
On Aggregation and Computation on Domain
Values

Kim S. Larsen∗

Aarhus University

September 1992

Abstract

Query languages often allow a limited amount of arithmetic and
string operations on domain values, and sometimes sets of values can
be dealt with through aggregation and sometimes even set compar-
isons. We address the question of how these facilities can be added
to a relational language in a natural way. Our discussions lead us to
reconsider the definition of the standard operators, and we introduce
a new way of thinking about relational algebra computations.

We define a language FC, which has an iteration mechanism as its
basis. A tuple language is used to carry out almost all computations.
We prove equivalence results relating FC to relational algebra under
various circumstances.

1 Introduction

In relational calculus, domain values and tuples can be handled elegantly as
(one of) these are chosen as the basic entity. This also means that arithmetic
and other operations on domain values can be added in a natural way. But at

∗Some of this work was done while visiting the University of Toronto

1

the level of domain values, relations do not seem to fit in very well, making it
more cumbersome to have (and define) aggregation. When this has been done
[Klu82], calculus queries often seem to produce slightly different answers than
the “natural” algebra counterpart—this is especially true when aggregating
over empty sets.

In relational algebra, relations are chosen as the basic entity. This means that
arithmetic, for example, is added in an unnatural and restricted form. This
has been done through operators such as extend [Gra84], making queries
like extend r by A := B + C − 3 possible. The intention, here, is that
each tuple in r (the schema of which contains B and C) is extended with
a new attribute, A, defined using the original values of each tuple. From
a programming language point of view, this is unsatisfactory because the
two fundamental concepts of iteration and performing arithmetic are bound
tightly together instead of being separate operations. This becomes even
more conspicuous as a bad language design when one realizes that select
and project (and conceptually also rename) are also mixtures of an iteration
mechanism and operations which are inherently tuple/domain value oriented.

On the other hand, aggregation fits very well into the algebra framework; at
least at first glance: relations are the basic types, so what is more natural
than applying set functions to these? Unfortunately, as aggregate functions
return domain values, we get a problem similar to the difficulties with extend.
In [Gra81, Klu82], something like group r by Dept creating TotalPay :=
sum(NetPay) is suggested. A new attribute TotalPay is added (and Dept
is deleted) and given a value, which is the sum of the NetPay fields having
the same Dept value. As a next step, one wants to perform arithmetic using
the aggregate values. Such an operator can be constructed, of course (see
ASTRID [Gra84, GB79], for example), but what becomes more and more
apparent is that a general iteration mechanism is needed.

This discussion leads to the following: if we want a language with aggregation
and operations on domain values, we would want our language to be equipped
with an iteration mechanism as the basic operator. For use in this iteration,
we need a powerful and flexible tuple language which should be used for the
tuple based relational manipulations and for arithmetic etc.

Let us point out that by an iteration mechanism we do not mean a while
construct, as it can be found in an ordinary programming language, because

2

this would increase the computational power. Rather, we are thinking of
something like a for all do operator which would be able to iterate through
a set of tuples in an order which is not predetermined. It is of great interest
to extend relational algebra in the direction of adding more computational
power, but this should be a separate decision; not a side-effect of the decisions
concerning the issues under consideration here.

We propose the language FC, which is an acronym for factorize and com-
bine. The basis of the language is a general iteration mechanism for iterat-
ing through tuples and “small” relations from multiple relational arguments
(where there is only a single argument, this is similar to group by). An iter-
ation is initiated through the use of the keyword factor (not to be confused
with the factor operator from [Mai83]). The relational arguments are factor-
ized, i.e., decomposed to (smaller) components. All (real) computations are
performed via a tuple language. The relational operator, Cartesian product
(and an implicit union), is used to build up the desired output relation after
the necessary computation has been performed.

The FC language has at least as good run-time complexities as relational
algebra. This is described in [LSS92]. In addition, a new optimization tech-
nique for unary queries can be applied [LS]. These complexity aspects are
not treated in this paper.

The translations given in this paper are only given in order to prove the ex-
pressive equivalence of FC and relational algebra. An actual implementation
of FC, which has been carried out for a simple version [Lar92], should not be
done via relational algebra.

Just as relational algebra and relational calculus have formed a basis for the
implementation of many traditional languages, we believe that FC would be
a natural basis for the definition of new languages which include aggregation
and computation on domain values.

In the following section, we introduce FC using examples. The rest of the
paper is more technical. It is devoted to proving that FC and relational
algebra are equivalent with respect to expressive power.

3

2 Examples

Firsts we will account for the concept of factorization of relations. Let two
relations, r1 and r2, be as listed below.

r1: r2:

A B

a1 b1

a2 b2

a3 b3

B C D

b1 c1 d1

b2 c2 d2

b3 c3 d3

b4 c4 d4

First, we note that R1 ∩ R2 = {B}, and that the (tuple) values in the B-
columns are πB(r1) ∪ πB(r2) = {[b1], [b2], [b3], [b4]}. We shall write r1 and r2

as a combination of the B-tuples. Clearly, r1 can be written as

{[b1]} × {[a1]} ∪ {[b2]} × {[a2]} ∪ {[b3]} × {[a3]} ∪ {[b4]} × { }

and r2 can be written as

{[b1]}× { }∪ {[b2]}× {[c1, d1], [c2, d2]}∪ {[b3]}× {[c3, d3]}∪ {[b4]}× {[c4, d4]}

We call this the factorization of r1 and r2 on B.

The name factorization was chosen because of this operation’s resemblance to
the factorization of integers: if, for example, 315 (corresponding to r2) is fac-
torized with respect to the first four primes (corresponding to [b1], [b2], [b3], [[b4]),
we get 20 · 32 · 51 · 71 where the exponents correspond to the cardinality of
the relations in the example (of r2).

Now, we define a certain class of environments, which depend on a factor-
ization. As usual an environment is simply an association of values with
identifiers. As an example, consider the environment

η[b2]:
# 	→ [b2]
@(1) 	→ {[a2]}
@(2) 	→ {[c1, d1], [c2, d2]}

4

In this example, we have three identifiers, #, @(1), and @(2), each of which
has an associated value. The reader has probably noticed that this environ-
ment consists of the tuple [b2] together with the relations consisting of the
tuples from r1 and r2 which contain [b2]; except that in @(1) and @(2), the
[b2] part of the tuples has been removed. Similarly, we have

η[b4]:
# 	→ [b4]
@(1) 	→ { }
@(2) 	→ {[c4, d4]}

We can evaluate expressions in different environments. As an example @(1)×
@(2) evaluated in η[b2] (this is denoted [[@(1) × @(2)]]η[b2]) is {[a2, c1, d1],
[a2, c2, d2]}. similarly, [[@(1)×@(2)]]η[b4]) = { }. Because of the way the four
environments η[b1], η[b2], η[b3], and η[b4] are defined, [[@(1) × @(2)]]η any will
have the same schema, no matter with of the four environments we use for η.
Thus, the union of all four (partial) results is well-defined. The expression

factor r1, r2 do @(1)×@(2)

denotes exactly this value, i.e., {[a2, c1, d1], [a2, c2, d2], [a3, c3, d3]}. In fact,
by this example, we have just given an informal semantics of the factor
operator. In standard relational algebra, the relation just computed would
have been expressed by πX(r1 ✶ r2), where X = (R1\R2) ∪ (R2\R1). We
will move on to an example using aggregation. We use the notation from
[Klu82], SUMA(r), where r is a relation which has an (integer) attribute A.
This expression returns the sum of the integers in column A from r.

