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ABSTRACT

Salan, Serge. A. Ph.D. The University of Memphis. December 2013.
Minimum-Energy Exploration and Coverage for Robotic Systems. Major Professor:
King-Ip Lin.

This dissertation is concerned with the question of autonomously and efficiently

exploring three-dimensional environments. Hence, three robotics problems are studied in

this work: the motion planning problem, the coverage problem and the exploration

problem. The work provides a better understanding of motion and exploration problems

with regard to their mathematical formulation and computational complexity, and

proposes solutions in the form of algorithms capable of being implemented on a wide

range of robotic systems.

Because robots generally operate on a limited power source, the primary focus is on

minimizing energy while moving or navigating in the environment. Many approaches

address motion planning in the literature, however few attempt to provide a motion that

aims at reducing the amount of energy expended during that process. We present a new

approach, we call integral-squared torque approximation, that can be integrated with

existing motion planners to find low-energy and collision-free paths in the robot’s

configuration space.

The robotics coverage problem has many real-world applications such as removing

landmines or surveilling an area. We prove that this problem is inherently difficult to solve

in its general case, and we provide an approach that is shown to be probabilistically

complete, and that aims at minimizing a cost function (such as energy.)

The remainder of the dissertation focuses on minimum-energy exploration, and

offers a novel formulation for the problem. The formulation can be directly applied to

compare exploration algorithms. In addition, an approach that aims at reducing energy

during the exploration process is presented, and is shown through simulation to perform

better than existing algorithms.
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Chapter 1

Introduction

1.1 Overview

Exploration in robotics is the problem of moving a robot in an unknown

environment to acquire information. When a robot has a priori knowledge of the

environment, the problem is named coverage. The problems of exploration and coverage

encompass a wide range of applications mentioned by the following motivational

examples.

The robotics community has been primarily interested in exploration for the purpose

of providing robots with the capability of autonomously building maps,

i.e. representations of the environment based on spatial information gathered by sensors

over time (Wallgrün 2010). Robots can then use maps to navigate and operate in the

environment. The frontier-based approach is a popular exploration method for building

two-dimensional maps (Yamauchi 1997). Other approaches provide improvements by

reducing the cost associated with the exploration (Makarenko et al. 2002; Gonzalez-Banos

and Latombe 2002; Thrun et al. 2005).

Robots can become extremely valuable tools in areas where it is dangerous for

humans to operate, e.g. disaster areas affected by natural or technological hazards, or
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areas containing land mines. Nagatani et al. (2011) provide a mapping system that aims at

deploying multiple robots in a disaster environment. The robots can then collect

three-dimensional data and aid search and rescue crews. Acar et al. (2003) developed an

algorithm that guides a robot in a minefield to detect and possibly clear mines.

Other applications of robotic exploration require the robot to provide specific

information about an unknown environment. For example, Mars exploration rovers

exploring the planet Mars (Washington et al. 1999; NASA 2013), where the mission’s

goal is to find geological evidence of past water on Mars.

Surveillance is also another application that requires a robot to examine its

environment for detecting intrusion or searching for a person or an object of interest. Xu

and Stentz (2011) designed an algorithm that can be used by a team of robots to patrol an

urban area.

1.2 Current state of scholarship

Given a variety of applications, extensive research was performed on the problem

and various solutions are offered. However, there exists important elements that previous

research do not address:

• The exploration and coverage problems are typically presented without a complete

formulation, i.e. a mathematical description of the robotic system, the objectives

and the physical constraints. With a lack of formulation, the evaluation of

algorithms and their comparison become intricate.

• To the best of the author’s knowledge, there exists no publications concerned with

the computational complexity of the exploration and coverage problems.
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• Previous research in exploration and coverage do not provide an apt efficiency

measure able to adequately quantify the quality of an exploration, and do not

propose algorithms that seek to optimize such efficiency measure.

• Existing methods are only designed toward robots whose dynamics are simple to

characterize (e.g. a mobile robot) or toward a specific type of robot. They do not

possess enough generality to be applied on various types of robots and

environments.

This dissertation investigates these crucial aspects of the exploration and coverage

problems and proposes novel methods and algorithms.

1.3 Energy efficiency

Energy conservation is an important aspect of robot motion. Energy-efficient

movements can augment the lifetime of a robot operating on a small energy source.

Because exploring robots may operate on a limited power source, reducing the amount of

energy expended during the exploration is valuable. The idea of minimizing energy during

the exploration is proposed by Mei et al. (2006).

The amount of energy expended by a robot can be divided into mechanical and

electrical energy (Mei et al. 2004). When compared to other components, the actuators

have a high power consumption (Wang et al. 2005). Therefore this work is focused on the

minimization of the amount of energy dissipated through the robot motors.

1.4 Contribution statement

1. The energy-optimal planning problem is applied on a general articulated robotic

system. The proposed solution finds low-energy and collision-free paths, and can be

applied on high-degree-of freedom robots.
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2. The coverage problem is generalized and its polynomial-space hardness is shown.

3. A solution to the generalized coverage problem is proposed. The algorithm finds

low-cost collision-free paths and is shown to be probabilistically complete.

4. The exploration problem is formulated as a multi-optimization problem. The

formulation is general enough to be applied on many robotic systems operating

under different types of constraints, e.g. energy or time constraints.

5. An exploration algorithm that seeks to minimize the total amount of energy

expended during the exploration process is presented. The algorithm is

implemented on an articulated robot operating in a three-dimensional workspace.

1.5 Organization

The rest of this manuscript is organized as follows. Chapter 2 provides an overview

of subjects in robotics that are used subsequently. The chapter also has the purpose of

introducing the main mathematical symbols used. Chapter 3 presents the major motion

planning algorithms employed in robotics. Motion planning is an integral part of every

exploration approach, necessary for finding continuous collision-free robot motions. The

chapter also proposes an approach for the energy-optimal motion planning problem. The

generalized coverage problem is presented in Chapter 4, and an overview of existing

methods is provided. The chapter mainly explores the problem’s computational

complexity and introduces novel coverage algorithms. Chapter 5 provides a broad

overview of exploration methods, and proposes a formulation to the problem. The chapter

then shows a novel exploration algorithm designed to minimize the amount of energy

expended during the robot’s motion, and gives a comparison of different exploration

strategies. The comparison is performed on an articulated robot in a three-dimensional

environment.

4



Chapter 2

Preliminaries

This chapter gives a general overview of some topics in robotics that are used

throughout this manuscript. The reader is referred to robotics textbooks for a greater detail

on each topic. Most of the symbols and definitions used in the following chapters are

introduced here.

2.1 Specifying the position of a robot

Before solving any problem in robotics, we must have a full description of the

position of the robot. We can then use this information for planning and collision

checking. A configuration is defined as the complete specification of the location of every

point of a robot system. The robot’s configuration is given by the vector

q =



q1

q2

...

qn


, (2.1)
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xc

y

x

yc
r θ

Figure 2.1: A circular mobile robot of radius r in a planar world. xc and yc specify the global
position of the center of the robot, and θ is an angle that specifies the robot’s orientation.
The robot’s configuration is given by q = [xc,yc,θ ]

T.

where every variable qi in q is necessary for specifying the location of every point in the

system. The dimension n of q is the number of degrees of freedom of the robot system.

The space of all possible configurations is denoted by C and is known by the configuration

space. q is a point in C . Choset et al. (2005) provides a more rigorous definition of

configuration as well as examples of the configuration space of some common robots.

We illustrate the definition of configuration by considering two types of robots in

Figures 2.1 and 2.2. Note that the radius of the mobile robot in Figure 2.1 is constant and

is not included in the configuration vector.

A robot typically operates in a two or three-dimensional Euclidean space known as

the workspace and denoted by W . The physical space occupied by a robot is a subset of

W and is computed given the robot’s configuration and geometry. It is denoted R (q).

The robot must be aware of obstacles while moving in its workspace. W obs denotes

the obstacle space and is a subset of W . A robot contacts obstacles if and only if R (q)

intersects W obs. The set of all configurations that do not cause the robot to touch obstacles

is the free configuration space defined by

C free := {q ∈ C | R (q)∩W obs = /0}. (2.2)

6



θ1

θ2

y

x

links

joints

Figure 2.2: A robot arm that possesses two links in a planar world. The first joint has a fixed
position. θ1 and θ2 specify the first and second joints’ angles. The robot’s configuration is
given by q = [θ1,θ2]

T.

The relation between the robot’s physical world and its configuration space is

illustrated in Figure 2.3, where a two-degree-of-freedom planar robot arm is considered.

Every point on the robot is completely specified by the values θ1 and θ2 that denote the

angles (expressed in radians) of the first and second joint respectively, such that

θ1,θ2 ∈ [0, π

2 ]. The robot does not occupy any volume and R (q) is formed by two line

segments. The workspace contains a squared obstacle. The resulting configuration space

is shown in Figure 2.3(b).

2.2 Perception

The robot gathers information about its environment through its sensors. The

configuration of a sensor, denoted s, is the complete specification of the sensor’s position

and orientation. In a two-dimensional workspace, the vector s is an element of the special

Euclidean group SE(2), a three-dimensional manifold. If the workspace is three

dimensional, s is an element of the special Euclidean group SE(3), a six-dimensional

manifold.

7



θ1

θ2

y

W

W obs

x

(a) Planar workspace of a robot arm that possesses two
links θ1 and θ2 specifying the first and second joints’
angles respectively. The workspace contains a single
squared obstacle.

π/2

π/2 θ1 (radian)π/4

C free

C free

θ2 (radian)

0

(b) Corresponding configuration space. C free denotes the free
configuration space. The striped region corresponds to the set
of all configurations that result in collision with W obs.

Figure 2.3: The relation between the robot’s physical world and its configuration space.
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FOV

mobile robot

sensor
r

Figure 2.4: Mobile robot equipped with a sensor of range r in a planar world. The sensor
is placed at the center of the robot. The region in gray is the robot’s field of view (FOV).

The field of view is defined as the union of all observable regions of W from the

robot’s sensors. Two types of robots equipped with sensors are illustrated in Figures 2.4

and 2.5.

For a robot such as the one in Figure 2.4, finding s is straightforward given the

robot’s configuration. If the robot is a kinematic chain, e.g. the arm in Figure 2.5, a

sensor’s configuration s is computed by evaluating the robot’s forward kinematics

equations. Given the robot’s configuration, the forward kinematics problem is to

determine the position and orientation of the end-effector, or any tool mounted on the

robot. Spong et al. (2006) show how to derive the forward kinematics equations for

different types robot manipulators.

2.3 Uncertainty in robotics

In the previous sections, we introduce the concepts of a robot and a sensor

configurations. It is crucial for a robot that the configuration variables are represented by

accurate values. This accuracy allows the robot to localize itself, build a clear

representation of its environment and perceive, identify and manipulate physical objects.

However in real-world applications, there exists a great deal of uncertainty mainly

produced by inaccurate sensor measurements and dynamic environments. In this work we

9



robot arm

FOV

sensors

r

r

Figure 2.5: Robot arm equipped with two sensors of range r in a planar world. The sensors
are mounted on the end-effector and the robot’s “elbow”. The regions in gray are the robot’s
field of view (FOV).

assume that the robot’s environment is static and its configurations are known, i.e. there is

no uncertainty. However, the algorithms presented in the following chapters can be

adapted to deal with uncertainty by using statistical and probabilistic techniques. An

overview of these techniques is provided by Thrun et al. (2005).

2.4 Motion of a robot

2.4.1 Path and trajectory

The motion of a robot can be represented by a continuous function σ : [0,1]→ C free,

where σ(0) and σ(1) are the initial and final configurations respectively. Such

representation is called a path and is merely a geometric description of the motion.

When a timing law is added to the motion, i.e. every configuration in the motion

must be achieved at a specified time, the description is called a trajectory. A trajectory is a

continuous and twice-differentiable function q : [0,T ]→ C free, where T is the time length

of the trajectory. q(t) denotes the robot’s configuration at time t. The first and second

10



derivatives of q(t) are denoted q̇(t) and q̈(t) respectively. They are the robot’s velocity

and acceleration vectors at time t respectively.

