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Abstract 

Seizures are a common symptom of this neurological condition, which is caused by the discharge 
of brain nerve cells at an excessively fast rate. Chaos, nonlinearity, and other nonlinearities are 

common features of scalp and intracranial Electroencephalogram (EEG) data recorded in clinics. 

EEG signals that aren't immediately evident are challenging to categories because of their 
complexity. The Gradient Boost Decision Tree (GBDT) classifier was used to classify the majority 

of the EEG signal segments automatically. According to this study, the Hurst exponent, in 

combination with AFA, is an efficient way to identify epileptic signals. As with any fractal analysis 
approach, there are problems and factors to keep in mind, such as identifying whether or not linear 

scaling areas are present. These signals were classified as either epileptic or non-epileptic by using 

a combination of GBDT and a Support Vector Regression (SVR). The combined method's 
identification accuracy was 98.23%. This study sheds light on the effectiveness of AFA feature 

extraction and GBDT classifiers in EEG classification. The findings can be utilized to develop 

theoretical guidance for the clinical identification and prediction of epileptic EEG signals. 
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1- Introduction 

An epileptic condition is caused by seizures associated with altered brain activity, is a Central Nervous System (CNS) 

malfunction. Symptoms of these seizures include loss of consciousness, odd behaviour, and perplexity. Two of the most 

common ways people get injured when suffering from these symptoms are by falling or biting their tongue. The start of 

a seizure is difficult to anticipate before it happens. Because most seizures happen rapidly, many researchers have 

struggled to establish techniques for predicting when someone is likely to have a seizure. Classification algorithms, like 

the one employed in this research, can help predict whether or not a person will experience a seizure. Andrzejak et al., 

investigators have concentrated their efforts on identifying the nonlinear deterministic dynamics seen in seizures to better 

comprehend the brain's electrical activity and dynamic characteristics [1]. Ott et al. [2] have used a set of differential 

equations to explain the dynamic brain system. Electroencephalograms (E.E.G.s) can also be explained using a technique 

known as Nonlinear Time Series Analysis (NTSA) [3-5]. Numerous studies have looked at brain scans from people with 

diseases including Parkinson's [6] and depression [7], as well as those from persons in good health [9–11] and epilepsy 

sufferers, which is the subject of this research [12-22].  
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Researchers have obtained a new understanding of the brain's dynamic mechanism as a result of their findings. 

Epilepsy-related papers have generated data that may be split into two categories: epileptic seizures [17, 22] and brain 

activity of healthy participants [23]. Due to the nonlinearity of human brain behaviour, investigators were able to 

categorize and simulate it using these two situations as examples. Further research has revealed that even a little change 

in the brain's dynamic system characteristics can cause various functional activities of the brain [24, 25] and that this 

shift may be linked to the brain [26–28] or alternative issues [29, 30]. Seizures associated with epilepsy are still 

problematic for many scientists [13, 17–20]. This study's goal is to find the best classification algorithm for classifying 

a person is having a seizure or not. It also aims to find out how the classification algorithm responds to changes in the 

classification parameter settings. The technique described in Gautama et al. (2003) [31] study, enables for detailed 

characterization of EEG time series data, which may subsequently be utilized to enhance signal categorization.   

According to Nigam & Graupe (2004) [32], a neural network-based epilepsy detection system for identifying epileptic 

seizures from EEG data was proposed, which was based on neural network technology. Güler & Übeyli (2005), Subasi 

(2007), Adeli et al. (2007), Guo et al. (2010), and Srinivasan et al. (2005) [33-37] explored electroencephalogram signal 

classification based on wavelet coefficients. To accomplish the adaptive capacity, a neural network was coupled with 

fuzzy logic and persistent transformations of the probability density function. They looked at the E.E.G. signal sub-

bands in terms of frequency and used multi-resolution decomposition as well as an artificial neural network on the 

signals. It's been proposed to utilize a special kind of recurrent neural network for automatically identifying epileptic 

episodes. EEG signals and real data were used to create correlation metrics that were then verified by Harikrishnan et al. 

(2006) and Kannathal et al. (2005) [38, 39].  

