2,823 research outputs found

    Deep learning approach for epileptic seizure detection

    Get PDF
    Abstract. Epilepsy is the most common brain disorder that affects approximately fifty million people worldwide, according to the World Health Organization. The diagnosis of epilepsy relies on manual inspection of EEG, which is error-prone and time-consuming. Automated epileptic seizure detection of EEG signal can reduce the diagnosis time and facilitate targeting of treatment for patients. Current detection approaches mainly rely on the features that are designed manually by domain experts. The features are inflexible for the detection of a variety of complex patterns in a large amount of EEG data. Moreover, the EEG is non-stationary signal and seizure patterns vary across patients and recording sessions. EEG data always contain numerous noise types that negatively affect the detection accuracy of epileptic seizures. To address these challenges deep learning approaches are examined in this paper. Deep learning methods were applied to a large publicly available dataset, the Children’s Hospital of Boston-Massachusetts Institute of Technology dataset (CHB-MIT). The present study includes three experimental groups that are grouped based on the pre-processing steps. The experimental groups contain 3–4 experiments that differ between their objectives. The time-series EEG data is first pre-processed by certain filters and normalization techniques, and then the pre-processed signal was segmented into a sequence of non-overlapping epochs. Second, time series data were transformed into different representations of input signals. In this study time-series EEG signal, magnitude spectrograms, 1D-FFT, 2D-FFT, 2D-FFT magnitude spectrum and 2D-FFT phase spectrum were investigated and compared with each other. Third, time-domain or frequency-domain signals were used separately as a representation of input data of VGG or DenseNet 1D. The best result was achieved with magnitude spectrograms used as representation of input data in VGG model: accuracy of 0.98, sensitivity of 0.71 and specificity of 0.998 with subject dependent data. VGG along with magnitude spectrograms produced promising results for building personalized epileptic seizure detector. There was not enough data for VGG and DenseNet 1D to build subject-dependent classifier.Epileptisten kohtausten havaitseminen syväoppimisella lähestymistavalla. Tiivistelmä. Epilepsia on yleisin aivosairaus, joka Maailman terveysjärjestön mukaan vaikuttaa noin viiteenkymmeneen miljoonaan ihmiseen maailmanlaajuisesti. Epilepsian diagnosointi perustuu EEG:n manuaaliseen tarkastamiseen, mikä on virhealtista ja aikaa vievää. Automaattinen epileptisten kohtausten havaitseminen EEG-signaalista voi potentiaalisesti vähentää diagnoosiaikaa ja helpottaa potilaan hoidon kohdentamista. Nykyiset tunnistusmenetelmät tukeutuvat pääasiassa piirteisiin, jotka asiantuntijat ovat määritelleet manuaalisesti, mutta ne ovat joustamattomia monimutkaisten ilmiöiden havaitsemiseksi suuresta määrästä EEG-dataa. Lisäksi, EEG on epästationäärinen signaali ja kohtauspiirteet vaihtelevat potilaiden ja tallennusten välillä ja EEG-data sisältää aina useita kohinatyyppejä, jotka huonontavat epilepsiakohtauksen havaitsemisen tarkkuutta. Näihin haasteisiin vastaamiseksi tässä diplomityössä tarkastellaan soveltuvatko syväoppivat menetelmät epilepsian havaitsemiseen EEG-tallenteista. Aineistona käytettiin suurta julkisesti saatavilla olevaa Bostonin Massachusetts Institute of Technology lastenklinikan tietoaineistoa (CHB-MIT). Tämän työn tutkimus sisältää kolme koeryhmää, jotka eroavat toisistaan esikäsittelyvaiheiden osalta: aikasarja-EEG-data esikäsiteltiin perinteisten suodattimien ja normalisointitekniikoiden avulla, ja näin esikäsitelty signaali segmentoitiin epookkeihin. Kukin koeryhmä sisältää 3–4 koetta, jotka eroavat menetelmiltään ja tavoitteiltaan. Kussakin niistä epookkeihin jaettu aikasarjadata muutettiin syötesignaalien erilaisiksi esitysmuodoiksi. Tässä tutkimuksessa tutkittiin ja verrattiin keskenään EEG-signaalia sellaisenaan, EEG-signaalin amplitudi-spektrogrammeja, 1D-FFT-, 2D-FFT-, 2D-FFT-amplitudi- ja 2D-FFT -vaihespektriä. Näin saatuja aika- ja taajuusalueen signaaleja käytettiin erikseen VGG- tai DenseNet 1D -mallien syötetietoina. Paras tulos saatiin VGG-mallilla kun syötetietona oli amplitudi-spektrogrammi ja tällöin tarkkuus oli 0,98, herkkyys 0,71 ja spesifisyys 0,99 henkilöstä riippuvaisella EEG-datalla. VGG yhdessä amplitudi-spektrogrammien kanssa tuottivat lupaavia tuloksia henkilökohtaisen epilepsiakohtausdetektorin rakentamiselle. VGG- ja DenseNet 1D -malleille ei ollut tarpeeksi EEG-dataa henkilöstä riippumattoman luokittelijan opettamiseksi