Consider the two relations, Jones and Miller, over the three attribute schema,
{District, Buyer, Amount}, containing information about their sales, i.e,,
which district, to whom, and the total value of the sale. In the following, we
will simply use the initial letters: D, B, and A.

Now, for each of the city districts which are numbered from 5 through 20,
we want to find the difference of their sales. This can be expressed by

factor Jones,Miller on D do
(5 ≤ D) ∧ (D ≤ 20)?{#[R : SUMA(@(1))− SUMA(@(2))]}

5

Notice that we have narrowed the intersection of the schemas down to D
using the on-construct. A typical environment could look like

η[b4]:
# 	→ [D : 7]
@(1) 	→ {[B : Lee, A : 20], [B : Wu, A : 12], [B : Brown, A : 2]}
@(2) 	→ {[B : Clark, A : 25]}

For this environment, the boolean expression (5 ≤ D) ∧ (D ≤ 20) evaluates
to true. This means that we proceed to evaluate the expressions following the
question mark. Had it evaluated to false, the result of the whole evaluation
(for this particular environment) would be the empty relation (with schema
{D, R}). In this case, we obtain a relation consisting of one tuple, which
is the concatenation of [D : 7] (the value of #) and [R : 9] (the value of
[R : SUMA(@(1))− SUMA(@(2))]). In total, if the involved relations are

Jones: Miller:
D B A

2 Smith 17
7 Lee 20
7 Wu 12
7 Brown 2
8 Chang 7

D B A

7 Clark 25
8 Morrison 9
8 Kent 9

13 Hansen 12

we obtain

D A

7 9
8 −11

13 −12

We can also combine standard relational operators with factor expressions.
We can always do without them and only use factor, but if we need a project
or a union, it seems more natural to use standard notation for these. Assume
for instance that instead the information was listed in one relation r with

6

schema {SalesPerson, District, Buyer, Amount}, and Jones and Miller have
occasionally been working together, in which case the information is listed for
both of them, e.g., [{[Jones,11,Monroe,19], [Miller,11,Monroe,19]}] Now we
could find the result of the individual work by Jones as (this time regardless
of district):

factor πDBA(σS=Jones(r)), πDBA(σS=Miller(r)) on D do
{#[R : SUMA(@(1)−@(2))]}

Of course, the minus here is relation difference.

We move on to a unary application of factor. In the unary case, the in-
tersection of the schemas of the arguments relations is simply the schema of
the argument, as there is only one. This means that # will be instantiated
with the tuples in the argument relation one by one, and that @(1) will be
the empty relation in every environment. In other words, a unary factor ex-
pression is a for all operator, which runs through the tuples of the argument
relation and perform operations on them individually.

Assume that r has the schema {A1, A2, A3, A4, B1, B2}. We want to select
the tuples where B1 > B2, then find the sum of B1 and B2 and give it the
new name B, and, finally, remove the attribute name B2. Using factor we
can write

factor r do B1 > B2? #[B : B1 + B2]\B2

In a more standard formulation it would be (the extend operator is from
[Gra84]):

πA1,A2,A3,A4,B1,B(extendB:=B1+B2(σB1>B2(r)))

As another example of a unary applications which also demonstrates that
expressions can be nested, consider division, usually defined as

r1/r2 = {t | {t} × r2 ⊆ r1}

We can write

factor r1, r2 do factor @(1) do {#} × r2 ⊆ r1? {#}

7

where the first factor provides us with @(1)’s consisting of tuples from r1

with schema R1 \ R2. The second factor runs through these tuples one by
one and includes them in the result if they pass the test.

Notice a nice feature of this example which turns up very often in this lan-
guages it is not necessary to know the scheme of r1 and r2 to write the
expression. In order to “implement” divide using standard relational opera-
tors, this is necessary; and the expression becomes quite large,

3 Preliminaries

Our starting point is standard relational algebra (as defined in [Mai83, Ull88],
among others). A few variations are possible, in which case the theorems still
holds but the proofs would be slightly changed.

We fix a domain D of all constants that can appear in relations and expres-
sions and an infinite set A of attribute names For the results in this paper,
there is no reason to distinguish between different types, so schemas are sim-
ply finite subsets of A. Also, null values are not of relevance here, so we
require that all relations be total [Mai83].

In order to avoid unreadable definitions and theorems later, we shall fix the
letters we use as names for various entities:

c ranges over D
A, A1, A2, . . . , B, B1, B2, . . . range over A
C ranges over both D and A
X, Y, Z range over finite lists of symbols from A
r, r1, r2, . . . , q, q1, q2, . . . range over relation names and expressions

The notation R(r) is used to indicate that relation r has schema R. As
usual, we overload notation and let r refer to the relation R(r) If r is a
relational expression, then R is the schema of the relation the value of which
the expression r denotes. A relation consists of a finite set of tuples over the
schema of the relation. A tuple is a total function from the relation schema
into D. So, we can write e.g., t(A) for t’s value on the attribute name A.

8

Constant tuples are listed using brackets; the empty tuple, i,e., the tuple
over the empty set, is written []. We shall write, e.g., {A, B}(∅), to denote
the empty relation with schema {A, B}. Also, if t is a tuple, {t} denotes the
obvious singleton relation.

We will use the standard symbols for the relational operators: ∪,−, ✶, σ, π
and δ for union, difference, natural join, select, project, and rename, re-
spetively. Select conditions consist of a single equality or inequality between
two attribute names or an attribute name and a constant. If t = [A1 :
c1, . . . , Ak : ck] and {A1, . . . , Ak} ⊆ R, then we will use σt(r) as short for
σAk=ck

(· · ·σA2=c2(σA1=c1(r)) · · ·). This could equivalently be written {t} ✶ r.
We also need the special case of project, π∅. Recall that π∅(r) is ∅(∅) if r
is empty, and ∅({[]}) otherwise, We will also use derived operators: × for
Cartesian product, ∩ for intersections and ✶

A=B
for equijoin.

For tuples, we will use tX←Y for the renaming equivalent to δX←Y ({t}), and
t · t′ for tuple concatenation, which is equivalent to {t} × {t′}. Finally, we
will use tX for tuple projection equivalent to πX({t}).