Epileptic seizures were detected using various entropy estimators applied to EEG data from epileptic and normal 

individuals in Kannathal et al. (2005), Srinivasan et al. (2007) and Nicolaou & Georgiou (2012) [40-42]. Übeyli & Güler 

(2007) [43] presented a pattern recognition-based eigenvector feature extraction technique for EEG signal detection, and 

Polat & Güneş (2008) [44] established a novel hybrid automated identification system for EEG signal categorization 

based on pattern recognition. Using a back-propagation neural network, Kumar et al. (2014) [45] categorized EEG data 

using a feed-forward technique and Subasi & Gursoy (2010) [46] identified epileptic seizures using a back-propagation 

neural network with Principal Component Analysis (P.C.A.). When it comes to epilepsy treatments, one group of 

researchers suggested using a multilayer perceptron neural network-based categorization approach, while another group 

suggested using basis-based wavelet packet entropy for EEG feature extraction to improve seizure detection performance 

discussed in Orhan et al. (2011), Wang et al. (2017), Gajic et al. (2015), and Wang et al. (2011) [47-50]. Referencing 

[51] employed sophisticated artificial intelligence to detect epileptic seizures in EEG data, whereas Referencing [52] 

utilized sub-band nonlinear characteristics to detect seizures in EEG signals. Epilepsy detection using the DWT and K-

NN classifier was recently suggested [53]. Epileptic seizures can be detected using an E.E.G. signal classification 

approach recently proposed by Alickovic et al. (2018) [54]. Subasi et al. (2019), Hussain (2018), Rosas-Romero et al. 

(2019) and Gusnanto et al. (2007) [56-59] described convolutional neural networks for predicting epileptic seizures. The 

frequency of sub-bands that are analyzed with high frequency with several spectral thresholds [66]. The well-known 

ANN-BP methods have been used on datasets with distinct and substantial time-frequency domain characteristics [67]. 

The use of Fractional Fourier Transform (FrFT) has been proposed as a novel technique for acquiring high-resolution 

Synthetic Aperture Radar (SAR) pictures [68]. The autoencoder that investigates the non-linear dynamics of EEG signals 

[69]. 10-fold cross-validation with Bi-LSTM classifier in a supervisor deep convolutional autoencoder model for 

classification of EEG signals [70]. 

The rest of the paper is organized as Section 2 describes, with the proposed method, the experimental results, and 

discussions discussed in Section 3. Finally, the observations from the proposed method and future remarks are mentioned. 

2- Proposed Method 

This section described the proposed methodology. Figure1 is an architecture of the classification of seizures using 

adaptive fractal analysis, Hurst estimation, support vector regression and multilayer gradient boosting decision trees 

algorithms. Here, inputting the dataset, pre-processed the data, the features extracted, then train the model using SVR 

and mGBDT, and the model is evaluated with test data and found that the model runs with good accuracy. 

The main contribution of the paper is as follows: 

 Adaptive fractal analysis (AFA) insensitive to noise and the Hurst exponent were both used as characteristics in 

this study. 

 Support Vector Regression (SVR) improves the accuracy of signal recognition when the signal's complexity is not 

immediately apparent. 

 The mutual information and gradient boosting decision trees approach, which does not require the sequence length 

of the epileptic signals, is used for the short-term epileptic signals to find the appropriate time delay and different 

measurement parameters. 
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Figure 1. The Architecture of FDA and SVR 

The Hurst exponent of the data set may be calculated by examining the scaling properties of the “rescaled range” of 

the data as follows: consider a dataset {yt} (t=1,2,3…T), and let (yi, yi+1, …yi+τ), τ <= T, i= 1,2, 3, T-τ represents any 

sequence of τ+1 points within the data set. The rescaled range (R/S) statistic is then defined as: 

(
R

S
)

τ
=  

1

sτ 
 [sup ∑ (xk − xi,τ) − inf ∑ (xk − xi,τ)t

k=1
t
k=i ]  (1) 

where; 

xi,τ = (1
τ⁄ ) ∑ xt

τ
t=1   (2) 

Equation 2 is the sample mean and Equation 3 is SD: 

si,τ =  [
1 

τ
 ∑ (xt −  xi,τ)2τ

t=i ]
1/2

  (3) 
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R

S
)

τ
〉i  

(4) 

The quantity, Equation 4 is proportional to τH, such that the gradient of a plot of (〈(𝑅/𝑆)𝜏〉𝑖) vs log(τ) equals to H. 

