462 research outputs found

    Epileptic seizure detection from EEG signals using logistic model trees

    Get PDF
    Reliable analysis of electroencephalogram (EEG) signals is crucial that could lead the way to correct diagnostic and therapeutic methods for the treatment of patients with neurological abnormalities, especially epilepsy. This paper presents a novel analysis system for detecting epileptic seizure from EEG signals, which uses statistical features based on optimum allocation technique (OAT) with logistic model trees (LMT). The analysis involves applying the OAT to select representative EEG signals that reflect the entire database. Then, some statistical features are extracted from these EEG signals and the obtained feature set is fed into the LMT classification model to detect epileptic seizure. To test the consistency of the proposed method, all experiments are carried out on a benchmark EEG dataset and repeated twenty times with the same parameters in the detection process, and the average values of the performance parameters are reported. The results show very high detection performances for each class, and also confirm the consistency of the proposed method in the repeating process. The proposed method outperforms some state-of-the-art methods of epileptic EEG signal detection using the same EEG dataset

    Epileptic seizure detection from EEG signals using logistic model trees

    Get PDF
    Reliable analysis of electroencephalogram (EEG) signals is crucial that could lead the way to correct diagnostic and therapeutic methods for the treatment of patients with neurological abnormalities, especially epilepsy. This paper presents a novel analysis system for detecting epileptic seizure from EEG signals, which uses statistical features based on optimum allocation technique (OAT) with logistic model trees (LMT). The analysis involves applying the OAT to select representative EEG signals that reflect the entire database. Then, some statistical features are extracted from these EEG signals and the obtained feature set is fed into the LMT classification model to detect epileptic seizure. To test the consistency of the proposed method, all experiments are carried out on a benchmark EEG dataset and repeated twenty times with the same parameters in the detection process, and the average values of the performance parameters are reported. The results show very high detection performances for each class, and also confirm the consistency of the proposed method in the repeating process. The proposed method outperforms some state-of-the-art methods of epileptic EEG signal detection using the same EEG dataset

    Automated epileptic seizure detection by analyzing wearable EEG signals using extended correlation-based feature selection

    Get PDF
    Electroencephalogram (EEG) that measures the electrical activity of the brain has been widely employed for diagnosing epilepsy which is one kind of brain abnormalities. With the advancement of low-cost wearable brain-computer interface devices, it is possible to monitor EEG for epileptic seizure detection in daily use. However, it is still challenging to develop seizure classification algorithms with a considerable higher accuracy and lower complexity. In this study, we propose a lightweight method which can reduce the number of features for a multiclass classification to identify three different seizure statuses (i.e., Healthy, Interictal and Epileptic seizure) through EEG signals with a wearable EEG sensors using Extended Correlation-Based Feature Selection (ECFS). More specifically, there are three steps in our proposed approach. Firstly, the EEG signals were segmented into five frequency bands and secondly, we extract the features while the unnecessary feature space was eliminated by developing the ECFS method. Finally, the features were fed into five different classification algorithms, including Random Forest, Support Vector Machine, Logistic Model Trees, RBF Network and Multilayer Perceptron. Experimental results have shown that Logistic Model Trees provides the highest accuracy of 97.6% comparing to other classifiers

    Enhancing Epileptic Seizure Detection with EEG Feature Embeddings

    Full text link
    Epilepsy is one of the most prevalent brain disorders that disrupts the lives of millions worldwide. For patients with drug-resistant seizures, there exist implantable devices capable of monitoring neural activity, promptly triggering neurostimulation to regulate seizures, or alerting patients of potential episodes. Next-generation seizure detection systems heavily rely on high-accuracy machine learning-based classifiers to detect the seizure onset. Here, we propose to enhance the seizure detection performance by learning informative embeddings of the EEG signal. We empirically demonstrate, for the first time, that converting raw EEG signals to appropriate embeddings can significantly boost the performance of seizure detection algorithms. Importantly, we show that embedding features, which converts the raw EEG into an alternative representation, is beneficial for various machine learning models such as Logistic Regression, Multi-Layer Perceptron, Support Vector Machines, and Gradient Boosted Trees. The experiments were conducted on the CHB-MIT scalp EEG dataset. With the proposed EEG feature embeddings, we achieve significant improvements in sensitivity, specificity, and AUC score across multiple models. By employing this approach alongside an SVM classifier, we were able to attain state-of-the-art classification performance with a sensitivity of 100% and specificity of 99%, setting a new benchmark in the field