4 The SFC Language

In order to keep the sizes of proofs reasonable, we first present a quite re-
stricted version of FC, which we call SFC for simple FC. This language is just
strong enough to simulate relational algebra. Aggregation and computation
on domain values will be covered later.

First, we introduce a simple core language; primarily based on tuple opera-
tions. In BNF-notation, the language is defined as follows. The nonterminals
<atom>, <tup>, and <rel> stands for atomic expression, tuple expression, and
relational expression, respectively.

<atom> ::= c | A
<tup> ::= [] | [A : <atom>, . . .] | <tup> \A | <tup> <tup> | #
<rel> ::= { } | {<tup>} | <rel> × <rel> | @(1) | @(2) | @(3) | . . .

The names of the tuple operations are: empty tuple, tuple formation, re-
striction, concatenation, and factorization tuple. The names of the relation

9

operations are: empty relation, relation formation, Cartesian product, and
factorization relations.

The semantics of these operators are a usual and we shall not bore the reader
with formal definitions of these details, which were also illustrated in previous
examples. As an example, let t be the expression [A : 3]([B : 7, C : 9] \C).
The semantics of t is denoted [[t]] and equals [A : 3, B : 7]. The symbol
is a tuple identifier, which is intended to be bound to a tuple value in
the surrounding environment at the time when the expression is evaluated.
Also, when this evaluation takes plate, the attribute names generated from
<atom> have to belong to the domain of this tuple.

Furthermore, { } is the empty relation with the empty schema, i.e., ∅(∅),
and if for example t = [A : 3, B : 7], then {t} is the relation with the
one tuple t and with schema {A, B}, i.e., {A, B}({[A : 3, B : 7]}). The
relational operators ×, is the usual Cartesian product. Finally, the symbols
@(1), @(2), @(3), are relation identifiers, which are intended to be bound to
relation values in the surrounding environment at the time of evaluations.

Precedence: restriction binds strongest, then concatenation and Cartesian
products. Operators associate to the left and parenthesis are used to resolve
conflicts.

We now define the SFC language. We want to emphasize at this point that
FC is a free algebra in the sense that the only requirement for the use of a
language construct at a certain place is that the expected type at this place
correspond with the type of the language construct. However, the simpler
SFC language does not have this nice property.

In BNF-notation the SFC language looks like this:

<cond> ::= <atom> = <atom> | <atom> �= <atom> |
<atom> > <atom> | <atom> ≤ <atom> | . . .
@(m) = @(p) | @(m) �= @(p)

<fac> ::= factor <ra>, . . . , <ra> do <rel> |
factor <ra>, . . . , <ra> do <cond>? <rel>

<ra> ::= r | <fac>

The <ra>’s are arguments to factor, which will be relation identifiers or
factor expressions (derived from <fac>). There is the restriction that if

10

@(m) appears in <rel>, then there should be at lest m arguments to the
surrounding factor expression.

Conditionals are evaluated as ordinary boolean expression. When there are
comparisons between @(i)’s, the two operands are required to have the same
schema.

We have already discussed the semantics of expressions generated from <rel>.
The intention of the gate operator, <cond>? <rel>, is that if the conditional
evaluates to true, then the result is the result of evaluating the relational ex-
pression. Otherwise, the result is the empty relation (with the same schema
as the relational expression). More formally,

[[a? e]] =

{
[[e]] if [[a]]
E(∅), otherwise

As in relational algebra, schemas can always be determined statically (on
compile-time).

We shall use f1, f2, . . . to range over expressions which could be either purely
standard relational or could contain factor expressions, and use e, e′, e′′ . . . to
range over relation expressions (from the do-part of factor). The semantics
of <fac> is given in the following. It is no more than a formalization of what
we have already covered earlier through the use of examples. More intuition
on the semantics can be obtained by studying definition 5.1. Some of the
choices we have made in defining the semantics of <fac> will be motivated
right after this definition.

If η is an environment and # an identifier, then η(#) is the “look-up” oper-
ation, i.e., it gives the value bound to #.

Definition 4.1 Let F = factor r1, . . . , rn do e. The semantics of F is
denoted [[F]] and is defined as

[[F]] =
⋃

t∈bF

[[e]]ηt

where X =
⋂

i Ri, bF =
⋃

i πX(ri), and for each t ∈ bF and i ∈ {1, . . . , n}

ri,t
F = πRi\X(σt(ri))

and, finally, for each t ∈ bF , we define the environment ηt by

11

ηt : # 	→ t

@(1) 	→ r1,t
F

· · ·

· · ·
@(n) 	→ rn,t

F

If F = factor f1, . . . , fn do e, i.e., the arguments themselves contain factor
expressions, then we (recursively) find the semantics of f1, . . . , fn. We then
find the semantics of factor r1, . . . , rn do e, and for each i, we substitute
[[fi]] for ri in the result. ✷

Remark 4.2 Note that # is always bound to a tuple value which has domain
X. ✷

In this paper, we deal with translations between FC and relational algebra,
and we are concerned with the correctness of these. The traditional way of
proving such correctness results is to define the semantics of both languages
in terms of a common semantic domain. Consider the following illustration
(the diagram to the left), where F is an FC expression, which, we assume,
translates to the relational algebra expression q.

Here, [[·]] denotes an entity’s semantics. The translation is correct if
[[F]] = [[q]] for all F (and their translations q). Traditionally, the common
semantic domain one would choose here would be set theory; as that is the
only “reasonable” domain which is simpler than both of the involved domains
(languages). This choice would mean, however, that we would have to spend
a lot of time giving semantics to relational algebra and dealing with almost
trivial relational algebra and set theoretic manipulations. As relational al-
gebra operations are in fact what we need to define the semantics of FC we
would have to reinvent these (with new names) on sets (which is almost the
same as relational algebra anyway).

12

As the reader might have guessed at this point, we will do this in a different
way. Our opinion is that relational algebra is so well understood by now that
it is reasonable to use it as a semantic domain. This implies that we will not
have to give a semantics for relational algebra (the diagram to the right); the
semantics of a relational algebra expression is simply the value it evaluates
to.

These decisions also imply that when we translate F to q, the latter should
be considered pure syntax, whereas when we ask, e.g., [[F]] = q?, we mean
‘do these two relational algebra expressions evaluate to the same relation’ ?

5 From Relational Algebra to SFC

In this section, we give the translation from relational algebra to SFC. We
use a standard version of relational algebra which is complete in the sense of
[Cod72]. The translations given here were first stated in [LSS92] in almost
the same form.

Definition 5.1 The standard relational operators can be translated into SFC
as follows:

union r1 ∪ r2 translates into factor r1, r2 do {#}
difference r1 − r2 translates into factor r1, r2 do @(2) = {}? {#}
join r1 ✶ r2 translates into factor r1, r2 do @(1)× {#} ×@(2)

project πZ(r) translates into factor r, Z(∅) do {#}
select σAθC(r) translates into factor r do AθC? {#}
rename δA←B(r) translates into factor r do # \ A[B : A]

C is either an attribute name from R or a constant. ✷

Even in this restricted version, we only need very few of the possible ex-
pressions in FC to define the standard relational operators. The proof of
correctness of the translation is easy.