Also, the Hurst exponent can be measured as a function of interval width. A typical analysis employs the “variance 

method” to determine the various features within the time interval, as mentioned in Equation 5: 

V(∆t) = 〈[yt+∆t − yt]
2〉 t (5) 

Δt is the range of values, this amount is connected to the Hurst exponent as V(Δt) ∝Δt2H, hence the range of Δt values 

against variance of these Δt values can be observed as linear values, but the estimation of variance will be poor. For each 

point ti in the trace, the min and max values of xt0 learned as upper (u) and lower (b) correspondingly for an oscillation, 

that reflects uϵ(ti) and bϵ(ti) the upper and lower oscillation wrappers at a specified range of width. After the estimation 

of the Hurst exponent, apply adaptive fractal analysis [10] for extracting time-series fractal features. Dubuc's variation 

method and AFA both look at the geometric properties of a time series trace. The time-series chunks are built using AFA 

at various approximations and are recorded with a variance of the accuracy of the oscillation. 
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2-1-The AFA Algorithm 

AFA extracts globally smooth trend signals from the data using an adaptive fractal analysis method then examine the 

scaling of the residuals to the fit as a function of the time scale at which the fit is produced. Assume y(t) = (t=1, 2, 3.T) 

Select a window w=2n+1, w<T and divide the data set into overlapping subsets of length w that overlap by n1 data 

points. The best-fitting polynomial of order M is found within each window. This is accomplished using normal least-

squares regression, which involves adjusting the coefficients of the polynomial model until it best fits the data. Although 

raising the order M can typically improve the fit accuracy, it is important to avoid over-fitting the sample. M is usually 

1 or 2, indicating a straight or exponential function. The objective isn't to fit the polynomial framework to every zigzag 

or fluctuation in u(i), but rather to capture any generally broad trends in the data while allowing enough leftover variation 

to investigate further.  

To calculate the linear best-fit line for each window, a series of disconnected straight lines is generated. That is, each 

index in the original data set's domain corresponds to a point on each of two subset fit lines (except for the n data points 

at either end of the trace). Next, these best-fit lines are “stitched” together to form a single, smoothly continuous curve 

in the following manner. Integers from 1 to (n+1) should be used to identify the windows that span the trace, and y(j) (l) 

should be used to identify the best-fitting lines. To create the curve in each of the j windows, use Equation 6: 

y(w) (l) =  w1 y(j) (l + n) + w2 y(j+1) (l), (6) 

where w1 = (1-(l-1)/n) and w2 = (l-1)/n.  

The index at each y(w) (l) value is the weighted average of the two best-fit lines, which equals the distance between 

the index and the window's midpoint. The trace y(w) (t) that results from doing this method across all windows 

approximates the trace x(t) on the length scale given by w. The Hurst exponent is determined by the scaling behaviour 

of this fidelity as w is varied, especially; 

F(w) =  [
1

T
 ∑ yw (ti) −  x(ti)

2 T
i=1 ]

1/2

 α wH  (7) 

The graph of F(w) against log(w) has a slope of H, which is an important finding. The estimation of these functions 

is as follows: 

The dataset B(t, w) is thus a function whose increments B(t2,w) – B(t1,w) have a mean of zero and variance of |t2-

t1|, and whose non-overlapping increments B(t2,w)- B(t1,w) and B(t4,w)-B(t3,w) are statistically independent. The 

equations 8, 9 are indicating a “reduced fractional Brownian motion” BH (t, w), then is further characterized by the 

parameter H, 0<H<1 and satisfies BH (0, w) = b0, 

BH(t,w) – BH(0,w) = BH (0, w) =  b0 (8) 

BH(t, w) − BH(0, w) =  
1

∆(H+
1

2
)
 {∫ [(t − s)H−1/2 − (−s)H−1/2]

0

−∞
 dB(s, w) + ∫ (t − s)H−

1

2
t

0
 dB(sw)}  (9) 

As a result, equation 10 is a fractional Brownian motion trace is self-affine 

{BH (t0 + τ, w) − BH (t0, w) } ≡ {h−H [BH (t0 + hτ, w) − BH (t0, w)]} (10) 

where; 

{X(t, w)} ≡ {Y(t, w)} (11) 

X (t, w) and Y (t, w) have identical finite joint distribution functions [11]. For every additional h, the difference 

between BH (t0+h, w) and the BH (t0, w) rises by one. When the x and y axes are scaled independently, the statistical 

characteristics seen inside the intervals are maintained (specifically, h and hH, respectively). 

2-2-AdaBoost 

AdaBoost fits a sequence of weak learners to the data using the information in the data. The algorithm subsequently 

gives more weight to wrong predictions while giving less weight to correct predictions. As a result, the algorithm 

concentrates its efforts on observations that are more difficult to anticipate. In classification, the final result is determined 

by the majority vote, while in regression, the final result is determined by the average. Scikit-learn can be used to create 

an implementation of this algorithm. It can be provided with the n estimators argument, which indicates the number of 

weak learners that are required. The learning rate option can be used to adjust the amount of contribution made by each 

weak learner. By default, decision trees are used as the base estimators in the algorithm, however, this can be changed. 