We illustrate these concepts by providing the following example. Consider the robot

in Figure 2.2 and suppose that the robot moves by changing the value of its first joint

angle θ1. Figure 2.6 gives an example of a trajectory that interpolates the angles 0, π/2

and 0 radians, at 0, 0.5 and 1 seconds respectively. The trajectory uses a timing law of

cubic splines and ensures continuity of velocity and acceleration. Siciliano et al. (2009)

describe various trajectory planning methods.

2.4.2 Dynamics of a n-link robot

We now consider a multi-link robotic system (e.g. the one in Figure 2.2) and we are

interested in showing the relationship between force and motion. This relationship can be

described mathematically with the dynamic equations of a robot. These equations can be

written in different forms, and are derived by Spong et al. (2006) and Choset et al. (2005).

It is common to express the robot’s dynamics in matrix form. The Euler-Lagrange

equations of motion are applied to obtain the dynamic equations of a robot in the

following form:

M(q)q̈+C(q, q̇)q̇+g(q) = u. (2.3)

The vector u represents the generalized forces acting on the robot. For a n-link robot, the

generalized forces consist of motor torque. It is common to denote the vector representing

motor torque by τ . M(q) is the robot’s generalized inertia matrix (also called mass

matrix). M(q) is is a symmetric positive definite matrix. The Coriolis and centrifugal

forces are denoted by C(q, q̇)q̇. The Coriolis and centrifugal forces are velocity dependent

and indicate the inter-link dynamic interactions. g(q) is the vector of gravity forces. Since

the inertia matrix M(q) is invertible, the robot’s acceleration is given by

q̈ = M(q)−1{u−C(q, q̇)q̇−g(q)}. (2.4)
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Figure 2.6: Trajectory with a timing law of cubic splines interpolating the angles 0, π/2 and
0 radians at 0, 0.5 and 1 seconds respectively. The corresponding velocity and acceleration
vectors are denoted θ̇1 and θ̈1 respectively.
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2.4.3 Inverse dynamics

The inverse dynamics is an essential problem for controlling the motion of a robot;

it is defined as follows. Let the variables q and q̇ be the robotic system’s state. Given a

description of a robotic system and its state, find the force u required to achieve a

specified acceleration q̈. The recursive Newton-Euler algorithm is used at different

instances in the following chapters to solve the inverse dynamics problem. Important

dynamics algorithms, including the recursive Newton-Euler algorithm, are described by

Featherstone (2007) and Angeles (2003).
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Chapter 3

Low-Energy Robot Motion

3.1 Introduction

Arguably one the most fundamental problems in robotics, the motion planning

problem arises in many other disciplines including artificial intelligence, computer

graphics and computational biology (LaValle 2006). In robotics, the basic motion

planning problem is to find a collision-free path in the robot’s configuration space, from

an initial configuration to a goal region (or correctly report that such path does not exist.)

In general, there can be a very large number of solutions to a single instance of the

problem. It is then desirable to find a candidate path of minimum cost with respect to a

given cost function. The problem defined by Karaman and Frazzoli (2010) is then known

by the optimal planning problem.

In this chapter we express cost in terms of energy dissipated through the robot

motors. The problem we address is the energy-optimal planning problem with zero

velocities at end points. To the best of the author’s knowledge this problem has no

solution for a general articulated robotic system in the presence of obstacles. In our

solution, we provide a cost prediction function, and combine it with the existing motion
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planning algorithm RRT∗ (Karaman and Frazzoli 2010) to find low-energy and

collision-free paths in the configuration space.

3.1.1 Sampling-based motion planners

Even in its most basic definition, the motion planning problem, also known as the

mover’s problem, is shown to be inherently difficult to solve (Reif 1979). Sampling-based

planners are popular algorithms as they are computationally efficient and generally

successful in solving the problem. Sampling-based planners generate samples from the

configuration space and produce paths by connecting them. Such algorithms include the

probabilistic roadmaps (PRM) and the rapidly-exploring random trees (RRT). PRM is

introduced by Kavraki et al. (1996). The method first constructs a roadmap, a set of

connected points in the free configuration space. This step is known by the learning phase.

After that, PRM finds paths between pairs of initial and goal configurations. As a result,

PRM is mostly effective in addressing the multiple-query variant of the motion planning

problem, i.e. multiple initial and goal configurations within a static environment. On the

other hand, the RRT algorithm (LaValle 1998) is more suitable as a single-query method.

The RRT algorithm incrementally expands a tree structure, rooted at the initial

configuration, in the collision-free space. The algorithm returns the path that connects the

RRT root to the goal configuration.

PRM and RRT are probabilistically complete (Choset et al. 2005; LaValle and

Kuffner 1999), i.e. the probability of their success approaches unity as the number of

samples approaches infinity. However when solving the optimal planning problem,

Karaman and Frazzoli (2011) show that the probability that they find an optimal solution

is almost zero. Other methods that seek to address the optimal planning problem are

discussed below.
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3.1.2 Motion planning to minimize a cost function

The optimal planning problem has seen an increasing interest in the past decade.

The work by Urmson (2003) introduces a biased expansion of a RRT; the tree reaches a

goal configuration while favoring low-cost regions. Ferguson (2006) considers the idea of

generating a series of paths. Their method repeatedly reconstructs the RRT to consistently

improve the quality of the solution. The work by Jaillet et al. (2010) presents a

sampling-based planner that uses stochastic optimization methods to globally optimize

paths on a configuration-space costmap. This planner is combined with a gradient descent

technique by Berenson (2011). They present ways to compute the gradient of the cost in

the work space, the task space and the configuration space of the robot.

The methods cited above can generally find low-cost paths but do not ensure

optimality. Karaman and Frazzoli (2011) introduce a sampling-based motion planner,

called RRT∗, proven to be asymptotically optimal, while preserving the exploration

properties and the running time of RRT. When adding a new point to the tree, RRT∗

examines cumulative costs (between the point and the root) and reconnects the tree around

the newly added point. Variations of the RRT∗are offered by Karaman (2010) to account

for kinodynamic constraints, and by Perez et al. (2012) who utilize a cost function based

on linear quadratic regulators. They evaluate their method on underactuated systems.

3.1.3 Energy-optimal motion planning

The energy-optimal planning problem has seen an interest in industrial applications

to reduce manufacturing costs. The problem is commonly formulated as an optimal

control problem. Optimal control theory is described by Chachuat (2007). The problem of

finding a minimum-energy point-to-point trajectory is solved on a

three-degree-of-freedom industrial robot using numerical methods (von Stryk and

Schlemmer 1994). The negative formulation of Pontryagin’s maximum principle is

applied by Galicki (1998) to guide a planar robot in a two-dimensional environment with
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obstacles. Gregory et al. (2012) solve two planning problems on a planar robot

manipulator with two degrees of freedom: the path tracking and the intersection-free

trajectory planning problems. In their solution, the optimal control problem is

reformulated into a calculus of variations problem.

There exists a large literature (not discussed here) on time-optimal planning. The

bi-objective optimization problem of finding a control that minimizes time and energy has

been studied by Shiller (1994) and Verscheure et al. (2008). Their work uses a utility

function expressed as a weighted sum.

The methods cited in this section provide various solutions to the energy-optimal

planning problem. However, these solutions only consider planar robots,

low-degree-of-freedom robots, point-to-point motions or obstacle-free environments. We

propose applying this problem on a general articulated robot in an environment with

obstacles by using the existing motion planner RRT∗. We require that the starting and

ending velocities are zero. This condition encompass a large number of problems where a

robot is initially idle and must safely reach a destination and come to a complete stop.

However, the method presented here might not be practical for problems with nonzero or

high velocities at endpoints. It is also shown, later in this chapter, that accurate energy

prediction is difficult to achieve in high-speed motions.

This chapter is structured as follows. Section 3.2 defines the energy-optimal motion

planning problem. Section 3.3 provides a detailed description of existing motion planners.

Section 3.4 introduces a method, we call integral-squared torque approximation,

integrated with RRT∗ to form a solution to the energy-optimal planning problem. We

evaluate our method in a simulated environment in Section 3.5.
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3.2 Problem Definition

The optimal planning problem is defined by Karaman and Frazzoli (2010). Some of

their definitions must be restated here in order to present, later in this section, the

energy-optimal planning problem.

3.2.1 Notation

Let W be a bounded region in a three-dimensional space that represents the robot’s

physical world, and let W obs ⊂W be the occupied (also called obstacle) space.

Let C be the n-dimensional configuration space of the robot. C free denotes the free

state space. Let q ∈ C be a state. The physical space occupied by the robot at q is denoted

by R (q). q ∈ C free if and only if R (q) does not intersect with W obs.

3.2.2 Optimal planning problem

A continuous collision-free path is represented by the function σ : [0,1]→ C free. Let

S denote the set of all continuous collision-free paths and let c : S → R+ be a function that

assigns a nonnegative quantity to a path in S .

Given an initial configuration q0 and a goal region C goal, the optimal motion

planning problem is to find a path σ ∈ S that minimizes c or correctly report that such

path does not exist. More formally:

minimize : c(σ) (3.1)

subject to : σ(0) = q0 (3.2)

σ(1) ∈ C goal. (3.3)
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3.2.3 Energy-optimal planning problem

The energy-optimal planning problem is formulated in the literature as an optimal

control problem, where the amount of energy dissipated in the actuators during the motion

is expressed as the integral of squared torque. Let t be the time variable and (q(t), q̇(t))

the state of the robot at t, where q(t) and q̇(t) denote the configuration and velocity

vectors respectively. Let τ(t) be the torque vector controlling the robotic system at t. The

control function is defined over the interval [0,T ] where the final time T is prescribed. The

energy-optimal planning problem with zero velocities at end points is to find a feasible

control τ(t), 0≤ t ≤ T , to:

minimize : J :=
∫ T

0
τ(t)Tτ(t)dt (3.4)

subject to : (q(0), q̇(0)) = (q0,0) (3.5)

q(T ) ∈ C goal (3.6)

q̇(T ) = 0 (3.7)

q(t) ∈ C free ∀t (3.8)

q̈ = M(q)−1{τ−C(q, q̇)q̇−g(q)}, (3.9)

or correctly report that such control does not exist. M(q) is the robot’s generalized inertia

matrix, C(q, q̇) denotes the Coriolis and centrifugal forces, and g(q) is the vector of

gravity forces. The optimization problem in (3.4) is addressed in the following section.

3.3 Existing Solutions

3.3.1 Rapidly-exploring random tree

The RRT algorithm, introduced by LaValle (1998), builds a tree rooted at q0 that

expands in the free configuration space. At each iteration, a sample from C is generated,
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i.e. a point in the n-dimensional configuration space. The nearest point in the tree is

extended toward this sample to create a new point q. The extension procedure moves one

point towards another by a prespecified step. The running time of RRT is O(K logK),

where K is the number of samples (Karaman and Frazzoli 2011).

A grown RRT is shown in Figure 3.1. The configuration space is two dimensional

and the robot used is the one in Figure 2.2.
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Figure 3.1: RRT in a two-dimensional configuration space applied on the robot in Figure
2.2.
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3.3.2 Optimal rapidly-exploring random tree

The RRT∗ sampling-based motion planner is described by Karaman and Frazzoli

(2010). Like RRT, the algorithm preserves a tree structure rooted at q0. At each iteration,

the algorithm generates a sample from C . The nearest point in the tree is extended toward

this sample to create a new point q. Points that lie inside a n-ball centered at q are

examined. The point that minimizes the cumulative cost between q and the root of the tree

is chosen to be the parent of q. In addition, the points inside the n-ball are reconnected if

the path through q has a smaller cost. The running time of RRT∗ is O(K logK), where K is

the number of samples.

A grown RRT∗ is shown in Figure 3.2. The configuration space is two dimensional

and the robot used is the one in Figure 2.2. The RRT∗minimizes the Euclidean distance

between configurations. To produce an accurate comparison with RRT, the same samples

from Figure 3.1 are used here.

When implementing RRT∗, a cost function must be specified. The Euclidean

distance (i.e. the distance in the Euclidean configuration space) is often used as a

performance criterion. However, for the energy-optimal planning problem, the Euclidean

distance cannot accurately reflect the cost on a dynamical system such as the one in (3.9).

To address the energy-optimal planning problem, we propose a new method to measure

cost, described in the following section.

