

+
K⊗M

δ(r3)·K [r3 ⊗ 10 = 1
K

⊗ 20]∗
K⊗M

r3 ⊗ 10

Given a homomorphism h : N[X] → N we can “solve”
the equations, e.g. if h(r1) = 1, h(r2) = 0 and h(r3) =
2, we obtain an aggregated value of 1 ⊗ 40. Note that the
aggregation value is not monotone in r1, r2, r3: map r2 to 1
(and keep r1,r3 as before), to obtain 1⊗ 20.

5. DIFFERENCE
We next show that via our semantics for aggregation, we

can obtain for the first time a semantics for arbitrary queries
with difference on K-relations. We describe the obtained
semantics and study some of its properties.

5.1 Semantics for Difference
We first note that difference queries may be encoded as

queries with aggregation, using the monoid B̂ = ({⊥,⊤},∨,⊥)
(the following encoding was inspired by [29, 9]):

R − S = Πa1...an
{
(
GB{a1,...an},b(R×⊥b ∪ S ×⊤b)

)

⊲⊳a1,...an
(R×⊥b)}.

⊥b and ⊤b are relations on a single attribute b, containing
a single tuple (⊥) and (⊤) respectively, with provenance 1

K
.

Using the semantics of Section 4, we obtain a semantics for
the difference operation.

Interestingly, we next show that the obtained semantics
can be captured by a simple and intuitive expression. First,

we note that since B̂ is idempotent, every semiring K posi-

tive with respect to +
K

is compatible with B̂ (see Theorem
3.12). The following proposition then holds for every K,K′

and every two (B̂,K)-relations R,S (proof deferred to the
Appendix):

Proposition 5.1. For every tuple t, semirings K,K′ such

that K′B̂ ⊗ B̂ is isomorphic to B̂ via ι(m) = 1
K

⊗ m, if
h : K → K′ is a semiring homomorphism then:

hB̂([(R− S)(t)]) = hB̂ ([S(t)⊗⊤ = 0]·
K
R(t)).

The obtained provenance expression is thus “equivalent”
(in the precise sense of Proposition 5.1) to [S(t) ⊗ ⊤ =
0] · R(t). The following lemma helps us to understand the
meaning of the obtained equality expression:

Lemma 5.2. For every semiring K which is positive w.r.t.
+

K
and h : K → B, hM ([S(t)⊗⊤ = 0]) = ⊤ iff h(S(t)) =

⊥.

Proof. It is clear that if h(S(t)) = ⊥, hM ([S(t)⊗⊤ = 0]) =
[h (S(t))⊗⊤ = 0] = [⊥⊗⊤ = 0] = ⊤. For the other direc-
tion, assume that h(S(t)) = ⊤. Thus [h (S(t))⊗⊤ = 0] =

[⊤⊗⊤ = 0]. Since B and B̂ are compatible, ι : B → B⊗ B̂ is
injective; thus ι(⊥) 6= ι(⊤); consequently hM ([S(t)⊗⊤ = 0]) =
[⊤⊗⊤ = 0] = ⊥.

Consequently, the semantics can be interpreted as follows:
a tuple t appears in the result of R − S if it appears in R,
but does not appear in S. When the tuple appears in the
result of R−S, it carries its original annotation from R. I.e.
the existence of t in S is used as a boolean condition.

Example 5.3. Let R,S be the following relations, where
R contains employees and their departments and S contain-
ing departments that are designated to be closed:

ID Dep

1 d1 t1
2 d1 t2
2 d2 t3

R

Dep

d1 t4

S



To obtain a relation with all departments that remains
active, we can use the query (ΠDepR)− S, resulting in:

Dep

d1 [t4 ⊗⊤ = 0]·(t1 + t2)
d2 [0 = 0]·t3 (= t3)

Now consider some homomorphism h : N[X] → N (mul-
tiplicity e.g. stands for number of employees in the depart-
ment). Note that if h(t4) > 0 then the department d1 is
closed and indeed d1 is omitted from the support of the dif-
ference query result, otherwise it retains each original anno-
tation that it had in R. Assume now that we decide to revoke
the decision of closing the department d1. This corresponds
to mapping t4 to 0; we can easily propagate this deletion to
the query results; the equality appearing in the annotation of
the first tuple is now [0 = 0] = 1

K
and we obtain as expected:

Dep

d1 t1 + t2
d2 t3

In particular, we obtain a semantics for the entire Re-
lational Algebra, including difference. It is interesting to
study the specialization of the obtained semantics for par-
ticular semirings: B,N,Z, and to compare it to previously
studied semantics for difference.

5.2 Comparison with other semantics
For a semiring K and a commutative monoid M we say

that two queriesQ,Q′ are equivalent if for every input (M,K)-
database D, the results (including annotations) Q(D) and
Q′(D) are congruent (namely the corresponding values and
annotations are congruent) according to the axioms ofKM⊗

M and KM . In the sequel we fix M = B̂ and consider dif-
ferent instances of K, exemplifying different equivalence ax-
ioms for queries with difference while comparing them with
previously suggested semantics. We use Q ≡

K
Q′ to denote

the equivalence of Q,Q′ with respect to K and B̂.

