47,862 research outputs found

    Temporal Gillespie algorithm: Fast simulation of contagion processes on time-varying networks

    Full text link
    Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling.Comment: Minor changes and updates to reference

    Mutual selection in time-varying networks

    Get PDF
    Copyright @ 2013 American Physical SocietyTime-varying networks play an important role in the investigation of the stochastic processes that occur on complex networks. The ability to formulate the development of the network topology on the same time scale as the evolution of the random process is important for a variety of applications, including the spreading of diseases. Past contributions have investigated random processes on time-varying networks with a purely random attachment mechanism. The possibility of extending these findings towards a time-varying network that is driven by mutual attractiveness is explored in this paper. Mutual attractiveness models are characterized by a linking function that describes the probability of the existence of an edge, which depends mutually on the attractiveness of the nodes on both ends of that edge. This class of attachment mechanisms has been considered before in the fitness-based complex networks literature but not on time-varying networks. Also, the impact of mutual selection is investigated alongside opinion formation and epidemic outbreaks. We find closed-form solutions for the quantities of interest using a factorizable linking function. The voter model exhibits an unanticipated behavior as the network never reaches consensus in the case of mutual selection but stays forever in its initial macroscopic configuration, which is a further piece of evidence that time-varying networks differ markedly from their static counterpart with respect to random processes that take place on them. We also find that epidemic outbreaks are accelerated by uncorrelated mutual selection compared to previously considered random attachment

    Contagion processes on the static and activity driven coupling networks

    Full text link
    The evolution of network structure and the spreading of epidemic are common coexistent dynamical processes. In most cases, network structure is treated either static or time-varying, supposing the whole network is observed in a same time window. In this paper, we consider the epidemic spreading on a network consisting of both static and time-varying structures. At meanwhile, the time-varying part and the epidemic spreading are supposed to be of the same time scale. We introduce a static and activity driven coupling (SADC) network model to characterize the coupling between static (strong) structure and dynamic (weak) structure. Epidemic thresholds of SIS and SIR model are studied on SADC both analytically and numerically with various coupling strategies, where the strong structure is of homogeneous or heterogeneous degree distribution. Theoretical thresholds obtained from SADC model can both recover and generalize the classical results in static and time-varying networks. It is demonstrated that weak structures can make the epidemics break out much more easily in homogeneous coupling but harder in heterogeneous coupling when keeping same average degree in SADC networks. Furthermore, we show there exists a threshold ratio of the weak structure to have substantive effects on the breakout of the epidemics. This promotes our understanding of why epidemics can still break out in some social networks even we restrict the flow of the population

    Immunization strategies for epidemic processes in time-varying contact networks

    Get PDF
    Spreading processes represent a very efficient tool to investigate the structural properties of networks and the relative importance of their constituents, and have been widely used to this aim in static networks. Here we consider simple disease spreading processes on empirical time-varying networks of contacts between individuals, and compare the effect of several immunization strategies on these processes. An immunization strategy is defined as the choice of a set of nodes (individuals) who cannot catch nor transmit the disease. This choice is performed according to a certain ranking of the nodes of the contact network. We consider various ranking strategies, focusing in particular on the role of the training window during which the nodes' properties are measured in the time-varying network: longer training windows correspond to a larger amount of information collected and could be expected to result in better performances of the immunization strategies. We find instead an unexpected saturation in the efficiency of strategies based on nodes' characteristics when the length of the training window is increased, showing that a limited amount of information on the contact patterns is sufficient to design efficient immunization strategies. This finding is balanced by the large variations of the contact patterns, which strongly alter the importance of nodes from one period to the next and therefore significantly limit the efficiency of any strategy based on an importance ranking of nodes. We also observe that the efficiency of strategies that include an element of randomness and are based on temporally local information do not perform as well but are largely independent on the amount of information available

    Analytical computation of the epidemic threshold on temporal networks

    Full text link
    The time variation of contacts in a networked system may fundamentally alter the properties of spreading processes and affect the condition for large-scale propagation, as encoded in the epidemic threshold. Despite the great interest in the problem for the physics, applied mathematics, computer science and epidemiology communities, a full theoretical understanding is still missing and currently limited to the cases where the time-scale separation holds between spreading and network dynamics or to specific temporal network models. We consider a Markov chain description of the Susceptible-Infectious-Susceptible process on an arbitrary temporal network. By adopting a multilayer perspective, we develop a general analytical derivation of the epidemic threshold in terms of the spectral radius of a matrix that encodes both network structure and disease dynamics. The accuracy of the approach is confirmed on a set of temporal models and empirical networks and against numerical results. In addition, we explore how the threshold changes when varying the overall time of observation of the temporal network, so as to provide insights on the optimal time window for data collection of empirical temporal networked systems. Our framework is both of fundamental and practical interest, as it offers novel understanding of the interplay between temporal networks and spreading dynamics.Comment: 22 pages, 6 figure

    Control of Time-Varying Epidemic-Like Stochastic Processes and Their Mean-Field Limits

    Full text link
    The optimal control of epidemic-like stochastic processes is important both historically and for emerging applications today, where it can be especially important to include time-varying parameters that impact viral epidemic-like propagation. We connect the control of such stochastic processes with time-varying behavior to the stochastic shortest path problem and obtain solutions for various cost functions. Then, under a mean-field scaling, this general class of stochastic processes is shown to converge to a corresponding dynamical system. We analogously establish that the optimal control of this class of processes converges to the optimal control of the limiting dynamical system. Consequently, we study the optimal control of the dynamical system where the comparison of both controlled systems renders various important mathematical properties of interest.Comment: arXiv admin note: substantial text overlap with arXiv:1709.0798
    • …
    corecore