3.4 Integral-squared torque approximation

In this Section, a path σ is described as a finite sequence of configurations q0, ...,qk,

where q0 is a vector denoting the initial configuration of the robot. To ensure continuity,

we assume that the robot follows the line segments connecting the path points. A path is

collision free if the line segments connecting the path points are inside C free.
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Figure 3.2: RRT∗ in a two-dimensional configuration space applied on the robot in Figure
2.2.
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We assume that the robot uses a predefined control law (described in Section 3.5)

that finds a control function given a path σ and a final time T .

Consider the path σ = {q0, ...,qk}, where qk is a configuration to be added to an

RRT∗. To implement the algorithm in the context of energy-optimal planning, we must be

able to assign an energy cost on the path σ (or any other path joining qk to the root q0.) If

qk /∈ C goal, energy cannot be computed exactly because a final time Tk and a velocity q̇k

are not specified by the problem definition for non-goal configurations. Even if Tk and q̇k

can be determined (e.g. by carrying out a search in the state space), the exact calculation

of (3.4) increases the time-complexity of the search problem, i.e. the running time of the

motion planning algorithm RRT∗ is multiplied by a linear factor. The reason is that the

cost will depend on a trajectory interpolating all points from q0 to qk, and such trajectory

must be planned for each call to the cost function. This is true for any timing law having

continuous acceleration at path points (Siciliano et al. 2009).

We present an approximation of (3.4) which we call integral-squared torque

approximation (ISTA). The method aims at accomplishing the following:

• Effectively assigning energy costs to any paths in the configuration space.

• Maintaining a n logn running time for the planning algorithm, by providing a cost

function that has an additive property. The additive property also plays a role in the

proof of optimality of RRT∗ that relies on the assumption that the cost function is

additive (Karaman and Frazzoli 2010). (i.e. the sum of the costs of two paths is

equal to the cost of their concatenation.)

We denote by ĉk the cost associated to the path {q0, ...,qk}. ĉk is an additive cost

given by

ĉk =


0 if k = 0

ĉk−1 + Ĵk if k > 0,
(3.10)
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where Ĵk represents the (approximated) amount of energy needed to travel from qk−1 to

qk. Ĵk is computed by executing the following steps:

1. A trajectory Π : [0, t f ]→ Rn is planned, Π interpolates the configurations qk−1 and

qk at 0 and t f respectively, and describes a point-to-point motion. The trajectory is

determined by finding a fifth order polynomial that satisfies the following

constraints:

Π(0) = qk−1 (3.11)

Π̇(0) = 0 (3.12)

Π̈(0) = 0 (3.13)

Π(t f ) = qk (3.14)

Π̇(t f ) = 0 (3.15)

Π̈(t f ) = 0. (3.16)

2. The trajectory Π is discretized into m points (m > 1) evenly spaced in time from 0

to t f , where t f is given by t f = (m−1)∆t, and ∆t designates a small time interval

between two consecutive points. m and ∆t are parameters that must be determined

prior to the motion planning. Our experience indicates that a small number of points

suffices for obtaining good approximations. In our implementation, m = 5 and

∆t = 0.1 second.

3. The cost of moving along Π is computed as follows:

Ĵk =
m−2

∑
i=0

τk(ti)
T

τk(ti)∆t, (3.17)

where the torque vector τk(ti) is determined by solving the inverse dynamics

problem at ti = i∆t.
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3.5 Evaluation

The evaluation is made entirely in simulation, which allows us to obtain results from

multiple trials, and an accurate reproduction of initial conditions. The robot is dynamically

simulated using Featherstone’s method for articulated bodies (Featherstone 1987). The

simulated robot, shown in Figure 3.3, is an anthropomorphic manipulator with a fixed

base: the arm possesses six degrees of freedom and the gripper two degrees of freedom.

Figure 3.3: The simulated manipulator used in the evaluation.

The following control law is used in all simulations. To execute a path in the

configuration space, the robotic arm is driven by torque computed by a composite inverse

dynamics / PID controller, where the velocities and accelerations are obtained with a

timing law of cubic splines.

3.5.1 Quality of the approximation

In this first evaluation, we are interested in measuring the success of ISTA in

approximating the energy equation in (3.4). Consequently, we apply the following

method.

A large number of paths of variable lengths are sampled from S . A path is sampled

as follows. An initial and final configuration are sampled from C free, then a RRT is used to

connect the two configurations.
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The paths are ranked using the energy equation in (3.4), which give us the true

ranking. The paths are then ranked by the following metrics: ISTA and the Euclidean

distance (ED). Using the Spearman rank correlation coefficient, we measure the strength

of the associations between the true ranking and the rankings given by the two metrics.

Values that are close to 1 indicate a strong association, whereas values that are close to 0

indicate a weak association. We use this measure to quantify the quality of the

approximation for ISTA and ED.

This evaluation method is repeated and the Spearman rank correlation coefficient is

recalculated for different average speed of the robotic arm. We modify the average speed

by rescaling the trajectory, i.e. by modifying the final time T . The average speed is

increased until a feasible actuation to follow a path cannot be found. We say that we

reached an inadmissible velocity region.

The results are obtained from 5000 paths and are shown in Figure 3.4. For an

average speed between 0.2 and 1.8 radian per second, we observe that the correlation is

close to 1 for ISTA and varies between 0.4 and 0.8 for ED. For an average speed larger

than 1.8 the correlation for ISTA and ED consistently decrease, which seems to suggest

that accurate energy prediction is harder to achieve in high-speed motions. We conclude

that ISTA can effectively provide an approximation of the amount of energy dissipated in

the actuators during the motion of a robotic arm.

3.5.2 Motion planning

In this section, we present a comparative evaluation of ISTA. Two motion planners

that both use the RRT∗algorithm are compared. The first planner is denoted by τ-RRT∗

and uses ISTA to calculate cost. The cost function in the second planner, denoted by

d-RRT∗, is the Euclidean distance. The evaluation is performed in the environment in

Figure 3.5. We quantify the effectiveness of the motion planners as follows.
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Figure 3.4: The Spearman rank correlation coefficient is used as a measure of success of
the integral-squared torque approximation and the Euclidean distance to approximate the
energy equation in (3.4).

Figure 3.5: The simulated environment has four spheres (obstacles) surrounding the arm.
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The evaluation is made on a large number of instances of the motion planning

planning problem. The dimension of the joint space is n = 6 (we fix the gripper). For each

instance, an initial and a goal configuration are sampled from C free. The planners τ-RRT∗

and d-RRT∗are then applied on the samples to obtain a path in the configuration space.

The quality of the path returned by each planning algorithm, after 3000 iterations, is

quantified using the energy equation in (3.4). The results are shown in Table 3.1. Each

value is an average obtained from 100 instances. Table 3.1 shows results for different

average speed of the arm. The average speed is modified by changing the final time T . We

observe that the average amount of energy expended by the robot is overall roughly 15%

lower when τ-RRT∗ is used. Figure 3.6 shows that the running time of τ-RRT∗ slightly

increases when compared to the running time of d-RRT∗.

Table 3.1: Average amount of energy expended for the motion planning algorithms τ-RRT∗

and d-RRT∗.

Average Speed τ-RRT∗ d-RRT∗

(radian per second) (unit energy) (unit energy)
0.5 148 169
0.6 118 135
0.8 88 100
1.0 73 83
1.2 58 66
1.6 44 50

We illustrate the comparative evaluation obtained in this section by providing the

following two examples.

Moving around an obstacle

The purpose in this example is to show that by increasing the number of iterations of

RRT∗, the quality of the solution found can deteriorate when an inappropriate cost

function is used. In this example the RRT∗ is expanded only in the shoulder joint space of

the robot, placed in the environment in Figure 3.5 (the shoulder has two degrees of
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Figure 3.6: The ratio of the running time of τ-RRT∗ to d-RRT∗ is shown for an increasing
number of samples (i.e. number of iterations).

freedom). The robot has to find its way around a sphere. τ-RRT∗and d-RRT∗are applied

on the same initial and final conditions. The results are reported in Figure 3.7 after 1000

and 5000 iterations of the algorithms.

We observe that τ-RRT∗finds the best solution; the path found is identical at 1000

and 5000 iterations. On the other hand, the quality of the path returned by d-RRT∗worsen

as the number of iterations increases. Note that the path found by d-RRT∗at 5000

iterations has the shortest length.

Lowering the arm

In this second example, we show that the length of a path in the joint space and the

amount of energy expended during the motion can be, in some cases, inversely

proportional. The robot arm is placed in an environment without obstacles, it is initially
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Figure 3.7: Expansion of d-RRT∗ (top) and τ-RRT∗ (bottom) in the shoulder joint space of
the robot arm in an environment with obstacles (Figure 3.5). The tree is shown after 1000
iterations (left) and 5000 iterations (right). The goal region is represented by a green circle
and the path to the goal by bold red lines. The amount of energy to move the robot along
each path, calculated via (3.4), is displayed.
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raised and instructed to be lowered. τ-RRT∗and d-RRT∗are expanded only in the (first)

shoulder and elbow joint space. The results are reported in Figures 3.8 and 3.9.

The path found by d-RRT∗ shows little change in the position of the elbow joint,

whereas the path found by τ-RRT∗describes a curve that causes the elbow joint to bend.

The results show that, by flexing the arm, the length of the path increases but the amount

of energy is considerably reduced.

3.6 Conclusion

This chapter provides the method integral-squared torque approximation (ISTA) that

assigns a nonnegative quantity to a path in the configuration space. This quantity

approximates the amount of energy expended to move the robot on the path. ISTA is

integrated with the motion planner RRT∗ to find low-energy collision-free paths in the

robot’s configuration space.

Section 3.5 presents a method to quantify the quality of an approximation of energy

by a metric. ISTA and the Euclidean distance are used to rank a large number of paths

sampled from S . The results indicate a strong association between ISTA’s ranking and the

true ranking (that uses the energy equation) of the paths. The main results in this chapter

show that ISTA is able to improve the solution obtained by the planner RRT∗when

compared to the Euclidean distance, by consistently reducing energy.

ISTA can be integrated with other motion planners, e.g. the probabilistic roadmap;

particularly in the query phase, to find low-energy paths inside the roadmap represented

by a weighted graph. ISTA can also be utilized to assign weights in other graph-based

robotics problems, e.g. coverage and exploration. These two robotics problem are studied

in the next two chapters.
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Figure 3.8: Expansion of d-RRT∗ (top) and τ-RRT∗ (bottom) in the shoulder and elbow
joint space of the robot arm. The tree is shown after 5000 iterations. The goal region is
represented by a green circle and the path to the goal by bold red lines. The amount of
energy to move the robot along each path, calculated via (3.4), is displayed.
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Figure 3.9: Motion of the arm resulting from the paths (in Figure 3.8) found by d-RRT∗

(left) and τ-RRT∗ (right).
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Chapter 4

Generalized Coverage Problem

4.1 Introduction

This chapter studies the computational complexity of the coverage problem, and

proposes an algorithm that has the property of being probabilistically complete, and aims

at reducing a cost function associated with the exploration path. The robotics coverage

problem has important applications that include de-mining, surveillance,

search-and-rescue, cleaning, surface painting etc. Informally, the problem consists of

finding a continuous motion that results in the coverage of a region in the robot’s

workspace. Depending on the application, the coverage can be done using tools mounted

on the robot (e.g. de-mining equipment) or range sensors.

Because of its wide range of applications, the problem does not have a unified

formulation in the literature. In this chapter, we seek to propose a unified formulation that

encompass a large majority of coverage problems and can be applied to different types of

robots and environments (i.e. two and three-dimensional environments). The resulting

problem is then called generalized coverage problem (GCP).

This chapter is structured as follows. Section 4.2 presents an overview of related

work. Section 4.3 provides preliminary materials. GCP is defined in Section 4.4, its
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polynomial-space hardness is shown, and a probabilistically complete algorithm is

described. In Section 4.5, GCP is recasted as an optimization problem, and a new

algorithm that minimizes the cost associated with covering a region is provided.

4.2 Related work

4.2.1 Motion planning

Coverage is closely related to motion planning. In both problems, the robot must

move through a path in its configuration space while being subjected to physical

constraints (e.g. obstacles in the environment). In robotics, the basic motion planning

problem is to find a collision-free path in the robot’s configuration space, from an initial

configuration to a goal region (or correctly report that such path does not exist.)