B-relations. For K = B, our semantics is the same as set-
semantics, thus the following proposition holds:

Proposition 5.4. For Q,Q′ ∈ RA it holds that Q ≡
B
Q′

if and only if Q ≡ Q′ under set semantics.

N-relations. For K = N, we compare our semantics to bag
equivalence and observe that they are different (for queries
with difference, even without aggregation). Intuitively this
is because in our semantics, the righthand side of the differ-
ence is treated as a boolean condition, rather than having
the effect of decreasing the multiplicity. Formally,

Proposition 5.5. Q ≡
N
Q′ does not imply that Q ≡ Q′

under bag semantics, and vice versa.

Proof. Observe that A−(B∪B) ≡
N
A−B; but this does

not hold for bag semantics. In contrast, under bag semantics
(A ∪B)−B ≡ A, but not for our semantics.

Example 5.6. Reconsider Example 5.3, and let t1 = t2 =
t3 = t4 = 1. Under bag semantics, after projecting R on the
department attribute, the multiplicity of the department d1

becomes 2; after applying the difference the department d1

is still in the result, but now with multiplicity 1; in contrast
under our semantics the department d1 does not appear in
the support of the result.

Z-relations. Finally, in [22] the authors have presented Z

semantics for difference, and have shown that it leads to
equivalence axioms that are different from those that hold
for queries with bag difference. It is also different from the
equivalence axioms that we have here for Z-relations:

Proposition 5.7. Q ≡
Z
Q′ does not imply Q ≡ Q′ under

Z semantics 10, and vice versa.

Proof. Under Z semantics it was shown in [22] that (A−
(B−C)) ≡ (A∪C)−B. This does not hold for our semantics.
In contrast A− (B∪B) ≡

Z
A−B, but this equivalence does

not hold under Z semantics.

Deciding Query Equivalence. We conclude with a note
on the decidability of equivalence of queries using our seman-
tics. It turns out that for semirings such as B,N for which

we can interpret the results in B̂ (in the sense of proposition
5.1 above), query equivalence is undecidable.

Proposition 5.8. Let K be such that K B̂ ⊗ B̂ is isomor-
phic to B̂. Equivalence of Relational Algebra queries on K-
relations is undecidable.

Proof. The proof is by reduction from equivalence un-
der set semantics: let φ be the empty query, i.e. a query
whose answer always the empty relation. Given two RA

queries Q,Q′ (note that Q and Q′ can include difference),
their equivalence under set semantics holds if and only if
Q−Q′ ≡

K
φ and Q′ −Q ≡

K
φ.

6. RELATED WORK
Provenance information has been extensively studied in

the database literature. Different provenance management
techniques are introduced in [14, 7, 8, 6], etc., and it was
shown in [24, 21] that these approaches can be compared in
the semiring framework. To our knowledge, this work is the
first to study aggregate queries in the context of provenance
semirings. Provenance information has a variety of applica-
tions (see introduction) and we believe that our novel frame-
work for aggregate queries will benefit all of these. Specif-
ically, queries with aggregation play a key role in modeling
the operational logic of scientific workflows (see e.g. [5, 16])
and our framework is likely to facilitate a more fine-grained
approach to workflow provenance.

Aggregate queries have been extensively studied in e.g.
[12, 13] for bag and set semantics. As explained in [12],
such queries are fundamental in many applications: OLAP
queries, mobile computing, the analysis of streaming data,
etc. We note that Monoids are used to capture general ag-
gregation operators in [13], but our paper seems to be the
first to study their interaction with provenance.

Several semantics of difference on relations with annota-
tions have been proposed, starting with the c-tables of [28].
The semirings with monus of [19] generalize this as well
as bag-semantics. Difference on relations with annotations
from Z are considered in [22] and from Z[X] in [20]. As ex-
plained in Section 5, the semantics for difference defined in
this paper is different from all of these.

There are interesting connections between provenance man-
agement and query evaluation on uncertain (and probabilis-
tic) databases (e.g. [30, 15, 6, 3]), as observed in [24].
Evaluation of aggregate queries on probabilistic databases
has been studied in e.g. [36, 33]. Trying to optimize the
performance of aggregate query evaluation on probabilistic
databases via provenance management is an intriguing fu-
ture research challenge.

10As defined in [22].



7. CONCLUSION
We have studied in this paper provenance information for

queries with aggregation in the semiring framework. We
have identified three desiderata for the assessment of can-
didate approaches: compatibility with the usual set/bag se-
mantics, commutation with semiring homomorphisms and
poly-size overhead. After showing that approaches using
provenance only to annotate the database tuples do not sat-
isfy all desiderata simultaneously, we considered a different
framework in which the computation of aggregate values is
itself annotated with provenance. This has led us to the
algebraic structure of semimodules over commutative semir-
ings of annotations and to a tensor product construction for
the semantics of annotated aggregation. The first product
of this approach is a “good” (i.e. satisfying the desiderata)
semantics for SPJU queries followed by an aggregation or
a group-by with aggregation. We have further studied the
challenges that arise in evaluation of queries that apply com-
parisons on aggregation results, e.g., joins over aggregate
values, and shown that by careful adaptation of the semi-
module framework these challenges can be overcome with
a semantics that satisfies the desiderata. Finally, we noted
that difference queries may be encoded as queries with ag-
gregation, and studied the algebra induced for such queries.