    Prediction of Epilepsy Seizures by Machine Learning Methods

    Get PDF
    According to the Globe Health Organization (WHO), more than 50 million people throughout the world are living with a diagnosis of epilepsy, making it perhaps of the most widely recognized neurological issue. Epileptic seizures are a leading cause of hospitalization and mortality across the globe. Accurate and prompt diagnosis is more crucial than ever given the increase in epileptic seizures all through the globe and their effect on individuals' lives. Epilepsy, cancer, diabetes, heart disease, thyroid disease, and many more are only some of the diseases for which machine learning approaches are being applied in prediction and diagnosis. Epilepsy is one ailment that may be treated early on to save a person's life. The main objective of this research is to use feature label extraction to the dataset in order to obtain the best ML models for epileptic seizures. In order to predict epilepsy, we used the techniques of logistic regression, SVM, linear SVM, KNN, and RNN in this study. The models employed in this research are accurate to varying degrees and have attributes including precision, recall, f1-score, and support. This study demonstrates that the model is able to accurately predict the occurrence of epilepsy. Our discoveries demonstrate that involving Examination highlight extraction in the dataset, the Regional Neural Network (RNN) model with 99.9998 % Training data accuracy and 97.78% Test data accuracy and 100% prediction probability of epilepsy seizure produces the best results and also the feature characteristics of RNN is better as compared to other models used in current research work

    Epileptic Seizure Classification Using Image-Based Data Representation

    Get PDF
    Epilepsy is a recurrence of seizures caused by a disorder of the brain in over 3.4 million people nationwide. Some people are able to predict their seizures based off prodrome, which is an early sign or symptom that usually resembles mood changes or a euphoric feeling even days to an hour before occurrence. Consequently, the natural instincts of the body to react to an upcoming attack lends credence to the existence of a pre-ictal state that precedes seizure episodes. Physicians and researchers have thus sought for an automated approach for predicting or detecting seizures. In this research, we evaluate the image-based representation of EEG as a basis for classification and training of machine learning algorithms. We explore only the raw EEG data for images in lossless image file formats, though there are other forms including symbolized and noise-filtered that can be explored. Furthermore, we evaluate different color mapping schemes (symbolized, default, chromatic, and binned) that assign EEG data values to Red-Green-Blue (RGB) pixel values. We report the performance of machine learning algorithms such as Random Forest to accurately classify EEG-based images as either event (with a seizure) or non-event (without a seizure)

    Integrated Machine Learning Approaches to Improve Classification performance and Feature Extraction Process for EEG Dataset

    Get PDF
    Epileptic seizure or epilepsy is a chronic neurological disorder that occurs due to brain neurons\u27 abnormal activities and has affected approximately 50 million people worldwide. Epilepsy can affect patients’ health and lead to life-threatening emergencies. Early detection of epilepsy is highly effective in avoiding seizures by intervening in treatment. The electroencephalogram (EEG) signal, which contains valuable information of electrical activity in the brain, is a standard neuroimaging tool used by clinicians to monitor and diagnose epilepsy. Visually inspecting the EEG signal is an expensive, tedious, and error-prone practice. Moreover, the result varies with different neurophysiologists for an identical reading. Thus, automatically classifying epilepsy into different epileptic states with a high accuracy rate is an urgent requirement and has long been investigated. This PhD thesis contributes to the epileptic seizure detection problem using Machine Learning (ML) techniques. Machine learning algorithms have been implemented to automatically classifying epilepsy from EEG data. Imbalance class distribution problems and effective feature extraction from the EEG signals are the two major concerns towards effectively and efficiently applying machine learning algorithms for epilepsy classification. The algorithms exhibit biased results towards the majority class when classes are imbalanced, while effective feature extraction can improve classification performance. In this thesis, we presented three different novel frameworks to effectively classify epileptic states while addressing the above issues. Firstly, a deep neural network-based framework exploring different sampling techniques was proposed where both traditional and state-of-the-art sampling techniques were experimented with and evaluated for their capability of improving the imbalance ratio and classification performance. Secondly, a novel integrated machine learning-based framework was proposed to effectively learn from EEG imbalanced data leveraging the Principal Component Analysis method to extract high- and low-variant principal components, which are empirically customized for the imbalanced data classification. This study showed that principal components associated with low variances can capture implicit patterns of the minority class of a dataset. Next, we proposed a novel framework to effectively classify epilepsy leveraging summary statistics analysis of window-based features of EEG signals. The framework first denoised the signals using power spectrum density analysis and replaced outliers with k-NN imputer. Next, window level features were extracted from statistical, temporal, and spectral domains. Basic summary statistics are then computed from the extracted features to feed into different machine learning classifiers. An optimal set of features are selected leveraging variance thresholding and dropping correlated features before feeding the features for classification. Finally, we applied traditional machine learning classifiers such as Support Vector Machine, Decision Tree, Random Forest, and k-Nearest Neighbors along with Deep Neural Networks to classify epilepsy. We experimented the frameworks with a benchmark dataset through rigorous experimental settings and displayed the effectiveness of the proposed frameworks in terms of accuracy, precision, recall, and F-beta score