Even by this most basic definition, the motion planning problem, also known as the

piano mover’s problem (LaValle 2006), is shown to be inherently difficult to solve (Reif

1979). Computationally efficient, probabilistically complete or resolution complete

sampling-based planners are generally successful at solving the problem. Such algorithms

include the probabilistic roadmaps (PRM) and the rapidly-exploring random trees (RRT)

(Kavraki et al. 1996; LaValle 1998). They are discussed in Chapter 3. The coverage

algorithms in this chapter uses two existing sampling-based planners: the

rapidly-exploring random trees (RRT) and the optimal rapidly-exploring random trees

(RRT∗).

4.2.2 Coverage in a two-dimensional workspace

Early approaches in robotic coverage consider mobile robots in two-dimensional

environments. A spanning-tree-based algorithm is proposed by Gabriely and Rimon

(2001). The algorithm assumes that the environment is subdivided into cells. The work by
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Choset (2001) provides an overview of other early coverage algorithms used in a

two-dimensional workspace. The survey classifies coverage algorithms depending on the

cellular decomposition used (i.e. heuristic, approximate or exact cellular decomposition).

Two-dimensional coverage is applied on a variety of applications mentioned here. A

coverage algorithm developed by Acar et al. (2003) guides a robot in a minefield to detect

and possibly clear mines. Atkar et al. (2005) applies the problem of coverage to the spray

painting of simple surfaces. A coverage method that uses areal unmanned vehicles is

provided by Xu et al. (2011). Their method decomposes the workspace into free-space

regions and computes the shortest path that visits each region. Surveillance is yet another

application that requires a robot to cover its environment for detecting intrusion or

searching for a person or an object of interest. An algorithm that can be used by a team of

robots to patrol an urban area is designed by Xu and Stentz (2011).

The methods cited above are designed toward robots operating in a planar space,

and are thus not necessarily practical for a three-dimensional workspace.

Three-dimensional coverage is examined below.

4.2.3 Coverage in a three-dimensional workspace

Three-dimensional coverage can be applied in the construction of a model of an

object or a scene. In the literature, it is sometimes known under the name view planning

problem (VPP). The objective is to create a three-dimensional model of an object using a

minimum number of viewpoints, i.e. sensors’ position and orientation. A theoretical

framework to VPP is provided and its similarity to the known set cover problem is shown

(Scott et al. 2001). Wang et al. (2007) propose to minimize the traveling cost, i.e. the total

(Euclidean) distance traveled by the robot. The problem is then called traveling VPP.

They provide an integer programming formulation to traveling VPP, and an LP rounding

algorithm. Their approach assumes that a discrete number of viewpoints is known a priori.
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Other three-dimensional coverage methods include the work by Breitenmoser et al.

(2010). They propose an approach to cover a nonplanar surface by dividing it into Voronoi

regions. Their approach can be applied on a group of robots performing simultaneous

coverage. The coverage of a three-dimensional urban environment is studied by Cheng

et al. (2008). The robot used is an unmanned areal vehicle with a conical-field-of-view

sensor attached on its underside, and the environment has a cylindrical shape.

More recent work uses manipulator robots to cover three-dimensional surfaces

(Hess et al. 2012). They transform an instance of the coverage problem to an instance of

the generalized traveling salesman problem. The solution found is a path that minimizes a

cost function. Their approach provides collision-free paths over the covered surface only

(i.e., for the end effector), and not for the entire robot. Three-dimensional coverage is

accomplished in a collision-free manner by (Englot and Hover 2012; Hover et al. 2012).

Their method employs sampling-based motion planners to find a path in the robot’s

configuration space that results in the coverage of a complex surface such as the hull of a

ship. Subsequently, the planner RRT∗ is used to locally optimize the path found. In

contrast, our method aims at globally reducing the cost of the solution.

4.3 Preliminaries

4.3.1 Notation

Let W be a bounded region in a three-dimensional space that represents the robot’s

physical world. Let C be the n-dimensional configuration space of the robot, and q a

configuration in C .

Let W obs denote the portion of W occupied by obstacles. The physical space

occupied by the robot at q is denoted by R (q), and C free denotes the free configuration

space. q ∈ C free if and only if R (q) does not intersect with W obs.
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mobile robot

F(q)

W

Wobs

Figure 4.1: Mobile robot in a planar world W . The region in gray corresponds to F (q)
and coincides with the physical space occupied by the robot at configuration q. The striped
region corresponds to the obstacle space W obs.

F(q)

robotic arm

sensor

Wobs

W

Figure 4.2: Robotic arm equipped with a sensor in a planar world W . The sensor is placed
at the end effector. The region in gray corresponds to F (q) and coincides with the robot’s
field of view at configuration q. The striped region corresponds to the obstacle space W obs.

The power set of W is the set of all subsets of W and is denoted P (W ). Let

F : C → P (W ) be a function that uniquely associates a configuration to a subset of W .

The definition of F is illustrated by the following examples in Figures 4.1 and 4.2, where

W is a planar world. In the first example (Figure 4.1) F (q) corresponds to the the

physical space occupied by a mobile robot. In the second example (Figure 4.2) F (q)

corresponds to the field of view of a robot arm. Note that in the first example we have

F (q)≡ R (q). In both examples F (q) is a subset of W .
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4.3.2 Definition of coverage

Let W ′ be a subset of W and let the function σ : [0,1]→ C free be a continuous

collision-free path. A robot moving along σ is said to cover W ′ (or more simply σ covers

W ′) if and only if

W ′ ⊆
⋃

q∈σ

F (q). (4.1)

Equation (4.1) states that W ′ is a subset of the union of all F (q) on the path σ . When the

robot reaches the last configuration σ(1) on the path, the covered region
⋃

q∈σ F (q)

contains W ′ if (4.1) is true.

4.4 Generalized coverage problem

4.4.1 Problem formulation

The generalized coverage problem (GCP) is defined as follows. Given an initial

configuration qinit, a goal region W goal ⊆W , and a function F that associates a

configuration to a subset of W , find a continuous collision-free path σ such that

σ(0) = qinit (4.2)

and

W goal ⊆
⋃

q∈σ

F (q), (4.3)

or correctly report that such path does not exist. A solution to GCP is a path that starts at

qinit and drives the robot to cover W goal.

The problems cited in Section 4.2 are therefore subsumed under GCP:

• The workspace W is three dimensional and two-dimensional coverage is a special

case of GCP.
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• q can fully specify the position of a robot whether it is a manipulator, a mobile robot

or an unmanned areal vehicle.

• The definition of F is general enough to include different types of sensors or tools

mounted on the robot.

4.4.2 Computational complexity

In this section, we show that GCP is unlikely to have a solution that runs in

polynomial time.

Theorem 1. The generalized coverage problem is polynomial-space hard.

Proof. We prove that GCP is polynomial-space hard by showing that the motion planning

problem (MPP) is polynomial-time reducible to GCP. MPP is a well-studied problem in

robotics, it is also known under the name generalized mover’s problem. MPP is known to

be polynomial-space complete (Reif 1979; Canny 1988).

Recall that in MPP, we are given an initial and a goal configuration in C respectively

denoted pinit and pgoal. The problem is to find a continuous collision-free path σ such that

σ(0) = pinit and σ(1) = pgoal, where σ(0) and σ(1) correspond to the initial and final

configurations on the path respectively.

A reduction algorithm from MPP to GCP takes the input of MPP pinit and pgoal and

constructs an instance of GCP as follows.

qinit ← pinit, (4.4)

W goal ← W ′, (4.5)

F (q) ←


W ′ if q = pgoal

/0 otherwise,
(4.6)

where W ′ is an arbitrary subset of W .
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By assigning all the values taken by F not corresponding to pgoal to the empty set,

the only way to cover W goal is to reach the configuration pgoal exactly. Therefore, a

solution to the instance of GCP constructed from (4.4), (4.5) and (4.6) is a path σ such

that σ(0) = pinit and σ(1) = pgoal.

When compared to the coverage problem, the exploration problem appears to be

more challenging: In the exploration problem, the robot has no knowledge at all, or only

partial knowledge about the environment to be explored and must increase its knowledge

during the exploration. Therefore, we make the following conjecture.

Conjecture 2. The exploration problem is polynomial-space hard.

4.4.3 Proposed solution

The following algorithm makes use of sampling-based motion planners and seeks to

find a path that covers the goal region. Algorithm 1 starts by constructing a

rapidly-exploring random tree (RRT) denoted T. The RRT algorithm takes two

parameters: the root qinit and the number of samples K. RRT incrementally expands a tree

structure in C free, rooted at qinit, in the collision-free space. Note that K is also a parameter

to Algorithm 1.

Algorithm 1 An approach to the generalized coverage problem.
1: T← RRT(qinit,K)
2: if W goal ⊆⋃

q∈T F (q) then
3: σ ← preorder traversal of T
4: return σ

5: else
6: return “failure”
7: end if

Algorithm 1 then verifies that T covers the goal region W goal. If this condition is

true, Algorithm 1 returns a path σ that traverses the tree entirely, starting at qinit. If not,

the algorithm reports failure.
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To ensure continuity, we assume that the path σ contains the line segments

connecting vertices.

4.4.4 Completeness Analysis

In this section, preliminary definitions are given, then followed by the analysis of

Algorithm 1.

Definitions

Let q1 and q2 be two configurations in C free. q1 is reachable from q2 if and only if

they can be connected by a continuous collision-free path. This property is denoted by

q1 ∼ q2.

A solution σ to GCP is correct if and only if all the following conditions hold.

1. σ is continuous.

2. σ is collision-free.

3. Equation (4.2) is satisfied.

4. Equation (4.3) is satisfied.

An algorithm ALG(K), where K designates the number of samples used, is

probabilistically complete if and only if the following proposition is true. If a solution

exists, the probability that ALG(K) returns a correct solution approaches unity as K

approaches infinity.

Probabilistic completeness

This section demonstrates the probabilistic completeness of Algorithm 1. The

following assumption is made: The workspace W is represented by a map, i.e. a finite list
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of objects in the environment (Thrun et al. 2005). For example, W is represented by a grid

that partitions the workspace into a finite number of grid cells.

Lemma 3. A path σ returned by Algorithm 1 is correct.

Proof. To prove that σ is correct, all four conditions provided by the definition of

correctness must hold. By Algorithm 1, σ is a preorder traversal of a RRT denoted T that

begins at qinit, thus Equation (4.2) is satisfied. Because a RRT maintains a tree structure, it

is connected, therefore assuming that σ contains the line segments connecting the vertices

of T, σ is continuous. Moreover, a RRT only expands in C free: all the vertices and edges

of T are in C free. Hence σ is collision free. Finally, σ contains all the configurations in T

and σ is computed only if T covers W goal, therefore Equation (4.3) is satisfied, which

completes the proof.

Lemma 4. If a solution to GCP exists, then there exists a finite and nonempty set A such

that A covers W goal and ∀q ∈ A,q∼ qinit.

Proof. If a solution to GCP exists, then we have a nonempty set

X = {q ∈ C free | q∼ qinit∧F (q) intersects W goal} (4.7)

that covers W goal. A subset A of X is constructed by the following procedure. At each step

a configuration q′ is selected from X such that

{F (q′)\
⋃

q∈A

F (q)} intersects W goal. (4.8)

The procedure halts when A covers W goal. Since W goal is represented by a finite list of

objects, there are finitely many steps in the procedure, and A is finite.

Theorem 5. If a solution to the generalized coverage problem exists, the probability that

Algorithm 1 returns a correct path converges to 1 as the number of samples used

approaches infinity.
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Proof. By Lemma 4, it is sufficient for a path σ to reach all configurations in A to solve

GCP. Since the RRT algorithm is probabilistically complete and all configurations in A are

reachable from qinit, the probability that T reaches all configurations in A approaches one

as the number of samples K approaches infinity. It is also shown that, if a solution exists,

the probability that RRT fails to find one decreases exponentially with the number of

samples (Frazzoli et al. 2002; LaValle and Kuffner 1999). By Lemma 3, the returned path

is correct and the theorem follows.

4.5 Optimal coverage

In practice it is necessary to reduce the cost associated with covering a goal region.

The cost is a quantity that might represent the amount of energy expended by the robot, or

the time taken to complete the coverage.

First, we recast GCP as an optimization problem, then we address it by proposing a

new algorithm.

4.5.1 Problem formulation

Let S denote the set of all continuous collision-free paths and let c : S → R+ be a

function that assigns a nonnegative quantity to a path in S .