    Ensemble approach on enhanced compressed noise EEG data signal in wireless body area sensor network

    Get PDF
    The Wireless Body Area Sensor Network (WBASN) is used for communication among sensor nodes operating on or inside the human body in order to monitor vital body parameters and movements. One of the important applications of WBASN is patients’ healthcare monitoring of chronic diseases such as epileptic seizure. Normally, epileptic seizure data of the electroencephalograph (EEG) is captured and compressed in order to reduce its transmission time. However, at the same time, this contaminates the overall data and lowers classification accuracy. The current work also did not take into consideration that large size of collected EEG data. Consequently, EEG data is a bandwidth intensive. Hence, the main goal of this work is to design a unified compression and classification framework for delivery of EEG data in order to address its large size issue. EEG data is compressed in order to reduce its transmission time. However, at the same time, noise at the receiver side contaminates the overall data and lowers classification accuracy. Another goal is to reconstruct the compressed data and then recognize it. Therefore, a Noise Signal Combination (NSC) technique is proposed for the compression of the transmitted EEG data and enhancement of its classification accuracy at the receiving side in the presence of noise and incomplete data. The proposed framework combines compressive sensing and discrete cosine transform (DCT) in order to reduce the size of transmission data. Moreover, Gaussian noise model of the transmission channel is practically implemented to the framework. At the receiving side, the proposed NSC is designed based on weighted voting using four classification techniques. The accuracy of these techniques namely Artificial Neural Network, Naïve Bayes, k-Nearest Neighbour, and Support Victor Machine classifiers is fed to the proposed NSC. The experimental results showed that the proposed technique exceeds the conventional techniques by achieving the highest accuracy for noiseless and noisy data. Furthermore, the framework performs a significant role in reducing the size of data and classifying both noisy and noiseless data. The key contributions are the unified framework and proposed NSC, which improved accuracy of the noiseless and noisy EGG large data. The results have demonstrated the effectiveness of the proposed framework and provided several credible benefits including simplicity, and accuracy enhancement. Finally, the research improves clinical information about patients who not only suffer from epilepsy, but also neurological disorders, mental or physiological problems

    Classification of Epileptic and Non-Epileptic Electroencephalogram (EEG) Signals Using Fractal Analysis and Support Vector Regression

    Get PDF
    Seizures are a common symptom of this neurological condition, which is caused by the discharge of brain nerve cells at an excessively fast rate. Chaos, nonlinearity, and other nonlinearities are common features of scalp and intracranial Electroencephalogram (EEG) data recorded in clinics. EEG signals that aren't immediately evident are challenging to categories because of their complexity. The Gradient Boost Decision Tree (GBDT) classifier was used to classify the majority of the EEG signal segments automatically. According to this study, the Hurst exponent, in combination with AFA, is an efficient way to identify epileptic signals. As with any fractal analysis approach, there are problems and factors to keep in mind, such as identifying whether or not linear scaling areas are present. These signals were classified as either epileptic or non-epileptic by using a combination of GBDT and a Support Vector Regression (SVR). The combined method's identification accuracy was 98.23%. This study sheds light on the effectiveness of AFA feature extraction and GBDT classifiers in EEG classification. The findings can be utilized to develop theoretical guidance for the clinical identification and prediction of epileptic EEG signals. Doi: 10.28991/ESJ-2022-06-01-011 Full Text: PD

    Epileptic Seizures and the EEG

    Get PDF
    A study of epilepsy from an engineering perspective, this volume begins by summarizing the physiology and the fundamental ideas behind the measurement, analysis and modeling of the epileptic brain. It introduces the EEG and provides an explanation of the type of brain activity likely to register in EEG measurements, offering an overview of how these EEG records are and have been analyzed in the past. The book focuses on the problem of seizure detection and surveys the physiologically based dynamic models of brain activity. Finally, it addresses the fundamental question: can seizures be predicted? Based on the authors' extensive research, the book concludes by exploring a range of future possibilities in seizure prediction

