4 research outputs found

    Automatic detection method of epileptic seizures based on IRCMDE and PSO-SVM

    Get PDF
    Multi-scale dispersion entropy (MDE) has been widely used to extract nonlinear features of electroencephalography (EEG) signals and realize automatic detection of epileptic seizures. However, information loss and poor robustness will exist when MDE is used to measure the nonlinear complexity of the time sequence. To solve the above problems, an automatic detection method for epilepsy was proposed, based on improved refined composite multi-scale dispersion entropy (IRCMDE) and particle swarm algorithm optimization support vector machine (PSO-SVM). First, the refined composite multi-scale dispersion entropy (RCMDE) is introduced, and then the segmented average calculation of coarse-grained sequence is replaced by local maximum calculation to solve the problem of information loss. Finally, the entropy value is normalized to improve the robustness of characteristic parameters, and IRCMDE is formed. The simulated results show that when examining the complexity of the simulated signal, IRCMDE can eliminate the issue of information loss compared with MDE and RCMDE and weaken the entropy change caused by different parameter selections. In addition, IRCMDE is used as the feature parameter of the epileptic EEG signal, and PSO-SVM is used to identify the feature parameters. Compared with MDE-PSO-SVM, and RCMDE-PSO-SVM methods, IRCMDE-PSO-SVM can obtain more accurate recognition results

    Robust Epileptic Seizure Detection Using Long Short-Term Memory and Feature Fusion of Compressed Time–Frequency EEG Images

    Get PDF
    Epilepsy is a prevalent neurological disorder with considerable risks, including physical impairment and irreversible brain damage from seizures. Given these challenges, the urgency for prompt and accurate seizure detection cannot be overstated. Traditionally, experts have relied on manual EEG signal analyses for seizure detection, which is labor-intensive and prone to human error. Recognizing this limitation, the rise in deep learning methods has been heralded as a promising avenue, offering more refined diagnostic precision. On the other hand, the prevailing challenge in many models is their constrained emphasis on specific domains, potentially diminishing their robustness and precision in complex real-world environments. This paper presents a novel model that seamlessly integrates the salient features from the time–frequency domain along with pivotal statistical attributes derived from EEG signals. This fusion process involves the integration of essential statistics, including the mean, median, and variance, combined with the rich data from compressed time–frequency (CWT) images processed using autoencoders. This multidimensional feature set provides a robust foundation for subsequent analytic steps. A long short-term memory (LSTM) network, meticulously optimized for the renowned Bonn Epilepsy dataset, was used to enhance the capability of the proposed model. Preliminary evaluations underscore the prowess of the proposed model: a remarkable 100% accuracy in most of the binary classifications, exceeding 95% accuracy in three-class and four-class challenges, and a commendable rate, exceeding 93.5% for the five-class classification
    corecore