Lemma 5.2 The translations defined in definition 5.1 are semantics preserv-
ing.

13

Proof We use the relation names from definition 5.1 and let F denote the
translation defined there. Notation from definition 4.1 is used.

union As R1 = R2, we have that X = R1 ∩R2 = R1(= R2), so
bF = r1 ∪ r2. Now

[[F]] =
⋃

t∈r1∪r2
[[{#}]]ηt =

⋃
t∈t1∪r2

{t} = r1 ∪ r2.

difference Again, R1 = R2 and bF = r1 ∪ r2. For each t ∈ bF , @(2) is
bound to

r2,t
F = πR2\X(σt(r2)) = π∅(σt(r2)) =

{
{[]}, if t ∈ r2

{ }, if t /∈ r2
.

So, for a given environment ηt, the equality @(2) = { } holds
exactly when t /∈ r2. Now,

[[F]] =
⋃

t∈r1∪r2
[[@(2) = { }? {#}]]ηt

=
⋃

t∈r1∪r2

t/∈r2

[[{#}]]ηt

=
⋃

t∈r1−r2
{t}

= r1 − r2

join X is R1 ∩R2 and bF = πX(r1) ∪ πX(r2).

[[F]] =
⋃

t∈bF [[@(1)× {#} ×@(2)]]ηt

=
⋃

t∈πX(r1)∪πX(r2) r1,t
F × r2,t

F
=

⋃
t∈πX(r1)∪πX(r2) πR1\X(σt(r1)× {t} × πR2\X(σt(r2))

=
⋃

t∈πX(r1)∪πX(r2) σt(r1) ✶ σt(r2)
= r1 ✶ r2

project X = R ∩ Z = Z and bF = πX(r) ∪ πX(Z(∅)) = πZ(r). So,
[[F]] =

⋃
t∈bF [[{#}]]ηt =

⋃
t∈πZ(r){t} = πZ(r).

select bF = πR(r) = r, so

[[F]] =
⋃

t∈r[[AθC?{#}]]ηt

=
⋃

t∈r
[AθC]ηt

[[{#}]]ηt

=
⋃

t∈r
t(A)θt(C)

{t}

= σAθC(r)
If C is a constant, t(C) is replaced by C.

rename bF = πR(r) = r, so

[[F]] =
⋃

t∈r[[# \ A[B : A]]]ηt =
⋃

t∈r{tA←B} = δA←B(r).

14

✷

We now observe that because of the denotational nature of relational algebra,
a sequence of semantic preserving translations is again semantic preserving,
and we obtain:

Theorem 5.3 A relational algebra expression q can be translated into an
SFC expression F such that [[F]] = q. ✷

Example 5.4 Compute the symmetrical difference of r1 and r2:

(r1 − r2) ∪ (r2 − r1)

This would be translated into

factor
factor r1, r2 do @(2) = { }? {#},
factor r2, r1 do @(1) = { }? {#}

do {#}

Notice that this is not the way one would naturally write this query in FC
(or SFC). Rather, one would write

factor r1, r2 do @(1) �= @(2)? {#}

However, here we are merely concerned with the existence of a translation.

✷

6 From SFC to Relational Algebra

We will define a step by step translation. First, we will eliminate gates. In
the process, we allow relational algebra expressions to appear as arguments
to factor. As the semantics of factor is purely denotational, the semantics
of this is, of course, exactly the same as the semantics of factor expressions
with relation identifiers or other factor expressions as arguments.

15

Consider an expression factor r1, . . . , rn do b? e. We want to translate this
into an expression of the form factor r′1, . . . , r

′
n do e such that the two are

semantically equivalent. We define relational algebra expressions which for
each boolean expression give the tuples of the relations that make the boolean
expressions true.

Definition 6.1 Given relation expressions r1, . . . , rn. Let X =
⋂

i Ri and let
b be a boolean expression (derived from <cond>). We define lim(b) to be
the limiting relational algebra expression for b w.r.t. r1, . . . , rn. Let x be a
unique variable name, and let θ be =, �=, >, <, ≥, or ≤, so that AθC is one
of the usual select conditions.

b lim(b)

AθC σAθC(x)

@(m) �= @(p) x ∩ πX((rm − rp) ∪ (rp − rm))

@(m) = @(p) x− πX((rm − rp) ∪ (rp − rm))

✷

The rôle of x at the moment is to act as place holder. Later, it will be
replaced by one of the (relational) arguments to factor.

Definition 6.2 e[r/x] denotes the term which is constructed by syntactically
replacing each occurrence of x in e with r. ✷

Example 6.3 Continuing example 5.4. we look at

F = factor r1, r2 do @(1) �= @(2)?{#}

With b equal to @(1) �= @(2), lim(b) is x ∩ πX((r1 − r2) ∪ (r2 − r1)).

In lemma 6.4, we will prove a general result which, when applied to this ex-
ample, means that F and the following expression are semantically identical.

factor
r1 ✶ (πX(r1) ∩ πX((r1 − r2) ∪ (r2 − r1))),
r2 ✶ (πX(r2) ∩ πX((r1 − r2) ∪ (r2 − r1)))

do {#}

16

Notice that x has been replaced by πX(r1) and πX(r2).

Now, X = R1∩R2, so if we assume that R1 = R2, then this can be simplified
to

factor r1 − r2, r2 − r1 do {#}

Here the symmetrical difference operator is more apparent. Notice, however,
that this simplification is only possible if we assume that R1 = R2. The
original F is well-defined also when R1 �= R2. ✷

We prove that definition 6.1 works as intended, i.e., that a boolean expression
b is true for an environment induced by a certain tuple exactly when for some
argument, ri, this tuple belongs to lim(b)[πX(ri)/x].

Lemma 6.4 Let F , X, bF , t, and ηt be as in definition 4.1. Then

[[b]]ηt ⇐⇒ ∃i : t ∈ lim(b)[πX(ri)/x]

Proof We perform a case analysis on b.

b is AθC [[b]]ηt

�
[[A θ C]]ηt

�
t(A) θ t(C)

�
t ∈ σAθC(bF), as t ∈ bF

�
∃i : t ∈ σAθC(πX(ri))), by definition of bF

�
∃i : t ∈ lim(b)[πX(ri)/x]

17

b is @(m) �= @(p) Recall the requirement that @(m) and @(p) have identi-

cal schemas. This means that Rm \X = Rp \X which, be-
cause of the definition of X, implies that Rm = Rp.