Given an initial configuration qinit, a goal region W goal ⊆W , and a function F that

associates a configuration to a subset of W , the problem is to find a continuous

collision-free path σ to

minimize : c(σ) (4.9)

subject to : σ(0) = qinit (4.10)

W goal ⊆
⋃

q∈σ

F (q). (4.11)
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4.5.2 Proposed solution

A solution to the optimization problem in (4.9) is described in Algorithm 2. The

algorithm preserves the probabilistic completeness of Algorithm 1 and improves the

quality of the returned path.

Algorithm 2 An approach to the problem in (4.9).
1: T← RRT(qinit,K)
2: if W goal ⊆⋃

q∈T F (q) then
3: A← minimum-size subset of T covering W goal (Algorithm 3)
4: σ∗ ← minimum-cost continuous collision-free path starting at qinit and traversing

all configurations in A (Algorithm 4)
5: return σ∗

6: else
7: return “failure”
8: end if

Algorithm 2 starts by constructing a RRT rooted at qinit, then verifies that T covers

the goal region W goal. If this condition is true, the algorithm finds a minimum-size subset

A of T that also covers W goal. This is described in Algorithm 3. Then, Algorithm 2 finds a

path that connects all the configurations in A (starting at qinit) while minimizing the cost

function c. This is described in Algorithm 4. If the initial condition is false, the algorithm

reports failure.

Minimum-size set covering the goal region

We now describe an approximate solution the problem of finding a minimum-size

set A that covers W goal given T. This problem is very similar to the NP-hard discrete

optimization problem: the set cover problem (SCP). A simple greedy approximation

algorithm produces a solution to SCP whose value is within a factor of O(logn) of the

value of the optimal solution, and remains the current best algorithm (Vazirani 2001).

Other research also use approximation algorithms to SCP in the context of coverage and

object inspection (Danner and Kavraki 2000; Scott et al. 2001; Englot and Hover 2011).
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Algorithm 3 is an adaptation of the greedy solution for SCP. Initially, the set A

consists of qinit, and the region F (qinit) is removed from W goal. At each iteration, the

algorithm chooses the configuration q in T that corresponds to the largest uncovered

region. The size of the corresponding uncovered region is given by |F (q)∩W goal|. Then,

q is added to A and the region F (q) is removed from W goal. The algorithm terminates

when W goal is empty.

Algorithm 3 An adaptation of the greedy algorithm for SCP that finds a subset of T cover-
ing W goal.

1: A←{qinit}
2: W goal←W goal \F (qinit)
3: while W goal 6= /0 do
4: q← configuration in T that maximizes |F (q)∩W goal|
5: A← A∪{q}
6: W goal←W goal \F (q)
7: end while
8: return A

Minimum-cost path

Algorithm 4 is an approximate solution to the following problem. Given a set

A = {q1, ..., q|A|}, a cost function c and an initial configuration qinit ∈ A, find a continuous

collision-free path σ∗ that visits each configuration in |A| once, starting at qinit. Figure 4.3

gives an example where the configuration space is two-dimensional. The configurations

that the robot must visit (i.e. the elements of A) are highlighted. The figure also shows that

all configurations are inter-reachable since they all belong to a RRT (provided by

Algorithm 2.) The proposed solution works as follows. First, an instance of the traveling

salesman problem (TSP) is constructed, then, an approximation algorithm to TSP is used

to find σ∗.

The problem at hand is a combination of the multi-query MPP and TSP. The RRT

algorithm is a probabilistically complete solution for MPP, however it is shown that RRT

converges to a non-optimal solution with respect to a cost function (Karaman and Frazzoli
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Algorithm 4 An approach to the minimum-cost path problem. Finds a near-optimal path
starting at qinit and traversing all configurations in A.

1: for i = 1 to |A| do
2: T′← RRT∗(qi,K′,c)
3: for j = 1 to |A|, j 6= i do
4: γi, j← path in T′ s.t. γi, j(0) = qi∧ γi, j(1) = q j
5: wi, j← c(γi, j)
6: end for
7: end for
8: σ∗← Approx-TSP(A,γ,w,qinit)
9: return σ∗

qinit

Figure 4.3: An instance of Algorithm 2, part 1. Two-dimensional configuration space of
a robot. The grey rectangles correspond to regions that are not in C free. The bold points
are the configurations in A that the robot must visit; the center point is qinit. The RRT
connecting all points is also shown.
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2011). The RRT∗algorithm, proposed by Karaman and Frazzoli (2010), preserves the

probabilistic completeness of RRT and is shown to be asymptotically optimal; it is

therefore used in Algorithm 4. In contrast to RRT, RRT∗examines cumulative costs

between newly added points and the root, and reconnects the tree around a newly added

points.

The tree holding the RRT∗ is denoted by T′. A new RRT∗ is constructed for each

configuration qi in A. The following parameters are used: a root qi, a number of samples

K′ and a cost function c. T′ connects the root qi to every configuration q j in A. The path

joining qi and q j is denoted by γi, j, and its weight (i.e. the cost associated to the path) by

wi, j. The probability that RRT∗ fails to find a path from qi to q j decreases exponentially

with the number of samples K′ (Karaman and Frazzoli 2011). Nevertheless, it is not

guaranteed that the algorithm finds one. If no path is found, we assume that Algorithm 4

uses the path from T (in Algorithm 2) connecting the two configurations. Figure 4.4

shows the expansion of a single RRT∗minimizing the Euclidean distance in a

two-dimensional configuration space. The figure highlights the paths found by the tree

that connect the root to every configuration in A.

An instance of TSP is now constructed: we possess a complete graph that consists

of a set of vertices A and a nonnegative cost w associated to each edge. A symmetric cost

function c implies that

wi, j = w j,i. (4.12)

The 3/2-approximation algorithm by Christofides (1976) can then be used by Algorithm

4. In the more general asymmetric case (i.e. if c is not symmetric), the equality in (4.12) is

not necessarily satisfied and other approximation algorithms should be considered. For the

asymmetric version of TSP, an O(logn)-approximate solution is given by Frieze et al.

(1982). The work by Asadpour et al. (2010) provides a better solution whose value is

within a factor of O(logn/ log logn).
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Figure 4.4: An instance of Algorithm 2, part 2. Expansion of a RRT∗ minimizing the
Euclidean distance. The same example from Figure 4.3 is used. The paths connecting the
root to every configuration in A are highlighted in red. This step is repeated |A| = 7 times
by Algorithm 4.

In Algorithm 4, the approximate solution of TSP is denoted by Approx-TSP. The

approximation algorithm finds an ordered set of configurations whose first element is qinit.

Then, a continuous collision-free path connecting the ordered set is directly formed using

γ . The path is assigned to σ∗ and is returned by Algorithm 4. Figure 4.5 shows the

solution found by Algorithm 4 for the example used above.

4.5.3 Performance analysis

To simplify the performance analysis of Algorithm 2, the following assumptions are

made:

• K = K′. This assumption is realistic since both the RRT and RRT∗ trees grow in the

same configuration space.

• Approx-TSP runs in O(|A|3) time (Christofides 1976).
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qinit

Figure 4.5: An instance of Algorithm 2, part 3. Solution found by Algorithm 4 to the
instance given in Figure 4.3. The solution is a path that starts at qinit and visits every
configuration in A.

Constructing the RRT in Algorithm 2 can be performed in O(K logK) time

(Karaman and Frazzoli 2011).

In Algorithm 3, at each iteration, K configurations must be evaluated to find the one

that maximizes |F (q)∩W goal|. This is repeated |A| times. The running time of Algorithm

3 is then O(|A|K).

In Algorithm 4, the RRT∗algorithm runs in O(K logK) (Karaman and Frazzoli

2011) and is called |A| times. The running time of Algorithm 4 is thus given by

O(|A|K logK + |A|3) which also corresponds to that of Algorithm 2.

4.5.4 Completeness Analysis

The following theorems demonstrate the probabilistic completeness of Algorithm 2.

Lemma 6. Algorithm 2 returns a correct path σ∗.
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Proof. The planner RRT∗finds paths that are free of collisions and continuous. The path

σ∗, that results from joining the branches of multiple RRT∗, begins at qinit and visits all

configurations in A once—which is sufficient to cover W goal.

Theorem 7. If a solution to the generalized coverage problem exists, the probability that

Algorithm 2 returns a correct path converges to 1 as the number of samples used

approaches infinity.

Proof. Algorithm 2 modifies Algorithm 1 by merely altering the returned path, shown to

be correct by Lemma 6. And the primary condition (in line 2) is identical in both

algorithms, thus the proof follows from Theorem 5.

4.6 Conclusion

This chapter formulates the generalized coverage problem (GCP) and proves its

polynomial-space hardness. A probabilistically complete algorithm (Algorithm 1) based

on the rapidly-exploring random trees is provided. The algorithm is optimized (in

Algorithm 2) by reducing the cost associated with covering a goal region. This is achieved

by minimizing the number of configurations needed to cover the goal region, and by using

the optimal rapidly-exploring random trees (RRT∗) algorithm to create an instance of the

traveling salesman problem.

Algorithm 2 is implemented in the following chapter on a manipulator robot that

possesses a range sensor. The cost function used is the one developed in Chapter 3.
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Chapter 5

Minimum-Energy Exploration

5.1 Introduction

This chapter is concerned with the problem of autonomous robot exploration in a

three-dimensional world. It provides a better understanding of exploration problems with

regard to their mathematical formulation and computational complexity, and presents a

means to evaluate the performance of future algorithms designed to solve it. In addition,

an approach capable of being implemented on a wide range of robotic systems is

proposed. The presented algorithm possesses completeness properties, and typically

chooses navigation paths that increase the robot’s knowledge of its environment while

expending minimal energy. It is compared to other exploration approaches capable of

being implemented on high-degree-of-freedom robots. The comparison, performed in

simulation, shows the significance of reducing energy during the exploration process.

When performing a task like exploration, it is important for a robot to conserve

energy. Energy-efficiency can augment the lifetime of a robot operating on a small energy

source. When compared to other components, the actuators have a high power

consumption (Wang et al. 2005). In this chapter, we study the exploration problem while

focusing on energy dissipated through the robot motors.

52



The robotic exploration problem has been studied extensively. It has been phrased

by Thrun et al. (2005) as a decision-theoretic problem. However it is typically presented

without a complete formulation, i.e. a mathematical description of the robotic system, the

exploration objectives and the physical constraints. With a lack of formulation, the

evaluation of exploration algorithms and their comparison become intricate.

The following is a list of goals achieved in this chapter.

1. The exploration problem is formulated as a multi-optimization problem. The

formulation is general enough to be applied on many robotic systems operating

under different types of constraints, e.g. energy or time constraints.

2. The polynomial-space hardness of the exploration problem is shown.

3. A probabilistically complete exploration algorithm that seeks to minimize the total

amount of energy expended during the exploration process is presented. The

proposed approach finds low-energy and collision-free paths, and can be applied on

high-degree-of-freedom robots.

4. The algorithm is implemented on an articulated robot operating in a

three-dimensional workspace. A comparison with other exploration strategies is

produced from a large number of trials in a simulated environment. The evaluation

methodology is directly obtained from the problem formulation. The results confirm

the importance of minimizing energy during the exploration process (as asserted

previously.)

The remainder of this chapter is organized as follows. Section 5.2 provides a broad

overview of exploration methods. A formulation of the energy-optimal exploration

problem is provided in Section 5.3 and the inherent difficulty of the problem is

determined. Section 5.4 provides a description of existing approaches able to be

implemented on articulated robots in a three-dimensional environment. Section 5.5
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proposes an algorithm that generates exploration paths that generally minimize energy

dissipation through the robot’s motors. The proposed algorithm is evaluated using a

simulated anthropomorphic arm with range sensor in Section 5.6, and a comparison with

other exploration strategies is given.

5.2 Related work

5.2.1 Exploration in topological maps

Early approaches in robotic exploration were conducted by Kuipers and Byun

(1991) and Dudek et al. (1991). They propose a hierarchical map, characterized by a

topological layer represented as a graph, where vertices are distinctive places in the

environment. Traditionally, mapping methods are divided into topological maps that

model the connectivity of distinctive places in the environment, and metric maps that

model its geometric properties (Thrun 2003). Exploration methods that use metric maps

(e.g. occupancy grid maps) are examined below.