    Automatic Identification of Epileptic Seizures from EEG Signals using Sparse Representation-based Classification

    Get PDF
    Identifying seizure activities in non-stationary electroencephalography (EEG) is a challenging task, since it is time-consuming, burdensome, and dependent on expensive human resources and subject to error and bias. A computerized seizure identification scheme can eradicate the above problems, assist clinicians and benefit epilepsy research. So far, several attempts were made to develop automatic systems to help neurophysiologists accurately identify epileptic seizures. In this research, a fully automated system is presented to automatically detect the various states of the epileptic seizure. The proposed method is based on sparse representation-based classification (SRC) theory and the proposed dictionary learning using electroencephalogram (EEG) signals. Furthermore, the proposed method does not require additional preprocessing and extraction of features which is common in the existing methods. The proposed method reached the sensitivity, specificity and accuracy of 100% in 8 out of 9 scenarios. It is also robust to the measurement noise of level as much as 0 dB. Compared to state-of-the-art algorithms and other common methods, the proposed method outperformed them in terms of sensitivity, specificity and accuracy. Moreover, it includes the most comprehensive scenarios for epileptic seizure detection, including different combinations of 2 to 5 class scenarios. The proposed automatic identification of epileptic seizures method can reduce the burden on medical professionals in analyzing large data through visual inspection as well as in deprived societies suffering from a shortage of functional magnetic resonance imaging (fMRI) equipment and specialized physician

    Diagnosing epilepsy using entropy measures and embedding parameters of EEG signals

    Full text link
    Epilepsy is a neurological disorder that affects normal neural activity. These electrical activities can be recorded as signals containing information about the brain known as Electroencephalography (EEG) signals. Analysis of the EEG signals by individuals for epilepsy diagnosis is subjective and time-consuming. So, an automatic classification system with high detection accuracy is required to overcome possible errors. In this study, the discrete wavelet transform has been applied to EEG signals. Then, entropy measures and embedding parameters have been extracted. These features have been investigated individually to find the most discriminating ones. The significance level of each feature was evaluated by statistical analysis. Consequently, LDA and SVM algorithms have been employed to categorize the EEG signals. The results have indicated that the features of Embedding parameters, PermutationEntropy, FuzzyEntropy, SampleEntropy, NormEntropy, SureEntropy, LogEntropy, and ThresholdEntropy have the potential to discriminate epileptic patients from healthy subjects significantly. Also, SVM classifier has achieved the highest classification accuracy. In this study, we could find effective embedding-based and entropy-based features as appropriate single measures for identifying abnormal activities that can efficiently discriminate the EEG signals of epileptics from healthy individuals. According to the results, they can be used for automatic classification of epileptic EEG signals that are difficult to examine visually

    Differentiating Epileptic from Psychogenic Nonepileptic EEG Signals using Time Frequency and Information Theoretic Measures of Connectivity

    Get PDF
    Differentiating psychogenic nonepileptic seizures from epileptic seizures is a difficult task that requires timely recording of psychogenic events using video electroencephalography (EEG). Interpretation of video EEG to distinguish epileptic features from signal artifacts is error prone and can lead to misdiagnosis of psychogenic seizures as epileptic seizures resulting in undue stress and ineffective treatment with antiepileptic drugs. In this study, an automated surface EEG analysis was implemented to investigate differences between patients classified as having psychogenic or epileptic seizures. Surface EEG signals were grouped corresponding to the anatomical lobes of the brain (frontal, parietal, temporal, and occipital) and central coronal plane of the skull. To determine if differences were present between psychogenic and epileptic groups, magnitude squared coherence (MSC) and cross approximate entropy (C-ApEn) were used as measures of neural connectivity. MSC was computed within each neural frequency band (delta: 0.5Hz-4Hz, theta: 4-8Hz, alpha: 8-13Hz, beta: 13-30Hz, and gamma: 30-100Hz) between all brain regions. C-ApEn was computed bidirectionally between all brain regions. Independent samples t-tests were used to compare groups. The statistical analysis revealed significant differences between psychogenic and epileptic groups for both connectivity measures with the psychogenic group showing higher average connectivity. Average MSC was found to be lower for the epileptic group between the frontal/central, parietal/central, and temporal/occipital regions in the delta band and between the temporal/occipital regions in the theta band. Average C-ApEn was found to be greater for the epileptic group between the frontal/parietal, parietal/frontal, parietal/occipital, and parietal/central region pairs. These results suggest that differences in neural connectivity exist between psychogenic and epileptic patient groups
    corecore