Observe first that

πRm\X(σt(rm))− πRp\X(σt(rp)) �= ∅ ⇔ t ∈ πX(rm − rp)

Now,

[[b]]ηt

�
[[@(m)]]ηt �= [[@(p)]]ηt

�
rm,t
F �= rp,t

F , by definition 4.1

�
πRm\X(σt(rm))− πRp\X(σt(rp)) �= ∅ ∨
πRp\X(σt(rp))− πRm\X(σt(rm)) �= ∅

�
t ∈ πX(rm − rp) ∨ t ∈ πX(rp − rm), obs. above

�
t ∈ πX((rm − rp) ∪ (rp − rm))

�
∃i : t ∈ πX(ri) ∧ t ∈ πX((rm − rp) ∪ (rp − rm))

�
∃i : t ∈ lim(b)[πX(ri)/x]

b is @(m) = @(p) By negating the implications from the previous case,

we immediately get

[[b]]ηt ⇐⇒ t /∈ πX((rm − rp) ∪ (rp − rm))

As t ∈ ⋃
i πX(ri), we obtain that

[[b]]ηt

�
∃i : t ∈ πX(ri) ∧ t /∈ πX((rm − rp) ∪ (rp − rm))

�

18

∃i : t ∈ πX(ri)− πX((rm − rp) ∪ (rp − rm))

�
∃i : t ∈ lin(b)[πX(ri)/x]

✷

Some properties of limiting relational algebra expressions are needed later:

Proposition 6.5 Let b, X, and r1, . . . , rn, be as in definition 6.1. Then the
following hold:

1) ∀i: the schema of lim(b)[πX(ri)/x] is X.

2) ∀i: lim(b)[πX(ri)/x] ⊆ πX(ri)

Proof Easy observation. ✷

We can now prove that a gate operator can be removed by applying relational
algebra operations (lim(b)’s) to the arguments instead.

Lemma 6.6 Let

F = factor r1, . . . , rn do b? e and F ′ = factor r′1, . . . , r
′
n do e

where r′i = ri ✶ lim(b = [πX(ri)/x]. Then [[F]] = [[F ′]]
Proof First,

t ∈ bF ∧ [[b]]ηt

�
t ∈ bF ∧ ∃i : t ∈ lim(b)[πX(ri)/x] by lemma 6.4

�
t ∈ ⋃

i lim(b)[πX(ri/x], by 1) in proposition 6.5

�
t ∈ ⋃

i πX(ri ✶ lim(b)[πX(ri)/x]), proposition 6.5 and X ⊆ Ri

�
t ∈ ⋃

i πX(r′i), by definition of r′i
�

t ∈ bF ′ , by definition of bF ′

19

So,

[[F]] =
⋃

t∈bF [[b? e]]ηt

=
⋃

t∈bF
[[b]]ηt

[[e]]ηt, by definition of the gate operator

=
⋃

t∈bF′
[[e]]ηt, as we have just proved

= [[F]]

✷

Having dealt with gates, we turn our attention to the relation expression,
i.e., the do-part. First, we simplify matters by putting tuple expressions in
normal form.

Tuple expressions can be put in normal form, i.e., they can be translated to
a normal form, which is semantically equivalent to the original expression.
The translation exploits the fact that no new values can be introduced. The
only values that can be put into a tuple come from the value bound to the
tuple identifier # or from constants appearing in the tuple expression.

Definition 6.7 The translation of a tuple expression t into a tuple expression
normal form, denoted TTX(t), is defined inductively in the structure of t.
The translation is performed relative to a set X of attribute names. Assume
that X = {A1, . . . , Ap}.

t TTX(t)

c c

A TTX(#)(A)

[] []

[A : d] [A : TTX(d)]

t′ \ A TTX(t′) \ A

t′t′′ TTX(t′)TTX(t′′)

[A1 : A1, . . . , Ap : Ap]

✷

20

The constructs on the left-hand side are treated as purely syntactical struc-
tures, whereas the tuple operations on the right-hand side should be carried
out (on the syntactical structures). The intention is to use this translation
as a “tuple expression analyzer”.

Example 6.8 Assume that X = {A1, A2, A3}. Then

TTX(#\A1\A2[A2 : 5][A4 : A3]) = [A2 : 5, A3 : A3, A4 : A3]

This tuple expression shows as directly as possible what effect the tuple
expression has, provided that η(#) is bound to a tuple value with domain
X. ✷

The following two statements express formally that TTX(t) is a normal form
of t.

Proposition 6.9 If t is a tuple expression and dom(η(#)) = X, then

• [[t]]η = [[TTX(t)]]η.

• TTX(t) is of the form [A1 : d1, . . . , Ak : dk], where each di is either a
constant appearing syntactically in t or an attribute name from X.

Proof Trivial. ✷

We now move on to the core of the matter of actually replacing a factor
expression by standard relational operators. This is also technically the most
difficult part of the proof.

First, we need the ability to take an extra “copy” of a set of attribute names.

Definition 6.10 If X = A1, . . . , Ap is a set of attribute names and F is
an SFC expression, then Y is a unique copy of X w.r.t. F if the following
holds: for each Aj there is an A′j such that Y = A′1, . . . , A

′
p and |X| = |Y |,

X ∩ Y = ∅, and no attribute name from Y appears in F (syntactically). ✷

We are now ready to define the translation of SFC expressions into relational
algebra. Basically, we have to compute this union of core language expres-
sions evaluated in different environments,

⋃
t∈bF [[e]]ηt. We have to calculate

all these expressions, [[e]]ηt, at the same time. This can be done by keeping
all (partial) results in one relation. The problem is to keep these separated

21

until all tuple operations etc. are carried out. We use an extra copy of X to
ensure this.

Definition 6.11 Let F = factor r1, . . . , rn do e, where we allow only tuple
subexpressions in e of the form described in proposition 6.9. We assume
further that the gate operator does not appear in e. The translation of F
into a standard relational expression is defined recursively in the structure
of e as follows.

First, let X =
⋂

i Ri and let Y be a unique copy of X w.r.t. F . Let bF =⋃
i πX(ri). Now, we define the translation, q, of e:

e q

{ } {Y }(∅)
{t} By assumption, t = [B1 : d1, . . . , Bk : dk], for some attribute

names B1, . . . , Bk such that the dj’s are either constants or
attribute names from X (remark 4.2).

t = [] δX←Y (bF)

d1 is c Inductively translate [B2 : d2, . . . , Bk : dk] to q′.
The translation is then given by {[B1 : c]} × q′.

d1 is Aj Inductively translate [B2 : d2, . . . , Bk : dk] to q′.

The translation is then given by

δAj←B1(πAj
(bF)) ✶

B1=A′j
q′

@(m) δX←Y (rm)

e′ × e′′ If e′ and e′′ translate to q′ and q′′, respectively, then e′ × e′′

translates to q′ ✶ q′′.

✷

We observe the following.

Proposition 6.12 In definition 6.11, the following holds:

1) the schema of the q’s are always the schema of e plus Y , i.e., Q = EY .