We have exemplified in the paper the application of our
approach for deletion propagation and security annotations.
As mentioned in the Introduction and Related Work sec-
tions, there are various other areas in which provenance is
useful. Future research will focus on applying our framework
to the research tasks tackled in these areas.
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APPENDIX

A. SPJU ALGEBRA FOR K-RELATIONS
We recall the full definition of the SPJU algebra for K-

relations from [24]:

Empty Relation ∀t φ(t) = 0.

Selection If R : D
U → K and the selection predicate P

maps each U-tuple to either 0 or 1 then σPR : DU → K

is defined by (σPR)(t) = R(t) · P (t).

Projection If R : D
U → K and U ′ ⊆ U then ΠU′R :

D
U′

→ K is defined by (ΠU′R)(t) =
∑

KR(t′) where
the +

K
sum is over all t′ ∈ supp(R) such that t′|U′ = t.

Natural Join If Ri : DUi → K, i = 1, 2 then R1 ⊲⊳ R2 :
D

U1∪U2 → K is defined by (R1 ⊲⊳ R2)(t) = R1(t1) ·K
R2(t2) where ti = t|Ui

, i = 1, 2.

Union If Ri : D
U → K, i = 1, 2 then R1 ∪

K
R2 : DU → K

is defined by (R1 ∪K
R2)(t) = R1(t) +K

R2(t).

B. PROPERTIES OFK ⊗M

We show here that the K ⊗ M constructed in Section
2.3 forms a K-semimodule, and highlight some of its basic
properties.

Proposition B.1. K ⊗M is a K-semimodule.

Proof. We show that the six semimodule axioms (defini-
tion 2.1) hold. Four of them hold already for bags of simple
tensors. For example

(k ·
K

k
′) ∗

K⊗M

∑
ki⊗mi =

∑
(k ·

K
k
′ ·

K
ki)⊗mi =

= k ∗
K⊗M

∑
(k′ ·

K
ki)⊗mi = k ∗

K⊗M
(k′ ∗

K⊗M

∑
ki⊗mi)

By taking the quotient by congruence defined in Section 2.3
we also get the remaining two axioms:

(k +
K

k
′) ∗

K⊗M

∑
ki⊗mi =

∑
(k ·

K
ki +K

k
′ ·

K
ki)⊗mi ∼

∼
∑

(k ·
K

ki)⊗mi +K⊗M
(k′ ·

K
ki)⊗mi =

=
∑

(k ·
K

ki)⊗mi +K⊗M

∑
(k′ ·

K
ki)⊗mi =

= k ∗
K⊗M

∑
ki⊗mi +K⊗M

k
′ ∗

K⊗M

∑
ki⊗mi

and

0
K

∗
K⊗M

∑
ki⊗mi =

∑
0
K
⊗mi ∼

∑
0
K⊗M

= 0
K⊗M

This concludes the proof.

Furthermore,K⊗M is the“most economical”K-semimodule
in the following sense. Define ι : M → K⊗M such that
ι(m) = 1

K
⊗m. Every tensor is a linear (with respect to K)

combination of simple tensors from ι(M). More precisely,

Proposition B.2. K⊗M satisfies the “universality”prop-
erty, i.e. for any K-semimodule W and any homomorphism
of monoids f : M → W there exists a unique homomorphism
of K-semimodules f∗ : K⊗M → W such that f∗ ◦ ι = f .

Proof. Define f∗ first on bags of simple tensors as fol-
lows

f
∗(
∑

ki⊗m) =
∑

ki ∗W f(m)

where the second sum is taken with +
W

(in particular, the
empty such sum is by convention 0

W
). Thus f∗(ι(m)) =

f∗(1
K
⊗m) = 1

K
∗
W

f(m) = f(m). Then, one can check
that f∗ is a homomorphism with respect to +

K⊗M
, 0

K⊗M
and

∗
K⊗M

. This implies that for f∗ to preserve ∼ it suffices to
preserve the four laws of the congruence given in Section 2.2,
which is readily checked, for example

f
∗(k⊗m+

K⊗M
k⊗m

′) = k ∗
W

f(m) +
W

k ∗
W

f(m′) =

= k∗
W
(f(m)+

W
f(m′)) = k∗

W
f(m+

M
m

′) = f
∗(k⊗(m+

M
m

′))

Since f∗ preserves ∼ it can be defined as above by picking
a representative from each equivalence class. Now let g :
K⊗M → W be another linear function such that g ◦ ι = f .
Then

g(
∑

ki⊗m) = g(
∑

ki ∗K⊗M
(1

K
⊗m)) =

∑
ki ∗W g(1

K
⊗m) =

=
∑

ki ∗W f(m) = f
∗(
∑

ki⊗m)

hence g = f∗, thus verifying the uniqueness of f∗. In partic-
ular, any linear function on K⊗M is completely determined
by its behavior on the tensors in ι(M).

