2,248 research outputs found

    Follow-the-leader Formation Marching Through a Scalable O(log2n) Parallel Architecture.

    Get PDF
    An important topic in the field of Multi Robot Systems focuses on motion coordination and synchronization for formation keeping. Although several works have addressed such problem, little attention has been devoted to study the computational complexity within the framework of large-scale systems. This paper presents our current work on how to achieve high computational performance for systems composed by a large number of robots that must fulfill with a marching and formation task. A scalable Multi-Processor Parallel Architecture is introduced with the purpose of achieving scalability, i.e., computation time of O(log2n) for a n-robots system. Our architecture has been tested onto a multi-processor system and validated against several simulations testing

    Mobile robots and vehicles motion systems: a unifying framework

    Get PDF
    Robots perform many different activities in order to accomplish their tasks. The robot motion capability is one of the most important ones for an autonomous be- havior in a typical indoor-outdoor mission (without it other tasks can not be done), since it drastically determines the global success of a robotic mission. In this thesis, we focus on the main methods for mobile robot and vehicle motion systems and we build a common framework, where similar components can be interchanged or even used together in order to increase the whole system performance

    Modeling, Evaluation, and Scale on Artificial Pedestrians: A Literature Review

    Get PDF
    Modeling pedestrian dynamics and their implementation in a computer are challenging and important issues in the knowledge areas of transportation and computer simulation. The aim of this article is to provide a bibliographic outlook so that the reader may have quick access to the most relevant works related to this problem. We have used three main axes to organize the article's contents: pedestrian models, validation techniques, and multiscale approaches. The backbone of this work is the classification of existing pedestrian models; we have organized the works in the literature under five categories, according to the techniques used for implementing the operational level in each pedestrian model. Then the main existing validation methods, oriented to evaluate the behavioral quality of the simulation systems, are reviewed. Furthermore, we review the key issues that arise when facing multiscale pedestrian modeling, where we first focus on the behavioral scale (combinations of micro and macro pedestrian models) and second on the scale size (from individuals to crowds). The article begins by introducing the main characteristics of walking dynamics and its analysis tools and concludes with a discussion about the contributions that different knowledge fields can make in the near future to this exciting area

    Model identification and flight control design for the Prometheus mapping drone

    Get PDF
    We consider the problem of the modeling, system identification, trajectory generation and control of the Prometheus mapping drone. The Prometheus drone consists in indoor navigation and mapping using an aerial vehicle. A non linear model is computed and identified with a Kalman filter. A trajectory generator was develop, then, a controller able to track this trajectory is computed, taking in consideration the dynamic of the systemope

    A Consolidated Review of Path Planning and Optimization Techniques: Technical Perspectives and Future Directions

    Get PDF
    In this paper, a review on the three most important communication techniques (ground, aerial, and underwater vehicles) has been presented that throws light on trajectory planning, its optimization, and various issues in a summarized way. This kind of extensive research is not often seen in the literature, so an effort has been made for readers interested in path planning to fill the gap. Moreover, optimization techniques suitable for implementing ground, aerial, and underwater vehicles are also a part of this review. This paper covers the numerical, bio-inspired techniques and their hybridization with each other for each of the dimensions mentioned. The paper provides a consolidated platform, where plenty of available research on-ground autonomous vehicle and their trajectory optimization with the extension for aerial and underwater vehicles are documented

    Minimum-Energy Exploration and Coverage for Robotic Systems

    Get PDF
    This dissertation is concerned with the question of autonomously and efficiently exploring three-dimensional environments. Hence, three robotics problems are studied in this work: the motion planning problem, the coverage problem and the exploration problem. The work provides a better understanding of motion and exploration problems with regard to their mathematical formulation and computational complexity, and proposes solutions in the form of algorithms capable of being implemented on a wide range of robotic systems.Because robots generally operate on a limited power source, the primary focus is on minimizing energy while moving or navigating in the environment. Many approaches address motion planning in the literature, however few attempt to provide a motion that aims at reducing the amount of energy expended during that process. We present a new approach, we call integral-squared torque approximation, that can be integrated with existing motion planners to find low-energy and collision-free paths in the robot\u27s configuration space.The robotics coverage problem has many real-world applications such as removing landmines or surveilling an area. We prove that this problem is inherently difficult to solve in its general case, and we provide an approach that is shown to be probabilistically complete, and that aims at minimizing a cost function (such as energy.) The remainder of the dissertation focuses on minimum-energy exploration, and offers a novel formulation for the problem. The formulation can be directly applied to compare exploration algorithms. In addition, an approach that aims at reducing energy during the exploration process is presented, and is shown through simulation to perform better than existing algorithms

    Immersive Framework for Designing Trajectories Using Augmented Reality

    Get PDF
    The intuitive interaction capabilities of augmented reality make it ideal for solving complex 3D problems that require complex spatial representations, which is key for astrodynamics and space mission planning. By implementing common and complex orbital mechanics algorithms in augmented reality, a hands-on method for designing orbit solutions and spacecraft missions is created. This effort explores the aforementioned implementation with the Microsoft Hololens 2 as well as its applications in industry and academia. Furthermore, a human-centered design process and study are utilized to ensure the tool is user-friendly while maintaining accuracy and applicability to higher-fidelity problems

    Six-DOF Spacecraft Dynamics Simulator For Testing Translation and Attitude Control

    Full text link
    This paper presents a method to control a manipulator system grasping a rigid-body payload so that the motion of the combined system in consequence of externally applied forces to be the same as another free-floating rigid-body (with different inertial properties). This allows zero-g emulation of a scaled spacecraft prototype under the test in a 1-g laboratory environment. The controller consisting of motion feedback and force/moment feedback adjusts the motion of the test spacecraft so as to match that of the flight spacecraft, even if the latter has flexible appendages (such as solar panels) and the former is rigid. The stability of the overall system is analytically investigated, and the results show that the system remains stable provided that the inertial properties of two spacecraft are different and that an upperbound on the norm of the inertia ratio of the payload to manipulator is respected. Important practical issues such as calibration and sensitivity analysis to sensor noise and quantization are also presented
    • …
    corecore