2) δY←X(πY (q)) ⊆ bF

Proof Easy induction. ✷

22

Before we move on, we illustrate the last definitions by an example. In order
to keep things a reasonable size, we give a rather simple example. This means
that only some aspects of the technique will be illustrated.

Example 6.13 Consider factor r do {#\A2 [B : A2]}, which is the factor
expression for a simple renaming, δA←B(r). Assume that R = A1A2. First
of all, definition 6.11 can only be used when tuple expressions are in normal
form, so we consider instead

factor r do {[A1 : A1, B : A2]}

This rewriting is what definition 6.7 would do for us.
Let A′1A

′
2 be a unique copy of A1A2. Now, the empty tuple [] is translated

into δA1A2←A′1A′2
(bF , so [B : A2] is translated into

δA2←B(πA2(bF)) ✶
B=A′1

δA1A2←A′1A′2
(bF)

and then [A1 : A1, B : A2] is translated into

δA1←A1(πA1(bF)) ✶
A1=A′1

(δA2←B(πA′2
(bF) ✶

B=A′1
δA1A2←A′1A′2

(bF))

As there is only one argument to factor, bF is simply r , so this expression
can be simplified to

πA1(r)
✶

A1=A′1
δA1←B(πA1(r)

✶
B=A′1

δA1A2←A′1A′2
(r)

So, if r was as shown below (to the left)

r: translation:
A1 B1

2 3
9 7
2 9

A′1 A′2 A1 B

2 3 2 3
9 7 9 7
2 9 2 9

we would calculate the relation shown to the right. The final result can be
found, as we will prove later, by then removing the unique copy of X, i.e.
A′1A

′
2. ✷

23

Notice that if the unique copy of X we not used, then tuples, which should
be different, would collapse in part results, and, in addition, we would not
have a means of combining results as we do now using the equijoin

Lemma 6.14 Let F , X, Y , and bF be as in definition 6.11, and let t and ηt

be as in definition 4.1. If e translates to q, then for any t′,

t′ ∈ [[e]]ηt ⇐⇒ tX←Y · t′ ∈ q

Proof By induction in the structure of ei.

{ } [[{ }]]η = ∅(∅) and q = Y (∅). As no tuples can belong to an empty

relation (independent of the schema), there is nothing to show.

{t′′} By assumption (as in definition 6.11), we have that t′′ is of the

form [B1 : d1, . . . , Bk : dk]. Let q′ be the translation of t′′tail = [B2 :
d2, . . . , Bk : dk]. We proceed by induction in the length of t′′.

t′′ = [] [[{[]}]]ηt = ∅({[]}), while q = δY←X(bF). The only tuple

that belongs to ∅({[]}) is []. From remark 4.2 and
proposition 6.12, t′ on the right-hand side is also forced
to be []. It remains to be argued that tX←Y ∈ q. But
that follows from t ∈ bF and the definition of q.

d1 is c The induction hypothesis states that for any t′tail ,

t′tail ∈ [[{t′′tail}]]ηt ⇔ tX←Y · t′tail ∈ q′

Now,

t′′ ∈ [[{t′′}]]ηt

�
t′tail ∈ [[{t′′tail}]]ηt, where t′ = [B1 : c] · t′tail
�
t′X←Y · t′tail ∈ q by the induction assumption

�
tX←Y · [B1 : c] · t′tail ∈ {[B1 : c]} × q′

�
tX←Y · t′ ∈ q

24

d1 is Aj As above, except that we have to add the assumption

ηt(#). Aj evaluates to c, and then observe that
tX←Y · t′ ∈ [B1 : c]× q′

�
tX←Y · t′ ∈ δAj←B1(πAj

(bF)) ✶
B1=A′j

q′

@(m) [[@(m)]]ηt = ηt(@(m) = rm,t
F = πRm\X(σt(rm) and q = δX←Y (rm).

Now,
t′ ∈ πRm\X(σt(rm))

�
∃t′′ ∈ σt(rm) : t′ = t′′Rm\X

But then t′′ can be written t′ · t′′X , when t′′X is the remaining part
of t′′, and so t′′ = t′ · t′′X = t′ · t, as dom(t) = {X} and t′′ ∈ σt(rm).
Finally,

t′ · t ∈ σt(rm) ⊆ rm

�
t′ = t′′X←Y ∈ δX←Y (rm)

e′ × e′′ [[e′ × e′′]]ηt = [[e′]]ηt × [[e′′]]ηt and q = q′ ✶ q′′, where q′ and q′′

are the translations of e′ and e′′, respectively. Remember
that E ′ ∩ E ′′ = ∅. Let t′ ∈ [[e′]]ηt × [[e′′]]ηt. Write t′ as t1 · t2,
where dom(t1) = E ′ and dom(t2) = E ′′. Then

t′ ∈ [[e′]]ηt × [[e′′]]ηt

�
t1 ∈ [[e′]]ηt ∧ t2 ∈ [[e′′]]ηt

�
tX←Y · t1 ∈ q′ ∧ tX←Y · t2 ∈ q′′, by induction

�
tX←Y · t1 · t2 ∈ q′ ✶ q′′

�
tX←Y · q′ ✶ q′′

✷

Instead of expressing this connection at the tuple level, we can express it in
relational algebra.

Corollary 6.15 Let F , X, Y , and bF be as in definition 6.11, and let t and

25

ηt be as in definition 4.1. If e translates to q, then

[[e]]ηt = πQ\Y (σtX←Y
(q))

Proof Directly from lemma 6.14. ✷

Finally, we can handle factor expressions without gate-operators and with
tuple expressions in normal form.

Lemma 6.16 Let F , X, Y , and bF be as in definition 6.11, and let q be the
translation of F . Then

[[F]] = πQ\Y (q)

Proof
[[F]] =

⋃
t∈bF [[e]]ηt

=
⋃

t∈bF πQ\Y (σtX←Y
(q)), by corollary 6.15

= πQ\Y (
⋃

t∈bF σtX←Y
(q))

= πQ\Y (q), by 2) in proposition 6.12

✷

Combining the results in this section we obtain the following.

Theorem 6.17 An SFC expression F can be translated into a relational
algebra expression r such that [[F]] = r.

Proof If F contains factor expressions as arguments, we recursively trans-
late these to relational algebra. This can be done as the semantics of factor
is purely denotational.

We treat the more difficult case where F contains a gate operator, so F is
of the form factor r1, . . . , rn do b? e. Construct lim(b) using definition 6.1.
Using lemma 6.6, we can find relational algebra expressions r′1, . . . , r

′
n such

that if factor r′1, . . . , r
′
n do e then [[F]] = [[F ′]].

Let F ′′ be like F ′ except that e is changed to e′ by putting all tuple expres-
sions in normal form using definition 6.7, i.e., let X =

⋂
i R
′
i and substitute

each t with TTX(t). Now, by proposition 6.9 and the fact that the tuple
language is purely denotational, [[F ′′]] = [[F ′]], where F ′′ = factor r′1, . . . , r

′
n

do e.