We also say that K ⊗M is the K-semimodule freely gen-
erated by M (thus the “most economical” appellation).

Recall that we have defined in Section 2.3 the “lifting” of
a homomorphism of semirings h : K → K′ to a homomor-
phism of monoids hM : K⊗M → K′⊗M . Its definition is an
immediate consequence of Proposition B.2: indeed K′ ⊗M

becomes a K-semimodule via h so we can define hM as the
the unique homomorphism of K-semimodules that by the
proposition extends ι′ : M → K′⊗M . Note that this yields
the definition in Section 2.3:

h
M (

∑
ki⊗mi) =

∑
h(ki)⊗mi

C. ADDITIONAL PROOFS

Proof. (Proposition 3.1)
The “if” direction follows from the fact that homomor-

phisms, by definition, preserve {+, ·, 0, 1}-expressions. For
the“only if”direction we use abstractly tagged [24] databases.
These are N[X]-databases in which each tuple is annotated
by just an indeterminate in X, and a different one at that.
It is as if tuples are annotated by their distinct id. Clearly,
there is a canonical way of choosing a large enough X and
producing a canonical abstractly tagged database that is
completely determined by its support. Now, fix an operation
Ω, and consider its semantics on K-databases, for various K.
For any K and any K-database D, let Da be the abstractly
tagged database determined by supp(D). Let h : N[X] → K

be the homomorphism uniquely determined by mapping the
abstract tags in X to the actual annotations of D. Fix a
tuple t in supp(Ω(Da)) and let pt = Ω(Da)(t) ∈ N[X] be
the polynomial that annotates it in Ω(Da). By commuta-
tion with homomorphisms and the definition of hRel we have
Ω(D)(t) = Ω(hRel(D

a))(t) = hRel(Ω(D
a))(t) = h(pt). Us-

ing the homomorphism properties we move h inside pt until
it applies to just indeterminates. For an indeterminate, say
x, h(x) is the K-annotation of the unique tuple in supp(D)
that is annotated with x in Da. It follows that Ω(D)(t) is
given by the {+, ·, 0, 1}-expression pt in terms of the anno-
tations of D. But pt only depends on supp(D) and Ω while
it is the same for all K. This shows the algebraic uniformity
of the semantics.



Commutation with homomorphism for SPJU-AGB queries.
We next prove that the semantics proposed for restricted ag-
gregation queries (in Section 3) satisfies commutation with
homomorphisms:

Proof. The proof is by induction on the query structure,
but since commutation with homomorphisms was already
shown for SPJU queries, we need only to prove that GB
commutes with homomorphisms as well. Let R be a K-Rel
on the set of attributes U , where U ′, U ′′ ⊆ U and U ′ ∩
U ′′ = ∅. R may be the result of applying any sequence of
SPJU operations that appear in the query Q, followed by
GBU′,U′′(R).

Consider the result when first applying the GB operation
followed by hRel. According to definition 3.7, the result of
applying GB will be a relation R′, whose support contains
every tuple t such that:

1. t is defined on the attributes U ′ ∪ U ′′;

2. For some non-empty subset T = {t′1, ..., t
′
n} of supp(R),

the restriction of t to attributes of U ′ is equal to the
restriction of every tuple t′i ∈ T to U ′, and not equal to
the restriction to U ′ of any other tuple in supp(R)−T ;

3. For each u ∈ U ′′, t(u) = Σt′
i
∈TR(t′i)⊗ t′i(u); and

4. R′(t) = δ
(
Σt′

i
∈TR(t′i)

)
.

The effect of applying hRel on such t would then be:

1. (hRel(R
′)) (t) is equal by definition to h(R′(t)) =

h
(
δ
(
Σt′

i
∈TR(t′i)

))
= δ

(
Σt′

i
∈Th (R(t′i))

)
.

2. For every u ∈ U ′′, t(u) will be replaced by hM (t(u)) =

hM
(
Σt′

i
∈TR(t′i)⊗ t′i(u)

)
= Σt′

i
∈Th(R(t′i))⊗ t′i(u).

3. The rest of the values in t remain intact.

Then, let us check the result of applying hRel before the
GB operation, and compare it to the above result. Applying
hRel on R will only affect the tuple provenance annotations;
for every tuple t′, (hRel(R)) (t′) = h(R(t)). Now let us apply
GBU′,U′′(hRel(R)). Again, according to our semantics, the
result will be a relation R′′, whose support contains every
tuple t such that:

1. t is defined on the attributes U ′ ∪ U ′′ (as before);

2. For some non-empty subset T = {t′1, ..., t
′
n} of

supp(hRel(R)), the restriction of t to attributes of U ′ is
equal to the restriction of every tuple t′i ∈ T to U ′, and
not equal to the restriction to U ′ of any other tuple in
supp(hRel(R))− T ;

3. for each u ∈ U ′′, t(u) = Σt′
i
∈T (hRel(R)(t′i)) ⊗ t′i(u) =

Σt′
i
∈Th(R(t′i))⊗ t′i(u); and

4. R′(t) = δ
(
Σt′

i
∈Th(R(t′i))

)
.