5.2.2 Exploration with mobile robots

Yamauchi (1997) introduces an exploration method that uses an occupancy grid and

is based on the concept of frontiers, regions of the environment that lie between the

explored space and the unexplored space; the robot explores by traveling to these regions.

Other methods (Makarenko et al. 2002; Gonzalez-Banos and Latombe 2002; Thrun et al.

2005) include a navigation cost to the expected information gain at a position in the map;

the robot moves to the position that maximizes the difference between information gain

and cost. A comparison between different exploration strategies for mobile robots is

conducted by Holz et al. (2010). The criterion used in their comparative evaluation is the

total length of the robot’s trajectory.
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5.2.3 Exploration with manipulator robots

The methods cited above are designed toward mobile robots and are thus not

necessarily practical for an articulated robot. Other exploration methods concentrate on

manipulator robots that have a sensor attached to their end effector. This type of robot is

used to create a 3D model of an object of interest in the environment (Whaite and Ferrie

1997; Torabi and Gupta 2012) by using the next best view (NBV) paradigm. The goal is to

determine the next (best) sensor configuration to scan the object with a minimum number

of scans. A NBV approach is also used by Wang and Gupta (2007) to explore the robot’s

configuration space with a manipulator. Their work introduces a measure, called

configuration space entropy, that expresses the robot’s ignorance of its configuration

space. This measure is used to find the next sensor configuration that maximizes the

robot’s knowledge of its configuration space. Another method (Renton et al. 1999)

explores by scanning selected targets in the workspace, where a target is a

three-dimensional point in the unknown space. This exploration strategy is less

constrained than other NBV approaches because the manipulator’s sensor is not required

to reach an exact configuration (since a target can be viewed by an infinite number of

configurations.) The NBV methods produce, at each iteration, one or more desired

operational space configurations for a sensor. These methods rely upon a planner to find a

collision-free path to a goal configuration. Other methods (discussed below) for

exploration with a manipulator only use an external planner in exceptional cases.

A function that maps a configuration to a rating is introduced by Kruse et al. (1996).

Their exploration approach searches along the gradient of the rating function to find a goal

configuration. In most cases, the goal configuration can be reached through a linear path.

The rating function uses a weight that specifies the importance given to acquire new

information at the expense of navigation cost. The rapidly-exploring random tree (RRT)

algorithm (Kuffner and LaValle 2000) (which has been employed heavily in motion

planning for exploration of high-dimensional spaces) is used as an integral part of the
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exploration approach (Freda et al. 2008, 2009). RRTs bias search into the largest Voronoi

regions (LaValle 2006), which makes them efficient for solving motion planning

problems. The RRT-based method expands a RRT in a predefined subset of the

configuration space. The subset contains all the configurations included in an n-ball of a

predefined radius. This constrained exploration is necessary to execute a “world-based

depth-first traversal” of the robot’s physical world and to prevent continuous backward

and forward motion between distant configurations.

5.2.4 Energy-optimal motion planning and exploration

In contrast to the work cited above, our work focuses on minimizing actuator energy

dissipation during the exploration. Energy-optimal motion planning has been studied

extensively (von Stryk and Schlemmer 1994; Galicki 2000; Choset et al. 2005; Gregory

et al. 2012) but has been limited to planar robots, low-degree-of-freedom robots, or

point-to-point motions. Energy-optimal robot exploration has surprisingly been studied

little. The method of Mei et al. (2006) uses the concept of frontiers (Yamauchi 1997) in

order to direct a mobile robot via a locomotion strategy toward minimizing energy. They

compare their method to a simple greedy strategy.

A vein of research by Willow Garage (Rusu et al. 2009; Sucan et al. 2010) has

motivated our work. Their use of multiple sensors—3D laser range sensors in

particular—to construct models of indoor environments for motion planning raises the

question of what algorithms should be used to explore an environment efficiently.

5.3 Problem definition

The energy-optimal exploration problem (EEP) is formulated here as a bi-objective

optimization. It is informally defined as follows. Given a robot initial state (i.e. its initial

configuration and velocity vectors), the goal is to maximize its knowledge of an unknown
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environment while minimizing the amount of energy expended during that process. We

require that the exploration itself does not cause the robot to contact obstacles; we assume

that the environment is static (in order to avoid contact) and that the robot’s configuration

is known throughout the exploration process, i.e. there is no proprioceptive uncertainty.

The transformation to a formal description follows.

5.3.1 Notation

Let W be a bounded region in a three-dimensional space that represents the robot’s

physical world. The portion of W unknown to the robot at time t is denoted W u
t . The

known portion, at time t, is subdivided into the free space and the occupied (also called

obstacle) space, respectively denoted W free
t and W obs

t . We have

W = W u
t ∪W free

t ∪W obs
t , (5.1)

W u
t ∩W free

t = W free
t ∩W obs

t = W obs
t ∩W u

t = /0. (5.2)

As shown in (5.1) and (5.2), W is equal to the union of the three disjoint regions W u
t ,

W free
t and W obs

t . We denote their respective volumes by |W u
t |, |W free

t | and |W obs
t |.

Let C be the n-dimensional configuration space of the robot. C free
t denotes the free

configuration space at time t. Let q ∈ C be a configuration. The physical space occupied

by the robot at q is denoted by R (q). q ∈ C free
t if and only if R (q) does not intersect with

W u
t and W obs

t .

5.3.2 Exploration algorithm and termination

The exploration is carried out by an algorithm that is applied to the robot’s

knowledge of the world at time t (i.e. W u
t , W free

t and W obs
t ) to obtain a feasible control

u(t). The algorithm stops when a termination criterion is reached; let T denote the time

57



length of the exploration. |W u
T | represents the volume of the region unexplored at T .

Ideally, the robot keeps exploring until the totality of the world is known, i.e. |W u
T |= 0.

However, this termination criterion is impractical: regions in the unknown space might be

unobservable or unreachable due to the robot’s geometry. We propose an alternative

criterion for terminating the exploration in Section 5.5.

The control vector u(t) represents the torque vector at time t denoted by τ(t).

Because torque is proportional to current in a DC motor, the integral-squared torque can

be used as an approximation of energy dissipated in the robot’s motors (Chevallereau et al.

2009; Haq et al. 2012). The total energy expended by the actuators is thus given by

JT :=
∫ T

0
τ(t)Tτ(t)dt, (5.3)

where JT is equal to zero if no torque is applied to the robot and is positive otherwise.

5.3.3 Problem formulation

We can quantify the informal statement given at the beginning of this section by

proposing the problem of finding τ(t), 0≤ t ≤ T , to:

minimize : [|W u
T |,JT ]

T (5.4)

subject to : (q(0), q̇(0)) = (q0, q̇0) (5.5)

q(t) ∈ C free
t ∀t (5.6)

q̈ = M(q)−1{τ−C(q, q̇)q̇−g(q)}, (5.7)

where (q0, q̇0) is the robot’s initial state, M(q) is the robot’s generalized inertia matrix,

C(q, q̇) denotes the Coriolis and centrifugal forces, and g(q) is the vector of gravity

forces. Equation (5.7) is the well known equation for multi-rigid-body dynamics.
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A solution to (5.4) is a set of control functions (known as the Pareto optimal set)

instead of a single optimal solution. We transform EEP into a single-objective

optimization problem by applying the constrained objective function method (Haimes

et al. 1971). More importance is awarded to the first criterion |W u
T |; the second criterion

JT is used to form an additional constraint. The resulting problem consists of finding τ(t),

0≤ t ≤ T , to:

minimize : |W u
T | (5.8)

subject to : Equations (5.5, 5.6, 5.7)

JT ≤ Jmax, (5.9)

where the parameter Jmax is an upper bound for the amount of energy expended during the

exploration.

When using the bounded objective function method we choose to place the second

criterion JT as a constraint. As mentioned above, |W u
T | is treated as a more important

criterion, however there are other arguments in favor of this decision. Given that the

workspace W is bounded, then for a large Jmax, the function |W u
T | will surely converge to

a single value; which makes the comparison between different exploration methods easier.

This can be seen in the results section. Furthermore, The value of Jmax can have a

practical significance, e.g. it can represent the robot’s total amount of power supply.

EEP can be generalized to account for other constraints, i.e. one can add to the

constraints a set of inequalities of the form CT ≤Cmax, where CT is an objective function

and Cmax is its corresponding upper bound. For example, the time length of the

exploration can be limited by adding a positive value T max and the constraint

∫ T

0
dt ≤ T max. (5.10)
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With this method, formulating the following problem becomes straightforward: maximize

the robot’s knowledge of an unknown environment while minimizing the amount of

energy expended and the time length of the exploration.

5.3.4 Complexity analysis

In this section, we show that a solution to EEP that runs in polynomial time is

unlikely to be found. This can be shown by proving that the problem is at least in

PSPACE-hard.

Theorem 8. The energy-optimal exploration problem is polynomial-space hard.

Proof. We prove that EEP is polynomial-space hard by showing that the motion planning

problem is polynomial-time reducible to EEP. Motion planning is well-studied in robotics,

it is known to be polynomial-space complete (Reif 1979; Canny 1988). An instance of the

motion planning problem is an initial and a goal configuration in C respectively denoted

p0 and p1. The problem is to find a continuous collision-free path from p0 to p1.

Let V (q) denote the field of view of the robot at q, a region in W . An instance of

EEP can be constructed, in constant time, from an instance of the motion planning

problem as follows:

q0 ← p0 (5.11)

V (q) ←


W u

0 if q = p1

/0 otherwise.
(5.12)

Jmax ← ∞. (5.13)

Equation (5.12) assigns to the field of view the empty set for any configuration not

equal to p1. Therefore, if p1 can be reached from p0, an algorithm solving EEP must

move the robot to p1 to explore the unknown space W u
0 . The exploration is not limited by
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the total energy expended, as stated in Equation (5.13), and stops when p1 is reached.

Thus, the solution found is a continuous collision-free path starting at p0 and ending at p1;

which completes the proof.

Because the problem is inherently difficult to solve, standard techniques found in

calculus of variations and optimal control theory cannot be applied to find optimal

solutions. For this reason, suboptimal solutions must be considered and are discussed in

the following two sections.

5.4 Existing solutions

This section describes exploration algorithms that can be implemented on robots that

possess multiple degrees of freedom and can operate in a three-dimensional workspace.

The following existing approaches (evaluated in Section 5.6) optimize different criteria to

carry out an efficient exploration, however they do not explicitly minimize energy.

5.4.1 Rating functions

The rating functions (RF) approach, described in Kruse et al. (1996), introduces a

function that maps a configuration q ∈ C free to a rating. The rating combines the predicted

amount of new information obtained at q and the Euclidean distance between the current

configuration q0 and q. At each iteration of the algorithm, the gradient of the rating

function is calculated, and safe configurations along the gradient are examined. The

algorithm chooses the one with the highest rating. When a local maximum is attained, the

search proceeds to a random configuration that has a positive rating.

If q cannot be reached through a linear path, a path planning algorithm must be

called, e.g. the rapidly-exploring random tree planner.
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5.4.2 Maximal expected entropy reduction

The maximal expected entropy reduction (MER) method is described by Wang and

Gupta (2007) and is a continuation of the work by Yu and Gupta (2004). This work

introduces a measure, called configuration space entropy, that expresses the robot’s

ignorance of its configuration space. MER defines a function of a sensor’s configuration s,

called the expected entropy reduction function, and denoted ẼR. The goal is to move the

robot to the configuration that maximizes ẼR(s) at each iteration. ẼR(s) is approximated

by performing a summation of marginal entropies over a large enough number of samples

in C .

MER performs a sensor-based incremental construction of a probabilistic road map

(Yu and Gupta 2000) whose nodes are configurations in C free. MER uses this roadmap to

plan a path to the next desired sensor’s configuration.

5.4.3 Sensor-based exploration tree

The sensor-based exploration tree (SET) was developed by Freda et al. (2008); it

was generalized to multiple sensors in the work by Freda et al. (2009). More specifically,

we are interested in SET with local growth. As shown by Freda et al. (2008), it performs

better than the alternative (SET with global growth).

At each iteration, SET computes the robot’s local free boundary (LFB) at the current

configuration q0. The LFB contains all points of the frontier (see Section 5.1) that are both

in C free and can be viewed from the sensor at an admissible configuration. A configuration

q is admissible if the sensor position at q, denoted s(q), is within a maximum distance ρ

of s(q0), and the line segment between s(q) and s(q0) does not intersect a know obstacle.