From F ′′, using definition 6.10, construct the relational algebra expression q.
Let Y be a unique copy of X w.r.t. F ′′. Then by lemma 6.16, [[F ′′]] = πQ\Y (q).

26

Let r = πQ\Y (q). Now [[F]] = [[F ′]] = [[F ′′]] = πQ\Y (q) = r. ✷

7 The Full Language

This section requires that the reader have a full understanding of the most
technical part of the paper, i.e,, section 6. We give, without proofs, the con-
structs and additions to the definitions in that section which are necessary
in order to show that even the full language can be translated to relational
algebra. When we come to aggregation and computation on domain val-
ues, relational algebra has to be extended appropriately with a group by
operator or similar constructs.

In connection with each construct, we will either list an example to show what
type of queries we have in mind, or we shall simply “define” the construct
by an example.

7.1 Extending Boolean Expressions

Example 7.1 factor r1, r2 do (@(1) ⊆ @(2)) ∧ (A = B)? e ✷

In order to use the boolean operators and comparisons of relations, e.g.,
contained-in, we need to extend definition 6.1. Assume that b1 and b2 give
limiting relational algebra expressions lim(b1) and lim(b2), respectively.

b lim(b)

b1 ∧ b2 lim(b1) ∩ lim(b2)

b1 ∨ b2 lim(b1) ∪ lim(b2)

¬b1 x− lim(b1)

@(m) ⊆ @(p) x− πX(rm − rp)

@(m) ⊇ @(p) x− πX(rp − rm)

@(m) ⊂ @(p) (x− πX(rm − rp)) ∩ πX(rp − rm)

@(m) ⊃ @(p) (x− πX(rp − rm)) ∩ πX(rm − rp)

If a constant relation r appears in a comparison in the plate of @(p), say,

27

then replace rp in lim(b) with x× r.

7.2 Relational Operators in Relation Expressions

Example 7.2 factor r1, r2 do δB←A(@(1)) ✶ @(2) ✷

The following operators translate directly: ∪,−, ✶, σ, δ. Let q, q′, and q′′ be
the translation of e, e′, and e′′, respectively, and let Y be a unique copy of X,
Then πZ(e) translates to πY Z(q), e′× e′′ translates to q′ ✶ q′′, and a constant
relation r translates to r × δX←Y (bF). Derived operators are first translated
to standard relational algebra (we have given × as it is used directly in FC)

7.3 Relational Operators in Boolean Expressions

Example 7.3 factor r1, r2 do (@(1)× {[D : 7]}) ⊆ (@(2) ✶ r)? e ✷

Expressions are translated exactly as in the actual expression, i.e., there is
an extra unique copy of X on everything (Y). We use standard templates
for the different comparisons.

Example 7.4 Let e1 and e2 be relation expression. Let q1 and q2 be the
translation of e1 and e2, respectively. The template for ⊆ would be x −
δY←X(πY (x1 − x2)), so the limiting relational algebra expression for e1 ⊆ e2

is x− δY←X(πY (q1 − q2)). ✷

7.4 Free Use of Gates

We allow free use of gates in the do-part of factor; instead of only right
after the key word do.

Example 7.5 Let R1 = AB and R2 = AC. Then

factor r1, r2 do @(1)− (A = 5? δC←B(@(2)))

is equivalent to

28

factor r1 ✶ lim(b)[πA(r1)/x], r2 ✶ lim(b)[πA(r2)/x] do
@(1)− δC←B(@(2))

∪ factor r1 ✶ lim(¬b)[πA(r1)/x], r2 ✶ lim(¬b)[πA(r2)/x] do
@(1)− {A, B}(∅)

where b is A = 5. ✷

7.5 Nested Factors

That is, factor’s used in the do-part of another factor; also in gates. We
show how we can remove one factor (a last) from a sequence of factor’s By
applying this repeatly, we can translate the whole expression to relational
algebra. Consider

. . .do . . . factor e1, . . . , en do e . . .

where e does not contain factor’s except maybe in gates. If e1, . . . , en contain
factor’s, recursively remove these first as we did in the simple case. Then
recursively remove factor’s in gates in e. Now remove gates from e, and then
this factor can be translated into relational algebra.

Remark 7.6 Notice the scoping here. In

factor r1, r2 do factor @(1), r3 do @(1)

for examples the two @(1)’s are different.

7.6 Narrowing Down Factorization Attributes

We find it more natural to allow

factor r1 . . . rn on A1 . . . Ak do e

instead of writing

factor r1 . . . rn, {A1 . . . Ak}(∅} do e

However, this is merely a syntactical convenience.

29

7.7 Nested @(i)’s and #’s

We will allow \@(i), \\ @(i), etc. to denote @(i)’s from higher levels when
using nested factor’s. These are translated as constants except that one \
is removed, eg., \\@(i) is translated into \@(i)× δX←Y (bF).

Having nested factor’s also means that several #’s are active at a time. We
would like to have access to the values bound to attribute names in each of
them. In order to do so, we change the syntax from simply an A referring
to the nearest #, to #.A. We can now also allow \#, \\#, etc. to denote
these #’s from higher levels; and we access attributes by e.g., \\#.B.

We want to translate expressions containing these constructs in a similar
way as to how we handled nested @(i)’s. There is the problem that if we
have a comparison such as #.B = \#.A, this would result in selections like
σB=#.A(r), which we have not treated previously (because # appears in a
selection condition). We notice, however that this can instead be written
πR(σB=B′({[B′ : #.A]} × r)), the translation of which will be dealt with
automatically.

In the definition of TTX , we take into account the schema (domain) of #.
This definition will have to be extended, so that the right schema can be
given also for, say, \\ #. When extended properly, we can still obtain the
normal form we want; the difference being that instead of simply having
constants and constructs like #.A as values, we will also have constructs like
\ \#.A.

7.8 Computations on Domain Values

Before continuing, we equip relational algebra with an additional operation,
extend [Gra84], and with some operations on domain values to be used
with extend. This operator takes one relational argument and can perform
computations on domain values for each tuple individually. As an example,
we can write

extend r with A := (B + 5)/C

where B, C ∈ R and A /∈ R. In general, a query

30

extend r with A := <atom exp>

can be expressed as follows in FC.

factor r do #[A : <atom exp>]

In order to translate FC expressions, where these computations on domain
values can appear anywhere the types match, into relational algebra with
extend, we change the definition of TTX again to incorporate operations on
atomic types. We can now obtain a normal form which is a tuple like before,
but the entries are now atom expressions over factorization tuples selections.