We now need to verify that these results are indeed equiv-
alent. Note first that applying hRel on R before applying
the GB operation, only affects the tuple annotations, and
not their values. We then employ a “by-case” analysis to
verify equivalence. For any tuple t that is both in the sup-
port of R and in the support of hRel(R), it is easy to observe
from the above equations that the“contribution”of t to both
the aggregation value and its annotation is the same in both
cases. Consequently we can focus on tuples in supp(R) for
which hRel sets their annotations to 0, thus deleting them
from their groups or even deleting a whole group by deleting
all its members. Those tuples and groups contribute to the
result in R′, when applying GB first (before applying hRel).

However, this means that the summands corresponding to
the annotations of those tuples in the δ annotation of the
groups in R′ will be later set to 0 by hRel; as for the ag-
gregation results, for every tuple t′ that is deleted by h, its
summand h(R(t′))⊗ t′(u) in each aggregation result will be
set to 0⊗ t′i(u) = 0

K⊗M
and thus it will have no affect on the

aggregation results. We thus conclude that if no group has
been deleted altogether, the results are equivalent. The last
case to consider is that where all the annotations of tuples
in group T are set to zero. In this case, its δ expression will
be equal to zero as well, so the group is effectively deleted
also by hRel after the GB.

This concludes the proof.

Proof. (Thm. 3.12)
Let K be a commutative semiring which is positive with

respect to +
K

and define h : K⊗M → M as h(
∑

i∈I
ki⊗mi) =∑

j∈J
mi where J = {j ∈ I | kj 6= 0}. We can show that h

is well-defined (see below); since ∀m ∈ M h ◦ ι(m) = m, ι
is injective and thus K and M are compatible.

We need to verify that h is a well-defined mapping, and for
that we check that it is well-defined on K⊗M after taking
the quotient (as defined in Section 2.2):

• (For k, k′ 6= 0
K
) h((k +

K
k′) ⊗ m) = m = m +

M
m =

h(k ⊗m+
K⊗M

k′ ⊗m).

• h(0
K
⊗m) = 0

M
, and also the empty bag is mapped to

the “empty sum” i.e. h(0
K⊗M

) = 0
M
.

• (For k 6= 0
K
) h(k ⊗ (m +

M
m′)) = m +

M
m′ = h(k ⊗

m+
K⊗M

k ⊗m′).

• h(k ⊗ 0
M
) = 0

M
, and again h(0

K⊗M
) = 0

M
.

Note that we assumed that k and k′ are non-zero in the
first and third axioms. Since K is positive with respect to
+

K
, no such k, k′ can satisfy k +

K
k′ = 0

K
, thus the case

of 0
K

⊗ m is uniquely defined to be mapped to 0
M
, by the

second axiom.
This concludes the proof.

Proof. (Thm. 3.13)
Let h′ be a homomorphism from K to N, and M be an

arbitrary commutative monoid. We define a mapping h :
K ⊗M → M , as follows.
h (Σki ⊗mi) = Σh′(ki)mi. We show that h is well-defined
and that h ◦ ι is the identity function.

We first show that this mapping is well-defined, i.e. that
every pair of elements from K ⊗ M which are equated by
the axioms of the tensor construction (as defined in Section
2.2), are mapped by h to the same values.

1st axiom. Left side: h ((k +
K

k′)⊗m) is equal by the def-
inition of h to h′(k +

K
k′)m. Since h′ is a homomor-

phism, this is equal to (h′(k) + h′(k′))m. Right side:
h
(
k ⊗m+

K⊗M
k′ ⊗m

)
= h′(k)m+

M
h′(k′)m by h def-

inition. Since h′(k), h′(k′) are natural numbers, this is
equal to the result of the left hand side.

2nd axiom. Left side: h (0
K

⊗m) = h′(0
K
)m. Since h′ is

a homomorphism, h′(0
K
) = 0 and thus the expression

is equal to 0m = 0
M
. Right side: by definition of h, the

“empty” sum in K⊗M must be mapped to the“empty”
sum in M , which is 0

M
.

3rd axiom. Left side: h (k ⊗ (m+
M

m′)) = h′(k)(m +
M

m′) = h′(k)m+
M

h′(k)m′. Right side:
h
(
k ⊗m+

K⊗M
k ⊗m′

)
= h′(k)m+

M
h′(k)m′.

4th axiom. Left side: h (k ⊗ 0
M
) = h′(k)0

M
= 0

M
. Right

side: same as the 2nd axiom.



Since h is well-defined such that h(a+ b) = h(a)+h(b), it
is a homomorphism from K⊗M toM . Now we need to show
that h◦ ι is the identity function, implying that ι is injective
and thus that M and K are compatible. This is easy: since
h′ is a homomorphism it must map 1

K
to 1; then for every

m ∈ M , h(ι(m)) = h(1
K

⊗m) = h′(1
K
)m = 1m = m.