Let D denote the subset of C containing all the configurations included in the n-ball

of radius δ and center q0. If the LFB is not empty, SET locally expands an RRT (rooted at

q0) in D. Then, the algorithm extracts from the RRT all admissible configurations. The

robot moves to the admissible configuration that maximizes the predicted amount of new
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information obtained by the sensor. If the LFB is empty, the robot backtracks to a previous

configuration.

If the RRT fails to find a configuration that increases the predicted information, a

second tree is expanded in D without collision detection. Only the admissible

configurations are added to the lazy tree. The robot moves to a safe configuration in the

lazy tree that increases the predicted information after a path planner is called. In the case

where both the RRT and the lazy tree fail, the robot backtracks to a previous configuration.

5.5 Proposed Solution

The algorithms described in the previous section do not attempt at explicitly finding

exploration paths that reduce energy. To address EEP we propose an alternative

exploration algorithm described here.

5.5.1 Effectiveness of exploration paths

Let q0 be the robot current configuration and σ = (q0, ...,qk) be a path in C free. We

seek to develop a utility function U that predicts the effectiveness of the move along a path

σ . This measure combines the predicted volume of the region explored by the robot and

the predicted amount of energy required to reach qk.

Predicted volume of the region explored

Let sk denote the sensor’s operational space configuration (i.e. a point in SE(3)) at

qk. Given qk, sk can be computed using the robot’s forward kinematics. The observable

portion of W from sk is called the field of view (FOV). We denote by vk the predicted

increase in volume attained by moving to qk, we have vk ≥ 0. The quantity vk is

determined by finding the portion of the FOV that intersects W u and is not obstructed by
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Figure 5.1: Field of view of a sensor placed on the end effector of a multilink robot, in
a two-dimensional workspace. The FOV is subdivided into four regions. Region I is un-
known and obstructed by the physical space occupied by the robot R (qk). Region II is
unknown and obstructed by the known occupied space W obs. Region III intersects with the
known free space W free. Region IV is the region of interest, it is in the FOV, and is neither
explored nor obstructed. vk is calculated by finding the area of Region IV.

R (qk) and W obs. This is illustrated in Figure 5.1. Note that vk does not incorporate

exploration due to sensor views at intermediate configurations between q0 and qk.

Predicted energy

The predicted amount of energy required to move along the path σ is denoted by ck

and is given by

ck =


ε if k = 0

ck−1 + Ĵk if k > 0,
(5.14)

where ε is a positive infinitesimal quantity, and Ĵk represents the (approximated) amount

of energy needed to travel from qk−1 to qk. We have ck > 0.
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We calculate Ĵk by using the integral-squared torque approximation method

described in Chapter 3. Ĵk is then given by

Ĵk =
m−2

∑
i=0

τk(ti)
T

τk(ti)∆t, (5.15)

where the torque vector τk(ti) is determined by solving the inverse dynamics problem at

ti = i∆t.

Utility function

The predicted effectiveness of the move along the path σ is given as a function of vk

and ck as follows:

U(σ) = f (vk,ck). (5.16)

The function U is a utility function that combines information gain and cost to articulate

the exploration objectives. Thrun et al. (2005) and Kruse et al. (1996) express U as a

weighted sum, whereas Gonzalez-Banos and Latombe (2002) choose an exponential

weighted utility function. In this work we choose the weighted product method. This type

of functions is used in multi-objective optimization when dealing with quantities having

different orders of magnitude (Marler and Arora 2004), such as vk and ck. Thus we have

U(σ) = vk
αck

α−1, (5.17)

where α is a weight with 0 < α < 1. A large α means that maximizing information gain

is favored over minimizing cost. The function U(σ) is equal to zero if vk = 0 and is

positive otherwise.
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5.5.2 Path planning

The probabilistic roadmap and the rapidly-exploring random tree (RRT) algorithms

have been used in the context of exploration (Wang and Gupta 2007; Freda et al. 2008,

2009). Such algorithms are shown to lack in asymptotic optimality with respect to a given

cost function (e.g. Equation (5.14)) (Karaman and Frazzoli 2011). The nonoptimality of

RRT is avoided by using RRT∗, shown to be asymptotically optimal. We denote by

τ-RRT∗ the RRT∗ algorithm that uses the cost in (5.14).

5.5.3 Algorithm

At each iteration Algorithm 5 expands a tree T, from q0, using the τ-RRT∗

algorithm. The total number of configurations sampled by τ-RRT∗ is K (an exploration

parameter.) The robot chooses the path σ∗ in T that maximizes the utility function in

(5.17). We assume that, while moving along the path σ∗, the robot senses the environment

and updates a map (the robot’s current representation of the physical world.) The

processes of sensing the environment and updating the map are described in the next

section.

The algorithm terminates if U(σ∗) is equal to zero, i.e. vk = 0 for all the

configurations added to T. Such condition signifies that the algorithm cannot find an

informative configuration, i.e. a configuration that reduces the size of W u.

5.5.4 Running time

Building the τ-RRT∗ is performed in O(K logK)-time (Karaman and Frazzoli 2011),

where K is the number of samples. Finding σ∗ is performed in O(K)-time with a preorder

traversal of T.
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Algorithm 5 An approach to the energy-optimal problem
1: exploration-completed← false
2: while exploration-completed = false do
3: q0← current configuration of the robot
4: T← τ-RRT∗(q0,K)
5: σ∗← path in T that maximizes (5.17)
6: if U(σ∗)> 0 then
7: move the robot along σ∗

8: else
9: exploration-completed← true

10: end if
11: end while

5.5.5 Completeness analysis

We begin by defining the notion of completeness in the context of exploration. Let

W ′(q0) represent the explorable region of W given the initial configuration q0. A

complete algorithm explores W ′(q0) entirely, and we have

W u
0 \W u

T = W ′(q0). (5.18)

We now show that Algorithm 5 possesses probabilistic completeness.

Theorem 9. The probability that Algorithm 5 explores W ′(q0) converges to 1 as the

number of samples K approaches infinity.

Proof. Suppose that Algorithm 5 terminates with

W u
0 \W u

T ⊂W ′(q0), (5.19)

then there exists a point P ∈W ′(q0) such that P /∈W u
0 \W u

T (i.e. P is not explored.)

Since P is in the explorable region, there exists at least one configuration q such that

q is reachable from q0 and P is in the robot’s field of view at q. We say that q is

in f ormative. At each iteration, Algorithm 5 creates a RRT tree that expands in the
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configuration space. For a number of samples K approaching infinity, the probability that

a RRT reaches q converges to 1 (LaValle and Kuffner 1999).

Algorithm 5 terminates if no informative configuration is found. Therefore, for a

number of samples K approaching infinity the probabilities that q is not found and that P

is not explored converge to 0.

5.6 Evaluation

The evaluation is made entirely in simulation, which allows us to obtain results from

multiple trials repeated on different environments. Simulation permits ready design of

heterogeneous environments for experimentation and accurate reproduction of initial

conditions.

5.6.1 Simulated environment

The robot is dynamically simulated using Featherstone’s method for articulated

bodies (Featherstone 1987). The simulated robot is an anthropomorphic manipulator with

a fixed base: the arm possesses six degrees of freedom and the gripper two degrees of

freedom. A simulated range sensor is positioned on the wrist of the arm. The “sensor”

provides a 2D array of depth readings using the z-buffer algorithm. The manipulator and

the sensor’s FOV are depicted in Figure 5.2.

The simulated anthropomorphic robot arm, like a true human arm, possesses limited

flexibility. As the sensor is placed on the wrist, there are many operational space

configurations for the sensor that are impossible for the arm to reach. In order to give the

robot some initial freedom of movement, the arm is assumed to have a “safe” region; as

shown in Figure 5.3, the safe region extends in a sphere from the manipulator’s shoulder

to its elbow.
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Figure 5.2: The virtual 3D laser range scanner uses a resolution of 50 × 50
(i.e. H =W = 50) and a FOV defined by θ = φ = 0.8 rad.

Figure 5.3: The safe region for the robot used in the simulations. The safe region, which
is a region assumed to be clear of obstacles that extends in a sphere from the manipulator’s
shoulder to its elbow, is used to give the robot some freedom of movement for exploration.
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The depth readings provided by the sensor update an octree representation of the

environment. The octree encodes both the unknown space W u and the occupied space

W obs. At the start of the exploration, all of the leaves of the octree are initialized to the

unknown state. The safe region, which belongs to W free, is removed from the octree. The

robot at configuration q is said to be in collision, i.e. q /∈ C free, if its geometric model

intersects with the octree.

Three environments, with varied obstacle sizes and shapes, are employed. The first

environment (E1), shown in Figure 5.4(a), is spacious and contains large obstacles. Figure

5.4(b) shows a cluttered space (E2), for which it is harder to plan a path between two

configurations. The total volume of free space is comparatively largest in this

environment. The third environment (E3), shown in Figure 5.4(c), is a confined space that

gives the robot very little space to maneuver. The total volume of free space is

comparatively smallest in E3. Note that, in all three environments, the robot is unable to

explore the totality of the unknown space due to the arm’s limited flexibility and the

presence of obstacles that both prevent the arm from reaching certain configurations and

obstruct the sensor’s FOV.

5.6.2 Results

Exploration algorithms

The algorithms implemented for the evaluation are summarized in Table 5.1.

EXP-τ-RRT∗ is the algorithm presented in Section 5.5. The following three algorithms are

similar to EXP-τ-RRT∗, but they each retain a unique exploration component.

EXP-τ-RRT uses the RRT path planner. EXP-d-RRT∗ substitutes the cost given in (5.14)

by the Euclidean distance. The algorithm EXP-τ-RRT∗-v does not employ the utility

function in (5.17). It performs a greedier exploration by choosing, at each iteration, the

path that maximizes the volume vk.
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Figure 5.4: The three 3D environments used in the evaluation of the exploration algorithm
on the simulated manipulator arm.
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The following three algorithms are existing approaches described in Section 5.4,

namely, rating functions (RF), maximal expected entropy reduction (MER) and

sensor-based exploration tree (SET). The are used in our comparison because they can be

implemented on robots that possess multiple degrees of freedom and can operate in a

three-dimensional workspace

Finally, the algorithm COV is is the coverage algorithm described in Chapter 4,

Algorithm 2. COV cannot be used as an exploration algorithm as it assumes a full

knowledge of the workspace W . It is implemented here as a comparative reference.

Table 5.1: The exploration algorithms used in the evaluation.

Exploration Path Cost Utility
Algorithm Planner Function Function

EXP-τ-RRT∗ RRT∗ integral-sqr. torque weighted product
EXP-τ-RRT RRT integral-sqr. torque weighted product
EXP-d-RRT∗ RRT∗ Euclidean distance weighted product

EXP-τ-RRT∗-vk RRT∗ integral-sqr. torque volume
RF RRT Euclidean distance weighted sum

MER PRM – entropy reduction
SET RRT Euclidean distance volume
COV RRT/RRT∗ integral-sqr. torque –

The following parameters are chosen in the implementation:

• In Section 5.5, the parameters m and ∆t respectively designate the number of points

needed to calculate the sum in (5.14) and the small time interval between two

consecutive points. Our experience indicates that a small number of points suffices

for obtaining good approximations. In our implementation, m = 5 and

∆t = 0.1 second.

• The weighted product method uses a quantity α set to 0.5. Such value of α gives

equal importance to optimizing information gain and cost.
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• The parameter K designates the number of configurations sampled by RRT and

RRT∗. We choose K = 3000. We find that with a smaller K the environments tend to

be incompletely explored.

Evaluation

The evaluation is performed based on the optimal control problem defined in (5.8).

Every exploration starts with identical initial conditions. To execute a path returned by an

exploration algorithm, the robot arm is driven by torque computed by a composite inverse

dynamics / PID controller, where the velocities and accelerations are obtained with a

timing law of cubic splines.

The exploration halts if any of the following occurs:

1. The path planner cannot find a configuration whose utility function value is positive.

2. The amount of energy expended by the robot (computed via (5.3)) exceeds the

upper bound Jmax.

However, the coverage algorithm COV is an exception and terminates only after the entire

path is executed, and the goal region is totally covered.