Example 7.7 Let t = [B1 : #.A1 + \#.A2 + \\#.A3, B2 : d2, . . . , Bk : dk],
and assume that [B2 : d2, . . . , Bk : dk] translates into q′. The tuple t is then
translated into

π(Q′′∪{B1})\{Â2,Â3}(extend q′′ with B1 := A′1 + Â2 + Â3)

where A′1 is the unique copy of A1 (which we know is in Q′) and q′′ is

q′ × {[Â2 : #.A2]} × {[Â3 : \#.A3]}

That is, a single # is removed and the trailing attribute name changed to its
unique copy. Furthermore, one level of \’s is stripped off. By inventing new
names, the with-part of extend can be finished immediately; the argument
to extend will, if necessary, be dealt with later by rules already defined. ✷

7.9 Aggregate Functions

We equip relational algebra with aggregate functions and the operator group
by [Gra81]. As for extend, group by is unary. There is a list of attributes

on which to group. These should all belong to the schema of the single
relational argument. For example, if R = {A1, A2, A3}, we can write

group r by A1 creating B :=SUM(A3)

Now, let Φ be an aggregate function. We can translate

31

group r by A1, . . . Ak creating A′ := Φ(A′′)

into

factor r on A1, . . . Ak do #[A′ : ΦA′′(@(1))]

Our notation in connection with aggregate functions is slightly different as
the argument relation is not implicit as in group by. Our choice of notation
is more in line with standard notation for the other relational operators.

In order to translate FC expressions with aggregation to relational algebra
with group by, we (recursively) remove appearances of factor inside ag-
gregate functions first. We obtain (again changing the definition of TTX) a
normal form whiGh can include entries that are aggregate functions applied
to relational algebra expressions.

Example 7.8 Consider t = [B1 : ΦA′′(r), B2 : d2, . . . , Bk : dk], and assume
that [B2 : d2, . . . , Bk : dk] translates into q′ and r translates into q′′. Then
t translates into

q′ ✶ group q′′ by Q′ creating B1 := Φ(A′′)

✷

7.10 Aggregation And Domain Computation

It turns out that when both of these facilities are present simultaneously, it
is even more difficult to translate FC expressions to relational algebra. TTX

is changed again (and so is the normal form). The entries in the tuple in
normal form can now be atom expressions over the same variables as under
extend, but now also aggregate functions. The techniques from above are
combined.

Example 7.9 Consider t = [B1 : ΦA′′(r) + \\#.Aj, B2 : d2, . . . , Bk : dk],
and assume that [B2 : d2, . . . , Bk : dk] translates into q′ and r translates
into q′′. The tuple t is then translated into

32

π(Q′′∪{B1})\{Â,Â′} (extend

q′′′ ✶ group q′′ on Q′′ creating Â := Φ(A′′)

with B1 := Â + Â′)

where q′′′ = q′ × {[Â′ : \#.Aj]}. ✷

7.11 Summarizing

In summarizing, we want to state results for a number of subsets of FC. To
be mecise, we first define FC+ by the following grammar.

<atom> ::= c | #.A | \#.A | \ \#.A | . . .
<tup> ::= [] | [A : <atom>, . . . , A : <atom>] | <tup> \A |

<tup><tup> | # | \# | \ \# | . . .
<rel> ::= { } | {<tup>} | <rel> × <rel> |

@(1) | @(2) | . . . | \@(1) | \@(2) | . . .
<cond> ? <rel> | factor <rel>, . . . , <rel> do <rel> |
factor <rel>, . . . , <rel> on A, . . . , A do <rel>

<rel> ∪ <rel> | <rel> − <rel> | <rel> ✶ <rel> |
πA...A(<rel>) | σb <rel>, . . .

<cond> ::= <atom> = <atom> | <atom> �= <atom> |
<atom> < <atom> | <atom> ≤ <atom> | · · ·
<rel> = <rel> | <rel> �= <rel> | <rel> ⊆ <rel> | . . .

ln previous sections, we have proved that SFC and relational algebra are
equivalent in expressive power. In this section, we have given the necessary
definitions to the proof of FC+ being equivalent to relational algebra.

Let SFC+c be as FC+, but with the addition of

<atom> ::= <atom> + <atom> | <atom> − <atom> | . . .

SFC+c is equivalent to relational algebra with extend (with the same opera-
tions on atom types available).

Let FC+a be as FC+, but with the addition of

33

<atom> ::= SUMA (<rel>) | COUNTA <rel> | . . .

FC+a is equivalent to relational algebra with group by (and the same ag-
gregate functions available).

Finally, FC is FC+ with both of the above additions, and FC is equivalent
to relational algebra with both extend and group by.

8 Conclusion

We have introduced the language FC in which aggregation and computation
on domain values fit in naturally. We believe that FC could form a more
elegant basis for language development than standard relational algebra when
these features should be included.

An interesting direction of research would be to explore the possibilities of a
Query-By-Example [Zlo77] style query language, where the novice user could
program via example data instead of factor directly; and especially instead
of using the #’s and @(i)’s directly.

If a language is going to form a basis for design of new languages, it is impor-
tant to know the computational power of the language. We have proved that
FC without aggregation and computation on domain values is equivalent to
relational algebra. With aggregation and/or computation on domain values,
it is equivalent to relational algebra with group by (and the same aggregation
functions) and/or extend (and the same operations on domain values).

A simple version of FC, in which functions have also been included, has been
implemented [Lar92].

References

[Cod72] E. F. Codd. Relational Completeness of Data Base Sublanguages. In
Randall Rustin, editor, Data base Systems, pages 65–98. Prentice-Hall,
1972.

34

[GB79] P. M. D. Gray and R. Bell. Use of Simulators to Help the Inexpert
in Automatic Program Generation. In P. A. Samet, editor, Euro IFIP,
pages 613–620. North-Holland, 1979.

[Gra81] Peter M. D. Gray. The GROUP BY Operation in Relational Alge-
bra. In S. M. Deen and P. Hammersley, editors, Databases, pages 84–98.
Pentech Press Limited, 1981.

[Gra84] Peter M. D. Gray. Logic, Algebra and Databases. Ellis Horwood Lim-
ited, 1984.

[Klu82] Anthony Klug. Equivalence of Relational Algebra and Relational
Calculus Query Languages Having Aggregate Functions. J. ACM,
29(3):699–717, 1982.

[Lar92] Kim S. Larsen. Xrasmus User’s Manual. MD 60, Computer Science
Department, Aarhus University, 1992.

[LS] Kim S. Larsen and Michael I. Schwartzbach. Optimal Detection of
Query Injectivity. Computer Science Department, Aarhus University,
1991.

[LSS92] Kim S. Larsen, Michael I. Schwartzbach, and Erik M. Schmidt. A
New Formalism for Relational Algebra. IPL, 41(3):163–168, 1992.

[Mai83] David Maier. The Theory of Relational Databases. Computer Science
Press, 1983.

[Ull88] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Sys-
tems, volume 1. Computer Science Press, 1988.

[Zlo77] M. M. Zloof. Query-by-Example: a data base language. IBM Systems
Journal, 16(4):324–343, 1977.

35