Proof. (Proposition 4.2)
We show the proof for SUM and the proof for MAX (MIN)

is similar. Reconsider the relation R′ and the query Qselect

in Example 4.1, and assume that R′′ = Qselect(R
′) is a

(M,N[X])-relation capturing the query result according to
some algebra. Assume by contradiction that the algebra
commutes with homomorphism. Let h, h′ be homomorphisms
from N[X] to N corresponding to those in Example 3.2,
I.e. h(r1) = h(r3) = h′(r1) = h′(r2) = h′(r3) = 1 and
h(r2) = 0. We saw in Example 4.1 that the aggregation
result when h is applied is 20; thus, in order to be bag-
compatible, hM (R′′) must include a tuple t′′ representing
this tuple which matched the selection condition. Let pt′′ ∈
N[X] be its provenance annotation, then h(pt′′) = 1. How-
ever, h′M (R′′) is empty, since no aggregation result is equal
to 20 in that case. Thus h′(pt′′) = 0. Similarly to the proof
of prop. 3.2, observe that there exists no such polynomial
pt′′ ∈ N[X].

Proof. (Theorem 4.4)
The proof is by induction on the structure of elements in

KM . We say that an expression exp ∈ KM has a nesting
level of 0 if for every expression [c1⊗m1 = c2⊗m2] appearing
in exp, c1, c2 ∈ K (and m1,m2 ∈ M); exp has a nesting
level n if each such c1, c2 are of nesting level n − 1 or less.
For nesting level of 0, axiom (*) above allows us to replace
[c1 = c2] with 1K or 0

K
. Now, assume that the theorem

holds for expressions with nesting level n− 1 or less, and let
exp be of nesting level n. Then for each sub-expression [c1⊗
m1 = c2 ⊗m2], we can replace, by the induction hypothesis
(and using the axioms above), c1, c2 with elements of K

and then apply axiom (*) to replace the equality expression
with an element of K. We can repeat for every equality
sub-expression of exp, obtaining an element of K.

Commutation with homomorphism for the extended se-
mantics. We next prove that the semantics proposed for
nested aggregation queries (in Section 4) satisfies commuta-
tion with homomorphisms:

Proof. The proof is by induction on the query structure.
For each operation we consider two cases: (I) applying the
homomorphism hRel after applying the operation; (II) ap-
plying it before the operation. Both cases must yield equal
results.

In what follows we use the same notations, R,R1, R2 and
so on, as used in the definition of the extended semantics.

Union. First, consider case (I), where the union is applied
first. According to the defined semantics, the result of R1 ∪
R2 is a (M,KM )-relation such that for every tuple t in its
support it holds that:

1. t is defined (only) on the attributes in U .

2. t ∈ supp(R1) ∪ supp(R2)

3. (R1 ∪ R2)(t) =
∑

t′∈supp(R1)
R1(t

′) ·
K

∏
u∈U

[t′(u) =

t(u)] +
K

∑
t′∈supp(R2)

R2(t
′) ·

K

∏
u∈U

[t′(u) = t(u)].

Then, applying hRel on R1 ∪ R2 has the following effect on
that t.

1. For every value in t from KM ⊗ M , its value changes
from Σki ⊗mi to hM (Σki ⊗mi) = Σh(ki)⊗mi.

2. The provenance annotation of t is changed according
to the axioms of the homomorphism lifting, to
hRel ((R1 ∪R2)) (t) =∑

t′∈supp(R1)
hM (R1(t

′))·
∏

u∈U
[hM (t′(u)) = hM (t(u))]+

∑
t′∈supp(R2)

hM (R2(t
′)) ·

∏
u∈U [h

M (t′(u)) = hM (t(u))]

Now, for case (II), let us apply hRel first, on both R1 and
R2. This would affect only the provenance annotations of
tuples within this relations, causing perhaps to the deletion
of some tuples, and the values from KM ⊗M , which change
in the same manner as described in item (1) above. Let us
compute the result of hRel(R1)∪ hRel(R2). Every tuple t in
the support of the obtained relation is such that:

1. t is defined (only) on the attributes in U .

2. t ∈ supp(R1) ∪ supp(R2) and it holds that either
h(R1(t)) 6= 0

K′ or h(R2(t)) 6= 0
K′

3. (hRel(R1) ∪ hRel(R2)) (t) =
∑

t′∈supp(R1)
hM (R1(t

′)) ·
∏

u∈U
[hM (t′(u)) = hM (t(u))]+

K

∑
t′∈supp(R2)

hM (R2(t
′))·

∏
u∈U

[hM (t′(u)) = hM (t(u))].