The performance of the model can be improved by fine-tuning the base estimators and the parameters of the decision 

trees, among other things. AdaBoost's decision trees have a single split by default, which is the most common. 
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To apply the AdaBoost model for classification issues, you can make use of the Scikit-learn module 

AdaBoostClassifier. As you can see in the table below, the settings of the base estimator can be customized to meet your 

needs. In addition, the classifier accepts the number of estimators that you specify. This is the total number of decision 

trees that will be required for your model. 

Step 1: Assume that Fi
t−1 obtained from the t-1 iteration where t is iteration. We need to pair Gi

t and Fi
t−1, to obtain 

pseudo-inverse such that Gi
t (Fi

t−1(oi−1)) ≅ oi−1. The reconstruction loss is calculated as 𝐺𝑖
𝑡 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝐺𝑖

𝑡  

𝐸𝑥 [𝐿𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑜𝑖,, 𝐺𝑖
𝑡 (𝐹𝑖

𝑡−1(𝑜𝑖−1))], where Linverse is reconstruction loss which is intended to minimize. One of the good 

practices is setting ‖Gi (Fi(oi−1 + ϵ)) − (0i−1 + ϵ‖, ϵ ~ ℵ (0, diag(σ2), by setting like the model becomes more robust. 

And also inverse mapping forced to learn whom to train with neighboring training data in the right manner.  

Step 2: After updating Gi
t, it can be used to update Fi-1 layer forward mapping. The Pseudo labels are defined zi−1

t =
Gi ( zi

t), for all intermediate layers for t iteration, the pseudo labels are propagated from intermediate layers to output 

layers. For each layer gradient ascent step towards the pseudo-residuals as: 

− 
𝜕 𝐿(𝐹𝑖

𝑡−1       (𝑜𝑖−1 ,𝑧𝑖
𝑡)

𝜕 𝐹𝑖 
𝑡−1(𝑜𝑖−1)

 as typical regression of gradient boosting decision trees (GBDTs). The final layer pseudo–labels 

are update zM
t  at layer M. It is easy to define pseudo–labels of the output layer as: zM

t = oM − α 
δ (L(oM ,, y)

δ oM
. Finally, FM

t  is 

fit to pseudo-residuals −
∂ L(FM

t−1 (oM−1 ,zM
t )

∂ FM 
t−1(oi−1)

. Once Fi gets updated, as per procedure it will go to the next iteration to update 

Gi. Initializing a neural network involves assigning random Gaussian noise to each parameter, followed by parameter 

updating. Drawing a random tree structure from the provided tree-structured model is not easy. Figure 2 describes the 

process of multilayered gradient boosting decision trees. 

 

Figure 2. Multilayered GBDT (mGBDT) 
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2-3- Support Vector Regression (SVR) 

The training dataset {(x1, y1, … xn), yn} where xi ϵRn represents EEG signals samples and yi are target values for 

i=1, 2, …, N. The generic SVR estimation is calculated with Equation 12: 

f(x) = (w. θ (x)) + b (12) 

where xϵRn, bϵR, and ϴ represents a nonlinear transformation of high dimension. By minimizing risk, w and b values 

are calculated in Equation 13: 

Rreg = C ∑ π (f(xi) −  yi ) +  
1

2
. ‖w2‖

n

i=0

  (13) 

where c is constant, π is cost function and vector ‘w’ can rewritten as in Equation14: 

w = ∑(αi − αi
∗ )φ (x)

n

i=0

 (14) 

The generic equation is: 

f(x) =  ∑(αi − αi
∗ ). (φ (xi)

n

i=0

 . φ (x)) + b = ∑(αi − αi
∗ ).

n

i=0

 k(xi, x) + b (15) 

where k (xi, x) is the kernel function. 

3- Results and Discussions 

The epileptic seizure (E.S.) dataset was utilized in this study. The dataset has 11,500 samples with 178 characteristics 

each and is properly distributed. Where the samples are divided into five groups Y = 1, 2, 3, 4, 5; such as a) Class 5 - 

eyes open during recoding EEG signal (E.Y.E.O. in this research) b) Class 4 - eyelids closed during recording EEG 

signal (E.Y.E.C. in this research). c) Class 3 - Yes, an EEG from the healthy brain area revealed a brain tumour, labelled 

H.S.T.U. M.O.R. d) A Class 2 EEG signal was detected near the brain tumour, labelled TUMOR. e) Class 1: Seizure 

recording, E.S. The method applied with four examples analyzed and were divided into two, three, and five EEG signal 

types. 