    Towards developing a reliable medical device for automated epileptic seizure detection in the ICU

    Get PDF
    Abstract. Epilepsy is a prevalent neurological disorder that affects millions of people globally, and its diagnosis typically involves laborious manual inspection of electroencephalography (EEG) data. Automated detection of epileptic seizures in EEG signals could potentially improve diagnostic accuracy and reduce diagnosis time, but there should be special attention to the number of false alarms to reduce unnecessary treatments and costs. This research presents a study on the use of machine learning techniques for EEG seizure detection with the aim of investigating the effectiveness of different algorithms in terms of high sensitivity and low false alarm rates for feature extraction, selection, pre-processing, classification, and post-processing in designing a medical device for detecting seizure activity in EEG data. The current state-of-the-art methods which are validated clinically using large amounts of data are introduced. The study focuses on finding potential machine learning methods, considering KNN, SVM, decision trees and, Random forests, and compares their performance on the task of seizure detection using features introduced in the literature. Also using ensemble methods namely, bootstrapping and majority voting techniques we achieved a sensitivity of 0.80 and FAR/h of 2.10, accuracy of 97.1% and specificity of 98.2%. Overall, the findings of this study can be useful for developing more accurate and efficient algorithms for EEG seizure detection medical device, which can contribute to the early diagnosis and treatment of epilepsy in the intensive care unit for critically ill patients

    Classification of Epileptic and Non-Epileptic Electroencephalogram (EEG) Signals Using Fractal Analysis and Support Vector Regression

    Get PDF
    Seizures are a common symptom of this neurological condition, which is caused by the discharge of brain nerve cells at an excessively fast rate. Chaos, nonlinearity, and other nonlinearities are common features of scalp and intracranial Electroencephalogram (EEG) data recorded in clinics. EEG signals that aren't immediately evident are challenging to categories because of their complexity. The Gradient Boost Decision Tree (GBDT) classifier was used to classify the majority of the EEG signal segments automatically. According to this study, the Hurst exponent, in combination with AFA, is an efficient way to identify epileptic signals. As with any fractal analysis approach, there are problems and factors to keep in mind, such as identifying whether or not linear scaling areas are present. These signals were classified as either epileptic or non-epileptic by using a combination of GBDT and a Support Vector Regression (SVR). The combined method's identification accuracy was 98.23%. This study sheds light on the effectiveness of AFA feature extraction and GBDT classifiers in EEG classification. The findings can be utilized to develop theoretical guidance for the clinical identification and prediction of epileptic EEG signals. Doi: 10.28991/ESJ-2022-06-01-011 Full Text: PD

    Real-Time Localization of Epileptogenic Foci EEG Signals: An FPGA-Based Implementation

    Get PDF
    The epileptogenic focus is a brain area that may be surgically removed to control of epileptic seizures. Locating it is an essential and crucial step prior to the surgical treatment. However, given the difficulty of determining the localization of this brain region responsible of the initial seizure discharge, many works have proposed machine learning methods for the automatic classification of focal and non-focal electroencephalographic (EEG) signals. These works use automatic classification as an analysis tool for helping neurosurgeons to identify focal areas off-line, out of surgery, during the processing of the huge amount of information collected during several days of patient monitoring. In turn, this paper proposes an automatic classification procedure capable of assisting neurosurgeons online, during the resective epilepsy surgery, to refine the localization of the epileptogenic area to be resected, if they have doubts. This goal requires a real-time implementation with as low a computational cost as possible. For that reason, this work proposes both a feature set and a classifier model that minimizes the computational load while preserving the classification accuracy at 95.5%, a level similar to previous works. In addition, the classification procedure has been implemented on a FPGA device to determine its resource needs and throughput. Thus, it can be concluded that such a device can embed the whole classification process, from accepting raw signals to the delivery of the classification results in a cost-effective Xilinx Spartan-6 FPGA device. This real-time implementation begins providing results after a 5 s latency, and later, can deliver floating-point classification results at 3.5 Hz rate, using overlapped time-windows
    • …
    corecore