We next verify that the results are indeed equal. for every
tuple t there are several options: it can be in the support
of R1, R2, neither or both; and h can set its provenance to
0 in none of them, one of them or both. Any tuple t which
is not in supp(R1) or supp(R2) clearly does not affect the
result. Any tuple who is at least in one of them, will be
annotated in case (I) with a sum of each annotation of each
tuple t′ in supp(R1) ∪ supp(R2), multiplied by tokens that
equate each value from kM ⊗M in t to the value of the same
attribute in t′. In the worst case, where all the values are
from KM ⊗M , we do not know which tuples are equal and
thus we compare each pair on each attribute. Then applying
h might cause some of the original tuple annotation, hence
some of the summands in the provenance of t to become 0.
In case (II) those tuples for which h sets the annotations to
0 are removed from R1, R2 or both, and thus they do not
appear in the sum to begin with. For the tuples that remain
it is clear that the obtained annotations and KM ⊗ M are
the same in both case (I) and case (II).

One thing to note here is that different tuples in a relation,
R1 for instance, may be equated after applying hRel. This
is true, for instance, when we have two tuples which differ
only by some aggregation result, but after applying h those
results turn out to be the same. This works well with the
homomorphism commutation as well, because it is easy to
see that in both cases the tuples will be equal, in case (I)
after applying h on the union result and in case (II) before
the union is applied.

The proof for projection is very similar to the one for
union, thus it is not repeated here.

Selection. According to the algebra definition, to get (σP (R)) (t)
we simply multiply the annotation of each tuple t ∈ supp(R)
by an expression equating the value of the relevant attribute
u in t to some value m (embedded into KM ⊗M using ι).

In case (I) the provenance of some tuple t in the support of
σP (R) might be R(t)·

K
[(Σki ⊗mi) = 1

K
⊗m], which would

become, after applying h,
h(R(t))·

K

[
(Σh(ki)⊗mi) = 1

K′ ⊗m
]
.

In case (II) the annotation of tuple t will become h(R(t))
after applying hRel, and t(u) would become Σh(ki) ⊗ mi.
Thus after applying the selection, we would get the same
result, h(R(t))·

K

[
(Σh(ki)⊗mi) = 1

K′ ⊗m
]
.



Aggregation. In case (I), we first apply the GB operation
GBU′,uR and obtain a relation such that for every tuple t

in its support it holds that:

1. t is defined (only) on the attributes in U ∪ {u}.

2. There exists some tuple t′ ∈ supp(R) such that for
every attribute u′ ∈ U ′, t(u′) = t′(u′).

3. t(u) = Σt′∈supp(R)

(
R(t′)·

K

∏
u′∈U′ [t(u

′) = t′(u′)]
)
∗
K⊗M

t′(u)

4. GBU′,uR(t) = δ(Σt′∈supp(R)R(t′)
·
K

∏
u′∈U′ [t(u

′) = t′(u′)]).

Now, after applying hRel on the result, the effect on such
tuple t would be:

1. t(u) = Σt′∈supp(R)(h
M (R(t′))

·
K

∏
u′∈U′

[
hM (t(u′)) = hM ((t′(u′))

]
)∗

K⊗M
hM (t′(u))

2. hRel(GBU′,uR)(t) = δ(Σt′∈supp(R)h
M (R(t′))

·
K

∏
u′∈U′

[
hM (t(u′)) = hM (t′(u′))

]
).

In case (II), we first apply hRel, which affects the tuple
provenances and the values fromKM⊗M . Then aggregation
is applied on the result. Each tuple t in
supp(GBU′,uhRel(R)) is such that:

1. t is defined (only) on the attributes in U ∪ {u}.

2. There exists some tuple t′ ∈ supp(hRel(R)) such that
for every attribute u′ ∈ U ′, t(u′) = t′(u′).

3. t(u) = Σt′∈supp(R)(h
M (R(t′))

·
K

∏
u′∈U′

[
t(u′) = hM (t′(u′))

]
) ∗

K⊗M
hM (t′(u))

4. GBU′,uhRel(R)(t) = δ(Σt′∈supp(R)h
M (R(t′))

·
K

∏
u′∈U′

[
t(u′) = hM (t′(u′))

]
).

We now verify that the results in both cases are indeed
equal. In the first case, according to the definition, every
tuple t in supp(R) is forming the basis of a group, which
conditionally may contain every tuple in R (using equation
expressions to verify that each tuple is indeed in that group
only if its restriction to U ′ is equal to the restriction of t to
U ′). When we apply h, some tuple annotations may be set
to 0, and thus their corresponding summands (in the group
provenances and aggregation results) are set to 0, and do
not affect the result. In case (II) some tuples may be re-
moved by h from the relation even before the aggregation
is performed. This has a similar effect to setting their cor-
responding summands to 0 as in case (I). There is a slight
difference here: If supp(R) was of size n, so will be the size
of the support of GBU′,uR, maybe even after applying hRel

on it; However, supp(hRel(R)) may be of size m < n, and
thus so will be GBU′,uhRel(R). The reason is that as long as
we cannot evaluate equation values, we have to allow for n

different groups (as many as there are in the support), thus
if there are “actually” less, when we move to a K′M ⊗ M

where equations may be evaluated, we may get the same tu-
ple representing the group duplicated the number of times
as the number of its group members. This is acceptable,
since duplicates are ignored. However if we apply h first,
we may know that there cannot be n groups to begin with,
since some of the tuples are deleted. The effect of this will
only be less group duplicates. The commutation of the AGG
operation with homomorphism follows from the above proof
as well.