The dataset is assessed and evaluated on the Google Collaborator notebook using Python Programming Language. 

Data sets are divided into two groups (no seizures and convulsions), three classes (normal, interictal and ictal), and five 

classes, to explore the basic categorization model (A, B, C, D, and E). We evaluated eight models of different 

configurations to pick optimal model parameters. 

3-1- Performance Measures 

The efficiency measures evaluated include Sensitivity (SEN), specificity (SPE), absolute accuracy (TA), kappa value 

(KV), and random accuracy (RA) [66]. Many of these measurements are expressed as true-positive (TP), false-positive 

(FP), true-negative (TN), and false-negative (FN) defined in Equations 16 to 20: 

SEN =
TP

TP+FN
  (16) 

SPE =
TN

TN+FP
  (17) 

TA =
TP+TN

TP+FP+TN+FN
  (18) 

RA =
(TN+FP) ∗(TN+FN)+(FN+TP) ∗(FP+TP)

(TP+FP+TN+FN)2   (19) 

k =
TA−RA

1−RA
  (20) 

Various statistical tests based on class distances have been presented [59, 60]. Among them, the area under the curve 

(AUC) and the partial area at pre-determined great specificity inception (pAUC) of ROC curves were used [61, 62]. A 

ROC curve depicts the relationship between the TPF and FPF from a series of twofold classification experiments. The 

TPF indicates sensitivity, while FPF denotes specificity. In the case of a gene expression profile, AUC calculates the 

chance that a subject randomly picked from one class (e.g., a group of people suffering from a specific disease) will have 

a greater expression value than another class (e.g., healthy people) [62].  

Figure 3 shows the AUC curve performance of the proposed strategy. From the plot, it is observed that the AUC for 

the Z-S ROC curve is significantly greater than the AUC for the ZO-FN-S and Z-O-F-N-S ROC curves. As a result, we 

may conclude that logistic regression performed significantly better than binary classification in categorizing the positive 

class in the dataset.  
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Figure 3. AUC Curve of three classes 

The AUC-ROC curve is for binary classification. The One vs. All strategy can be used to solve multiclass 

classification problems. Z-S, ZO-FN-S, and Z-O-F-N-S will be classified as 0 against 1 and 2, respectively. Classifying 

1 versus not 1 generates the ROC for class 1. The multi-class classification ROC curve is as follows (Figure 4): 

 

Figure 4. Multi-class ROC curve of the proposed strategy 

Figure 4 shows, ROC curve of the proposed method for multi-class classification (Considered three classes). When 

it comes to statistics, the mean absolute error (MAE) is a measure of the differences in errors between paired observations 

that describe the same event. For example, comparisons of expected against observed values, subsequent time against 

starting time, and one measuring technique versus an alternate measurement technique are all examples of Y versus X. 

The MAE is determined as follows: 

MAE =
∑ |yi−xi|n

i=1

n
=

∑ |ei|n
i=1

n
  (21) 

The absolute error |ei| = |yi- xi, and yi is prediction and xi is true value. The Root Mean Square Deviation is a 

measurement of quality to fit the model using regression analysis and is given as follows: 
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RMSE = √∑ (yi − y)2n
i=1   (22) 

Yi is ith observation and y is the predicted value. Tables 1 and 2, show the findings of the proposed method in terms of 

TA, SEN, SPE, RA, K, Accuracy, ROC, MAE, RMSE and Time. Each factor value shows the superiority of the proposed 

method.  

Table 1. TA, SEN, SPE value of three classes of proposed method 

Classes 
TA 

(%) 

SEN 

(%) 

SPE 

(%) 
RA K 

Z-S 99.33 99.08 98.75 0.788 99.33 

ZO-FN-S 98.53 97.45 97.75 0.675 98.53 

Z-O-F-N-S 97.42 96.75 95.84 0.546 97.42 

Table 2. Measurement values of the proposed method of three classes 

Classes Accuracy ROC MAE RMSE Time 

Z-S 98.23 0.587 0.1823 0.4532 4.51 

ZO-FN-S 97.52 0.568 0.1821 0.4231 4.35 

Z-O-F-N-S 96.32 0.523 0.1811 0.4111 4.23 

The above table clearly states that Z-S class (binary classification given high accuracy i.e. 98.23 when compare with 

ZO-FN-S and Z-O-F-N-S, the respective ROC, MAE, RMSE and Time are also shown. The experiment is conducted 

for different Epochs i.e. 500, 1000 and 1500 and respective results with ROC, MAE, and RMSE measures are shown in 

Table 3. The output layer has three labels like Z-S, ZO-FN-S and Z-O-F-N-S. For each label or class, concerning 500, 

1000, 1500 epochs the accuracy value is mentioned in Table 3. 