Due to the fact that all of the exploration approaches are pseudorandom, we carry

out 50 trials for each approach on every simulated environment. The comparison between

the variants of Algorithm 5, in the environments E1, E2 and E3 is found in Figures 5.5, 5.6

and 5.7 respectively. The mean of the total volume explored is shown for values of Jmax

between 0 and 10 unit energy. The comparison between Algorithm 5 and the remaining

algorithms in Table 5.1, in the environment E1, is found in Figure 5.8. (Similar results for

the environments E2 and E3 were obtained and are not provided here.) The mean of the

total volume explored is shown for values of Jmax between 0 and 30 unit energy.

73



0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Maximum amount of energy expended (unit energy)

v
o
lu

m
e 

ex
p
lo

re
d
 (

cu
b
ic

 m
et

er
)

 

 

EXP−τ−RRT
*

EXP−τ−RRT

EXP−d−RRT
*

EXP−τ−RRT
*
−v

Figure 5.5: Volume explored for values of Jmax between 0 and 10 unit energy in environ-
ment E1.
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Figure 5.6: Volume explored for values of Jmax between 0 and 10 unit energy in environ-
ment E2.
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Figure 5.7: Volume explored for values of Jmax between 0 and 10 unit energy in environ-
ment E3.
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Figure 5.8: Volume explored for values of Jmax between 0 and 30 unit energy in environ-
ment E1 compared to existing approaches.
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Discussion

We observe that the relative efficiency of the algorithms is consistent among the

three environments. The total volume explored is smaller in environment E3 where the

robot’s view is the most obstructed. We find that EXP-τ-RRT∗ and EXP-d-RRT∗ perform

better than the other two methods as they are both successful in reducing unnecessary

movement of the arm. However the energy-based cost function offers an advantage over

the Euclidean distance. Our results show a better performance of the RRT∗ path planner

when compared to RRT, as EXP-τ-RRT is consistently less efficient than the other three

algorithms. Under the same conditions, EXP-τ-RRT∗ shows an improvement of over 20%

in all environments when compared to EXP-τ-RRT∗-v; which emphasizes the importance

of using a utility function. We conclude that, based on the results, every component of

Algorithm 5 contributes to a more efficient exploration.

The results also show that EXP-τ-RRT∗ performs better than other existing

exploration approaches on average. Specifically, Figure 5.8 shows that EXP-τ-RRT∗ has

the largest mean value when compared to RF, MER and SET. These algorithms do not

attempt at reducing energy during the exploration process, which results in a less efficient

exploration (with respect to the formulation in (5.8).)

Finally, the hypothesis (made in Section 5.3) that |W u
T | converges to a single value

for a large Jmax is confirmed by the results in Figure 5.8. Because Algorithm 5 is

probabilistically complete, we can also deduce that, for environment E1, the explorable

region’s volume (i.e. |W ′(q0)|) is approximately equal 0.5 cubic meter.

5.7 Conclusion

This work formulates the energy-optimal exploration problem (EEP). It is expressed

as a minimization of the volume explored. The energy function is used to form an

additional constraint. This formulation of EEP allows a direct comparison of exploration
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algorithms. The energy constraint limit can be increased until the volume explored

converges to a single value, for at least one of the algorithms used in the comparison.

We also show that EEP is inherently difficult to solve by proving that it is at least in

PSPACE-hard. A probabilistically complete approach is presented. The algorithm

typically chooses navigation paths that increase the robot’s knowledge of its environment

while expending minimal motor torques, thus reducing mechanical energy. It is compared

in a simulated environment to other exploration approaches. The results confirm the

validity of our formulation of EEP and show the importance of optimizing energy.
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Chapter 6

Conclusion

6.1 Summary

Chapter 3 examines the problem of finding low-cost collision-free continuous paths

to move a robotic system from an initial state to a goal state, where cost is measured as

energy dissipated in the robot’s actuators. The problem is known as the energy-optimal

planning problem. The chapter introduces a cost approximation method that quantifies the

amount of energy expended to move a robot along a path. The method is called

integral-squared torque approximation (ISTA). Experiments performed in simulation

show that there is a high correlation between the approximated cost and the true cost. The

energy-optimal planning problem with zero velocities at end points is addressed by

combining ISTA with the existing motion planner RRT∗. Using a simulated

six-degree-of-freedom manipulator robot, ISTA is shown to improve the solution of RRT∗

when compared to the Euclidean distance metric.

Chapter 4 examines the coverage problem in robotics and provides a generalized

formulation. The proposed formulation is applicable to many types of robotic systems

operating in heterogeneous environments. Furthermore, we prove that the generalized

coverage problem (GCP) is polynomial-space hard by showing that the motion planning
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problem is polynomial-time reducible to GCP. From this proof, it can be conjectured that

the exploration problem is also polynomial-space hard. Finally, we provide a

probabilistically complete algorithm that finds a continuous and collision-free path

covering a goal region, while minimizing a cost functional.

Chapter 5 focuses on the problem of exploring a three-dimensional world with

articulated robots. The work seeks to define the energy-optimal exploration problem and

formulate it as a multi-optimization problem. The formulation helps in understanding the

exploration objectives and can be directly applied to evaluate and compare different

algorithms. Additionally, a novel approach that seeks to address this problem is introduce.

The presented algorithm, evaluated in simulation, typically chooses navigation paths that

increase the robot’s knowledge of its environment while expending minimal motor

torques.

6.2 Recommendations

6.2.1 Analytical characterization of ISTA

Future work includes an analytical characterization of the integral-squared torque

method (ISTA) that would help support the experimental results obtained from Chapter 3.

The robustness of ISTA can also be improved by generating trajectories (during the first

step of the method) using alternative methods. For example, Lee et al. (2005) suggests the

use of B-spline polynomials to express the motions of multibody systems.

6.2.2 Time-optimal motion and exploration

Fast motion is essential in increasing the productivity of robots. It can have an

important impact on robot exploration, e.g. when robots are deployed in disaster areas, it
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is crucial that information is obtained as fast as possible. Chapter 3 develops a method to

find low-energy collision-free paths.

A natural extension to this work is to apply similar methods to the time-optimal

planning problem, where the goal is to find a minimum-time continuous motion, while

being subjected to actuators limits. There exists previous work on this problem (Choset

et al. 2005; Verscheure et al. 2009). Future work in time-optimal planning will aim at

reducing the computational cost of finding a solution, or minimizing time and energy

simultaneously.

6.2.3 Approximate solution for the coverage problem

Chapter 4 proposes an algorithm (Algorithm 2) for the generalized coverage

problem (GCP). The algorithm does not give a performance guarantee with respect to the

cost of the path returned. Future work includes finding a ratio bound ρ(n) for Algorithm 2

(or a similar algorithm to GCP) i.e. an algorithm that produces a solution whose value is

within a factor of ρ(n) of the value of the optimal solution. This can be achieved by the

use of simplifying yet realistic assumptions. Wang et al. (2007) provide a polylogarithmic

approximation algorithm to GCP by making the assumptions that there exists a finite

number of sensor configurations that can be used in the coverage process, and that there is

a given cost associated to each pair of sensor configurations.

6.2.4 Exploration with other robotic systems

The work on minimum-cost exploration and coverage can be extended by

implementing the algorithms described in Chapters 4 and 5 on other popular robotic

systems, e.g. a manipulator arm mounted on a mobile robot. Future work will include

experiments with real robots in real environments to validate that it is as efficient in

human-centric environments on mobile manipulators with arbitrary sensory placements

(i.e. on the head, at the shoulder, etc.) as it is in pathological, simulated environments.
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sampling-based motion planning with automatically derived extension heuristics. In:

IEEE International Conference on Robotics and Automation, pp 2537–2542

Reif JH (1979) Complexity of the mover’s problem and generalizations. In: 20th Annual

Symposium on Foundations of Computer Science, pp 421–427

Renton P, Greenspan M, Elmaraghy H, Zghal H (1999) Plan-n-scan: a robotic system for

collision free autonomous exploration and workspace mapping. Journal of Intelligent

and Robotic Systems 24(3)

Rusu RB, Sucan IA, Gerkey B, Chitta S, Beetz M, , Kavraki LE (2009) Real-time

perception guided motion planning for a personal robot. In: IEEE/RSJ International

Conference on Intelligent Robots and Systems, pp 4245–4252

Scott WR, Roth G, Rivest JF (2001) View planning as a set covering problem. Tech. rep.,

National Research Council of Canada

88



Shiller Z (1994) Time-energy optimal control of articulated systems with geometric path

constraints. In: IEEE International Conference on Robotics and Automation, pp

2680–2685

Siciliano B, Sciavicco L, Villani L, Oriolo G (2009) Robotics: Modeling, Planning and

Control. Springer, London, UK

Spong MW, Hutchinson S, Vidyasagar M (2006) Robot Modeling and Control. John

Wiley and Sons, New York

von Stryk O, Schlemmer M (1994) Optimal control of the industrial robot manutec r3. In:

Computational Optimal Control, Birkhauser Verlag Basel, Switzerland, pp 367–382

Sucan IA, Kalakrishnan M, Chitta S (2010) Combining planning techniques for

manipulation using realtime perception. In: IEEE International Conference on Robotics

and Automation, pp 2895–2901

Thrun S (2003) Robotic mapping: a survey. In: Exploring Artificial Intelligence in the

New Millenium, Morgan Kaufmann, San Francisco, CA

Thrun S, Burgard W, Fox D (2005) Probabilistic Robotics. The MIT Press, Cambridge,

MA

Torabi L, Gupta K (2012) An autonomous six-dof eye-in-hand system for in situ 3d object

modeling. International Journal of Robotics Research 31(1):82–100

Urmson CP (2003) Approaches for heuristically biasing RRT growth. In: IEEE/RSJ

International Conference on Intelligent Robots and Systems, pp 1178–1183

Vazirani V (2001) Approximation Algorithms. Springer-Verlag, Berlin, Germany

Verscheure D, Demeulenaere B, Swevers J, Schutter JD, Diehl M (2008) Time-energy

optimal path tracking for robots: a numerically efficient optimization approach. In: 10th

IEEE International Workshop on Advanced Motion Control, pp 727–732

89



Verscheure D, Diehl M, Schutter JD, Swevers J (2009) On-line time-optimal path tracking

for robots. In: IEEE International Conference onRobotics and Automation, pp 599–605

Wallgrün JO (2010) Hierarchical Voronoi Graphs - Spatial Representation and Reasoning

for Mobile Robots. Springer

Wang G, Irwin MJ, Berman P, Fu H, Porta TFL (2005) Optimizing sensor movement

planning for energy efficiency. In: International Symposium on Low Power Electronics

and Design, pp 215–220

Wang P, Gupta K (2007) View planning for exploration via maximal expected entropy

reduction for robot mounted range sensors. Advanced Robotics 21(7):771–792

Wang P, Krishnamurti R, Gupta K (2007) View planning problem with combined view

and traveling cost. In: IEEE International Conference on Robotics and Automation, pp

711–716

Washington R, Golden K, Bresina J, Smith DE, Anderson C, Smith T (1999) Autonomous

rovers for mars exploration. In: Aerospace Conference, 1999. Proceedings. 1999 IEEE,

vol 1, pp 237–251

Whaite P, Ferrie FP (1997) Autonomous exploration: driven by uncertainty. IEEE

Transactions on Pattern Analysis and Machine Intelligence 19(3):193–205

Xu A, Viriyasuthee C, Rekleitis I (2011) Optimal complete terrain coverage using an

unmanned aerial vehicle. In: IEEE International Conference on Robotics and

Automation, pp 2513–2519

Xu L, Stentz A (2011) An efficient algorithm for environmental coverage with multiple

robots. In: IEEE International Conference on Robotics and Automation, pp 4950–4955

90



Yamauchi B (1997) A frontier-based approach for autonomous exploration. In: IEEE

International Symposium on Computational Intelligence in Robotics and Automation,

pp 146–151

Yu Y, Gupta K (2000) Sensor-based probabilistic roadmaps: experiments with an

eye-in-hand system. Advanced Robotics 14(6):515–536

Yu Y, Gupta K (2004) C-space entropy: a measure for view planning and exploration for

general robot-sensor systems in unknown environments. International Journal of

Robotics Research 23(12):1197–1223

91


	Minimum-Energy Exploration and Coverage for Robotic Systems
	Recommended Citation

	tmp.1633545004.pdf.Dzayw