This concludes the proof.

Proof. (Proposition 5.1)
First, note that by the homomorphism commutation, we

can check the equivalence of using both expressions on hB̂(R)

and hB̂(S), i.e. verify that

((Πa1...an
{
(
GB{a1,...an},b(h

B̂(R)×⊥b ∪ hB̂(S)×⊤b)
)

⊲⊳ (hB̂(R) × ⊥b)})(t)) = [hB̂(S)(t) ⊗ ⊤ = 0] ·
K′h

B̂(R)(t).

Note that since K′ ⊗ B̂ is isomorphic via an isomorphism I

to B̂, instead of checking equality in K′⊗B̂ we can check for

equality after application of the isomorphism (in B̂); in par-
ticular this allows us to interpret the equalities and replace
them with 1

K
or 0

K
.

Now let us follow the operation of difference encoded by

aggregation step-by-step. Let R,S ∈ D
U → K′B̂ ; let

supp(hB̂(R)) = {r1, ..., rn} and supp(hB̂(S)) = {s1, ..., sm}.

Then supp(hB̂(R)×⊥b) = {r′i | r
′
i(b) = ⊥∧∃ri ∈ supp(hB̂(R))

∀u ∈ U r′i(u) = ri(u)}; since × is equivalent to join with

no attribute equations, the provenance
(
hB̂(R)×⊥b

)
(t) is

hB̂(R)(t)·
K′ ⊥b(t) = hB̂(R)(t) for any t ∈ supp(hB̂(R)×⊥b),

and 0
K′ otherwise; similarly for hB̂(S) × ⊤b. Now, note

that the support sets of both relations are mutually exclu-
sive, and that all the values in the tuples in the support of

both hB̂(R) and hB̂(S)×⊤b are from D. Thus, it is easy to

see that
(
hB̂(R)×⊥b

)
∪
(
hB̂(S)×⊤b

)
(t) is hB̂(R)(t|U ) for

t ∈ supp(hB̂(R)×⊥b), h
B̂(S)(t|U ) for t ∈ supp(hB̂(S)×⊤b),

and 0
K′ otherwise. Now we apply group-by on the b at-

tribute. There are four possible classes of tuples:

1. For every r′i such that ri = sj ∈ hB̂(R) ∩ hB̂(S), we
would get a tuple r′′i in the support of the result, such
that r′′i |U = r′i|U = ri = sj = s′j |U , and r′′i (b) =(
hB̂(R)×⊥b

)
(r′i) ⊗ ⊥ +

K′⊗B̂
hB̂(S) × ⊤b(s

′
i) ⊗ ⊤ =

hB̂(S)(ri)⊗⊤. The provenance of this tuple would be

δ(hB̂(R)(ri) +
K′B̂

hB̂(S)(ri)).

2. For every r′i such that ri ∈ hB̂(R)\hB̂(S), there is
a tuple r′′i in the group-by result such that r′′i (b) =(
hB̂(R)×⊥b(r

′
i)
)
⊗⊥ = 0

K′⊗B̂
, and where the prove-

nance of r′′i is δ(hB̂(R)(ri)).

3. For every s′i such that si ∈ hB̂(S)\hB̂(R), there is
a tuple s′′i in the group-by result such that s′′i (b) =(
hB̂(S)×⊤b(s

′
i)
)
⊗⊤ = hB̂(S)(si)⊗⊤, and where the

provenance of s′′i is δ(hB̂(S)(si)).

4. Every other tuple has provenance 0
K′ , i.e. it is not in

the support of the aggregation result.

Now we need to perform a join of the group-by result and

hB̂(R)×⊥b. For that we will first rename the attributes of
the aggregation result to U2 ∪ {b′}. For each tuple t in the

aggregation result such that t|U ∈ hB̂(R), i.e. tuples of cases
(1) and (2) above, there will be a unique corresponding tuple
in the join result (since all these tuples have unique U values,

they will join with a unique tuple in hB̂(R)×⊥b). The ob-
tained provenance of the join of tuples from case (1), would

be δ(hB̂(R)(ri)+hB̂(S)(ri))·h
B̂(R)(ri)·[h

B̂(S)(ri)⊗⊤ = 0].

However, δ(hB̂(R)(ri) + hB̂(S)(ri)) is redundant here: if

hB̂(S)(ri) 6= 0
K′ or hB̂(R)(ri) = 0

K′ , the provenance is 0
K′ ;

otherwise, δ(hB̂(R)(ri) + hB̂(S)(ri)) = δ(hB̂(R)(ri)) = 1
K′ .

As for the join of tuples from case (2), the case is sim-

pler: the provenance is δ(hB̂(R)(ri)) ·h
B̂(R)(ri) · [0 = 0] =

δ(hB̂(R)(ri))·h
B̂(R)(ri), and again δ(hB̂(R)(ri)) has no ef-



fect. For cases (3) and (4) the provenance is 0
K′ . This

matches the result of [(hB̂(S))(t)⊗⊤ = 0]·
K′(h

B̂(R))(t).
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