Table 3. Results of proposed method for different epochs 

Classes Epoch Accuracy ROC MAE RMSE Time 

Z-S 

500 95.62 0.456 0.1894 0.3599 3.56 

1000 97.23 0.458 0.1852 0.3598 4.11 

1500 98.23 0.587 0.1752 0.3561 4.51 

ZO-FN-S 

500 97.52 0.568 0.1821 0.4231 4.35 

1000 97.85 0.568 0.1812 0.4228 4.69 

1500 97.89 0.586 0.1811 0.4211 5.21 

Z-O-F-N-S 

500 96.32 0.523 0.1811 0.4111 4.23 

1000 96.85 0.532 0.1852 0.4211 4.68 

1500 96.94 0.541 0.1855 0.4352 4.98 

3-2-Comparative Analysis 

The results of the proposed method were compared with other methods in the literature. In our study, the experimental 

results were compared with their classification accuracy rates and statistical analysis results. Hence, the proposed 

methods listed in Table 4 were used to test their performances for classifying {Z, O, N, F, S} or {A, B, C, D, E} signals. 

Table 4. Comparison of proposed method results with other methods 

Methods Methods and features Classes Accuracy (%) 

Patidar and Panigrahi [63] TQWT 

Z-S 97.75 

ZO-FN-S 96.35 

Z-O-F-N-S 95.62 

Acharya et al. [64] 13 layers deep CNN 

Z-S 88.70 

ZO-FN-S 86.32 

Z-O-F-N-S 85.32 

Zhou et al. [65] 3-layers CNN 

Z-S 93.36 

ZO-FN-S 92.35 

Z-O-F-N-S 91.56 

Proposed model Hurst exponent + adaptive fractal analysis (AFA) + GBDT 

Z-S 98.23 

ZO-FN-S 97.52 

Z-O-F-N-S 96.32 
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Table 4 shows, the comparison of the proposed method with other methods and it’s clear that binary classification 

namely Z-S has good accuracy i.e. 98.23 than multiclass classification. Figure 5 explains the accuracy of each model 

from the comparative methods. 

 

Figure 5. The accuracy of existing and proposed models 

4- Conclusion  

An abrupt electrical disruption is a seizure in the brain that is uncontrolled. There are two categories of convulsive 

and non-convulsive seizures, based on their intensity. With an abnormal EEG, we imply that the patient's epileptic 

condition is not convulsive. An epileptic seizure is classified in terms of three classes: Z-S, ZO-FN-S, and Z-O-F-N-S.    

In this paper, an adaptive fractal analysis method was used to extract the features. Fractal analysis is a modern 

approach to analyzing patterns that transcend conventional Euclidean comprehension through the use of unconventional 

mathematical ideas. The fractal dimension is used to gauge the level of complexity. The Hurst exponent is a measure of 

a time series' long-term memory. The fractal dimension, D, is closely connected to H, which is a measure of a data series' 

"mild" or "wild" unpredictability. When referring to the Hurst exponent, you may hear the terms "index of dependency" 

or "index of long-range dependence". Support Vector Regression (SVR) with Gradient Boost Decision Tree (GBDT) is 

used to classify non-epileptic EEG data with high accuracy. Different measurement variables including ROC, AUC, 

TA, SEN, SPE, RA and K were computed for the suggested technique in this article. In all cases, epileptic and non-

epileptic EEG signals were classified more accurately using the suggested approach. Three classes of EEG datasets have 

been used to test the suggested technique and the accuracy values are 98.23, 97.52, and 96.32% correspondingly. 

Compared to the Patidar and Panigrahi [63], who achieved an accuracy of about 97.75%, Acharya et al. [64] obtained 

an accuracy of 88.70%, and Zhou et al. [65] reached an accuracy of 93.36%. Finally, the performance of the models has 

yet again been confirmed by employing the classifier with some photos never seen by the systems. 
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